1 //===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is part of the X86 Disassembler.
11 // It contains code to translate the data produced by the decoder into
12 // MCInsts.
13 // Documentation for the disassembler can be found in X86Disassembler.h.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "X86Disassembler.h"
18 #include "X86DisassemblerDecoder.h"
19
20 #include "llvm/MC/EDInstInfo.h"
21 #include "llvm/MC/MCExpr.h"
22 #include "llvm/MC/MCContext.h"
23 #include "llvm/MC/MCDisassembler.h"
24 #include "llvm/MC/MCInst.h"
25 #include "llvm/MC/MCInstrInfo.h"
26 #include "llvm/MC/MCSubtargetInfo.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/MemoryObject.h"
29 #include "llvm/Support/TargetRegistry.h"
30 #include "llvm/Support/raw_ostream.h"
31
32 #define GET_REGINFO_ENUM
33 #include "X86GenRegisterInfo.inc"
34 #define GET_INSTRINFO_ENUM
35 #include "X86GenInstrInfo.inc"
36 #include "X86GenEDInfo.inc"
37
38 using namespace llvm;
39 using namespace llvm::X86Disassembler;
40
x86DisassemblerDebug(const char * file,unsigned line,const char * s)41 void x86DisassemblerDebug(const char *file,
42 unsigned line,
43 const char *s) {
44 dbgs() << file << ":" << line << ": " << s;
45 }
46
x86DisassemblerGetInstrName(unsigned Opcode,void * mii)47 const char *x86DisassemblerGetInstrName(unsigned Opcode, void *mii) {
48 const MCInstrInfo *MII = static_cast<const MCInstrInfo *>(mii);
49 return MII->getName(Opcode);
50 }
51
52 #define debug(s) DEBUG(x86DisassemblerDebug(__FILE__, __LINE__, s));
53
54 namespace llvm {
55
56 // Fill-ins to make the compiler happy. These constants are never actually
57 // assigned; they are just filler to make an automatically-generated switch
58 // statement work.
59 namespace X86 {
60 enum {
61 BX_SI = 500,
62 BX_DI = 501,
63 BP_SI = 502,
64 BP_DI = 503,
65 sib = 504,
66 sib64 = 505
67 };
68 }
69
70 extern Target TheX86_32Target, TheX86_64Target;
71
72 }
73
74 static bool translateInstruction(MCInst &target,
75 InternalInstruction &source,
76 const MCDisassembler *Dis);
77
X86GenericDisassembler(const MCSubtargetInfo & STI,DisassemblerMode mode,const MCInstrInfo * MII)78 X86GenericDisassembler::X86GenericDisassembler(const MCSubtargetInfo &STI,
79 DisassemblerMode mode,
80 const MCInstrInfo *MII)
81 : MCDisassembler(STI), MII(MII), fMode(mode) {}
82
~X86GenericDisassembler()83 X86GenericDisassembler::~X86GenericDisassembler() {
84 delete MII;
85 }
86
getEDInfo() const87 const EDInstInfo *X86GenericDisassembler::getEDInfo() const {
88 return instInfoX86;
89 }
90
91 /// regionReader - a callback function that wraps the readByte method from
92 /// MemoryObject.
93 ///
94 /// @param arg - The generic callback parameter. In this case, this should
95 /// be a pointer to a MemoryObject.
96 /// @param byte - A pointer to the byte to be read.
97 /// @param address - The address to be read.
regionReader(void * arg,uint8_t * byte,uint64_t address)98 static int regionReader(void* arg, uint8_t* byte, uint64_t address) {
99 MemoryObject* region = static_cast<MemoryObject*>(arg);
100 return region->readByte(address, byte);
101 }
102
103 /// logger - a callback function that wraps the operator<< method from
104 /// raw_ostream.
105 ///
106 /// @param arg - The generic callback parameter. This should be a pointe
107 /// to a raw_ostream.
108 /// @param log - A string to be logged. logger() adds a newline.
logger(void * arg,const char * log)109 static void logger(void* arg, const char* log) {
110 if (!arg)
111 return;
112
113 raw_ostream &vStream = *(static_cast<raw_ostream*>(arg));
114 vStream << log << "\n";
115 }
116
117 //
118 // Public interface for the disassembler
119 //
120
121 MCDisassembler::DecodeStatus
getInstruction(MCInst & instr,uint64_t & size,const MemoryObject & region,uint64_t address,raw_ostream & vStream,raw_ostream & cStream) const122 X86GenericDisassembler::getInstruction(MCInst &instr,
123 uint64_t &size,
124 const MemoryObject ®ion,
125 uint64_t address,
126 raw_ostream &vStream,
127 raw_ostream &cStream) const {
128 CommentStream = &cStream;
129
130 InternalInstruction internalInstr;
131
132 dlog_t loggerFn = logger;
133 if (&vStream == &nulls())
134 loggerFn = 0; // Disable logging completely if it's going to nulls().
135
136 int ret = decodeInstruction(&internalInstr,
137 regionReader,
138 (void*)®ion,
139 loggerFn,
140 (void*)&vStream,
141 (void*)MII,
142 address,
143 fMode);
144
145 if (ret) {
146 size = internalInstr.readerCursor - address;
147 return Fail;
148 }
149 else {
150 size = internalInstr.length;
151 return (!translateInstruction(instr, internalInstr, this)) ?
152 Success : Fail;
153 }
154 }
155
156 //
157 // Private code that translates from struct InternalInstructions to MCInsts.
158 //
159
160 /// translateRegister - Translates an internal register to the appropriate LLVM
161 /// register, and appends it as an operand to an MCInst.
162 ///
163 /// @param mcInst - The MCInst to append to.
164 /// @param reg - The Reg to append.
translateRegister(MCInst & mcInst,Reg reg)165 static void translateRegister(MCInst &mcInst, Reg reg) {
166 #define ENTRY(x) X86::x,
167 uint8_t llvmRegnums[] = {
168 ALL_REGS
169 0
170 };
171 #undef ENTRY
172
173 uint8_t llvmRegnum = llvmRegnums[reg];
174 mcInst.addOperand(MCOperand::CreateReg(llvmRegnum));
175 }
176
177 /// tryAddingSymbolicOperand - trys to add a symbolic operand in place of the
178 /// immediate Value in the MCInst.
179 ///
180 /// @param Value - The immediate Value, has had any PC adjustment made by
181 /// the caller.
182 /// @param isBranch - If the instruction is a branch instruction
183 /// @param Address - The starting address of the instruction
184 /// @param Offset - The byte offset to this immediate in the instruction
185 /// @param Width - The byte width of this immediate in the instruction
186 ///
187 /// If the getOpInfo() function was set when setupForSymbolicDisassembly() was
188 /// called then that function is called to get any symbolic information for the
189 /// immediate in the instruction using the Address, Offset and Width. If that
190 /// returns non-zero then the symbolic information it returns is used to create
191 /// an MCExpr and that is added as an operand to the MCInst. If getOpInfo()
192 /// returns zero and isBranch is true then a symbol look up for immediate Value
193 /// is done and if a symbol is found an MCExpr is created with that, else
194 /// an MCExpr with the immediate Value is created. This function returns true
195 /// if it adds an operand to the MCInst and false otherwise.
tryAddingSymbolicOperand(int64_t Value,bool isBranch,uint64_t Address,uint64_t Offset,uint64_t Width,MCInst & MI,const MCDisassembler * Dis)196 static bool tryAddingSymbolicOperand(int64_t Value, bool isBranch,
197 uint64_t Address, uint64_t Offset,
198 uint64_t Width, MCInst &MI,
199 const MCDisassembler *Dis) {
200 LLVMOpInfoCallback getOpInfo = Dis->getLLVMOpInfoCallback();
201 struct LLVMOpInfo1 SymbolicOp;
202 memset(&SymbolicOp, '\0', sizeof(struct LLVMOpInfo1));
203 SymbolicOp.Value = Value;
204 void *DisInfo = Dis->getDisInfoBlock();
205
206 if (!getOpInfo ||
207 !getOpInfo(DisInfo, Address, Offset, Width, 1, &SymbolicOp)) {
208 // Clear SymbolicOp.Value from above and also all other fields.
209 memset(&SymbolicOp, '\0', sizeof(struct LLVMOpInfo1));
210 LLVMSymbolLookupCallback SymbolLookUp = Dis->getLLVMSymbolLookupCallback();
211 if (!SymbolLookUp)
212 return false;
213 uint64_t ReferenceType;
214 if (isBranch)
215 ReferenceType = LLVMDisassembler_ReferenceType_In_Branch;
216 else
217 ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
218 const char *ReferenceName;
219 const char *Name = SymbolLookUp(DisInfo, Value, &ReferenceType, Address,
220 &ReferenceName);
221 if (Name) {
222 SymbolicOp.AddSymbol.Name = Name;
223 SymbolicOp.AddSymbol.Present = true;
224 }
225 // For branches always create an MCExpr so it gets printed as hex address.
226 else if (isBranch) {
227 SymbolicOp.Value = Value;
228 }
229 if(ReferenceType == LLVMDisassembler_ReferenceType_Out_SymbolStub)
230 (*Dis->CommentStream) << "symbol stub for: " << ReferenceName;
231 if (!Name && !isBranch)
232 return false;
233 }
234
235 MCContext *Ctx = Dis->getMCContext();
236 const MCExpr *Add = NULL;
237 if (SymbolicOp.AddSymbol.Present) {
238 if (SymbolicOp.AddSymbol.Name) {
239 StringRef Name(SymbolicOp.AddSymbol.Name);
240 MCSymbol *Sym = Ctx->GetOrCreateSymbol(Name);
241 Add = MCSymbolRefExpr::Create(Sym, *Ctx);
242 } else {
243 Add = MCConstantExpr::Create((int)SymbolicOp.AddSymbol.Value, *Ctx);
244 }
245 }
246
247 const MCExpr *Sub = NULL;
248 if (SymbolicOp.SubtractSymbol.Present) {
249 if (SymbolicOp.SubtractSymbol.Name) {
250 StringRef Name(SymbolicOp.SubtractSymbol.Name);
251 MCSymbol *Sym = Ctx->GetOrCreateSymbol(Name);
252 Sub = MCSymbolRefExpr::Create(Sym, *Ctx);
253 } else {
254 Sub = MCConstantExpr::Create((int)SymbolicOp.SubtractSymbol.Value, *Ctx);
255 }
256 }
257
258 const MCExpr *Off = NULL;
259 if (SymbolicOp.Value != 0)
260 Off = MCConstantExpr::Create(SymbolicOp.Value, *Ctx);
261
262 const MCExpr *Expr;
263 if (Sub) {
264 const MCExpr *LHS;
265 if (Add)
266 LHS = MCBinaryExpr::CreateSub(Add, Sub, *Ctx);
267 else
268 LHS = MCUnaryExpr::CreateMinus(Sub, *Ctx);
269 if (Off != 0)
270 Expr = MCBinaryExpr::CreateAdd(LHS, Off, *Ctx);
271 else
272 Expr = LHS;
273 } else if (Add) {
274 if (Off != 0)
275 Expr = MCBinaryExpr::CreateAdd(Add, Off, *Ctx);
276 else
277 Expr = Add;
278 } else {
279 if (Off != 0)
280 Expr = Off;
281 else
282 Expr = MCConstantExpr::Create(0, *Ctx);
283 }
284
285 MI.addOperand(MCOperand::CreateExpr(Expr));
286
287 return true;
288 }
289
290 /// tryAddingPcLoadReferenceComment - trys to add a comment as to what is being
291 /// referenced by a load instruction with the base register that is the rip.
292 /// These can often be addresses in a literal pool. The Address of the
293 /// instruction and its immediate Value are used to determine the address
294 /// being referenced in the literal pool entry. The SymbolLookUp call back will
295 /// return a pointer to a literal 'C' string if the referenced address is an
296 /// address into a section with 'C' string literals.
tryAddingPcLoadReferenceComment(uint64_t Address,uint64_t Value,const void * Decoder)297 static void tryAddingPcLoadReferenceComment(uint64_t Address, uint64_t Value,
298 const void *Decoder) {
299 const MCDisassembler *Dis = static_cast<const MCDisassembler*>(Decoder);
300 LLVMSymbolLookupCallback SymbolLookUp = Dis->getLLVMSymbolLookupCallback();
301 if (SymbolLookUp) {
302 void *DisInfo = Dis->getDisInfoBlock();
303 uint64_t ReferenceType = LLVMDisassembler_ReferenceType_In_PCrel_Load;
304 const char *ReferenceName;
305 (void)SymbolLookUp(DisInfo, Value, &ReferenceType, Address, &ReferenceName);
306 if(ReferenceType == LLVMDisassembler_ReferenceType_Out_LitPool_CstrAddr)
307 (*Dis->CommentStream) << "literal pool for: " << ReferenceName;
308 }
309 }
310
311 /// translateImmediate - Appends an immediate operand to an MCInst.
312 ///
313 /// @param mcInst - The MCInst to append to.
314 /// @param immediate - The immediate value to append.
315 /// @param operand - The operand, as stored in the descriptor table.
316 /// @param insn - The internal instruction.
translateImmediate(MCInst & mcInst,uint64_t immediate,const OperandSpecifier & operand,InternalInstruction & insn,const MCDisassembler * Dis)317 static void translateImmediate(MCInst &mcInst, uint64_t immediate,
318 const OperandSpecifier &operand,
319 InternalInstruction &insn,
320 const MCDisassembler *Dis) {
321 // Sign-extend the immediate if necessary.
322
323 OperandType type = (OperandType)operand.type;
324
325 bool isBranch = false;
326 uint64_t pcrel = 0;
327 if (type == TYPE_RELv) {
328 isBranch = true;
329 pcrel = insn.startLocation +
330 insn.displacementOffset + insn.displacementSize;
331 switch (insn.displacementSize) {
332 default:
333 break;
334 case 1:
335 type = TYPE_MOFFS8;
336 break;
337 case 2:
338 type = TYPE_MOFFS16;
339 break;
340 case 4:
341 type = TYPE_MOFFS32;
342 break;
343 case 8:
344 type = TYPE_MOFFS64;
345 break;
346 }
347 }
348 // By default sign-extend all X86 immediates based on their encoding.
349 else if (type == TYPE_IMM8 || type == TYPE_IMM16 || type == TYPE_IMM32 ||
350 type == TYPE_IMM64) {
351 uint32_t Opcode = mcInst.getOpcode();
352 switch (operand.encoding) {
353 default:
354 break;
355 case ENCODING_IB:
356 // Special case those X86 instructions that use the imm8 as a set of
357 // bits, bit count, etc. and are not sign-extend.
358 if (Opcode != X86::BLENDPSrri && Opcode != X86::BLENDPDrri &&
359 Opcode != X86::PBLENDWrri && Opcode != X86::MPSADBWrri &&
360 Opcode != X86::DPPSrri && Opcode != X86::DPPDrri &&
361 Opcode != X86::INSERTPSrr && Opcode != X86::VBLENDPSYrri &&
362 Opcode != X86::VBLENDPSYrmi && Opcode != X86::VBLENDPDYrri &&
363 Opcode != X86::VBLENDPDYrmi && Opcode != X86::VPBLENDWrri &&
364 Opcode != X86::VMPSADBWrri && Opcode != X86::VDPPSYrri &&
365 Opcode != X86::VDPPSYrmi && Opcode != X86::VDPPDrri &&
366 Opcode != X86::VINSERTPSrr)
367 type = TYPE_MOFFS8;
368 break;
369 case ENCODING_IW:
370 type = TYPE_MOFFS16;
371 break;
372 case ENCODING_ID:
373 type = TYPE_MOFFS32;
374 break;
375 case ENCODING_IO:
376 type = TYPE_MOFFS64;
377 break;
378 }
379 }
380
381 switch (type) {
382 case TYPE_XMM128:
383 mcInst.addOperand(MCOperand::CreateReg(X86::XMM0 + (immediate >> 4)));
384 return;
385 case TYPE_XMM256:
386 mcInst.addOperand(MCOperand::CreateReg(X86::YMM0 + (immediate >> 4)));
387 return;
388 case TYPE_REL8:
389 isBranch = true;
390 pcrel = insn.startLocation + insn.immediateOffset + insn.immediateSize;
391 // fall through to sign extend the immediate if needed.
392 case TYPE_MOFFS8:
393 if(immediate & 0x80)
394 immediate |= ~(0xffull);
395 break;
396 case TYPE_MOFFS16:
397 if(immediate & 0x8000)
398 immediate |= ~(0xffffull);
399 break;
400 case TYPE_REL32:
401 case TYPE_REL64:
402 isBranch = true;
403 pcrel = insn.startLocation + insn.immediateOffset + insn.immediateSize;
404 // fall through to sign extend the immediate if needed.
405 case TYPE_MOFFS32:
406 if(immediate & 0x80000000)
407 immediate |= ~(0xffffffffull);
408 break;
409 case TYPE_MOFFS64:
410 default:
411 // operand is 64 bits wide. Do nothing.
412 break;
413 }
414
415 if(!tryAddingSymbolicOperand(immediate + pcrel, isBranch, insn.startLocation,
416 insn.immediateOffset, insn.immediateSize,
417 mcInst, Dis))
418 mcInst.addOperand(MCOperand::CreateImm(immediate));
419 }
420
421 /// translateRMRegister - Translates a register stored in the R/M field of the
422 /// ModR/M byte to its LLVM equivalent and appends it to an MCInst.
423 /// @param mcInst - The MCInst to append to.
424 /// @param insn - The internal instruction to extract the R/M field
425 /// from.
426 /// @return - 0 on success; -1 otherwise
translateRMRegister(MCInst & mcInst,InternalInstruction & insn)427 static bool translateRMRegister(MCInst &mcInst,
428 InternalInstruction &insn) {
429 if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
430 debug("A R/M register operand may not have a SIB byte");
431 return true;
432 }
433
434 switch (insn.eaBase) {
435 default:
436 debug("Unexpected EA base register");
437 return true;
438 case EA_BASE_NONE:
439 debug("EA_BASE_NONE for ModR/M base");
440 return true;
441 #define ENTRY(x) case EA_BASE_##x:
442 ALL_EA_BASES
443 #undef ENTRY
444 debug("A R/M register operand may not have a base; "
445 "the operand must be a register.");
446 return true;
447 #define ENTRY(x) \
448 case EA_REG_##x: \
449 mcInst.addOperand(MCOperand::CreateReg(X86::x)); break;
450 ALL_REGS
451 #undef ENTRY
452 }
453
454 return false;
455 }
456
457 /// translateRMMemory - Translates a memory operand stored in the Mod and R/M
458 /// fields of an internal instruction (and possibly its SIB byte) to a memory
459 /// operand in LLVM's format, and appends it to an MCInst.
460 ///
461 /// @param mcInst - The MCInst to append to.
462 /// @param insn - The instruction to extract Mod, R/M, and SIB fields
463 /// from.
464 /// @return - 0 on success; nonzero otherwise
translateRMMemory(MCInst & mcInst,InternalInstruction & insn,const MCDisassembler * Dis)465 static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn,
466 const MCDisassembler *Dis) {
467 // Addresses in an MCInst are represented as five operands:
468 // 1. basereg (register) The R/M base, or (if there is a SIB) the
469 // SIB base
470 // 2. scaleamount (immediate) 1, or (if there is a SIB) the specified
471 // scale amount
472 // 3. indexreg (register) x86_registerNONE, or (if there is a SIB)
473 // the index (which is multiplied by the
474 // scale amount)
475 // 4. displacement (immediate) 0, or the displacement if there is one
476 // 5. segmentreg (register) x86_registerNONE for now, but could be set
477 // if we have segment overrides
478
479 MCOperand baseReg;
480 MCOperand scaleAmount;
481 MCOperand indexReg;
482 MCOperand displacement;
483 MCOperand segmentReg;
484 uint64_t pcrel = 0;
485
486 if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
487 if (insn.sibBase != SIB_BASE_NONE) {
488 switch (insn.sibBase) {
489 default:
490 debug("Unexpected sibBase");
491 return true;
492 #define ENTRY(x) \
493 case SIB_BASE_##x: \
494 baseReg = MCOperand::CreateReg(X86::x); break;
495 ALL_SIB_BASES
496 #undef ENTRY
497 }
498 } else {
499 baseReg = MCOperand::CreateReg(0);
500 }
501
502 if (insn.sibIndex != SIB_INDEX_NONE) {
503 switch (insn.sibIndex) {
504 default:
505 debug("Unexpected sibIndex");
506 return true;
507 #define ENTRY(x) \
508 case SIB_INDEX_##x: \
509 indexReg = MCOperand::CreateReg(X86::x); break;
510 EA_BASES_32BIT
511 EA_BASES_64BIT
512 #undef ENTRY
513 }
514 } else {
515 indexReg = MCOperand::CreateReg(0);
516 }
517
518 scaleAmount = MCOperand::CreateImm(insn.sibScale);
519 } else {
520 switch (insn.eaBase) {
521 case EA_BASE_NONE:
522 if (insn.eaDisplacement == EA_DISP_NONE) {
523 debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base");
524 return true;
525 }
526 if (insn.mode == MODE_64BIT){
527 pcrel = insn.startLocation +
528 insn.displacementOffset + insn.displacementSize;
529 tryAddingPcLoadReferenceComment(insn.startLocation +
530 insn.displacementOffset,
531 insn.displacement + pcrel, Dis);
532 baseReg = MCOperand::CreateReg(X86::RIP); // Section 2.2.1.6
533 }
534 else
535 baseReg = MCOperand::CreateReg(0);
536
537 indexReg = MCOperand::CreateReg(0);
538 break;
539 case EA_BASE_BX_SI:
540 baseReg = MCOperand::CreateReg(X86::BX);
541 indexReg = MCOperand::CreateReg(X86::SI);
542 break;
543 case EA_BASE_BX_DI:
544 baseReg = MCOperand::CreateReg(X86::BX);
545 indexReg = MCOperand::CreateReg(X86::DI);
546 break;
547 case EA_BASE_BP_SI:
548 baseReg = MCOperand::CreateReg(X86::BP);
549 indexReg = MCOperand::CreateReg(X86::SI);
550 break;
551 case EA_BASE_BP_DI:
552 baseReg = MCOperand::CreateReg(X86::BP);
553 indexReg = MCOperand::CreateReg(X86::DI);
554 break;
555 default:
556 indexReg = MCOperand::CreateReg(0);
557 switch (insn.eaBase) {
558 default:
559 debug("Unexpected eaBase");
560 return true;
561 // Here, we will use the fill-ins defined above. However,
562 // BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and
563 // sib and sib64 were handled in the top-level if, so they're only
564 // placeholders to keep the compiler happy.
565 #define ENTRY(x) \
566 case EA_BASE_##x: \
567 baseReg = MCOperand::CreateReg(X86::x); break;
568 ALL_EA_BASES
569 #undef ENTRY
570 #define ENTRY(x) case EA_REG_##x:
571 ALL_REGS
572 #undef ENTRY
573 debug("A R/M memory operand may not be a register; "
574 "the base field must be a base.");
575 return true;
576 }
577 }
578
579 scaleAmount = MCOperand::CreateImm(1);
580 }
581
582 displacement = MCOperand::CreateImm(insn.displacement);
583
584 static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = {
585 0, // SEG_OVERRIDE_NONE
586 X86::CS,
587 X86::SS,
588 X86::DS,
589 X86::ES,
590 X86::FS,
591 X86::GS
592 };
593
594 segmentReg = MCOperand::CreateReg(segmentRegnums[insn.segmentOverride]);
595
596 mcInst.addOperand(baseReg);
597 mcInst.addOperand(scaleAmount);
598 mcInst.addOperand(indexReg);
599 if(!tryAddingSymbolicOperand(insn.displacement + pcrel, false,
600 insn.startLocation, insn.displacementOffset,
601 insn.displacementSize, mcInst, Dis))
602 mcInst.addOperand(displacement);
603 mcInst.addOperand(segmentReg);
604 return false;
605 }
606
607 /// translateRM - Translates an operand stored in the R/M (and possibly SIB)
608 /// byte of an instruction to LLVM form, and appends it to an MCInst.
609 ///
610 /// @param mcInst - The MCInst to append to.
611 /// @param operand - The operand, as stored in the descriptor table.
612 /// @param insn - The instruction to extract Mod, R/M, and SIB fields
613 /// from.
614 /// @return - 0 on success; nonzero otherwise
translateRM(MCInst & mcInst,const OperandSpecifier & operand,InternalInstruction & insn,const MCDisassembler * Dis)615 static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand,
616 InternalInstruction &insn, const MCDisassembler *Dis) {
617 switch (operand.type) {
618 default:
619 debug("Unexpected type for a R/M operand");
620 return true;
621 case TYPE_R8:
622 case TYPE_R16:
623 case TYPE_R32:
624 case TYPE_R64:
625 case TYPE_Rv:
626 case TYPE_MM:
627 case TYPE_MM32:
628 case TYPE_MM64:
629 case TYPE_XMM:
630 case TYPE_XMM32:
631 case TYPE_XMM64:
632 case TYPE_XMM128:
633 case TYPE_XMM256:
634 case TYPE_DEBUGREG:
635 case TYPE_CONTROLREG:
636 return translateRMRegister(mcInst, insn);
637 case TYPE_M:
638 case TYPE_M8:
639 case TYPE_M16:
640 case TYPE_M32:
641 case TYPE_M64:
642 case TYPE_M128:
643 case TYPE_M256:
644 case TYPE_M512:
645 case TYPE_Mv:
646 case TYPE_M32FP:
647 case TYPE_M64FP:
648 case TYPE_M80FP:
649 case TYPE_M16INT:
650 case TYPE_M32INT:
651 case TYPE_M64INT:
652 case TYPE_M1616:
653 case TYPE_M1632:
654 case TYPE_M1664:
655 case TYPE_LEA:
656 return translateRMMemory(mcInst, insn, Dis);
657 }
658 }
659
660 /// translateFPRegister - Translates a stack position on the FPU stack to its
661 /// LLVM form, and appends it to an MCInst.
662 ///
663 /// @param mcInst - The MCInst to append to.
664 /// @param stackPos - The stack position to translate.
665 /// @return - 0 on success; nonzero otherwise.
translateFPRegister(MCInst & mcInst,uint8_t stackPos)666 static bool translateFPRegister(MCInst &mcInst,
667 uint8_t stackPos) {
668 if (stackPos >= 8) {
669 debug("Invalid FP stack position");
670 return true;
671 }
672
673 mcInst.addOperand(MCOperand::CreateReg(X86::ST0 + stackPos));
674
675 return false;
676 }
677
678 /// translateOperand - Translates an operand stored in an internal instruction
679 /// to LLVM's format and appends it to an MCInst.
680 ///
681 /// @param mcInst - The MCInst to append to.
682 /// @param operand - The operand, as stored in the descriptor table.
683 /// @param insn - The internal instruction.
684 /// @return - false on success; true otherwise.
translateOperand(MCInst & mcInst,const OperandSpecifier & operand,InternalInstruction & insn,const MCDisassembler * Dis)685 static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand,
686 InternalInstruction &insn,
687 const MCDisassembler *Dis) {
688 switch (operand.encoding) {
689 default:
690 debug("Unhandled operand encoding during translation");
691 return true;
692 case ENCODING_REG:
693 translateRegister(mcInst, insn.reg);
694 return false;
695 case ENCODING_RM:
696 return translateRM(mcInst, operand, insn, Dis);
697 case ENCODING_CB:
698 case ENCODING_CW:
699 case ENCODING_CD:
700 case ENCODING_CP:
701 case ENCODING_CO:
702 case ENCODING_CT:
703 debug("Translation of code offsets isn't supported.");
704 return true;
705 case ENCODING_IB:
706 case ENCODING_IW:
707 case ENCODING_ID:
708 case ENCODING_IO:
709 case ENCODING_Iv:
710 case ENCODING_Ia:
711 translateImmediate(mcInst,
712 insn.immediates[insn.numImmediatesTranslated++],
713 operand,
714 insn,
715 Dis);
716 return false;
717 case ENCODING_RB:
718 case ENCODING_RW:
719 case ENCODING_RD:
720 case ENCODING_RO:
721 translateRegister(mcInst, insn.opcodeRegister);
722 return false;
723 case ENCODING_I:
724 return translateFPRegister(mcInst, insn.opcodeModifier);
725 case ENCODING_Rv:
726 translateRegister(mcInst, insn.opcodeRegister);
727 return false;
728 case ENCODING_VVVV:
729 translateRegister(mcInst, insn.vvvv);
730 return false;
731 case ENCODING_DUP:
732 return translateOperand(mcInst,
733 insn.spec->operands[operand.type - TYPE_DUP0],
734 insn, Dis);
735 }
736 }
737
738 /// translateInstruction - Translates an internal instruction and all its
739 /// operands to an MCInst.
740 ///
741 /// @param mcInst - The MCInst to populate with the instruction's data.
742 /// @param insn - The internal instruction.
743 /// @return - false on success; true otherwise.
translateInstruction(MCInst & mcInst,InternalInstruction & insn,const MCDisassembler * Dis)744 static bool translateInstruction(MCInst &mcInst,
745 InternalInstruction &insn,
746 const MCDisassembler *Dis) {
747 if (!insn.spec) {
748 debug("Instruction has no specification");
749 return true;
750 }
751
752 mcInst.setOpcode(insn.instructionID);
753
754 int index;
755
756 insn.numImmediatesTranslated = 0;
757
758 for (index = 0; index < X86_MAX_OPERANDS; ++index) {
759 if (insn.spec->operands[index].encoding != ENCODING_NONE) {
760 if (translateOperand(mcInst, insn.spec->operands[index], insn, Dis)) {
761 return true;
762 }
763 }
764 }
765
766 return false;
767 }
768
createX86_32Disassembler(const Target & T,const MCSubtargetInfo & STI)769 static MCDisassembler *createX86_32Disassembler(const Target &T,
770 const MCSubtargetInfo &STI) {
771 return new X86Disassembler::X86GenericDisassembler(STI, MODE_32BIT,
772 T.createMCInstrInfo());
773 }
774
createX86_64Disassembler(const Target & T,const MCSubtargetInfo & STI)775 static MCDisassembler *createX86_64Disassembler(const Target &T,
776 const MCSubtargetInfo &STI) {
777 return new X86Disassembler::X86GenericDisassembler(STI, MODE_64BIT,
778 T.createMCInstrInfo());
779 }
780
LLVMInitializeX86Disassembler()781 extern "C" void LLVMInitializeX86Disassembler() {
782 // Register the disassembler.
783 TargetRegistry::RegisterMCDisassembler(TheX86_32Target,
784 createX86_32Disassembler);
785 TargetRegistry::RegisterMCDisassembler(TheX86_64Target,
786 createX86_64Disassembler);
787 }
788