• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- InstCombine.h - Main InstCombine pass definition -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #ifndef INSTCOMBINE_INSTCOMBINE_H
11 #define INSTCOMBINE_INSTCOMBINE_H
12 
13 #include "InstCombineWorklist.h"
14 #include "llvm/IntrinsicInst.h"
15 #include "llvm/Operator.h"
16 #include "llvm/Pass.h"
17 #include "llvm/Analysis/ValueTracking.h"
18 #include "llvm/Support/IRBuilder.h"
19 #include "llvm/Support/InstVisitor.h"
20 #include "llvm/Support/TargetFolder.h"
21 
22 namespace llvm {
23   class CallSite;
24   class TargetData;
25   class TargetLibraryInfo;
26   class DbgDeclareInst;
27   class MemIntrinsic;
28   class MemSetInst;
29 
30 /// SelectPatternFlavor - We can match a variety of different patterns for
31 /// select operations.
32 enum SelectPatternFlavor {
33   SPF_UNKNOWN = 0,
34   SPF_SMIN, SPF_UMIN,
35   SPF_SMAX, SPF_UMAX
36   //SPF_ABS - TODO.
37 };
38 
39 /// getComplexity:  Assign a complexity or rank value to LLVM Values...
40 ///   0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
getComplexity(Value * V)41 static inline unsigned getComplexity(Value *V) {
42   if (isa<Instruction>(V)) {
43     if (BinaryOperator::isNeg(V) ||
44         BinaryOperator::isFNeg(V) ||
45         BinaryOperator::isNot(V))
46       return 3;
47     return 4;
48   }
49   if (isa<Argument>(V)) return 3;
50   return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
51 }
52 
53 
54 /// InstCombineIRInserter - This is an IRBuilder insertion helper that works
55 /// just like the normal insertion helper, but also adds any new instructions
56 /// to the instcombine worklist.
57 class LLVM_LIBRARY_VISIBILITY InstCombineIRInserter
58     : public IRBuilderDefaultInserter<true> {
59   InstCombineWorklist &Worklist;
60 public:
InstCombineIRInserter(InstCombineWorklist & WL)61   InstCombineIRInserter(InstCombineWorklist &WL) : Worklist(WL) {}
62 
InsertHelper(Instruction * I,const Twine & Name,BasicBlock * BB,BasicBlock::iterator InsertPt)63   void InsertHelper(Instruction *I, const Twine &Name,
64                     BasicBlock *BB, BasicBlock::iterator InsertPt) const {
65     IRBuilderDefaultInserter<true>::InsertHelper(I, Name, BB, InsertPt);
66     Worklist.Add(I);
67   }
68 };
69 
70 /// InstCombiner - The -instcombine pass.
71 class LLVM_LIBRARY_VISIBILITY InstCombiner
72                              : public FunctionPass,
73                                public InstVisitor<InstCombiner, Instruction*> {
74   TargetData *TD;
75   TargetLibraryInfo *TLI;
76   bool MadeIRChange;
77 public:
78   /// Worklist - All of the instructions that need to be simplified.
79   InstCombineWorklist Worklist;
80 
81   /// Builder - This is an IRBuilder that automatically inserts new
82   /// instructions into the worklist when they are created.
83   typedef IRBuilder<true, TargetFolder, InstCombineIRInserter> BuilderTy;
84   BuilderTy *Builder;
85 
86   static char ID; // Pass identification, replacement for typeid
InstCombiner()87   InstCombiner() : FunctionPass(ID), TD(0), Builder(0) {
88     initializeInstCombinerPass(*PassRegistry::getPassRegistry());
89   }
90 
91 public:
92   virtual bool runOnFunction(Function &F);
93 
94   bool DoOneIteration(Function &F, unsigned ItNum);
95 
96   virtual void getAnalysisUsage(AnalysisUsage &AU) const;
97 
getTargetData()98   TargetData *getTargetData() const { return TD; }
99 
getTargetLibraryInfo()100   TargetLibraryInfo *getTargetLibraryInfo() const { return TLI; }
101 
102   // Visitation implementation - Implement instruction combining for different
103   // instruction types.  The semantics are as follows:
104   // Return Value:
105   //    null        - No change was made
106   //     I          - Change was made, I is still valid, I may be dead though
107   //   otherwise    - Change was made, replace I with returned instruction
108   //
109   Instruction *visitAdd(BinaryOperator &I);
110   Instruction *visitFAdd(BinaryOperator &I);
111   Value *OptimizePointerDifference(Value *LHS, Value *RHS, Type *Ty);
112   Instruction *visitSub(BinaryOperator &I);
113   Instruction *visitFSub(BinaryOperator &I);
114   Instruction *visitMul(BinaryOperator &I);
115   Instruction *visitFMul(BinaryOperator &I);
116   Instruction *visitURem(BinaryOperator &I);
117   Instruction *visitSRem(BinaryOperator &I);
118   Instruction *visitFRem(BinaryOperator &I);
119   bool SimplifyDivRemOfSelect(BinaryOperator &I);
120   Instruction *commonRemTransforms(BinaryOperator &I);
121   Instruction *commonIRemTransforms(BinaryOperator &I);
122   Instruction *commonDivTransforms(BinaryOperator &I);
123   Instruction *commonIDivTransforms(BinaryOperator &I);
124   Instruction *visitUDiv(BinaryOperator &I);
125   Instruction *visitSDiv(BinaryOperator &I);
126   Instruction *visitFDiv(BinaryOperator &I);
127   Value *FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS);
128   Value *FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS);
129   Instruction *visitAnd(BinaryOperator &I);
130   Value *FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS);
131   Value *FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS);
132   Instruction *FoldOrWithConstants(BinaryOperator &I, Value *Op,
133                                    Value *A, Value *B, Value *C);
134   Instruction *visitOr (BinaryOperator &I);
135   Instruction *visitXor(BinaryOperator &I);
136   Instruction *visitShl(BinaryOperator &I);
137   Instruction *visitAShr(BinaryOperator &I);
138   Instruction *visitLShr(BinaryOperator &I);
139   Instruction *commonShiftTransforms(BinaryOperator &I);
140   Instruction *FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI,
141                                     Constant *RHSC);
142   Instruction *FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
143                                             GlobalVariable *GV, CmpInst &ICI,
144                                             ConstantInt *AndCst = 0);
145   Instruction *visitFCmpInst(FCmpInst &I);
146   Instruction *visitICmpInst(ICmpInst &I);
147   Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
148   Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
149                                               Instruction *LHS,
150                                               ConstantInt *RHS);
151   Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
152                               ConstantInt *DivRHS);
153   Instruction *FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *DivI,
154                               ConstantInt *DivRHS);
155   Instruction *FoldICmpAddOpCst(ICmpInst &ICI, Value *X, ConstantInt *CI,
156                                 ICmpInst::Predicate Pred, Value *TheAdd);
157   Instruction *FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
158                            ICmpInst::Predicate Cond, Instruction &I);
159   Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
160                                    BinaryOperator &I);
161   Instruction *commonCastTransforms(CastInst &CI);
162   Instruction *commonPointerCastTransforms(CastInst &CI);
163   Instruction *visitTrunc(TruncInst &CI);
164   Instruction *visitZExt(ZExtInst &CI);
165   Instruction *visitSExt(SExtInst &CI);
166   Instruction *visitFPTrunc(FPTruncInst &CI);
167   Instruction *visitFPExt(CastInst &CI);
168   Instruction *visitFPToUI(FPToUIInst &FI);
169   Instruction *visitFPToSI(FPToSIInst &FI);
170   Instruction *visitUIToFP(CastInst &CI);
171   Instruction *visitSIToFP(CastInst &CI);
172   Instruction *visitPtrToInt(PtrToIntInst &CI);
173   Instruction *visitIntToPtr(IntToPtrInst &CI);
174   Instruction *visitBitCast(BitCastInst &CI);
175   Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI,
176                               Instruction *FI);
177   Instruction *FoldSelectIntoOp(SelectInst &SI, Value*, Value*);
178   Instruction *FoldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
179                             Value *A, Value *B, Instruction &Outer,
180                             SelectPatternFlavor SPF2, Value *C);
181   Instruction *visitSelectInst(SelectInst &SI);
182   Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
183   Instruction *visitCallInst(CallInst &CI);
184   Instruction *visitInvokeInst(InvokeInst &II);
185 
186   Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
187   Instruction *visitPHINode(PHINode &PN);
188   Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
189   Instruction *visitAllocaInst(AllocaInst &AI);
190   Instruction *visitMalloc(Instruction &FI);
191   Instruction *visitFree(CallInst &FI);
192   Instruction *visitLoadInst(LoadInst &LI);
193   Instruction *visitStoreInst(StoreInst &SI);
194   Instruction *visitBranchInst(BranchInst &BI);
195   Instruction *visitSwitchInst(SwitchInst &SI);
196   Instruction *visitInsertElementInst(InsertElementInst &IE);
197   Instruction *visitExtractElementInst(ExtractElementInst &EI);
198   Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
199   Instruction *visitExtractValueInst(ExtractValueInst &EV);
200   Instruction *visitLandingPadInst(LandingPadInst &LI);
201 
202   // visitInstruction - Specify what to return for unhandled instructions...
visitInstruction(Instruction & I)203   Instruction *visitInstruction(Instruction &I) { return 0; }
204 
205 private:
206   bool ShouldChangeType(Type *From, Type *To) const;
207   Value *dyn_castNegVal(Value *V) const;
208   Value *dyn_castFNegVal(Value *V) const;
209   Type *FindElementAtOffset(Type *Ty, int64_t Offset,
210                                   SmallVectorImpl<Value*> &NewIndices);
211   Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI);
212 
213   /// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually
214   /// results in any code being generated and is interesting to optimize out. If
215   /// the cast can be eliminated by some other simple transformation, we prefer
216   /// to do the simplification first.
217   bool ShouldOptimizeCast(Instruction::CastOps opcode,const Value *V,
218                           Type *Ty);
219 
220   Instruction *visitCallSite(CallSite CS);
221   Instruction *tryOptimizeCall(CallInst *CI, const TargetData *TD);
222   bool transformConstExprCastCall(CallSite CS);
223   Instruction *transformCallThroughTrampoline(CallSite CS,
224                                               IntrinsicInst *Tramp);
225   Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI,
226                                  bool DoXform = true);
227   Instruction *transformSExtICmp(ICmpInst *ICI, Instruction &CI);
228   bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS);
229   Value *EmitGEPOffset(User *GEP);
230 
231 public:
232   // InsertNewInstBefore - insert an instruction New before instruction Old
233   // in the program.  Add the new instruction to the worklist.
234   //
InsertNewInstBefore(Instruction * New,Instruction & Old)235   Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
236     assert(New && New->getParent() == 0 &&
237            "New instruction already inserted into a basic block!");
238     BasicBlock *BB = Old.getParent();
239     BB->getInstList().insert(&Old, New);  // Insert inst
240     Worklist.Add(New);
241     return New;
242   }
243 
244   // InsertNewInstWith - same as InsertNewInstBefore, but also sets the
245   // debug loc.
246   //
InsertNewInstWith(Instruction * New,Instruction & Old)247   Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) {
248     New->setDebugLoc(Old.getDebugLoc());
249     return InsertNewInstBefore(New, Old);
250   }
251 
252   // ReplaceInstUsesWith - This method is to be used when an instruction is
253   // found to be dead, replacable with another preexisting expression.  Here
254   // we add all uses of I to the worklist, replace all uses of I with the new
255   // value, then return I, so that the inst combiner will know that I was
256   // modified.
257   //
ReplaceInstUsesWith(Instruction & I,Value * V)258   Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
259     Worklist.AddUsersToWorkList(I);   // Add all modified instrs to worklist.
260 
261     // If we are replacing the instruction with itself, this must be in a
262     // segment of unreachable code, so just clobber the instruction.
263     if (&I == V)
264       V = UndefValue::get(I.getType());
265 
266     DEBUG(errs() << "IC: Replacing " << I << "\n"
267                     "    with " << *V << '\n');
268 
269     I.replaceAllUsesWith(V);
270     return &I;
271   }
272 
273   // EraseInstFromFunction - When dealing with an instruction that has side
274   // effects or produces a void value, we can't rely on DCE to delete the
275   // instruction.  Instead, visit methods should return the value returned by
276   // this function.
EraseInstFromFunction(Instruction & I)277   Instruction *EraseInstFromFunction(Instruction &I) {
278     DEBUG(errs() << "IC: ERASE " << I << '\n');
279 
280     assert(I.use_empty() && "Cannot erase instruction that is used!");
281     // Make sure that we reprocess all operands now that we reduced their
282     // use counts.
283     if (I.getNumOperands() < 8) {
284       for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
285         if (Instruction *Op = dyn_cast<Instruction>(*i))
286           Worklist.Add(Op);
287     }
288     Worklist.Remove(&I);
289     I.eraseFromParent();
290     MadeIRChange = true;
291     return 0;  // Don't do anything with FI
292   }
293 
294   void ComputeMaskedBits(Value *V, APInt &KnownZero,
295                          APInt &KnownOne, unsigned Depth = 0) const {
296     return llvm::ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
297   }
298 
299   bool MaskedValueIsZero(Value *V, const APInt &Mask,
300                          unsigned Depth = 0) const {
301     return llvm::MaskedValueIsZero(V, Mask, TD, Depth);
302   }
303   unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0) const {
304     return llvm::ComputeNumSignBits(Op, TD, Depth);
305   }
306 
307 private:
308 
309   /// SimplifyAssociativeOrCommutative - This performs a few simplifications for
310   /// operators which are associative or commutative.
311   bool SimplifyAssociativeOrCommutative(BinaryOperator &I);
312 
313   /// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
314   /// which some other binary operation distributes over either by factorizing
315   /// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
316   /// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
317   /// a win).  Returns the simplified value, or null if it didn't simplify.
318   Value *SimplifyUsingDistributiveLaws(BinaryOperator &I);
319 
320   /// SimplifyDemandedUseBits - Attempts to replace V with a simpler value
321   /// based on the demanded bits.
322   Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
323                                  APInt& KnownZero, APInt& KnownOne,
324                                  unsigned Depth);
325   bool SimplifyDemandedBits(Use &U, APInt DemandedMask,
326                             APInt& KnownZero, APInt& KnownOne,
327                             unsigned Depth=0);
328 
329   /// SimplifyDemandedInstructionBits - Inst is an integer instruction that
330   /// SimplifyDemandedBits knows about.  See if the instruction has any
331   /// properties that allow us to simplify its operands.
332   bool SimplifyDemandedInstructionBits(Instruction &Inst);
333 
334   Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
335                                     APInt& UndefElts, unsigned Depth = 0);
336 
337   // FoldOpIntoPhi - Given a binary operator, cast instruction, or select
338   // which has a PHI node as operand #0, see if we can fold the instruction
339   // into the PHI (which is only possible if all operands to the PHI are
340   // constants).
341   //
342   Instruction *FoldOpIntoPhi(Instruction &I);
343 
344   // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
345   // operator and they all are only used by the PHI, PHI together their
346   // inputs, and do the operation once, to the result of the PHI.
347   Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
348   Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
349   Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN);
350   Instruction *FoldPHIArgLoadIntoPHI(PHINode &PN);
351 
352 
353   Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
354                         ConstantInt *AndRHS, BinaryOperator &TheAnd);
355 
356   Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
357                             bool isSub, Instruction &I);
358   Value *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
359                          bool isSigned, bool Inside);
360   Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI);
361   Instruction *MatchBSwap(BinaryOperator &I);
362   bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
363   Instruction *SimplifyMemTransfer(MemIntrinsic *MI);
364   Instruction *SimplifyMemSet(MemSetInst *MI);
365 
366 
367   Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned);
368 };
369 
370 
371 
372 } // end namespace llvm.
373 
374 #endif
375