1 //===- Inliner.cpp - Code common to all inliners --------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the mechanics required to implement inlining without
11 // missing any calls and updating the call graph. The decisions of which calls
12 // are profitable to inline are implemented elsewhere.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #define DEBUG_TYPE "inline"
17 #include "llvm/Module.h"
18 #include "llvm/Instructions.h"
19 #include "llvm/IntrinsicInst.h"
20 #include "llvm/Analysis/CallGraph.h"
21 #include "llvm/Analysis/InlineCost.h"
22 #include "llvm/Target/TargetData.h"
23 #include "llvm/Transforms/IPO/InlinerPass.h"
24 #include "llvm/Transforms/Utils/Cloning.h"
25 #include "llvm/Transforms/Utils/Local.h"
26 #include "llvm/Support/CallSite.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/Statistic.h"
32 using namespace llvm;
33
34 STATISTIC(NumInlined, "Number of functions inlined");
35 STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined");
36 STATISTIC(NumDeleted, "Number of functions deleted because all callers found");
37 STATISTIC(NumMergedAllocas, "Number of allocas merged together");
38
39 // This weirdly named statistic tracks the number of times that, when attemting
40 // to inline a function A into B, we analyze the callers of B in order to see
41 // if those would be more profitable and blocked inline steps.
42 STATISTIC(NumCallerCallersAnalyzed, "Number of caller-callers analyzed");
43
44 static cl::opt<int>
45 InlineLimit("inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore,
46 cl::desc("Control the amount of inlining to perform (default = 225)"));
47
48 static cl::opt<int>
49 HintThreshold("inlinehint-threshold", cl::Hidden, cl::init(325),
50 cl::desc("Threshold for inlining functions with inline hint"));
51
52 // Threshold to use when optsize is specified (and there is no -inline-limit).
53 const int OptSizeThreshold = 75;
54
Inliner(char & ID)55 Inliner::Inliner(char &ID)
56 : CallGraphSCCPass(ID), InlineThreshold(InlineLimit), InsertLifetime(true) {}
57
Inliner(char & ID,int Threshold,bool InsertLifetime)58 Inliner::Inliner(char &ID, int Threshold, bool InsertLifetime)
59 : CallGraphSCCPass(ID), InlineThreshold(InlineLimit.getNumOccurrences() > 0 ?
60 InlineLimit : Threshold),
61 InsertLifetime(InsertLifetime) {}
62
63 /// getAnalysisUsage - For this class, we declare that we require and preserve
64 /// the call graph. If the derived class implements this method, it should
65 /// always explicitly call the implementation here.
getAnalysisUsage(AnalysisUsage & Info) const66 void Inliner::getAnalysisUsage(AnalysisUsage &Info) const {
67 CallGraphSCCPass::getAnalysisUsage(Info);
68 }
69
70
71 typedef DenseMap<ArrayType*, std::vector<AllocaInst*> >
72 InlinedArrayAllocasTy;
73
74 /// InlineCallIfPossible - If it is possible to inline the specified call site,
75 /// do so and update the CallGraph for this operation.
76 ///
77 /// This function also does some basic book-keeping to update the IR. The
78 /// InlinedArrayAllocas map keeps track of any allocas that are already
79 /// available from other functions inlined into the caller. If we are able to
80 /// inline this call site we attempt to reuse already available allocas or add
81 /// any new allocas to the set if not possible.
InlineCallIfPossible(CallSite CS,InlineFunctionInfo & IFI,InlinedArrayAllocasTy & InlinedArrayAllocas,int InlineHistory,bool InsertLifetime)82 static bool InlineCallIfPossible(CallSite CS, InlineFunctionInfo &IFI,
83 InlinedArrayAllocasTy &InlinedArrayAllocas,
84 int InlineHistory, bool InsertLifetime) {
85 Function *Callee = CS.getCalledFunction();
86 Function *Caller = CS.getCaller();
87
88 // Try to inline the function. Get the list of static allocas that were
89 // inlined.
90 if (!InlineFunction(CS, IFI, InsertLifetime))
91 return false;
92
93 // If the inlined function had a higher stack protection level than the
94 // calling function, then bump up the caller's stack protection level.
95 if (Callee->hasFnAttr(Attribute::StackProtectReq))
96 Caller->addFnAttr(Attribute::StackProtectReq);
97 else if (Callee->hasFnAttr(Attribute::StackProtect) &&
98 !Caller->hasFnAttr(Attribute::StackProtectReq))
99 Caller->addFnAttr(Attribute::StackProtect);
100
101 // Look at all of the allocas that we inlined through this call site. If we
102 // have already inlined other allocas through other calls into this function,
103 // then we know that they have disjoint lifetimes and that we can merge them.
104 //
105 // There are many heuristics possible for merging these allocas, and the
106 // different options have different tradeoffs. One thing that we *really*
107 // don't want to hurt is SRoA: once inlining happens, often allocas are no
108 // longer address taken and so they can be promoted.
109 //
110 // Our "solution" for that is to only merge allocas whose outermost type is an
111 // array type. These are usually not promoted because someone is using a
112 // variable index into them. These are also often the most important ones to
113 // merge.
114 //
115 // A better solution would be to have real memory lifetime markers in the IR
116 // and not have the inliner do any merging of allocas at all. This would
117 // allow the backend to do proper stack slot coloring of all allocas that
118 // *actually make it to the backend*, which is really what we want.
119 //
120 // Because we don't have this information, we do this simple and useful hack.
121 //
122 SmallPtrSet<AllocaInst*, 16> UsedAllocas;
123
124 // When processing our SCC, check to see if CS was inlined from some other
125 // call site. For example, if we're processing "A" in this code:
126 // A() { B() }
127 // B() { x = alloca ... C() }
128 // C() { y = alloca ... }
129 // Assume that C was not inlined into B initially, and so we're processing A
130 // and decide to inline B into A. Doing this makes an alloca available for
131 // reuse and makes a callsite (C) available for inlining. When we process
132 // the C call site we don't want to do any alloca merging between X and Y
133 // because their scopes are not disjoint. We could make this smarter by
134 // keeping track of the inline history for each alloca in the
135 // InlinedArrayAllocas but this isn't likely to be a significant win.
136 if (InlineHistory != -1) // Only do merging for top-level call sites in SCC.
137 return true;
138
139 // Loop over all the allocas we have so far and see if they can be merged with
140 // a previously inlined alloca. If not, remember that we had it.
141 for (unsigned AllocaNo = 0, e = IFI.StaticAllocas.size();
142 AllocaNo != e; ++AllocaNo) {
143 AllocaInst *AI = IFI.StaticAllocas[AllocaNo];
144
145 // Don't bother trying to merge array allocations (they will usually be
146 // canonicalized to be an allocation *of* an array), or allocations whose
147 // type is not itself an array (because we're afraid of pessimizing SRoA).
148 ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType());
149 if (ATy == 0 || AI->isArrayAllocation())
150 continue;
151
152 // Get the list of all available allocas for this array type.
153 std::vector<AllocaInst*> &AllocasForType = InlinedArrayAllocas[ATy];
154
155 // Loop over the allocas in AllocasForType to see if we can reuse one. Note
156 // that we have to be careful not to reuse the same "available" alloca for
157 // multiple different allocas that we just inlined, we use the 'UsedAllocas'
158 // set to keep track of which "available" allocas are being used by this
159 // function. Also, AllocasForType can be empty of course!
160 bool MergedAwayAlloca = false;
161 for (unsigned i = 0, e = AllocasForType.size(); i != e; ++i) {
162 AllocaInst *AvailableAlloca = AllocasForType[i];
163
164 // The available alloca has to be in the right function, not in some other
165 // function in this SCC.
166 if (AvailableAlloca->getParent() != AI->getParent())
167 continue;
168
169 // If the inlined function already uses this alloca then we can't reuse
170 // it.
171 if (!UsedAllocas.insert(AvailableAlloca))
172 continue;
173
174 // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare
175 // success!
176 DEBUG(dbgs() << " ***MERGED ALLOCA: " << *AI << "\n\t\tINTO: "
177 << *AvailableAlloca << '\n');
178
179 AI->replaceAllUsesWith(AvailableAlloca);
180 AI->eraseFromParent();
181 MergedAwayAlloca = true;
182 ++NumMergedAllocas;
183 IFI.StaticAllocas[AllocaNo] = 0;
184 break;
185 }
186
187 // If we already nuked the alloca, we're done with it.
188 if (MergedAwayAlloca)
189 continue;
190
191 // If we were unable to merge away the alloca either because there are no
192 // allocas of the right type available or because we reused them all
193 // already, remember that this alloca came from an inlined function and mark
194 // it used so we don't reuse it for other allocas from this inline
195 // operation.
196 AllocasForType.push_back(AI);
197 UsedAllocas.insert(AI);
198 }
199
200 return true;
201 }
202
getInlineThreshold(CallSite CS) const203 unsigned Inliner::getInlineThreshold(CallSite CS) const {
204 int thres = InlineThreshold;
205
206 // Listen to optsize when -inline-limit is not given.
207 Function *Caller = CS.getCaller();
208 if (Caller && !Caller->isDeclaration() &&
209 Caller->hasFnAttr(Attribute::OptimizeForSize) &&
210 InlineLimit.getNumOccurrences() == 0)
211 thres = OptSizeThreshold;
212
213 // Listen to inlinehint when it would increase the threshold.
214 Function *Callee = CS.getCalledFunction();
215 if (HintThreshold > thres && Callee && !Callee->isDeclaration() &&
216 Callee->hasFnAttr(Attribute::InlineHint))
217 thres = HintThreshold;
218
219 return thres;
220 }
221
222 /// shouldInline - Return true if the inliner should attempt to inline
223 /// at the given CallSite.
shouldInline(CallSite CS)224 bool Inliner::shouldInline(CallSite CS) {
225 InlineCost IC = getInlineCost(CS);
226
227 if (IC.isAlways()) {
228 DEBUG(dbgs() << " Inlining: cost=always"
229 << ", Call: " << *CS.getInstruction() << "\n");
230 return true;
231 }
232
233 if (IC.isNever()) {
234 DEBUG(dbgs() << " NOT Inlining: cost=never"
235 << ", Call: " << *CS.getInstruction() << "\n");
236 return false;
237 }
238
239 Function *Caller = CS.getCaller();
240 if (!IC) {
241 DEBUG(dbgs() << " NOT Inlining: cost=" << IC.getCost()
242 << ", thres=" << (IC.getCostDelta() + IC.getCost())
243 << ", Call: " << *CS.getInstruction() << "\n");
244 return false;
245 }
246
247 // Try to detect the case where the current inlining candidate caller (call
248 // it B) is a static or linkonce-ODR function and is an inlining candidate
249 // elsewhere, and the current candidate callee (call it C) is large enough
250 // that inlining it into B would make B too big to inline later. In these
251 // circumstances it may be best not to inline C into B, but to inline B into
252 // its callers.
253 //
254 // This only applies to static and linkonce-ODR functions because those are
255 // expected to be available for inlining in the translation units where they
256 // are used. Thus we will always have the opportunity to make local inlining
257 // decisions. Importantly the linkonce-ODR linkage covers inline functions
258 // and templates in C++.
259 //
260 // FIXME: All of this logic should be sunk into getInlineCost. It relies on
261 // the internal implementation of the inline cost metrics rather than
262 // treating them as truly abstract units etc.
263 if (Caller->hasLocalLinkage() ||
264 Caller->getLinkage() == GlobalValue::LinkOnceODRLinkage) {
265 int TotalSecondaryCost = 0;
266 // The candidate cost to be imposed upon the current function.
267 int CandidateCost = IC.getCost() - (InlineConstants::CallPenalty + 1);
268 // This bool tracks what happens if we do NOT inline C into B.
269 bool callerWillBeRemoved = Caller->hasLocalLinkage();
270 // This bool tracks what happens if we DO inline C into B.
271 bool inliningPreventsSomeOuterInline = false;
272 for (Value::use_iterator I = Caller->use_begin(), E =Caller->use_end();
273 I != E; ++I) {
274 CallSite CS2(*I);
275
276 // If this isn't a call to Caller (it could be some other sort
277 // of reference) skip it. Such references will prevent the caller
278 // from being removed.
279 if (!CS2 || CS2.getCalledFunction() != Caller) {
280 callerWillBeRemoved = false;
281 continue;
282 }
283
284 InlineCost IC2 = getInlineCost(CS2);
285 ++NumCallerCallersAnalyzed;
286 if (!IC2) {
287 callerWillBeRemoved = false;
288 continue;
289 }
290 if (IC2.isAlways())
291 continue;
292
293 // See if inlining or original callsite would erase the cost delta of
294 // this callsite. We subtract off the penalty for the call instruction,
295 // which we would be deleting.
296 if (IC2.getCostDelta() <= CandidateCost) {
297 inliningPreventsSomeOuterInline = true;
298 TotalSecondaryCost += IC2.getCost();
299 }
300 }
301 // If all outer calls to Caller would get inlined, the cost for the last
302 // one is set very low by getInlineCost, in anticipation that Caller will
303 // be removed entirely. We did not account for this above unless there
304 // is only one caller of Caller.
305 if (callerWillBeRemoved && Caller->use_begin() != Caller->use_end())
306 TotalSecondaryCost += InlineConstants::LastCallToStaticBonus;
307
308 if (inliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost()) {
309 DEBUG(dbgs() << " NOT Inlining: " << *CS.getInstruction() <<
310 " Cost = " << IC.getCost() <<
311 ", outer Cost = " << TotalSecondaryCost << '\n');
312 return false;
313 }
314 }
315
316 DEBUG(dbgs() << " Inlining: cost=" << IC.getCost()
317 << ", thres=" << (IC.getCostDelta() + IC.getCost())
318 << ", Call: " << *CS.getInstruction() << '\n');
319 return true;
320 }
321
322 /// InlineHistoryIncludes - Return true if the specified inline history ID
323 /// indicates an inline history that includes the specified function.
InlineHistoryIncludes(Function * F,int InlineHistoryID,const SmallVectorImpl<std::pair<Function *,int>> & InlineHistory)324 static bool InlineHistoryIncludes(Function *F, int InlineHistoryID,
325 const SmallVectorImpl<std::pair<Function*, int> > &InlineHistory) {
326 while (InlineHistoryID != -1) {
327 assert(unsigned(InlineHistoryID) < InlineHistory.size() &&
328 "Invalid inline history ID");
329 if (InlineHistory[InlineHistoryID].first == F)
330 return true;
331 InlineHistoryID = InlineHistory[InlineHistoryID].second;
332 }
333 return false;
334 }
335
runOnSCC(CallGraphSCC & SCC)336 bool Inliner::runOnSCC(CallGraphSCC &SCC) {
337 CallGraph &CG = getAnalysis<CallGraph>();
338 const TargetData *TD = getAnalysisIfAvailable<TargetData>();
339
340 SmallPtrSet<Function*, 8> SCCFunctions;
341 DEBUG(dbgs() << "Inliner visiting SCC:");
342 for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
343 Function *F = (*I)->getFunction();
344 if (F) SCCFunctions.insert(F);
345 DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE"));
346 }
347
348 // Scan through and identify all call sites ahead of time so that we only
349 // inline call sites in the original functions, not call sites that result
350 // from inlining other functions.
351 SmallVector<std::pair<CallSite, int>, 16> CallSites;
352
353 // When inlining a callee produces new call sites, we want to keep track of
354 // the fact that they were inlined from the callee. This allows us to avoid
355 // infinite inlining in some obscure cases. To represent this, we use an
356 // index into the InlineHistory vector.
357 SmallVector<std::pair<Function*, int>, 8> InlineHistory;
358
359 for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
360 Function *F = (*I)->getFunction();
361 if (!F) continue;
362
363 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
364 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
365 CallSite CS(cast<Value>(I));
366 // If this isn't a call, or it is a call to an intrinsic, it can
367 // never be inlined.
368 if (!CS || isa<IntrinsicInst>(I))
369 continue;
370
371 // If this is a direct call to an external function, we can never inline
372 // it. If it is an indirect call, inlining may resolve it to be a
373 // direct call, so we keep it.
374 if (CS.getCalledFunction() && CS.getCalledFunction()->isDeclaration())
375 continue;
376
377 CallSites.push_back(std::make_pair(CS, -1));
378 }
379 }
380
381 DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n");
382
383 // If there are no calls in this function, exit early.
384 if (CallSites.empty())
385 return false;
386
387 // Now that we have all of the call sites, move the ones to functions in the
388 // current SCC to the end of the list.
389 unsigned FirstCallInSCC = CallSites.size();
390 for (unsigned i = 0; i < FirstCallInSCC; ++i)
391 if (Function *F = CallSites[i].first.getCalledFunction())
392 if (SCCFunctions.count(F))
393 std::swap(CallSites[i--], CallSites[--FirstCallInSCC]);
394
395
396 InlinedArrayAllocasTy InlinedArrayAllocas;
397 InlineFunctionInfo InlineInfo(&CG, TD);
398
399 // Now that we have all of the call sites, loop over them and inline them if
400 // it looks profitable to do so.
401 bool Changed = false;
402 bool LocalChange;
403 do {
404 LocalChange = false;
405 // Iterate over the outer loop because inlining functions can cause indirect
406 // calls to become direct calls.
407 for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) {
408 CallSite CS = CallSites[CSi].first;
409
410 Function *Caller = CS.getCaller();
411 Function *Callee = CS.getCalledFunction();
412
413 // If this call site is dead and it is to a readonly function, we should
414 // just delete the call instead of trying to inline it, regardless of
415 // size. This happens because IPSCCP propagates the result out of the
416 // call and then we're left with the dead call.
417 if (isInstructionTriviallyDead(CS.getInstruction())) {
418 DEBUG(dbgs() << " -> Deleting dead call: "
419 << *CS.getInstruction() << "\n");
420 // Update the call graph by deleting the edge from Callee to Caller.
421 CG[Caller]->removeCallEdgeFor(CS);
422 CS.getInstruction()->eraseFromParent();
423 ++NumCallsDeleted;
424 } else {
425 // We can only inline direct calls to non-declarations.
426 if (Callee == 0 || Callee->isDeclaration()) continue;
427
428 // If this call site was obtained by inlining another function, verify
429 // that the include path for the function did not include the callee
430 // itself. If so, we'd be recursively inlining the same function,
431 // which would provide the same callsites, which would cause us to
432 // infinitely inline.
433 int InlineHistoryID = CallSites[CSi].second;
434 if (InlineHistoryID != -1 &&
435 InlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory))
436 continue;
437
438
439 // If the policy determines that we should inline this function,
440 // try to do so.
441 if (!shouldInline(CS))
442 continue;
443
444 // Attempt to inline the function.
445 if (!InlineCallIfPossible(CS, InlineInfo, InlinedArrayAllocas,
446 InlineHistoryID, InsertLifetime))
447 continue;
448 ++NumInlined;
449
450 // If inlining this function gave us any new call sites, throw them
451 // onto our worklist to process. They are useful inline candidates.
452 if (!InlineInfo.InlinedCalls.empty()) {
453 // Create a new inline history entry for this, so that we remember
454 // that these new callsites came about due to inlining Callee.
455 int NewHistoryID = InlineHistory.size();
456 InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID));
457
458 for (unsigned i = 0, e = InlineInfo.InlinedCalls.size();
459 i != e; ++i) {
460 Value *Ptr = InlineInfo.InlinedCalls[i];
461 CallSites.push_back(std::make_pair(CallSite(Ptr), NewHistoryID));
462 }
463 }
464 }
465
466 // If we inlined or deleted the last possible call site to the function,
467 // delete the function body now.
468 if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() &&
469 // TODO: Can remove if in SCC now.
470 !SCCFunctions.count(Callee) &&
471
472 // The function may be apparently dead, but if there are indirect
473 // callgraph references to the node, we cannot delete it yet, this
474 // could invalidate the CGSCC iterator.
475 CG[Callee]->getNumReferences() == 0) {
476 DEBUG(dbgs() << " -> Deleting dead function: "
477 << Callee->getName() << "\n");
478 CallGraphNode *CalleeNode = CG[Callee];
479
480 // Remove any call graph edges from the callee to its callees.
481 CalleeNode->removeAllCalledFunctions();
482
483 // Removing the node for callee from the call graph and delete it.
484 delete CG.removeFunctionFromModule(CalleeNode);
485 ++NumDeleted;
486 }
487
488 // Remove this call site from the list. If possible, use
489 // swap/pop_back for efficiency, but do not use it if doing so would
490 // move a call site to a function in this SCC before the
491 // 'FirstCallInSCC' barrier.
492 if (SCC.isSingular()) {
493 CallSites[CSi] = CallSites.back();
494 CallSites.pop_back();
495 } else {
496 CallSites.erase(CallSites.begin()+CSi);
497 }
498 --CSi;
499
500 Changed = true;
501 LocalChange = true;
502 }
503 } while (LocalChange);
504
505 return Changed;
506 }
507
508 // doFinalization - Remove now-dead linkonce functions at the end of
509 // processing to avoid breaking the SCC traversal.
doFinalization(CallGraph & CG)510 bool Inliner::doFinalization(CallGraph &CG) {
511 return removeDeadFunctions(CG);
512 }
513
514 /// removeDeadFunctions - Remove dead functions that are not included in
515 /// DNR (Do Not Remove) list.
removeDeadFunctions(CallGraph & CG,bool AlwaysInlineOnly)516 bool Inliner::removeDeadFunctions(CallGraph &CG, bool AlwaysInlineOnly) {
517 SmallVector<CallGraphNode*, 16> FunctionsToRemove;
518
519 // Scan for all of the functions, looking for ones that should now be removed
520 // from the program. Insert the dead ones in the FunctionsToRemove set.
521 for (CallGraph::iterator I = CG.begin(), E = CG.end(); I != E; ++I) {
522 CallGraphNode *CGN = I->second;
523 Function *F = CGN->getFunction();
524 if (!F || F->isDeclaration())
525 continue;
526
527 // Handle the case when this function is called and we only want to care
528 // about always-inline functions. This is a bit of a hack to share code
529 // between here and the InlineAlways pass.
530 if (AlwaysInlineOnly && !F->hasFnAttr(Attribute::AlwaysInline))
531 continue;
532
533 // If the only remaining users of the function are dead constants, remove
534 // them.
535 F->removeDeadConstantUsers();
536
537 if (!F->isDefTriviallyDead())
538 continue;
539
540 // Remove any call graph edges from the function to its callees.
541 CGN->removeAllCalledFunctions();
542
543 // Remove any edges from the external node to the function's call graph
544 // node. These edges might have been made irrelegant due to
545 // optimization of the program.
546 CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN);
547
548 // Removing the node for callee from the call graph and delete it.
549 FunctionsToRemove.push_back(CGN);
550 }
551 if (FunctionsToRemove.empty())
552 return false;
553
554 // Now that we know which functions to delete, do so. We didn't want to do
555 // this inline, because that would invalidate our CallGraph::iterator
556 // objects. :(
557 //
558 // Note that it doesn't matter that we are iterating over a non-stable order
559 // here to do this, it doesn't matter which order the functions are deleted
560 // in.
561 array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end());
562 FunctionsToRemove.erase(std::unique(FunctionsToRemove.begin(),
563 FunctionsToRemove.end()),
564 FunctionsToRemove.end());
565 for (SmallVectorImpl<CallGraphNode *>::iterator I = FunctionsToRemove.begin(),
566 E = FunctionsToRemove.end();
567 I != E; ++I) {
568 delete CG.removeFunctionFromModule(*I);
569 ++NumDeleted;
570 }
571 return true;
572 }
573