1 //===-- X86RegisterInfo.cpp - X86 Register Information --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the X86 implementation of the TargetRegisterInfo class.
11 // This file is responsible for the frame pointer elimination optimization
12 // on X86.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "X86RegisterInfo.h"
17 #include "X86.h"
18 #include "X86InstrBuilder.h"
19 #include "X86MachineFunctionInfo.h"
20 #include "X86Subtarget.h"
21 #include "X86TargetMachine.h"
22 #include "llvm/Constants.h"
23 #include "llvm/Function.h"
24 #include "llvm/Type.h"
25 #include "llvm/CodeGen/ValueTypes.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineFunctionPass.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineModuleInfo.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/MC/MCAsmInfo.h"
33 #include "llvm/Target/TargetFrameLowering.h"
34 #include "llvm/Target/TargetInstrInfo.h"
35 #include "llvm/Target/TargetMachine.h"
36 #include "llvm/Target/TargetOptions.h"
37 #include "llvm/ADT/BitVector.h"
38 #include "llvm/ADT/STLExtras.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/CommandLine.h"
41
42 #define GET_REGINFO_TARGET_DESC
43 #include "X86GenRegisterInfo.inc"
44
45 using namespace llvm;
46
47 cl::opt<bool>
48 ForceStackAlign("force-align-stack",
49 cl::desc("Force align the stack to the minimum alignment"
50 " needed for the function."),
51 cl::init(false), cl::Hidden);
52
X86RegisterInfo(X86TargetMachine & tm,const TargetInstrInfo & tii)53 X86RegisterInfo::X86RegisterInfo(X86TargetMachine &tm,
54 const TargetInstrInfo &tii)
55 : X86GenRegisterInfo(tm.getSubtarget<X86Subtarget>().is64Bit()
56 ? X86::RIP : X86::EIP,
57 X86_MC::getDwarfRegFlavour(tm.getTargetTriple(), false),
58 X86_MC::getDwarfRegFlavour(tm.getTargetTriple(), true)),
59 TM(tm), TII(tii) {
60 X86_MC::InitLLVM2SEHRegisterMapping(this);
61
62 // Cache some information.
63 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
64 Is64Bit = Subtarget->is64Bit();
65 IsWin64 = Subtarget->isTargetWin64();
66
67 if (Is64Bit) {
68 SlotSize = 8;
69 StackPtr = X86::RSP;
70 FramePtr = X86::RBP;
71 } else {
72 SlotSize = 4;
73 StackPtr = X86::ESP;
74 FramePtr = X86::EBP;
75 }
76 }
77
78 /// getCompactUnwindRegNum - This function maps the register to the number for
79 /// compact unwind encoding. Return -1 if the register isn't valid.
getCompactUnwindRegNum(unsigned RegNum,bool isEH) const80 int X86RegisterInfo::getCompactUnwindRegNum(unsigned RegNum, bool isEH) const {
81 switch (getLLVMRegNum(RegNum, isEH)) {
82 case X86::EBX: case X86::RBX: return 1;
83 case X86::ECX: case X86::R12: return 2;
84 case X86::EDX: case X86::R13: return 3;
85 case X86::EDI: case X86::R14: return 4;
86 case X86::ESI: case X86::R15: return 5;
87 case X86::EBP: case X86::RBP: return 6;
88 }
89
90 return -1;
91 }
92
93 int
getSEHRegNum(unsigned i) const94 X86RegisterInfo::getSEHRegNum(unsigned i) const {
95 int reg = X86_MC::getX86RegNum(i);
96 switch (i) {
97 case X86::R8: case X86::R8D: case X86::R8W: case X86::R8B:
98 case X86::R9: case X86::R9D: case X86::R9W: case X86::R9B:
99 case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B:
100 case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B:
101 case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B:
102 case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B:
103 case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B:
104 case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B:
105 case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11:
106 case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
107 case X86::YMM8: case X86::YMM9: case X86::YMM10: case X86::YMM11:
108 case X86::YMM12: case X86::YMM13: case X86::YMM14: case X86::YMM15:
109 reg += 8;
110 }
111 return reg;
112 }
113
114 const TargetRegisterClass *
getSubClassWithSubReg(const TargetRegisterClass * RC,unsigned Idx) const115 X86RegisterInfo::getSubClassWithSubReg(const TargetRegisterClass *RC,
116 unsigned Idx) const {
117 // The sub_8bit sub-register index is more constrained in 32-bit mode.
118 // It behaves just like the sub_8bit_hi index.
119 if (!Is64Bit && Idx == X86::sub_8bit)
120 Idx = X86::sub_8bit_hi;
121
122 // Forward to TableGen's default version.
123 return X86GenRegisterInfo::getSubClassWithSubReg(RC, Idx);
124 }
125
126 const TargetRegisterClass *
getMatchingSuperRegClass(const TargetRegisterClass * A,const TargetRegisterClass * B,unsigned SubIdx) const127 X86RegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
128 const TargetRegisterClass *B,
129 unsigned SubIdx) const {
130 // The sub_8bit sub-register index is more constrained in 32-bit mode.
131 if (!Is64Bit && SubIdx == X86::sub_8bit) {
132 A = X86GenRegisterInfo::getSubClassWithSubReg(A, X86::sub_8bit_hi);
133 if (!A)
134 return 0;
135 }
136 return X86GenRegisterInfo::getMatchingSuperRegClass(A, B, SubIdx);
137 }
138
139 const TargetRegisterClass*
getLargestLegalSuperClass(const TargetRegisterClass * RC) const140 X86RegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC) const{
141 // Don't allow super-classes of GR8_NOREX. This class is only used after
142 // extrating sub_8bit_hi sub-registers. The H sub-registers cannot be copied
143 // to the full GR8 register class in 64-bit mode, so we cannot allow the
144 // reigster class inflation.
145 //
146 // The GR8_NOREX class is always used in a way that won't be constrained to a
147 // sub-class, so sub-classes like GR8_ABCD_L are allowed to expand to the
148 // full GR8 class.
149 if (RC == X86::GR8_NOREXRegisterClass)
150 return RC;
151
152 const TargetRegisterClass *Super = RC;
153 TargetRegisterClass::sc_iterator I = RC->getSuperClasses();
154 do {
155 switch (Super->getID()) {
156 case X86::GR8RegClassID:
157 case X86::GR16RegClassID:
158 case X86::GR32RegClassID:
159 case X86::GR64RegClassID:
160 case X86::FR32RegClassID:
161 case X86::FR64RegClassID:
162 case X86::RFP32RegClassID:
163 case X86::RFP64RegClassID:
164 case X86::RFP80RegClassID:
165 case X86::VR128RegClassID:
166 case X86::VR256RegClassID:
167 // Don't return a super-class that would shrink the spill size.
168 // That can happen with the vector and float classes.
169 if (Super->getSize() == RC->getSize())
170 return Super;
171 }
172 Super = *I++;
173 } while (Super);
174 return RC;
175 }
176
177 const TargetRegisterClass *
getPointerRegClass(unsigned Kind) const178 X86RegisterInfo::getPointerRegClass(unsigned Kind) const {
179 switch (Kind) {
180 default: llvm_unreachable("Unexpected Kind in getPointerRegClass!");
181 case 0: // Normal GPRs.
182 if (TM.getSubtarget<X86Subtarget>().is64Bit())
183 return &X86::GR64RegClass;
184 return &X86::GR32RegClass;
185 case 1: // Normal GPRs except the stack pointer (for encoding reasons).
186 if (TM.getSubtarget<X86Subtarget>().is64Bit())
187 return &X86::GR64_NOSPRegClass;
188 return &X86::GR32_NOSPRegClass;
189 case 2: // Available for tailcall (not callee-saved GPRs).
190 if (TM.getSubtarget<X86Subtarget>().isTargetWin64())
191 return &X86::GR64_TCW64RegClass;
192 if (TM.getSubtarget<X86Subtarget>().is64Bit())
193 return &X86::GR64_TCRegClass;
194 return &X86::GR32_TCRegClass;
195 }
196 }
197
198 const TargetRegisterClass *
getCrossCopyRegClass(const TargetRegisterClass * RC) const199 X86RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const {
200 if (RC == &X86::CCRRegClass) {
201 if (Is64Bit)
202 return &X86::GR64RegClass;
203 else
204 return &X86::GR32RegClass;
205 }
206 return RC;
207 }
208
209 unsigned
getRegPressureLimit(const TargetRegisterClass * RC,MachineFunction & MF) const210 X86RegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
211 MachineFunction &MF) const {
212 const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
213
214 unsigned FPDiff = TFI->hasFP(MF) ? 1 : 0;
215 switch (RC->getID()) {
216 default:
217 return 0;
218 case X86::GR32RegClassID:
219 return 4 - FPDiff;
220 case X86::GR64RegClassID:
221 return 12 - FPDiff;
222 case X86::VR128RegClassID:
223 return TM.getSubtarget<X86Subtarget>().is64Bit() ? 10 : 4;
224 case X86::VR64RegClassID:
225 return 4;
226 }
227 }
228
229 const uint16_t *
getCalleeSavedRegs(const MachineFunction * MF) const230 X86RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
231 bool callsEHReturn = false;
232 bool ghcCall = false;
233
234 if (MF) {
235 callsEHReturn = MF->getMMI().callsEHReturn();
236 const Function *F = MF->getFunction();
237 ghcCall = (F ? F->getCallingConv() == CallingConv::GHC : false);
238 }
239
240 if (ghcCall)
241 return CSR_Ghc_SaveList;
242 if (Is64Bit) {
243 if (IsWin64)
244 return CSR_Win64_SaveList;
245 if (callsEHReturn)
246 return CSR_64EHRet_SaveList;
247 return CSR_64_SaveList;
248 }
249 if (callsEHReturn)
250 return CSR_32EHRet_SaveList;
251 return CSR_32_SaveList;
252 }
253
254 const uint32_t*
getCallPreservedMask(CallingConv::ID CC) const255 X86RegisterInfo::getCallPreservedMask(CallingConv::ID CC) const {
256 if (CC == CallingConv::GHC)
257 return CSR_Ghc_RegMask;
258 if (!Is64Bit)
259 return CSR_32_RegMask;
260 if (IsWin64)
261 return CSR_Win64_RegMask;
262 return CSR_64_RegMask;
263 }
264
getReservedRegs(const MachineFunction & MF) const265 BitVector X86RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
266 BitVector Reserved(getNumRegs());
267 const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
268
269 // Set the stack-pointer register and its aliases as reserved.
270 Reserved.set(X86::RSP);
271 Reserved.set(X86::ESP);
272 Reserved.set(X86::SP);
273 Reserved.set(X86::SPL);
274
275 // Set the instruction pointer register and its aliases as reserved.
276 Reserved.set(X86::RIP);
277 Reserved.set(X86::EIP);
278 Reserved.set(X86::IP);
279
280 // Set the frame-pointer register and its aliases as reserved if needed.
281 if (TFI->hasFP(MF)) {
282 Reserved.set(X86::RBP);
283 Reserved.set(X86::EBP);
284 Reserved.set(X86::BP);
285 Reserved.set(X86::BPL);
286 }
287
288 // Mark the segment registers as reserved.
289 Reserved.set(X86::CS);
290 Reserved.set(X86::SS);
291 Reserved.set(X86::DS);
292 Reserved.set(X86::ES);
293 Reserved.set(X86::FS);
294 Reserved.set(X86::GS);
295
296 // Reserve the registers that only exist in 64-bit mode.
297 if (!Is64Bit) {
298 // These 8-bit registers are part of the x86-64 extension even though their
299 // super-registers are old 32-bits.
300 Reserved.set(X86::SIL);
301 Reserved.set(X86::DIL);
302 Reserved.set(X86::BPL);
303 Reserved.set(X86::SPL);
304
305 for (unsigned n = 0; n != 8; ++n) {
306 // R8, R9, ...
307 static const uint16_t GPR64[] = {
308 X86::R8, X86::R9, X86::R10, X86::R11,
309 X86::R12, X86::R13, X86::R14, X86::R15
310 };
311 for (const uint16_t *AI = getOverlaps(GPR64[n]); unsigned Reg = *AI; ++AI)
312 Reserved.set(Reg);
313
314 // XMM8, XMM9, ...
315 assert(X86::XMM15 == X86::XMM8+7);
316 for (const uint16_t *AI = getOverlaps(X86::XMM8 + n); unsigned Reg = *AI;
317 ++AI)
318 Reserved.set(Reg);
319 }
320 }
321
322 return Reserved;
323 }
324
325 //===----------------------------------------------------------------------===//
326 // Stack Frame Processing methods
327 //===----------------------------------------------------------------------===//
328
canRealignStack(const MachineFunction & MF) const329 bool X86RegisterInfo::canRealignStack(const MachineFunction &MF) const {
330 const MachineFrameInfo *MFI = MF.getFrameInfo();
331 return (MF.getTarget().Options.RealignStack &&
332 !MFI->hasVarSizedObjects());
333 }
334
needsStackRealignment(const MachineFunction & MF) const335 bool X86RegisterInfo::needsStackRealignment(const MachineFunction &MF) const {
336 const MachineFrameInfo *MFI = MF.getFrameInfo();
337 const Function *F = MF.getFunction();
338 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
339 bool requiresRealignment = ((MFI->getMaxAlignment() > StackAlign) ||
340 F->hasFnAttr(Attribute::StackAlignment));
341
342 // FIXME: Currently we don't support stack realignment for functions with
343 // variable-sized allocas.
344 // FIXME: It's more complicated than this...
345 if (0 && requiresRealignment && MFI->hasVarSizedObjects())
346 report_fatal_error(
347 "Stack realignment in presence of dynamic allocas is not supported");
348
349 // If we've requested that we force align the stack do so now.
350 if (ForceStackAlign)
351 return canRealignStack(MF);
352
353 return requiresRealignment && canRealignStack(MF);
354 }
355
hasReservedSpillSlot(const MachineFunction & MF,unsigned Reg,int & FrameIdx) const356 bool X86RegisterInfo::hasReservedSpillSlot(const MachineFunction &MF,
357 unsigned Reg, int &FrameIdx) const {
358 const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
359
360 if (Reg == FramePtr && TFI->hasFP(MF)) {
361 FrameIdx = MF.getFrameInfo()->getObjectIndexBegin();
362 return true;
363 }
364 return false;
365 }
366
getSUBriOpcode(unsigned is64Bit,int64_t Imm)367 static unsigned getSUBriOpcode(unsigned is64Bit, int64_t Imm) {
368 if (is64Bit) {
369 if (isInt<8>(Imm))
370 return X86::SUB64ri8;
371 return X86::SUB64ri32;
372 } else {
373 if (isInt<8>(Imm))
374 return X86::SUB32ri8;
375 return X86::SUB32ri;
376 }
377 }
378
getADDriOpcode(unsigned is64Bit,int64_t Imm)379 static unsigned getADDriOpcode(unsigned is64Bit, int64_t Imm) {
380 if (is64Bit) {
381 if (isInt<8>(Imm))
382 return X86::ADD64ri8;
383 return X86::ADD64ri32;
384 } else {
385 if (isInt<8>(Imm))
386 return X86::ADD32ri8;
387 return X86::ADD32ri;
388 }
389 }
390
391 void X86RegisterInfo::
eliminateCallFramePseudoInstr(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator I) const392 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
393 MachineBasicBlock::iterator I) const {
394 const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
395 bool reseveCallFrame = TFI->hasReservedCallFrame(MF);
396 int Opcode = I->getOpcode();
397 bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode();
398 DebugLoc DL = I->getDebugLoc();
399 uint64_t Amount = !reseveCallFrame ? I->getOperand(0).getImm() : 0;
400 uint64_t CalleeAmt = isDestroy ? I->getOperand(1).getImm() : 0;
401 I = MBB.erase(I);
402
403 if (!reseveCallFrame) {
404 // If the stack pointer can be changed after prologue, turn the
405 // adjcallstackup instruction into a 'sub ESP, <amt>' and the
406 // adjcallstackdown instruction into 'add ESP, <amt>'
407 // TODO: consider using push / pop instead of sub + store / add
408 if (Amount == 0)
409 return;
410
411 // We need to keep the stack aligned properly. To do this, we round the
412 // amount of space needed for the outgoing arguments up to the next
413 // alignment boundary.
414 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
415 Amount = (Amount + StackAlign - 1) / StackAlign * StackAlign;
416
417 MachineInstr *New = 0;
418 if (Opcode == TII.getCallFrameSetupOpcode()) {
419 New = BuildMI(MF, DL, TII.get(getSUBriOpcode(Is64Bit, Amount)),
420 StackPtr)
421 .addReg(StackPtr)
422 .addImm(Amount);
423 } else {
424 assert(Opcode == TII.getCallFrameDestroyOpcode());
425
426 // Factor out the amount the callee already popped.
427 Amount -= CalleeAmt;
428
429 if (Amount) {
430 unsigned Opc = getADDriOpcode(Is64Bit, Amount);
431 New = BuildMI(MF, DL, TII.get(Opc), StackPtr)
432 .addReg(StackPtr).addImm(Amount);
433 }
434 }
435
436 if (New) {
437 // The EFLAGS implicit def is dead.
438 New->getOperand(3).setIsDead();
439
440 // Replace the pseudo instruction with a new instruction.
441 MBB.insert(I, New);
442 }
443
444 return;
445 }
446
447 if (Opcode == TII.getCallFrameDestroyOpcode() && CalleeAmt) {
448 // If we are performing frame pointer elimination and if the callee pops
449 // something off the stack pointer, add it back. We do this until we have
450 // more advanced stack pointer tracking ability.
451 unsigned Opc = getSUBriOpcode(Is64Bit, CalleeAmt);
452 MachineInstr *New = BuildMI(MF, DL, TII.get(Opc), StackPtr)
453 .addReg(StackPtr).addImm(CalleeAmt);
454
455 // The EFLAGS implicit def is dead.
456 New->getOperand(3).setIsDead();
457
458 // We are not tracking the stack pointer adjustment by the callee, so make
459 // sure we restore the stack pointer immediately after the call, there may
460 // be spill code inserted between the CALL and ADJCALLSTACKUP instructions.
461 MachineBasicBlock::iterator B = MBB.begin();
462 while (I != B && !llvm::prior(I)->isCall())
463 --I;
464 MBB.insert(I, New);
465 }
466 }
467
468 void
eliminateFrameIndex(MachineBasicBlock::iterator II,int SPAdj,RegScavenger * RS) const469 X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
470 int SPAdj, RegScavenger *RS) const{
471 assert(SPAdj == 0 && "Unexpected");
472
473 unsigned i = 0;
474 MachineInstr &MI = *II;
475 MachineFunction &MF = *MI.getParent()->getParent();
476 const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
477
478 while (!MI.getOperand(i).isFI()) {
479 ++i;
480 assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
481 }
482
483 int FrameIndex = MI.getOperand(i).getIndex();
484 unsigned BasePtr;
485
486 unsigned Opc = MI.getOpcode();
487 bool AfterFPPop = Opc == X86::TAILJMPm64 || Opc == X86::TAILJMPm;
488 if (needsStackRealignment(MF))
489 BasePtr = (FrameIndex < 0 ? FramePtr : StackPtr);
490 else if (AfterFPPop)
491 BasePtr = StackPtr;
492 else
493 BasePtr = (TFI->hasFP(MF) ? FramePtr : StackPtr);
494
495 // This must be part of a four operand memory reference. Replace the
496 // FrameIndex with base register with EBP. Add an offset to the offset.
497 MI.getOperand(i).ChangeToRegister(BasePtr, false);
498
499 // Now add the frame object offset to the offset from EBP.
500 int FIOffset;
501 if (AfterFPPop) {
502 // Tail call jmp happens after FP is popped.
503 const MachineFrameInfo *MFI = MF.getFrameInfo();
504 FIOffset = MFI->getObjectOffset(FrameIndex) - TFI->getOffsetOfLocalArea();
505 } else
506 FIOffset = TFI->getFrameIndexOffset(MF, FrameIndex);
507
508 if (MI.getOperand(i+3).isImm()) {
509 // Offset is a 32-bit integer.
510 int Imm = (int)(MI.getOperand(i + 3).getImm());
511 int Offset = FIOffset + Imm;
512 assert((!Is64Bit || isInt<32>((long long)FIOffset + Imm)) &&
513 "Requesting 64-bit offset in 32-bit immediate!");
514 MI.getOperand(i + 3).ChangeToImmediate(Offset);
515 } else {
516 // Offset is symbolic. This is extremely rare.
517 uint64_t Offset = FIOffset + (uint64_t)MI.getOperand(i+3).getOffset();
518 MI.getOperand(i+3).setOffset(Offset);
519 }
520 }
521
getFrameRegister(const MachineFunction & MF) const522 unsigned X86RegisterInfo::getFrameRegister(const MachineFunction &MF) const {
523 const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
524 return TFI->hasFP(MF) ? FramePtr : StackPtr;
525 }
526
getEHExceptionRegister() const527 unsigned X86RegisterInfo::getEHExceptionRegister() const {
528 llvm_unreachable("What is the exception register");
529 }
530
getEHHandlerRegister() const531 unsigned X86RegisterInfo::getEHHandlerRegister() const {
532 llvm_unreachable("What is the exception handler register");
533 }
534
535 namespace llvm {
getX86SubSuperRegister(unsigned Reg,EVT VT,bool High)536 unsigned getX86SubSuperRegister(unsigned Reg, EVT VT, bool High) {
537 switch (VT.getSimpleVT().SimpleTy) {
538 default: return Reg;
539 case MVT::i8:
540 if (High) {
541 switch (Reg) {
542 default: return getX86SubSuperRegister(Reg, MVT::i64, High);
543 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
544 return X86::AH;
545 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
546 return X86::DH;
547 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
548 return X86::CH;
549 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
550 return X86::BH;
551 }
552 } else {
553 switch (Reg) {
554 default: return 0;
555 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
556 return X86::AL;
557 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
558 return X86::DL;
559 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
560 return X86::CL;
561 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
562 return X86::BL;
563 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
564 return X86::SIL;
565 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
566 return X86::DIL;
567 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
568 return X86::BPL;
569 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
570 return X86::SPL;
571 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
572 return X86::R8B;
573 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
574 return X86::R9B;
575 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
576 return X86::R10B;
577 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
578 return X86::R11B;
579 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
580 return X86::R12B;
581 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
582 return X86::R13B;
583 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
584 return X86::R14B;
585 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
586 return X86::R15B;
587 }
588 }
589 case MVT::i16:
590 switch (Reg) {
591 default: return Reg;
592 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
593 return X86::AX;
594 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
595 return X86::DX;
596 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
597 return X86::CX;
598 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
599 return X86::BX;
600 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
601 return X86::SI;
602 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
603 return X86::DI;
604 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
605 return X86::BP;
606 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
607 return X86::SP;
608 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
609 return X86::R8W;
610 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
611 return X86::R9W;
612 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
613 return X86::R10W;
614 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
615 return X86::R11W;
616 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
617 return X86::R12W;
618 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
619 return X86::R13W;
620 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
621 return X86::R14W;
622 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
623 return X86::R15W;
624 }
625 case MVT::i32:
626 switch (Reg) {
627 default: return Reg;
628 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
629 return X86::EAX;
630 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
631 return X86::EDX;
632 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
633 return X86::ECX;
634 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
635 return X86::EBX;
636 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
637 return X86::ESI;
638 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
639 return X86::EDI;
640 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
641 return X86::EBP;
642 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
643 return X86::ESP;
644 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
645 return X86::R8D;
646 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
647 return X86::R9D;
648 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
649 return X86::R10D;
650 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
651 return X86::R11D;
652 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
653 return X86::R12D;
654 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
655 return X86::R13D;
656 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
657 return X86::R14D;
658 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
659 return X86::R15D;
660 }
661 case MVT::i64:
662 // For 64-bit mode if we've requested a "high" register and the
663 // Q or r constraints we want one of these high registers or
664 // just the register name otherwise.
665 if (High) {
666 switch (Reg) {
667 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
668 return X86::SI;
669 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
670 return X86::DI;
671 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
672 return X86::BP;
673 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
674 return X86::SP;
675 // Fallthrough.
676 }
677 }
678 switch (Reg) {
679 default: return Reg;
680 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
681 return X86::RAX;
682 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
683 return X86::RDX;
684 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
685 return X86::RCX;
686 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
687 return X86::RBX;
688 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
689 return X86::RSI;
690 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
691 return X86::RDI;
692 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
693 return X86::RBP;
694 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
695 return X86::RSP;
696 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
697 return X86::R8;
698 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
699 return X86::R9;
700 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
701 return X86::R10;
702 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
703 return X86::R11;
704 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
705 return X86::R12;
706 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
707 return X86::R13;
708 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
709 return X86::R14;
710 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
711 return X86::R15;
712 }
713 }
714 }
715 }
716
717 namespace {
718 struct MSAH : public MachineFunctionPass {
719 static char ID;
MSAH__anone54d7f580111::MSAH720 MSAH() : MachineFunctionPass(ID) {}
721
runOnMachineFunction__anone54d7f580111::MSAH722 virtual bool runOnMachineFunction(MachineFunction &MF) {
723 const X86TargetMachine *TM =
724 static_cast<const X86TargetMachine *>(&MF.getTarget());
725 const TargetFrameLowering *TFI = TM->getFrameLowering();
726 MachineRegisterInfo &RI = MF.getRegInfo();
727 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
728 unsigned StackAlignment = TFI->getStackAlignment();
729
730 // Be over-conservative: scan over all vreg defs and find whether vector
731 // registers are used. If yes, there is a possibility that vector register
732 // will be spilled and thus require dynamic stack realignment.
733 for (unsigned i = 0, e = RI.getNumVirtRegs(); i != e; ++i) {
734 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
735 if (RI.getRegClass(Reg)->getAlignment() > StackAlignment) {
736 FuncInfo->setForceFramePointer(true);
737 return true;
738 }
739 }
740 // Nothing to do
741 return false;
742 }
743
getPassName__anone54d7f580111::MSAH744 virtual const char *getPassName() const {
745 return "X86 Maximal Stack Alignment Check";
746 }
747
getAnalysisUsage__anone54d7f580111::MSAH748 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
749 AU.setPreservesCFG();
750 MachineFunctionPass::getAnalysisUsage(AU);
751 }
752 };
753
754 char MSAH::ID = 0;
755 }
756
757 FunctionPass*
createX86MaxStackAlignmentHeuristicPass()758 llvm::createX86MaxStackAlignmentHeuristicPass() { return new MSAH(); }
759