• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1//===- X86InstrFPStack.td - FPU Instruction Set ------------*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the X86 x87 FPU instruction set, defining the
11// instructions, and properties of the instructions which are needed for code
12// generation, machine code emission, and analysis.
13//
14//===----------------------------------------------------------------------===//
15
16//===----------------------------------------------------------------------===//
17// FPStack specific DAG Nodes.
18//===----------------------------------------------------------------------===//
19
20def SDTX86FpGet2    : SDTypeProfile<2, 0, [SDTCisVT<0, f80>,
21                                           SDTCisVT<1, f80>]>;
22def SDTX86Fld       : SDTypeProfile<1, 2, [SDTCisFP<0>,
23                                           SDTCisPtrTy<1>,
24                                           SDTCisVT<2, OtherVT>]>;
25def SDTX86Fst       : SDTypeProfile<0, 3, [SDTCisFP<0>,
26                                           SDTCisPtrTy<1>,
27                                           SDTCisVT<2, OtherVT>]>;
28def SDTX86Fild      : SDTypeProfile<1, 2, [SDTCisFP<0>, SDTCisPtrTy<1>,
29                                           SDTCisVT<2, OtherVT>]>;
30def SDTX86FpToIMem  : SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisPtrTy<1>]>;
31
32def SDTX86CwdStore  : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
33
34def X86fld          : SDNode<"X86ISD::FLD", SDTX86Fld,
35                             [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
36def X86fst          : SDNode<"X86ISD::FST", SDTX86Fst,
37                             [SDNPHasChain, SDNPInGlue, SDNPMayStore,
38                              SDNPMemOperand]>;
39def X86fild         : SDNode<"X86ISD::FILD", SDTX86Fild,
40                             [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
41def X86fildflag     : SDNode<"X86ISD::FILD_FLAG", SDTX86Fild,
42                             [SDNPHasChain, SDNPOutGlue, SDNPMayLoad,
43                              SDNPMemOperand]>;
44def X86fp_to_i16mem : SDNode<"X86ISD::FP_TO_INT16_IN_MEM", SDTX86FpToIMem,
45                             [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
46def X86fp_to_i32mem : SDNode<"X86ISD::FP_TO_INT32_IN_MEM", SDTX86FpToIMem,
47                             [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
48def X86fp_to_i64mem : SDNode<"X86ISD::FP_TO_INT64_IN_MEM", SDTX86FpToIMem,
49                             [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
50def X86fp_cwd_get16 : SDNode<"X86ISD::FNSTCW16m",          SDTX86CwdStore,
51                             [SDNPHasChain, SDNPMayStore, SDNPSideEffect,
52                              SDNPMemOperand]>;
53
54//===----------------------------------------------------------------------===//
55// FPStack pattern fragments
56//===----------------------------------------------------------------------===//
57
58def fpimm0 : PatLeaf<(fpimm), [{
59  return N->isExactlyValue(+0.0);
60}]>;
61
62def fpimmneg0 : PatLeaf<(fpimm), [{
63  return N->isExactlyValue(-0.0);
64}]>;
65
66def fpimm1 : PatLeaf<(fpimm), [{
67  return N->isExactlyValue(+1.0);
68}]>;
69
70def fpimmneg1 : PatLeaf<(fpimm), [{
71  return N->isExactlyValue(-1.0);
72}]>;
73
74// Some 'special' instructions
75let usesCustomInserter = 1 in {  // Expanded after instruction selection.
76  def FP32_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP32:$src),
77                              [(X86fp_to_i16mem RFP32:$src, addr:$dst)]>;
78  def FP32_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP32:$src),
79                              [(X86fp_to_i32mem RFP32:$src, addr:$dst)]>;
80  def FP32_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP32:$src),
81                              [(X86fp_to_i64mem RFP32:$src, addr:$dst)]>;
82  def FP64_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP64:$src),
83                              [(X86fp_to_i16mem RFP64:$src, addr:$dst)]>;
84  def FP64_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP64:$src),
85                              [(X86fp_to_i32mem RFP64:$src, addr:$dst)]>;
86  def FP64_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP64:$src),
87                              [(X86fp_to_i64mem RFP64:$src, addr:$dst)]>;
88  def FP80_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP80:$src),
89                              [(X86fp_to_i16mem RFP80:$src, addr:$dst)]>;
90  def FP80_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP80:$src),
91                              [(X86fp_to_i32mem RFP80:$src, addr:$dst)]>;
92  def FP80_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP80:$src),
93                              [(X86fp_to_i64mem RFP80:$src, addr:$dst)]>;
94}
95
96// All FP Stack operations are represented with four instructions here.  The
97// first three instructions, generated by the instruction selector, use "RFP32"
98// "RFP64" or "RFP80" registers: traditional register files to reference 32-bit,
99// 64-bit or 80-bit floating point values.  These sizes apply to the values,
100// not the registers, which are always 80 bits; RFP32, RFP64 and RFP80 can be
101// copied to each other without losing information.  These instructions are all
102// pseudo instructions and use the "_Fp" suffix.
103// In some cases there are additional variants with a mixture of different
104// register sizes.
105// The second instruction is defined with FPI, which is the actual instruction
106// emitted by the assembler.  These use "RST" registers, although frequently
107// the actual register(s) used are implicit.  These are always 80 bits.
108// The FP stackifier pass converts one to the other after register allocation
109// occurs.
110//
111// Note that the FpI instruction should have instruction selection info (e.g.
112// a pattern) and the FPI instruction should have emission info (e.g. opcode
113// encoding and asm printing info).
114
115// Pseudo Instruction for FP stack return values.
116def FpPOP_RETVAL : FpI_<(outs RFP80:$dst), (ins), SpecialFP, []>;
117
118// FpIf32, FpIf64 - Floating Point Pseudo Instruction template.
119// f32 instructions can use SSE1 and are predicated on FPStackf32 == !SSE1.
120// f64 instructions can use SSE2 and are predicated on FPStackf64 == !SSE2.
121// f80 instructions cannot use SSE and use neither of these.
122class FpIf32<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
123  FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32]>;
124class FpIf64<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
125  FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64]>;
126
127// Factoring for arithmetic.
128multiclass FPBinary_rr<SDNode OpNode> {
129// Register op register -> register
130// These are separated out because they have no reversed form.
131def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), TwoArgFP,
132                [(set RFP32:$dst, (OpNode RFP32:$src1, RFP32:$src2))]>;
133def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), TwoArgFP,
134                [(set RFP64:$dst, (OpNode RFP64:$src1, RFP64:$src2))]>;
135def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), TwoArgFP,
136                [(set RFP80:$dst, (OpNode RFP80:$src1, RFP80:$src2))]>;
137}
138// The FopST0 series are not included here because of the irregularities
139// in where the 'r' goes in assembly output.
140// These instructions cannot address 80-bit memory.
141multiclass FPBinary<SDNode OpNode, Format fp, string asmstring> {
142// ST(0) = ST(0) + [mem]
143def _Fp32m  : FpIf32<(outs RFP32:$dst),
144                     (ins RFP32:$src1, f32mem:$src2), OneArgFPRW,
145                  [(set RFP32:$dst,
146                    (OpNode RFP32:$src1, (loadf32 addr:$src2)))]>;
147def _Fp64m  : FpIf64<(outs RFP64:$dst),
148                     (ins RFP64:$src1, f64mem:$src2), OneArgFPRW,
149                  [(set RFP64:$dst,
150                    (OpNode RFP64:$src1, (loadf64 addr:$src2)))]>;
151def _Fp64m32: FpIf64<(outs RFP64:$dst),
152                     (ins RFP64:$src1, f32mem:$src2), OneArgFPRW,
153                  [(set RFP64:$dst,
154                    (OpNode RFP64:$src1, (f64 (extloadf32 addr:$src2))))]>;
155def _Fp80m32: FpI_<(outs RFP80:$dst),
156                   (ins RFP80:$src1, f32mem:$src2), OneArgFPRW,
157                  [(set RFP80:$dst,
158                    (OpNode RFP80:$src1, (f80 (extloadf32 addr:$src2))))]>;
159def _Fp80m64: FpI_<(outs RFP80:$dst),
160                   (ins RFP80:$src1, f64mem:$src2), OneArgFPRW,
161                  [(set RFP80:$dst,
162                    (OpNode RFP80:$src1, (f80 (extloadf64 addr:$src2))))]>;
163def _F32m  : FPI<0xD8, fp, (outs), (ins f32mem:$src),
164                 !strconcat("f", asmstring, "{s}\t$src")> {
165  let mayLoad = 1;
166}
167def _F64m  : FPI<0xDC, fp, (outs), (ins f64mem:$src),
168                 !strconcat("f", asmstring, "{l}\t$src")> {
169  let mayLoad = 1;
170}
171// ST(0) = ST(0) + [memint]
172def _FpI16m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i16mem:$src2),
173                       OneArgFPRW,
174                    [(set RFP32:$dst, (OpNode RFP32:$src1,
175                                       (X86fild addr:$src2, i16)))]>;
176def _FpI32m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i32mem:$src2),
177                       OneArgFPRW,
178                    [(set RFP32:$dst, (OpNode RFP32:$src1,
179                                       (X86fild addr:$src2, i32)))]>;
180def _FpI16m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i16mem:$src2),
181                       OneArgFPRW,
182                    [(set RFP64:$dst, (OpNode RFP64:$src1,
183                                       (X86fild addr:$src2, i16)))]>;
184def _FpI32m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i32mem:$src2),
185                       OneArgFPRW,
186                    [(set RFP64:$dst, (OpNode RFP64:$src1,
187                                       (X86fild addr:$src2, i32)))]>;
188def _FpI16m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i16mem:$src2),
189                       OneArgFPRW,
190                    [(set RFP80:$dst, (OpNode RFP80:$src1,
191                                       (X86fild addr:$src2, i16)))]>;
192def _FpI32m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i32mem:$src2),
193                       OneArgFPRW,
194                    [(set RFP80:$dst, (OpNode RFP80:$src1,
195                                       (X86fild addr:$src2, i32)))]>;
196def _FI16m  : FPI<0xDE, fp, (outs), (ins i16mem:$src),
197                  !strconcat("fi", asmstring, "{s}\t$src")> {
198  let mayLoad = 1;
199}
200def _FI32m  : FPI<0xDA, fp, (outs), (ins i32mem:$src),
201                  !strconcat("fi", asmstring, "{l}\t$src")> {
202  let mayLoad = 1;
203}
204}
205
206defm ADD : FPBinary_rr<fadd>;
207defm SUB : FPBinary_rr<fsub>;
208defm MUL : FPBinary_rr<fmul>;
209defm DIV : FPBinary_rr<fdiv>;
210defm ADD : FPBinary<fadd, MRM0m, "add">;
211defm SUB : FPBinary<fsub, MRM4m, "sub">;
212defm SUBR: FPBinary<fsub ,MRM5m, "subr">;
213defm MUL : FPBinary<fmul, MRM1m, "mul">;
214defm DIV : FPBinary<fdiv, MRM6m, "div">;
215defm DIVR: FPBinary<fdiv, MRM7m, "divr">;
216
217class FPST0rInst<bits<8> o, string asm>
218  : FPI<o, AddRegFrm, (outs), (ins RST:$op), asm>, D8;
219class FPrST0Inst<bits<8> o, string asm>
220  : FPI<o, AddRegFrm, (outs), (ins RST:$op), asm>, DC;
221class FPrST0PInst<bits<8> o, string asm>
222  : FPI<o, AddRegFrm, (outs), (ins RST:$op), asm>, DE;
223
224// NOTE: GAS and apparently all other AT&T style assemblers have a broken notion
225// of some of the 'reverse' forms of the fsub and fdiv instructions.  As such,
226// we have to put some 'r's in and take them out of weird places.
227def ADD_FST0r   : FPST0rInst <0xC0, "fadd\t$op">;
228def ADD_FrST0   : FPrST0Inst <0xC0, "fadd\t{%st(0), $op|$op, ST(0)}">;
229def ADD_FPrST0  : FPrST0PInst<0xC0, "faddp\t$op">;
230def SUBR_FST0r  : FPST0rInst <0xE8, "fsubr\t$op">;
231def SUB_FrST0   : FPrST0Inst <0xE8, "fsub{r}\t{%st(0), $op|$op, ST(0)}">;
232def SUB_FPrST0  : FPrST0PInst<0xE8, "fsub{r}p\t$op">;
233def SUB_FST0r   : FPST0rInst <0xE0, "fsub\t$op">;
234def SUBR_FrST0  : FPrST0Inst <0xE0, "fsub{|r}\t{%st(0), $op|$op, ST(0)}">;
235def SUBR_FPrST0 : FPrST0PInst<0xE0, "fsub{|r}p\t$op">;
236def MUL_FST0r   : FPST0rInst <0xC8, "fmul\t$op">;
237def MUL_FrST0   : FPrST0Inst <0xC8, "fmul\t{%st(0), $op|$op, ST(0)}">;
238def MUL_FPrST0  : FPrST0PInst<0xC8, "fmulp\t$op">;
239def DIVR_FST0r  : FPST0rInst <0xF8, "fdivr\t$op">;
240def DIV_FrST0   : FPrST0Inst <0xF8, "fdiv{r}\t{%st(0), $op|$op, ST(0)}">;
241def DIV_FPrST0  : FPrST0PInst<0xF8, "fdiv{r}p\t$op">;
242def DIV_FST0r   : FPST0rInst <0xF0, "fdiv\t$op">;
243def DIVR_FrST0  : FPrST0Inst <0xF0, "fdiv{|r}\t{%st(0), $op|$op, ST(0)}">;
244def DIVR_FPrST0 : FPrST0PInst<0xF0, "fdiv{|r}p\t$op">;
245
246def COM_FST0r   : FPST0rInst <0xD0, "fcom\t$op">;
247def COMP_FST0r  : FPST0rInst <0xD8, "fcomp\t$op">;
248
249// Unary operations.
250multiclass FPUnary<SDNode OpNode, bits<8> opcode, string asmstring> {
251def _Fp32  : FpIf32<(outs RFP32:$dst), (ins RFP32:$src), OneArgFPRW,
252                 [(set RFP32:$dst, (OpNode RFP32:$src))]>;
253def _Fp64  : FpIf64<(outs RFP64:$dst), (ins RFP64:$src), OneArgFPRW,
254                 [(set RFP64:$dst, (OpNode RFP64:$src))]>;
255def _Fp80  : FpI_<(outs RFP80:$dst), (ins RFP80:$src), OneArgFPRW,
256                 [(set RFP80:$dst, (OpNode RFP80:$src))]>;
257def _F     : FPI<opcode, RawFrm, (outs), (ins), asmstring>, D9;
258}
259
260defm CHS : FPUnary<fneg, 0xE0, "fchs">;
261defm ABS : FPUnary<fabs, 0xE1, "fabs">;
262defm SQRT: FPUnary<fsqrt,0xFA, "fsqrt">;
263defm SIN : FPUnary<fsin, 0xFE, "fsin">;
264defm COS : FPUnary<fcos, 0xFF, "fcos">;
265
266let neverHasSideEffects = 1 in {
267def TST_Fp32  : FpIf32<(outs), (ins RFP32:$src), OneArgFP, []>;
268def TST_Fp64  : FpIf64<(outs), (ins RFP64:$src), OneArgFP, []>;
269def TST_Fp80  : FpI_<(outs), (ins RFP80:$src), OneArgFP, []>;
270}
271def TST_F  : FPI<0xE4, RawFrm, (outs), (ins), "ftst">, D9;
272
273// Versions of FP instructions that take a single memory operand.  Added for the
274//   disassembler; remove as they are included with patterns elsewhere.
275def FCOM32m  : FPI<0xD8, MRM2m, (outs), (ins f32mem:$src), "fcom{s}\t$src">;
276def FCOMP32m : FPI<0xD8, MRM3m, (outs), (ins f32mem:$src), "fcomp{s}\t$src">;
277
278def FLDENVm  : FPI<0xD9, MRM4m, (outs), (ins f32mem:$src), "fldenv\t$src">;
279def FSTENVm  : FPI<0xD9, MRM6m, (outs f32mem:$dst), (ins), "fnstenv\t$dst">;
280
281def FICOM32m : FPI<0xDA, MRM2m, (outs), (ins i32mem:$src), "ficom{l}\t$src">;
282def FICOMP32m: FPI<0xDA, MRM3m, (outs), (ins i32mem:$src), "ficomp{l}\t$src">;
283
284def FCOM64m  : FPI<0xDC, MRM2m, (outs), (ins f64mem:$src), "fcom{l}\t$src">;
285def FCOMP64m : FPI<0xDC, MRM3m, (outs), (ins f64mem:$src), "fcomp{l}\t$src">;
286
287def FRSTORm  : FPI<0xDD, MRM4m, (outs f32mem:$dst), (ins), "frstor\t$dst">;
288def FSAVEm   : FPI<0xDD, MRM6m, (outs f32mem:$dst), (ins), "fnsave\t$dst">;
289def FNSTSWm  : FPI<0xDD, MRM7m, (outs f32mem:$dst), (ins), "fnstsw\t$dst">;
290
291def FICOM16m : FPI<0xDE, MRM2m, (outs), (ins i16mem:$src), "ficom{s}\t$src">;
292def FICOMP16m: FPI<0xDE, MRM3m, (outs), (ins i16mem:$src), "ficomp{s}\t$src">;
293
294def FBLDm    : FPI<0xDF, MRM4m, (outs), (ins f32mem:$src), "fbld\t$src">;
295def FBSTPm   : FPI<0xDF, MRM6m, (outs f32mem:$dst), (ins), "fbstp\t$dst">;
296
297// Floating point cmovs.
298class FpIf32CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
299  FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32, HasCMov]>;
300class FpIf64CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
301  FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64, HasCMov]>;
302
303multiclass FPCMov<PatLeaf cc> {
304  def _Fp32  : FpIf32CMov<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2),
305                       CondMovFP,
306                     [(set RFP32:$dst, (X86cmov RFP32:$src1, RFP32:$src2,
307                                        cc, EFLAGS))]>;
308  def _Fp64  : FpIf64CMov<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2),
309                       CondMovFP,
310                     [(set RFP64:$dst, (X86cmov RFP64:$src1, RFP64:$src2,
311                                        cc, EFLAGS))]>;
312  def _Fp80  : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2),
313                     CondMovFP,
314                     [(set RFP80:$dst, (X86cmov RFP80:$src1, RFP80:$src2,
315                                        cc, EFLAGS))]>,
316                                        Requires<[HasCMov]>;
317}
318
319let Uses = [EFLAGS], Constraints = "$src1 = $dst" in {
320defm CMOVB  : FPCMov<X86_COND_B>;
321defm CMOVBE : FPCMov<X86_COND_BE>;
322defm CMOVE  : FPCMov<X86_COND_E>;
323defm CMOVP  : FPCMov<X86_COND_P>;
324defm CMOVNB : FPCMov<X86_COND_AE>;
325defm CMOVNBE: FPCMov<X86_COND_A>;
326defm CMOVNE : FPCMov<X86_COND_NE>;
327defm CMOVNP : FPCMov<X86_COND_NP>;
328} // Uses = [EFLAGS], Constraints = "$src1 = $dst"
329
330let Predicates = [HasCMov] in {
331// These are not factored because there's no clean way to pass DA/DB.
332def CMOVB_F  : FPI<0xC0, AddRegFrm, (outs RST:$op), (ins),
333                  "fcmovb\t{$op, %st(0)|ST(0), $op}">, DA;
334def CMOVBE_F : FPI<0xD0, AddRegFrm, (outs RST:$op), (ins),
335                  "fcmovbe\t{$op, %st(0)|ST(0), $op}">, DA;
336def CMOVE_F  : FPI<0xC8, AddRegFrm, (outs RST:$op), (ins),
337                  "fcmove\t{$op, %st(0)|ST(0), $op}">, DA;
338def CMOVP_F  : FPI<0xD8, AddRegFrm, (outs RST:$op), (ins),
339                  "fcmovu\t {$op, %st(0)|ST(0), $op}">, DA;
340def CMOVNB_F : FPI<0xC0, AddRegFrm, (outs RST:$op), (ins),
341                  "fcmovnb\t{$op, %st(0)|ST(0), $op}">, DB;
342def CMOVNBE_F: FPI<0xD0, AddRegFrm, (outs RST:$op), (ins),
343                  "fcmovnbe\t{$op, %st(0)|ST(0), $op}">, DB;
344def CMOVNE_F : FPI<0xC8, AddRegFrm, (outs RST:$op), (ins),
345                  "fcmovne\t{$op, %st(0)|ST(0), $op}">, DB;
346def CMOVNP_F : FPI<0xD8, AddRegFrm, (outs RST:$op), (ins),
347                  "fcmovnu\t{$op, %st(0)|ST(0), $op}">, DB;
348} // Predicates = [HasCMov]
349
350// Floating point loads & stores.
351let canFoldAsLoad = 1 in {
352def LD_Fp32m   : FpIf32<(outs RFP32:$dst), (ins f32mem:$src), ZeroArgFP,
353                  [(set RFP32:$dst, (loadf32 addr:$src))]>;
354let isReMaterializable = 1 in
355  def LD_Fp64m : FpIf64<(outs RFP64:$dst), (ins f64mem:$src), ZeroArgFP,
356                  [(set RFP64:$dst, (loadf64 addr:$src))]>;
357def LD_Fp80m   : FpI_<(outs RFP80:$dst), (ins f80mem:$src), ZeroArgFP,
358                  [(set RFP80:$dst, (loadf80 addr:$src))]>;
359}
360def LD_Fp32m64 : FpIf64<(outs RFP64:$dst), (ins f32mem:$src), ZeroArgFP,
361                  [(set RFP64:$dst, (f64 (extloadf32 addr:$src)))]>;
362def LD_Fp64m80 : FpI_<(outs RFP80:$dst), (ins f64mem:$src), ZeroArgFP,
363                  [(set RFP80:$dst, (f80 (extloadf64 addr:$src)))]>;
364def LD_Fp32m80 : FpI_<(outs RFP80:$dst), (ins f32mem:$src), ZeroArgFP,
365                  [(set RFP80:$dst, (f80 (extloadf32 addr:$src)))]>;
366def ILD_Fp16m32: FpIf32<(outs RFP32:$dst), (ins i16mem:$src), ZeroArgFP,
367                  [(set RFP32:$dst, (X86fild addr:$src, i16))]>;
368def ILD_Fp32m32: FpIf32<(outs RFP32:$dst), (ins i32mem:$src), ZeroArgFP,
369                  [(set RFP32:$dst, (X86fild addr:$src, i32))]>;
370def ILD_Fp64m32: FpIf32<(outs RFP32:$dst), (ins i64mem:$src), ZeroArgFP,
371                  [(set RFP32:$dst, (X86fild addr:$src, i64))]>;
372def ILD_Fp16m64: FpIf64<(outs RFP64:$dst), (ins i16mem:$src), ZeroArgFP,
373                  [(set RFP64:$dst, (X86fild addr:$src, i16))]>;
374def ILD_Fp32m64: FpIf64<(outs RFP64:$dst), (ins i32mem:$src), ZeroArgFP,
375                  [(set RFP64:$dst, (X86fild addr:$src, i32))]>;
376def ILD_Fp64m64: FpIf64<(outs RFP64:$dst), (ins i64mem:$src), ZeroArgFP,
377                  [(set RFP64:$dst, (X86fild addr:$src, i64))]>;
378def ILD_Fp16m80: FpI_<(outs RFP80:$dst), (ins i16mem:$src), ZeroArgFP,
379                  [(set RFP80:$dst, (X86fild addr:$src, i16))]>;
380def ILD_Fp32m80: FpI_<(outs RFP80:$dst), (ins i32mem:$src), ZeroArgFP,
381                  [(set RFP80:$dst, (X86fild addr:$src, i32))]>;
382def ILD_Fp64m80: FpI_<(outs RFP80:$dst), (ins i64mem:$src), ZeroArgFP,
383                  [(set RFP80:$dst, (X86fild addr:$src, i64))]>;
384
385def ST_Fp32m   : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP,
386                  [(store RFP32:$src, addr:$op)]>;
387def ST_Fp64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP,
388                  [(truncstoref32 RFP64:$src, addr:$op)]>;
389def ST_Fp64m   : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP,
390                  [(store RFP64:$src, addr:$op)]>;
391def ST_Fp80m32 : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP,
392                  [(truncstoref32 RFP80:$src, addr:$op)]>;
393def ST_Fp80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP,
394                  [(truncstoref64 RFP80:$src, addr:$op)]>;
395// FST does not support 80-bit memory target; FSTP must be used.
396
397let mayStore = 1, neverHasSideEffects = 1 in {
398def ST_FpP32m    : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP, []>;
399def ST_FpP64m32  : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP, []>;
400def ST_FpP64m    : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP, []>;
401def ST_FpP80m32  : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP, []>;
402def ST_FpP80m64  : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP, []>;
403}
404def ST_FpP80m    : FpI_<(outs), (ins f80mem:$op, RFP80:$src), OneArgFP,
405                    [(store RFP80:$src, addr:$op)]>;
406let mayStore = 1, neverHasSideEffects = 1 in {
407def IST_Fp16m32  : FpIf32<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP, []>;
408def IST_Fp32m32  : FpIf32<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP, []>;
409def IST_Fp64m32  : FpIf32<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP, []>;
410def IST_Fp16m64  : FpIf64<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP, []>;
411def IST_Fp32m64  : FpIf64<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP, []>;
412def IST_Fp64m64  : FpIf64<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP, []>;
413def IST_Fp16m80  : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP, []>;
414def IST_Fp32m80  : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP, []>;
415def IST_Fp64m80  : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP, []>;
416}
417
418let mayLoad = 1 in {
419def LD_F32m   : FPI<0xD9, MRM0m, (outs), (ins f32mem:$src), "fld{s}\t$src">;
420def LD_F64m   : FPI<0xDD, MRM0m, (outs), (ins f64mem:$src), "fld{l}\t$src">;
421def LD_F80m   : FPI<0xDB, MRM5m, (outs), (ins f80mem:$src), "fld{t}\t$src">;
422def ILD_F16m  : FPI<0xDF, MRM0m, (outs), (ins i16mem:$src), "fild{s}\t$src">;
423def ILD_F32m  : FPI<0xDB, MRM0m, (outs), (ins i32mem:$src), "fild{l}\t$src">;
424def ILD_F64m  : FPI<0xDF, MRM5m, (outs), (ins i64mem:$src), "fild{ll}\t$src">;
425}
426let mayStore = 1 in {
427def ST_F32m   : FPI<0xD9, MRM2m, (outs), (ins f32mem:$dst), "fst{s}\t$dst">;
428def ST_F64m   : FPI<0xDD, MRM2m, (outs), (ins f64mem:$dst), "fst{l}\t$dst">;
429def ST_FP32m  : FPI<0xD9, MRM3m, (outs), (ins f32mem:$dst), "fstp{s}\t$dst">;
430def ST_FP64m  : FPI<0xDD, MRM3m, (outs), (ins f64mem:$dst), "fstp{l}\t$dst">;
431def ST_FP80m  : FPI<0xDB, MRM7m, (outs), (ins f80mem:$dst), "fstp{t}\t$dst">;
432def IST_F16m  : FPI<0xDF, MRM2m, (outs), (ins i16mem:$dst), "fist{s}\t$dst">;
433def IST_F32m  : FPI<0xDB, MRM2m, (outs), (ins i32mem:$dst), "fist{l}\t$dst">;
434def IST_FP16m : FPI<0xDF, MRM3m, (outs), (ins i16mem:$dst), "fistp{s}\t$dst">;
435def IST_FP32m : FPI<0xDB, MRM3m, (outs), (ins i32mem:$dst), "fistp{l}\t$dst">;
436def IST_FP64m : FPI<0xDF, MRM7m, (outs), (ins i64mem:$dst), "fistp{ll}\t$dst">;
437}
438
439// FISTTP requires SSE3 even though it's a FPStack op.
440let Predicates = [HasSSE3] in {
441def ISTT_Fp16m32 : FpI_<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP,
442                    [(X86fp_to_i16mem RFP32:$src, addr:$op)]>;
443def ISTT_Fp32m32 : FpI_<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP,
444                    [(X86fp_to_i32mem RFP32:$src, addr:$op)]>;
445def ISTT_Fp64m32 : FpI_<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP,
446                    [(X86fp_to_i64mem RFP32:$src, addr:$op)]>;
447def ISTT_Fp16m64 : FpI_<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP,
448                    [(X86fp_to_i16mem RFP64:$src, addr:$op)]>;
449def ISTT_Fp32m64 : FpI_<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP,
450                    [(X86fp_to_i32mem RFP64:$src, addr:$op)]>;
451def ISTT_Fp64m64 : FpI_<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP,
452                    [(X86fp_to_i64mem RFP64:$src, addr:$op)]>;
453def ISTT_Fp16m80 : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP,
454                    [(X86fp_to_i16mem RFP80:$src, addr:$op)]>;
455def ISTT_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP,
456                    [(X86fp_to_i32mem RFP80:$src, addr:$op)]>;
457def ISTT_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP,
458                    [(X86fp_to_i64mem RFP80:$src, addr:$op)]>;
459} // Predicates = [HasSSE3]
460
461let mayStore = 1 in {
462def ISTT_FP16m : FPI<0xDF, MRM1m, (outs), (ins i16mem:$dst), "fisttp{s}\t$dst">;
463def ISTT_FP32m : FPI<0xDB, MRM1m, (outs), (ins i32mem:$dst), "fisttp{l}\t$dst">;
464def ISTT_FP64m : FPI<0xDD, MRM1m, (outs), (ins i64mem:$dst),
465  "fisttp{ll}\t$dst">;
466}
467
468// FP Stack manipulation instructions.
469def LD_Frr   : FPI<0xC0, AddRegFrm, (outs), (ins RST:$op), "fld\t$op">, D9;
470def ST_Frr   : FPI<0xD0, AddRegFrm, (outs), (ins RST:$op), "fst\t$op">, DD;
471def ST_FPrr  : FPI<0xD8, AddRegFrm, (outs), (ins RST:$op), "fstp\t$op">, DD;
472def XCH_F    : FPI<0xC8, AddRegFrm, (outs), (ins RST:$op), "fxch\t$op">, D9;
473
474// Floating point constant loads.
475let isReMaterializable = 1 in {
476def LD_Fp032 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP,
477                [(set RFP32:$dst, fpimm0)]>;
478def LD_Fp132 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP,
479                [(set RFP32:$dst, fpimm1)]>;
480def LD_Fp064 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP,
481                [(set RFP64:$dst, fpimm0)]>;
482def LD_Fp164 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP,
483                [(set RFP64:$dst, fpimm1)]>;
484def LD_Fp080 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP,
485                [(set RFP80:$dst, fpimm0)]>;
486def LD_Fp180 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP,
487                [(set RFP80:$dst, fpimm1)]>;
488}
489
490def LD_F0 : FPI<0xEE, RawFrm, (outs), (ins), "fldz">, D9;
491def LD_F1 : FPI<0xE8, RawFrm, (outs), (ins), "fld1">, D9;
492
493
494// Floating point compares.
495let Defs = [EFLAGS] in {
496def UCOM_Fpr32 : FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
497                        []>;  // FPSW = cmp ST(0) with ST(i)
498def UCOM_Fpr64 : FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
499                        []>;  // FPSW = cmp ST(0) with ST(i)
500def UCOM_Fpr80 : FpI_  <(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
501                        []>;  // FPSW = cmp ST(0) with ST(i)
502
503// CC = ST(0) cmp ST(i)
504def UCOM_FpIr32: FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
505                  [(set EFLAGS, (X86cmp RFP32:$lhs, RFP32:$rhs))]>;
506def UCOM_FpIr64: FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
507                  [(set EFLAGS, (X86cmp RFP64:$lhs, RFP64:$rhs))]>;
508def UCOM_FpIr80: FpI_<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
509                  [(set EFLAGS, (X86cmp RFP80:$lhs, RFP80:$rhs))]>;
510}
511
512let Defs = [EFLAGS], Uses = [ST0] in {
513def UCOM_Fr    : FPI<0xE0, AddRegFrm,    // FPSW = cmp ST(0) with ST(i)
514                    (outs), (ins RST:$reg),
515                    "fucom\t$reg">, DD;
516def UCOM_FPr   : FPI<0xE8, AddRegFrm,    // FPSW = cmp ST(0) with ST(i), pop
517                    (outs), (ins RST:$reg),
518                    "fucomp\t$reg">, DD;
519def UCOM_FPPr  : FPI<0xE9, RawFrm,       // cmp ST(0) with ST(1), pop, pop
520                    (outs), (ins),
521                    "fucompp">, DA;
522
523def UCOM_FIr   : FPI<0xE8, AddRegFrm,     // CC = cmp ST(0) with ST(i)
524                    (outs), (ins RST:$reg),
525                    "fucomi\t$reg">, DB;
526def UCOM_FIPr  : FPI<0xE8, AddRegFrm,     // CC = cmp ST(0) with ST(i), pop
527                    (outs), (ins RST:$reg),
528                    "fucompi\t$reg">, DF;
529}
530
531def COM_FIr : FPI<0xF0, AddRegFrm, (outs), (ins RST:$reg),
532                  "fcomi\t$reg">, DB;
533def COM_FIPr : FPI<0xF0, AddRegFrm, (outs), (ins RST:$reg),
534                   "fcompi\t$reg">, DF;
535
536// Floating point flag ops.
537let Defs = [AX] in
538def FNSTSW8r  : I<0xE0, RawFrm,                  // AX = fp flags
539                  (outs), (ins), "fnstsw %ax", []>, DF;
540
541def FNSTCW16m : I<0xD9, MRM7m,                   // [mem16] = X87 control world
542                  (outs), (ins i16mem:$dst), "fnstcw\t$dst",
543                  [(X86fp_cwd_get16 addr:$dst)]>;
544
545let mayLoad = 1 in
546def FLDCW16m  : I<0xD9, MRM5m,                   // X87 control world = [mem16]
547                  (outs), (ins i16mem:$dst), "fldcw\t$dst", []>;
548
549// FPU control instructions
550def FNINIT : I<0xE3, RawFrm, (outs), (ins), "fninit", []>, DB;
551def FFREE : FPI<0xC0, AddRegFrm, (outs), (ins RST:$reg),
552                "ffree\t$reg">, DD;
553
554// Clear exceptions
555
556def FNCLEX : I<0xE2, RawFrm, (outs), (ins), "fnclex", []>, DB;
557
558// Operandless floating-point instructions for the disassembler.
559def WAIT : I<0x9B, RawFrm, (outs), (ins), "wait", []>;
560
561def FNOP : I<0xD0, RawFrm, (outs), (ins), "fnop", []>, D9;
562def FXAM : I<0xE5, RawFrm, (outs), (ins), "fxam", []>, D9;
563def FLDL2T : I<0xE9, RawFrm, (outs), (ins), "fldl2t", []>, D9;
564def FLDL2E : I<0xEA, RawFrm, (outs), (ins), "fldl2e", []>, D9;
565def FLDPI : I<0xEB, RawFrm, (outs), (ins), "fldpi", []>, D9;
566def FLDLG2 : I<0xEC, RawFrm, (outs), (ins), "fldlg2", []>, D9;
567def FLDLN2 : I<0xED, RawFrm, (outs), (ins), "fldln2", []>, D9;
568def F2XM1 : I<0xF0, RawFrm, (outs), (ins), "f2xm1", []>, D9;
569def FYL2X : I<0xF1, RawFrm, (outs), (ins), "fyl2x", []>, D9;
570def FPTAN : I<0xF2, RawFrm, (outs), (ins), "fptan", []>, D9;
571def FPATAN : I<0xF3, RawFrm, (outs), (ins), "fpatan", []>, D9;
572def FXTRACT : I<0xF4, RawFrm, (outs), (ins), "fxtract", []>, D9;
573def FPREM1 : I<0xF5, RawFrm, (outs), (ins), "fprem1", []>, D9;
574def FDECSTP : I<0xF6, RawFrm, (outs), (ins), "fdecstp", []>, D9;
575def FINCSTP : I<0xF7, RawFrm, (outs), (ins), "fincstp", []>, D9;
576def FPREM : I<0xF8, RawFrm, (outs), (ins), "fprem", []>, D9;
577def FYL2XP1 : I<0xF9, RawFrm, (outs), (ins), "fyl2xp1", []>, D9;
578def FSINCOS : I<0xFB, RawFrm, (outs), (ins), "fsincos", []>, D9;
579def FRNDINT : I<0xFC, RawFrm, (outs), (ins), "frndint", []>, D9;
580def FSCALE : I<0xFD, RawFrm, (outs), (ins), "fscale", []>, D9;
581def FCOMPP : I<0xD9, RawFrm, (outs), (ins), "fcompp", []>, DE;
582
583def FXSAVE : I<0xAE, MRM0m, (outs opaque512mem:$dst), (ins),
584               "fxsave\t$dst", []>, TB;
585def FXSAVE64 : I<0xAE, MRM0m, (outs opaque512mem:$dst), (ins),
586                 "fxsaveq\t$dst", []>, TB, REX_W, Requires<[In64BitMode]>;
587def FXRSTOR : I<0xAE, MRM1m, (outs), (ins opaque512mem:$src),
588                "fxrstor\t$src", []>, TB;
589def FXRSTOR64 : I<0xAE, MRM1m, (outs), (ins opaque512mem:$src),
590                  "fxrstorq\t$src", []>, TB, REX_W, Requires<[In64BitMode]>;
591
592//===----------------------------------------------------------------------===//
593// Non-Instruction Patterns
594//===----------------------------------------------------------------------===//
595
596// Required for RET of f32 / f64 / f80 values.
597def : Pat<(X86fld addr:$src, f32), (LD_Fp32m addr:$src)>;
598def : Pat<(X86fld addr:$src, f64), (LD_Fp64m addr:$src)>;
599def : Pat<(X86fld addr:$src, f80), (LD_Fp80m addr:$src)>;
600
601// Required for CALL which return f32 / f64 / f80 values.
602def : Pat<(X86fst RFP32:$src, addr:$op, f32), (ST_Fp32m addr:$op, RFP32:$src)>;
603def : Pat<(X86fst RFP64:$src, addr:$op, f32), (ST_Fp64m32 addr:$op,
604                                                          RFP64:$src)>;
605def : Pat<(X86fst RFP64:$src, addr:$op, f64), (ST_Fp64m addr:$op, RFP64:$src)>;
606def : Pat<(X86fst RFP80:$src, addr:$op, f32), (ST_Fp80m32 addr:$op,
607                                                          RFP80:$src)>;
608def : Pat<(X86fst RFP80:$src, addr:$op, f64), (ST_Fp80m64 addr:$op,
609                                                          RFP80:$src)>;
610def : Pat<(X86fst RFP80:$src, addr:$op, f80), (ST_FpP80m addr:$op,
611                                                         RFP80:$src)>;
612
613// Floating point constant -0.0 and -1.0
614def : Pat<(f32 fpimmneg0), (CHS_Fp32 (LD_Fp032))>, Requires<[FPStackf32]>;
615def : Pat<(f32 fpimmneg1), (CHS_Fp32 (LD_Fp132))>, Requires<[FPStackf32]>;
616def : Pat<(f64 fpimmneg0), (CHS_Fp64 (LD_Fp064))>, Requires<[FPStackf64]>;
617def : Pat<(f64 fpimmneg1), (CHS_Fp64 (LD_Fp164))>, Requires<[FPStackf64]>;
618def : Pat<(f80 fpimmneg0), (CHS_Fp80 (LD_Fp080))>;
619def : Pat<(f80 fpimmneg1), (CHS_Fp80 (LD_Fp180))>;
620
621// Used to conv. i64 to f64 since there isn't a SSE version.
622def : Pat<(X86fildflag addr:$src, i64), (ILD_Fp64m64 addr:$src)>;
623
624// FP extensions map onto simple pseudo-value conversions if they are to/from
625// the FP stack.
626def : Pat<(f64 (fextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP64)>,
627          Requires<[FPStackf32]>;
628def : Pat<(f80 (fextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP80)>,
629           Requires<[FPStackf32]>;
630def : Pat<(f80 (fextend RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP80)>,
631           Requires<[FPStackf64]>;
632
633// FP truncations map onto simple pseudo-value conversions if they are to/from
634// the FP stack.  We have validated that only value-preserving truncations make
635// it through isel.
636def : Pat<(f32 (fround RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP32)>,
637          Requires<[FPStackf32]>;
638def : Pat<(f32 (fround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP32)>,
639           Requires<[FPStackf32]>;
640def : Pat<(f64 (fround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP64)>,
641           Requires<[FPStackf64]>;
642