• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- InstCombinePHI.cpp -------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitPHINode function.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombine.h"
15 #include "llvm/Analysis/InstructionSimplify.h"
16 #include "llvm/Target/TargetData.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/STLExtras.h"
19 using namespace llvm;
20 
21 /// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(a,c)]
22 /// and if a/b/c and the add's all have a single use, turn this into a phi
23 /// and a single binop.
FoldPHIArgBinOpIntoPHI(PHINode & PN)24 Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
25   Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
26   assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst));
27   unsigned Opc = FirstInst->getOpcode();
28   Value *LHSVal = FirstInst->getOperand(0);
29   Value *RHSVal = FirstInst->getOperand(1);
30 
31   Type *LHSType = LHSVal->getType();
32   Type *RHSType = RHSVal->getType();
33 
34   bool isNUW = false, isNSW = false, isExact = false;
35   if (OverflowingBinaryOperator *BO =
36         dyn_cast<OverflowingBinaryOperator>(FirstInst)) {
37     isNUW = BO->hasNoUnsignedWrap();
38     isNSW = BO->hasNoSignedWrap();
39   } else if (PossiblyExactOperator *PEO =
40                dyn_cast<PossiblyExactOperator>(FirstInst))
41     isExact = PEO->isExact();
42 
43   // Scan to see if all operands are the same opcode, and all have one use.
44   for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
45     Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
46     if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
47         // Verify type of the LHS matches so we don't fold cmp's of different
48         // types.
49         I->getOperand(0)->getType() != LHSType ||
50         I->getOperand(1)->getType() != RHSType)
51       return 0;
52 
53     // If they are CmpInst instructions, check their predicates
54     if (CmpInst *CI = dyn_cast<CmpInst>(I))
55       if (CI->getPredicate() != cast<CmpInst>(FirstInst)->getPredicate())
56         return 0;
57 
58     if (isNUW)
59       isNUW = cast<OverflowingBinaryOperator>(I)->hasNoUnsignedWrap();
60     if (isNSW)
61       isNSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
62     if (isExact)
63       isExact = cast<PossiblyExactOperator>(I)->isExact();
64 
65     // Keep track of which operand needs a phi node.
66     if (I->getOperand(0) != LHSVal) LHSVal = 0;
67     if (I->getOperand(1) != RHSVal) RHSVal = 0;
68   }
69 
70   // If both LHS and RHS would need a PHI, don't do this transformation,
71   // because it would increase the number of PHIs entering the block,
72   // which leads to higher register pressure. This is especially
73   // bad when the PHIs are in the header of a loop.
74   if (!LHSVal && !RHSVal)
75     return 0;
76 
77   // Otherwise, this is safe to transform!
78 
79   Value *InLHS = FirstInst->getOperand(0);
80   Value *InRHS = FirstInst->getOperand(1);
81   PHINode *NewLHS = 0, *NewRHS = 0;
82   if (LHSVal == 0) {
83     NewLHS = PHINode::Create(LHSType, PN.getNumIncomingValues(),
84                              FirstInst->getOperand(0)->getName() + ".pn");
85     NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
86     InsertNewInstBefore(NewLHS, PN);
87     LHSVal = NewLHS;
88   }
89 
90   if (RHSVal == 0) {
91     NewRHS = PHINode::Create(RHSType, PN.getNumIncomingValues(),
92                              FirstInst->getOperand(1)->getName() + ".pn");
93     NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
94     InsertNewInstBefore(NewRHS, PN);
95     RHSVal = NewRHS;
96   }
97 
98   // Add all operands to the new PHIs.
99   if (NewLHS || NewRHS) {
100     for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
101       Instruction *InInst = cast<Instruction>(PN.getIncomingValue(i));
102       if (NewLHS) {
103         Value *NewInLHS = InInst->getOperand(0);
104         NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
105       }
106       if (NewRHS) {
107         Value *NewInRHS = InInst->getOperand(1);
108         NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
109       }
110     }
111   }
112 
113   if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst)) {
114     CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
115                                      LHSVal, RHSVal);
116     NewCI->setDebugLoc(FirstInst->getDebugLoc());
117     return NewCI;
118   }
119 
120   BinaryOperator *BinOp = cast<BinaryOperator>(FirstInst);
121   BinaryOperator *NewBinOp =
122     BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
123   if (isNUW) NewBinOp->setHasNoUnsignedWrap();
124   if (isNSW) NewBinOp->setHasNoSignedWrap();
125   if (isExact) NewBinOp->setIsExact();
126   NewBinOp->setDebugLoc(FirstInst->getDebugLoc());
127   return NewBinOp;
128 }
129 
FoldPHIArgGEPIntoPHI(PHINode & PN)130 Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) {
131   GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0));
132 
133   SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(),
134                                         FirstInst->op_end());
135   // This is true if all GEP bases are allocas and if all indices into them are
136   // constants.
137   bool AllBasePointersAreAllocas = true;
138 
139   // We don't want to replace this phi if the replacement would require
140   // more than one phi, which leads to higher register pressure. This is
141   // especially bad when the PHIs are in the header of a loop.
142   bool NeededPhi = false;
143 
144   bool AllInBounds = true;
145 
146   // Scan to see if all operands are the same opcode, and all have one use.
147   for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
148     GetElementPtrInst *GEP= dyn_cast<GetElementPtrInst>(PN.getIncomingValue(i));
149     if (!GEP || !GEP->hasOneUse() || GEP->getType() != FirstInst->getType() ||
150       GEP->getNumOperands() != FirstInst->getNumOperands())
151       return 0;
152 
153     AllInBounds &= GEP->isInBounds();
154 
155     // Keep track of whether or not all GEPs are of alloca pointers.
156     if (AllBasePointersAreAllocas &&
157         (!isa<AllocaInst>(GEP->getOperand(0)) ||
158          !GEP->hasAllConstantIndices()))
159       AllBasePointersAreAllocas = false;
160 
161     // Compare the operand lists.
162     for (unsigned op = 0, e = FirstInst->getNumOperands(); op != e; ++op) {
163       if (FirstInst->getOperand(op) == GEP->getOperand(op))
164         continue;
165 
166       // Don't merge two GEPs when two operands differ (introducing phi nodes)
167       // if one of the PHIs has a constant for the index.  The index may be
168       // substantially cheaper to compute for the constants, so making it a
169       // variable index could pessimize the path.  This also handles the case
170       // for struct indices, which must always be constant.
171       if (isa<ConstantInt>(FirstInst->getOperand(op)) ||
172           isa<ConstantInt>(GEP->getOperand(op)))
173         return 0;
174 
175       if (FirstInst->getOperand(op)->getType() !=GEP->getOperand(op)->getType())
176         return 0;
177 
178       // If we already needed a PHI for an earlier operand, and another operand
179       // also requires a PHI, we'd be introducing more PHIs than we're
180       // eliminating, which increases register pressure on entry to the PHI's
181       // block.
182       if (NeededPhi)
183         return 0;
184 
185       FixedOperands[op] = 0;  // Needs a PHI.
186       NeededPhi = true;
187     }
188   }
189 
190   // If all of the base pointers of the PHI'd GEPs are from allocas, don't
191   // bother doing this transformation.  At best, this will just save a bit of
192   // offset calculation, but all the predecessors will have to materialize the
193   // stack address into a register anyway.  We'd actually rather *clone* the
194   // load up into the predecessors so that we have a load of a gep of an alloca,
195   // which can usually all be folded into the load.
196   if (AllBasePointersAreAllocas)
197     return 0;
198 
199   // Otherwise, this is safe to transform.  Insert PHI nodes for each operand
200   // that is variable.
201   SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size());
202 
203   bool HasAnyPHIs = false;
204   for (unsigned i = 0, e = FixedOperands.size(); i != e; ++i) {
205     if (FixedOperands[i]) continue;  // operand doesn't need a phi.
206     Value *FirstOp = FirstInst->getOperand(i);
207     PHINode *NewPN = PHINode::Create(FirstOp->getType(), e,
208                                      FirstOp->getName()+".pn");
209     InsertNewInstBefore(NewPN, PN);
210 
211     NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0));
212     OperandPhis[i] = NewPN;
213     FixedOperands[i] = NewPN;
214     HasAnyPHIs = true;
215   }
216 
217 
218   // Add all operands to the new PHIs.
219   if (HasAnyPHIs) {
220     for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
221       GetElementPtrInst *InGEP =cast<GetElementPtrInst>(PN.getIncomingValue(i));
222       BasicBlock *InBB = PN.getIncomingBlock(i);
223 
224       for (unsigned op = 0, e = OperandPhis.size(); op != e; ++op)
225         if (PHINode *OpPhi = OperandPhis[op])
226           OpPhi->addIncoming(InGEP->getOperand(op), InBB);
227     }
228   }
229 
230   Value *Base = FixedOperands[0];
231   GetElementPtrInst *NewGEP =
232     GetElementPtrInst::Create(Base, makeArrayRef(FixedOperands).slice(1));
233   if (AllInBounds) NewGEP->setIsInBounds();
234   NewGEP->setDebugLoc(FirstInst->getDebugLoc());
235   return NewGEP;
236 }
237 
238 
239 /// isSafeAndProfitableToSinkLoad - Return true if we know that it is safe to
240 /// sink the load out of the block that defines it.  This means that it must be
241 /// obvious the value of the load is not changed from the point of the load to
242 /// the end of the block it is in.
243 ///
244 /// Finally, it is safe, but not profitable, to sink a load targeting a
245 /// non-address-taken alloca.  Doing so will cause us to not promote the alloca
246 /// to a register.
isSafeAndProfitableToSinkLoad(LoadInst * L)247 static bool isSafeAndProfitableToSinkLoad(LoadInst *L) {
248   BasicBlock::iterator BBI = L, E = L->getParent()->end();
249 
250   for (++BBI; BBI != E; ++BBI)
251     if (BBI->mayWriteToMemory())
252       return false;
253 
254   // Check for non-address taken alloca.  If not address-taken already, it isn't
255   // profitable to do this xform.
256   if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
257     bool isAddressTaken = false;
258     for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
259          UI != E; ++UI) {
260       User *U = *UI;
261       if (isa<LoadInst>(U)) continue;
262       if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
263         // If storing TO the alloca, then the address isn't taken.
264         if (SI->getOperand(1) == AI) continue;
265       }
266       isAddressTaken = true;
267       break;
268     }
269 
270     if (!isAddressTaken && AI->isStaticAlloca())
271       return false;
272   }
273 
274   // If this load is a load from a GEP with a constant offset from an alloca,
275   // then we don't want to sink it.  In its present form, it will be
276   // load [constant stack offset].  Sinking it will cause us to have to
277   // materialize the stack addresses in each predecessor in a register only to
278   // do a shared load from register in the successor.
279   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(L->getOperand(0)))
280     if (AllocaInst *AI = dyn_cast<AllocaInst>(GEP->getOperand(0)))
281       if (AI->isStaticAlloca() && GEP->hasAllConstantIndices())
282         return false;
283 
284   return true;
285 }
286 
FoldPHIArgLoadIntoPHI(PHINode & PN)287 Instruction *InstCombiner::FoldPHIArgLoadIntoPHI(PHINode &PN) {
288   LoadInst *FirstLI = cast<LoadInst>(PN.getIncomingValue(0));
289 
290   // FIXME: This is overconservative; this transform is allowed in some cases
291   // for atomic operations.
292   if (FirstLI->isAtomic())
293     return 0;
294 
295   // When processing loads, we need to propagate two bits of information to the
296   // sunk load: whether it is volatile, and what its alignment is.  We currently
297   // don't sink loads when some have their alignment specified and some don't.
298   // visitLoadInst will propagate an alignment onto the load when TD is around,
299   // and if TD isn't around, we can't handle the mixed case.
300   bool isVolatile = FirstLI->isVolatile();
301   unsigned LoadAlignment = FirstLI->getAlignment();
302   unsigned LoadAddrSpace = FirstLI->getPointerAddressSpace();
303 
304   // We can't sink the load if the loaded value could be modified between the
305   // load and the PHI.
306   if (FirstLI->getParent() != PN.getIncomingBlock(0) ||
307       !isSafeAndProfitableToSinkLoad(FirstLI))
308     return 0;
309 
310   // If the PHI is of volatile loads and the load block has multiple
311   // successors, sinking it would remove a load of the volatile value from
312   // the path through the other successor.
313   if (isVolatile &&
314       FirstLI->getParent()->getTerminator()->getNumSuccessors() != 1)
315     return 0;
316 
317   // Check to see if all arguments are the same operation.
318   for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
319     LoadInst *LI = dyn_cast<LoadInst>(PN.getIncomingValue(i));
320     if (!LI || !LI->hasOneUse())
321       return 0;
322 
323     // We can't sink the load if the loaded value could be modified between
324     // the load and the PHI.
325     if (LI->isVolatile() != isVolatile ||
326         LI->getParent() != PN.getIncomingBlock(i) ||
327         LI->getPointerAddressSpace() != LoadAddrSpace ||
328         !isSafeAndProfitableToSinkLoad(LI))
329       return 0;
330 
331     // If some of the loads have an alignment specified but not all of them,
332     // we can't do the transformation.
333     if ((LoadAlignment != 0) != (LI->getAlignment() != 0))
334       return 0;
335 
336     LoadAlignment = std::min(LoadAlignment, LI->getAlignment());
337 
338     // If the PHI is of volatile loads and the load block has multiple
339     // successors, sinking it would remove a load of the volatile value from
340     // the path through the other successor.
341     if (isVolatile &&
342         LI->getParent()->getTerminator()->getNumSuccessors() != 1)
343       return 0;
344   }
345 
346   // Okay, they are all the same operation.  Create a new PHI node of the
347   // correct type, and PHI together all of the LHS's of the instructions.
348   PHINode *NewPN = PHINode::Create(FirstLI->getOperand(0)->getType(),
349                                    PN.getNumIncomingValues(),
350                                    PN.getName()+".in");
351 
352   Value *InVal = FirstLI->getOperand(0);
353   NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
354 
355   // Add all operands to the new PHI.
356   for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
357     Value *NewInVal = cast<LoadInst>(PN.getIncomingValue(i))->getOperand(0);
358     if (NewInVal != InVal)
359       InVal = 0;
360     NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
361   }
362 
363   Value *PhiVal;
364   if (InVal) {
365     // The new PHI unions all of the same values together.  This is really
366     // common, so we handle it intelligently here for compile-time speed.
367     PhiVal = InVal;
368     delete NewPN;
369   } else {
370     InsertNewInstBefore(NewPN, PN);
371     PhiVal = NewPN;
372   }
373 
374   // If this was a volatile load that we are merging, make sure to loop through
375   // and mark all the input loads as non-volatile.  If we don't do this, we will
376   // insert a new volatile load and the old ones will not be deletable.
377   if (isVolatile)
378     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
379       cast<LoadInst>(PN.getIncomingValue(i))->setVolatile(false);
380 
381   LoadInst *NewLI = new LoadInst(PhiVal, "", isVolatile, LoadAlignment);
382   NewLI->setDebugLoc(FirstLI->getDebugLoc());
383   return NewLI;
384 }
385 
386 
387 
388 /// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
389 /// operator and they all are only used by the PHI, PHI together their
390 /// inputs, and do the operation once, to the result of the PHI.
FoldPHIArgOpIntoPHI(PHINode & PN)391 Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
392   Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
393 
394   if (isa<GetElementPtrInst>(FirstInst))
395     return FoldPHIArgGEPIntoPHI(PN);
396   if (isa<LoadInst>(FirstInst))
397     return FoldPHIArgLoadIntoPHI(PN);
398 
399   // Scan the instruction, looking for input operations that can be folded away.
400   // If all input operands to the phi are the same instruction (e.g. a cast from
401   // the same type or "+42") we can pull the operation through the PHI, reducing
402   // code size and simplifying code.
403   Constant *ConstantOp = 0;
404   Type *CastSrcTy = 0;
405   bool isNUW = false, isNSW = false, isExact = false;
406 
407   if (isa<CastInst>(FirstInst)) {
408     CastSrcTy = FirstInst->getOperand(0)->getType();
409 
410     // Be careful about transforming integer PHIs.  We don't want to pessimize
411     // the code by turning an i32 into an i1293.
412     if (PN.getType()->isIntegerTy() && CastSrcTy->isIntegerTy()) {
413       if (!ShouldChangeType(PN.getType(), CastSrcTy))
414         return 0;
415     }
416   } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
417     // Can fold binop, compare or shift here if the RHS is a constant,
418     // otherwise call FoldPHIArgBinOpIntoPHI.
419     ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
420     if (ConstantOp == 0)
421       return FoldPHIArgBinOpIntoPHI(PN);
422 
423     if (OverflowingBinaryOperator *BO =
424         dyn_cast<OverflowingBinaryOperator>(FirstInst)) {
425       isNUW = BO->hasNoUnsignedWrap();
426       isNSW = BO->hasNoSignedWrap();
427     } else if (PossiblyExactOperator *PEO =
428                dyn_cast<PossiblyExactOperator>(FirstInst))
429       isExact = PEO->isExact();
430   } else {
431     return 0;  // Cannot fold this operation.
432   }
433 
434   // Check to see if all arguments are the same operation.
435   for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
436     Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
437     if (I == 0 || !I->hasOneUse() || !I->isSameOperationAs(FirstInst))
438       return 0;
439     if (CastSrcTy) {
440       if (I->getOperand(0)->getType() != CastSrcTy)
441         return 0;  // Cast operation must match.
442     } else if (I->getOperand(1) != ConstantOp) {
443       return 0;
444     }
445 
446     if (isNUW)
447       isNUW = cast<OverflowingBinaryOperator>(I)->hasNoUnsignedWrap();
448     if (isNSW)
449       isNSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
450     if (isExact)
451       isExact = cast<PossiblyExactOperator>(I)->isExact();
452   }
453 
454   // Okay, they are all the same operation.  Create a new PHI node of the
455   // correct type, and PHI together all of the LHS's of the instructions.
456   PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
457                                    PN.getNumIncomingValues(),
458                                    PN.getName()+".in");
459 
460   Value *InVal = FirstInst->getOperand(0);
461   NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
462 
463   // Add all operands to the new PHI.
464   for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
465     Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
466     if (NewInVal != InVal)
467       InVal = 0;
468     NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
469   }
470 
471   Value *PhiVal;
472   if (InVal) {
473     // The new PHI unions all of the same values together.  This is really
474     // common, so we handle it intelligently here for compile-time speed.
475     PhiVal = InVal;
476     delete NewPN;
477   } else {
478     InsertNewInstBefore(NewPN, PN);
479     PhiVal = NewPN;
480   }
481 
482   // Insert and return the new operation.
483   if (CastInst *FirstCI = dyn_cast<CastInst>(FirstInst)) {
484     CastInst *NewCI = CastInst::Create(FirstCI->getOpcode(), PhiVal,
485                                        PN.getType());
486     NewCI->setDebugLoc(FirstInst->getDebugLoc());
487     return NewCI;
488   }
489 
490   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) {
491     BinOp = BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
492     if (isNUW) BinOp->setHasNoUnsignedWrap();
493     if (isNSW) BinOp->setHasNoSignedWrap();
494     if (isExact) BinOp->setIsExact();
495     BinOp->setDebugLoc(FirstInst->getDebugLoc());
496     return BinOp;
497   }
498 
499   CmpInst *CIOp = cast<CmpInst>(FirstInst);
500   CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
501                                    PhiVal, ConstantOp);
502   NewCI->setDebugLoc(FirstInst->getDebugLoc());
503   return NewCI;
504 }
505 
506 /// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
507 /// that is dead.
DeadPHICycle(PHINode * PN,SmallPtrSet<PHINode *,16> & PotentiallyDeadPHIs)508 static bool DeadPHICycle(PHINode *PN,
509                          SmallPtrSet<PHINode*, 16> &PotentiallyDeadPHIs) {
510   if (PN->use_empty()) return true;
511   if (!PN->hasOneUse()) return false;
512 
513   // Remember this node, and if we find the cycle, return.
514   if (!PotentiallyDeadPHIs.insert(PN))
515     return true;
516 
517   // Don't scan crazily complex things.
518   if (PotentiallyDeadPHIs.size() == 16)
519     return false;
520 
521   if (PHINode *PU = dyn_cast<PHINode>(PN->use_back()))
522     return DeadPHICycle(PU, PotentiallyDeadPHIs);
523 
524   return false;
525 }
526 
527 /// PHIsEqualValue - Return true if this phi node is always equal to
528 /// NonPhiInVal.  This happens with mutually cyclic phi nodes like:
529 ///   z = some value; x = phi (y, z); y = phi (x, z)
PHIsEqualValue(PHINode * PN,Value * NonPhiInVal,SmallPtrSet<PHINode *,16> & ValueEqualPHIs)530 static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal,
531                            SmallPtrSet<PHINode*, 16> &ValueEqualPHIs) {
532   // See if we already saw this PHI node.
533   if (!ValueEqualPHIs.insert(PN))
534     return true;
535 
536   // Don't scan crazily complex things.
537   if (ValueEqualPHIs.size() == 16)
538     return false;
539 
540   // Scan the operands to see if they are either phi nodes or are equal to
541   // the value.
542   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
543     Value *Op = PN->getIncomingValue(i);
544     if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
545       if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
546         return false;
547     } else if (Op != NonPhiInVal)
548       return false;
549   }
550 
551   return true;
552 }
553 
554 
555 namespace {
556 struct PHIUsageRecord {
557   unsigned PHIId;     // The ID # of the PHI (something determinstic to sort on)
558   unsigned Shift;     // The amount shifted.
559   Instruction *Inst;  // The trunc instruction.
560 
PHIUsageRecord__anon38130d3a0111::PHIUsageRecord561   PHIUsageRecord(unsigned pn, unsigned Sh, Instruction *User)
562     : PHIId(pn), Shift(Sh), Inst(User) {}
563 
operator <__anon38130d3a0111::PHIUsageRecord564   bool operator<(const PHIUsageRecord &RHS) const {
565     if (PHIId < RHS.PHIId) return true;
566     if (PHIId > RHS.PHIId) return false;
567     if (Shift < RHS.Shift) return true;
568     if (Shift > RHS.Shift) return false;
569     return Inst->getType()->getPrimitiveSizeInBits() <
570            RHS.Inst->getType()->getPrimitiveSizeInBits();
571   }
572 };
573 
574 struct LoweredPHIRecord {
575   PHINode *PN;        // The PHI that was lowered.
576   unsigned Shift;     // The amount shifted.
577   unsigned Width;     // The width extracted.
578 
LoweredPHIRecord__anon38130d3a0111::LoweredPHIRecord579   LoweredPHIRecord(PHINode *pn, unsigned Sh, Type *Ty)
580     : PN(pn), Shift(Sh), Width(Ty->getPrimitiveSizeInBits()) {}
581 
582   // Ctor form used by DenseMap.
LoweredPHIRecord__anon38130d3a0111::LoweredPHIRecord583   LoweredPHIRecord(PHINode *pn, unsigned Sh)
584     : PN(pn), Shift(Sh), Width(0) {}
585 };
586 }
587 
588 namespace llvm {
589   template<>
590   struct DenseMapInfo<LoweredPHIRecord> {
getEmptyKeyllvm::DenseMapInfo591     static inline LoweredPHIRecord getEmptyKey() {
592       return LoweredPHIRecord(0, 0);
593     }
getTombstoneKeyllvm::DenseMapInfo594     static inline LoweredPHIRecord getTombstoneKey() {
595       return LoweredPHIRecord(0, 1);
596     }
getHashValuellvm::DenseMapInfo597     static unsigned getHashValue(const LoweredPHIRecord &Val) {
598       return DenseMapInfo<PHINode*>::getHashValue(Val.PN) ^ (Val.Shift>>3) ^
599              (Val.Width>>3);
600     }
isEqualllvm::DenseMapInfo601     static bool isEqual(const LoweredPHIRecord &LHS,
602                         const LoweredPHIRecord &RHS) {
603       return LHS.PN == RHS.PN && LHS.Shift == RHS.Shift &&
604              LHS.Width == RHS.Width;
605     }
606   };
607   template <>
608   struct isPodLike<LoweredPHIRecord> { static const bool value = true; };
609 }
610 
611 
612 /// SliceUpIllegalIntegerPHI - This is an integer PHI and we know that it has an
613 /// illegal type: see if it is only used by trunc or trunc(lshr) operations.  If
614 /// so, we split the PHI into the various pieces being extracted.  This sort of
615 /// thing is introduced when SROA promotes an aggregate to large integer values.
616 ///
617 /// TODO: The user of the trunc may be an bitcast to float/double/vector or an
618 /// inttoptr.  We should produce new PHIs in the right type.
619 ///
SliceUpIllegalIntegerPHI(PHINode & FirstPhi)620 Instruction *InstCombiner::SliceUpIllegalIntegerPHI(PHINode &FirstPhi) {
621   // PHIUsers - Keep track of all of the truncated values extracted from a set
622   // of PHIs, along with their offset.  These are the things we want to rewrite.
623   SmallVector<PHIUsageRecord, 16> PHIUsers;
624 
625   // PHIs are often mutually cyclic, so we keep track of a whole set of PHI
626   // nodes which are extracted from. PHIsToSlice is a set we use to avoid
627   // revisiting PHIs, PHIsInspected is a ordered list of PHIs that we need to
628   // check the uses of (to ensure they are all extracts).
629   SmallVector<PHINode*, 8> PHIsToSlice;
630   SmallPtrSet<PHINode*, 8> PHIsInspected;
631 
632   PHIsToSlice.push_back(&FirstPhi);
633   PHIsInspected.insert(&FirstPhi);
634 
635   for (unsigned PHIId = 0; PHIId != PHIsToSlice.size(); ++PHIId) {
636     PHINode *PN = PHIsToSlice[PHIId];
637 
638     // Scan the input list of the PHI.  If any input is an invoke, and if the
639     // input is defined in the predecessor, then we won't be split the critical
640     // edge which is required to insert a truncate.  Because of this, we have to
641     // bail out.
642     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
643       InvokeInst *II = dyn_cast<InvokeInst>(PN->getIncomingValue(i));
644       if (II == 0) continue;
645       if (II->getParent() != PN->getIncomingBlock(i))
646         continue;
647 
648       // If we have a phi, and if it's directly in the predecessor, then we have
649       // a critical edge where we need to put the truncate.  Since we can't
650       // split the edge in instcombine, we have to bail out.
651       return 0;
652     }
653 
654 
655     for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
656          UI != E; ++UI) {
657       Instruction *User = cast<Instruction>(*UI);
658 
659       // If the user is a PHI, inspect its uses recursively.
660       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
661         if (PHIsInspected.insert(UserPN))
662           PHIsToSlice.push_back(UserPN);
663         continue;
664       }
665 
666       // Truncates are always ok.
667       if (isa<TruncInst>(User)) {
668         PHIUsers.push_back(PHIUsageRecord(PHIId, 0, User));
669         continue;
670       }
671 
672       // Otherwise it must be a lshr which can only be used by one trunc.
673       if (User->getOpcode() != Instruction::LShr ||
674           !User->hasOneUse() || !isa<TruncInst>(User->use_back()) ||
675           !isa<ConstantInt>(User->getOperand(1)))
676         return 0;
677 
678       unsigned Shift = cast<ConstantInt>(User->getOperand(1))->getZExtValue();
679       PHIUsers.push_back(PHIUsageRecord(PHIId, Shift, User->use_back()));
680     }
681   }
682 
683   // If we have no users, they must be all self uses, just nuke the PHI.
684   if (PHIUsers.empty())
685     return ReplaceInstUsesWith(FirstPhi, UndefValue::get(FirstPhi.getType()));
686 
687   // If this phi node is transformable, create new PHIs for all the pieces
688   // extracted out of it.  First, sort the users by their offset and size.
689   array_pod_sort(PHIUsers.begin(), PHIUsers.end());
690 
691   DEBUG(errs() << "SLICING UP PHI: " << FirstPhi << '\n';
692             for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i)
693               errs() << "AND USER PHI #" << i << ": " << *PHIsToSlice[i] <<'\n';
694         );
695 
696   // PredValues - This is a temporary used when rewriting PHI nodes.  It is
697   // hoisted out here to avoid construction/destruction thrashing.
698   DenseMap<BasicBlock*, Value*> PredValues;
699 
700   // ExtractedVals - Each new PHI we introduce is saved here so we don't
701   // introduce redundant PHIs.
702   DenseMap<LoweredPHIRecord, PHINode*> ExtractedVals;
703 
704   for (unsigned UserI = 0, UserE = PHIUsers.size(); UserI != UserE; ++UserI) {
705     unsigned PHIId = PHIUsers[UserI].PHIId;
706     PHINode *PN = PHIsToSlice[PHIId];
707     unsigned Offset = PHIUsers[UserI].Shift;
708     Type *Ty = PHIUsers[UserI].Inst->getType();
709 
710     PHINode *EltPHI;
711 
712     // If we've already lowered a user like this, reuse the previously lowered
713     // value.
714     if ((EltPHI = ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)]) == 0) {
715 
716       // Otherwise, Create the new PHI node for this user.
717       EltPHI = PHINode::Create(Ty, PN->getNumIncomingValues(),
718                                PN->getName()+".off"+Twine(Offset), PN);
719       assert(EltPHI->getType() != PN->getType() &&
720              "Truncate didn't shrink phi?");
721 
722       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
723         BasicBlock *Pred = PN->getIncomingBlock(i);
724         Value *&PredVal = PredValues[Pred];
725 
726         // If we already have a value for this predecessor, reuse it.
727         if (PredVal) {
728           EltPHI->addIncoming(PredVal, Pred);
729           continue;
730         }
731 
732         // Handle the PHI self-reuse case.
733         Value *InVal = PN->getIncomingValue(i);
734         if (InVal == PN) {
735           PredVal = EltPHI;
736           EltPHI->addIncoming(PredVal, Pred);
737           continue;
738         }
739 
740         if (PHINode *InPHI = dyn_cast<PHINode>(PN)) {
741           // If the incoming value was a PHI, and if it was one of the PHIs we
742           // already rewrote it, just use the lowered value.
743           if (Value *Res = ExtractedVals[LoweredPHIRecord(InPHI, Offset, Ty)]) {
744             PredVal = Res;
745             EltPHI->addIncoming(PredVal, Pred);
746             continue;
747           }
748         }
749 
750         // Otherwise, do an extract in the predecessor.
751         Builder->SetInsertPoint(Pred, Pred->getTerminator());
752         Value *Res = InVal;
753         if (Offset)
754           Res = Builder->CreateLShr(Res, ConstantInt::get(InVal->getType(),
755                                                           Offset), "extract");
756         Res = Builder->CreateTrunc(Res, Ty, "extract.t");
757         PredVal = Res;
758         EltPHI->addIncoming(Res, Pred);
759 
760         // If the incoming value was a PHI, and if it was one of the PHIs we are
761         // rewriting, we will ultimately delete the code we inserted.  This
762         // means we need to revisit that PHI to make sure we extract out the
763         // needed piece.
764         if (PHINode *OldInVal = dyn_cast<PHINode>(PN->getIncomingValue(i)))
765           if (PHIsInspected.count(OldInVal)) {
766             unsigned RefPHIId = std::find(PHIsToSlice.begin(),PHIsToSlice.end(),
767                                           OldInVal)-PHIsToSlice.begin();
768             PHIUsers.push_back(PHIUsageRecord(RefPHIId, Offset,
769                                               cast<Instruction>(Res)));
770             ++UserE;
771           }
772       }
773       PredValues.clear();
774 
775       DEBUG(errs() << "  Made element PHI for offset " << Offset << ": "
776                    << *EltPHI << '\n');
777       ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)] = EltPHI;
778     }
779 
780     // Replace the use of this piece with the PHI node.
781     ReplaceInstUsesWith(*PHIUsers[UserI].Inst, EltPHI);
782   }
783 
784   // Replace all the remaining uses of the PHI nodes (self uses and the lshrs)
785   // with undefs.
786   Value *Undef = UndefValue::get(FirstPhi.getType());
787   for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i)
788     ReplaceInstUsesWith(*PHIsToSlice[i], Undef);
789   return ReplaceInstUsesWith(FirstPhi, Undef);
790 }
791 
792 // PHINode simplification
793 //
visitPHINode(PHINode & PN)794 Instruction *InstCombiner::visitPHINode(PHINode &PN) {
795   if (Value *V = SimplifyInstruction(&PN, TD))
796     return ReplaceInstUsesWith(PN, V);
797 
798   // If all PHI operands are the same operation, pull them through the PHI,
799   // reducing code size.
800   if (isa<Instruction>(PN.getIncomingValue(0)) &&
801       isa<Instruction>(PN.getIncomingValue(1)) &&
802       cast<Instruction>(PN.getIncomingValue(0))->getOpcode() ==
803       cast<Instruction>(PN.getIncomingValue(1))->getOpcode() &&
804       // FIXME: The hasOneUse check will fail for PHIs that use the value more
805       // than themselves more than once.
806       PN.getIncomingValue(0)->hasOneUse())
807     if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
808       return Result;
809 
810   // If this is a trivial cycle in the PHI node graph, remove it.  Basically, if
811   // this PHI only has a single use (a PHI), and if that PHI only has one use (a
812   // PHI)... break the cycle.
813   if (PN.hasOneUse()) {
814     Instruction *PHIUser = cast<Instruction>(PN.use_back());
815     if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
816       SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
817       PotentiallyDeadPHIs.insert(&PN);
818       if (DeadPHICycle(PU, PotentiallyDeadPHIs))
819         return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
820     }
821 
822     // If this phi has a single use, and if that use just computes a value for
823     // the next iteration of a loop, delete the phi.  This occurs with unused
824     // induction variables, e.g. "for (int j = 0; ; ++j);".  Detecting this
825     // common case here is good because the only other things that catch this
826     // are induction variable analysis (sometimes) and ADCE, which is only run
827     // late.
828     if (PHIUser->hasOneUse() &&
829         (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
830         PHIUser->use_back() == &PN) {
831       return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
832     }
833   }
834 
835   // We sometimes end up with phi cycles that non-obviously end up being the
836   // same value, for example:
837   //   z = some value; x = phi (y, z); y = phi (x, z)
838   // where the phi nodes don't necessarily need to be in the same block.  Do a
839   // quick check to see if the PHI node only contains a single non-phi value, if
840   // so, scan to see if the phi cycle is actually equal to that value.
841   {
842     unsigned InValNo = 0, NumIncomingVals = PN.getNumIncomingValues();
843     // Scan for the first non-phi operand.
844     while (InValNo != NumIncomingVals &&
845            isa<PHINode>(PN.getIncomingValue(InValNo)))
846       ++InValNo;
847 
848     if (InValNo != NumIncomingVals) {
849       Value *NonPhiInVal = PN.getIncomingValue(InValNo);
850 
851       // Scan the rest of the operands to see if there are any conflicts, if so
852       // there is no need to recursively scan other phis.
853       for (++InValNo; InValNo != NumIncomingVals; ++InValNo) {
854         Value *OpVal = PN.getIncomingValue(InValNo);
855         if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
856           break;
857       }
858 
859       // If we scanned over all operands, then we have one unique value plus
860       // phi values.  Scan PHI nodes to see if they all merge in each other or
861       // the value.
862       if (InValNo == NumIncomingVals) {
863         SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
864         if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
865           return ReplaceInstUsesWith(PN, NonPhiInVal);
866       }
867     }
868   }
869 
870   // If there are multiple PHIs, sort their operands so that they all list
871   // the blocks in the same order. This will help identical PHIs be eliminated
872   // by other passes. Other passes shouldn't depend on this for correctness
873   // however.
874   PHINode *FirstPN = cast<PHINode>(PN.getParent()->begin());
875   if (&PN != FirstPN)
876     for (unsigned i = 0, e = FirstPN->getNumIncomingValues(); i != e; ++i) {
877       BasicBlock *BBA = PN.getIncomingBlock(i);
878       BasicBlock *BBB = FirstPN->getIncomingBlock(i);
879       if (BBA != BBB) {
880         Value *VA = PN.getIncomingValue(i);
881         unsigned j = PN.getBasicBlockIndex(BBB);
882         Value *VB = PN.getIncomingValue(j);
883         PN.setIncomingBlock(i, BBB);
884         PN.setIncomingValue(i, VB);
885         PN.setIncomingBlock(j, BBA);
886         PN.setIncomingValue(j, VA);
887         // NOTE: Instcombine normally would want us to "return &PN" if we
888         // modified any of the operands of an instruction.  However, since we
889         // aren't adding or removing uses (just rearranging them) we don't do
890         // this in this case.
891       }
892     }
893 
894   // If this is an integer PHI and we know that it has an illegal type, see if
895   // it is only used by trunc or trunc(lshr) operations.  If so, we split the
896   // PHI into the various pieces being extracted.  This sort of thing is
897   // introduced when SROA promotes an aggregate to a single large integer type.
898   if (PN.getType()->isIntegerTy() && TD &&
899       !TD->isLegalInteger(PN.getType()->getPrimitiveSizeInBits()))
900     if (Instruction *Res = SliceUpIllegalIntegerPHI(PN))
901       return Res;
902 
903   return 0;
904 }
905