1 //===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs loop invariant code motion, attempting to remove as much
11 // code from the body of a loop as possible. It does this by either hoisting
12 // code into the preheader block, or by sinking code to the exit blocks if it is
13 // safe. This pass also promotes must-aliased memory locations in the loop to
14 // live in registers, thus hoisting and sinking "invariant" loads and stores.
15 //
16 // This pass uses alias analysis for two purposes:
17 //
18 // 1. Moving loop invariant loads and calls out of loops. If we can determine
19 // that a load or call inside of a loop never aliases anything stored to,
20 // we can hoist it or sink it like any other instruction.
21 // 2. Scalar Promotion of Memory - If there is a store instruction inside of
22 // the loop, we try to move the store to happen AFTER the loop instead of
23 // inside of the loop. This can only happen if a few conditions are true:
24 // A. The pointer stored through is loop invariant
25 // B. There are no stores or loads in the loop which _may_ alias the
26 // pointer. There are no calls in the loop which mod/ref the pointer.
27 // If these conditions are true, we can promote the loads and stores in the
28 // loop of the pointer to use a temporary alloca'd variable. We then use
29 // the SSAUpdater to construct the appropriate SSA form for the value.
30 //
31 //===----------------------------------------------------------------------===//
32
33 #define DEBUG_TYPE "licm"
34 #include "llvm/Transforms/Scalar.h"
35 #include "llvm/Constants.h"
36 #include "llvm/DerivedTypes.h"
37 #include "llvm/IntrinsicInst.h"
38 #include "llvm/Instructions.h"
39 #include "llvm/LLVMContext.h"
40 #include "llvm/Analysis/AliasAnalysis.h"
41 #include "llvm/Analysis/AliasSetTracker.h"
42 #include "llvm/Analysis/ConstantFolding.h"
43 #include "llvm/Analysis/LoopInfo.h"
44 #include "llvm/Analysis/LoopPass.h"
45 #include "llvm/Analysis/Dominators.h"
46 #include "llvm/Analysis/ValueTracking.h"
47 #include "llvm/Transforms/Utils/Local.h"
48 #include "llvm/Transforms/Utils/SSAUpdater.h"
49 #include "llvm/Target/TargetData.h"
50 #include "llvm/Target/TargetLibraryInfo.h"
51 #include "llvm/Support/CFG.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/ADT/Statistic.h"
56 #include <algorithm>
57 using namespace llvm;
58
59 STATISTIC(NumSunk , "Number of instructions sunk out of loop");
60 STATISTIC(NumHoisted , "Number of instructions hoisted out of loop");
61 STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
62 STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
63 STATISTIC(NumPromoted , "Number of memory locations promoted to registers");
64
65 static cl::opt<bool>
66 DisablePromotion("disable-licm-promotion", cl::Hidden,
67 cl::desc("Disable memory promotion in LICM pass"));
68
69 namespace {
70 struct LICM : public LoopPass {
71 static char ID; // Pass identification, replacement for typeid
LICM__anon679acffe0111::LICM72 LICM() : LoopPass(ID) {
73 initializeLICMPass(*PassRegistry::getPassRegistry());
74 }
75
76 virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
77
78 /// This transformation requires natural loop information & requires that
79 /// loop preheaders be inserted into the CFG...
80 ///
getAnalysisUsage__anon679acffe0111::LICM81 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
82 AU.setPreservesCFG();
83 AU.addRequired<DominatorTree>();
84 AU.addRequired<LoopInfo>();
85 AU.addRequiredID(LoopSimplifyID);
86 AU.addRequired<AliasAnalysis>();
87 AU.addPreserved<AliasAnalysis>();
88 AU.addPreserved("scalar-evolution");
89 AU.addPreservedID(LoopSimplifyID);
90 AU.addRequired<TargetLibraryInfo>();
91 }
92
doFinalization__anon679acffe0111::LICM93 bool doFinalization() {
94 assert(LoopToAliasSetMap.empty() && "Didn't free loop alias sets");
95 return false;
96 }
97
98 private:
99 AliasAnalysis *AA; // Current AliasAnalysis information
100 LoopInfo *LI; // Current LoopInfo
101 DominatorTree *DT; // Dominator Tree for the current Loop.
102
103 TargetData *TD; // TargetData for constant folding.
104 TargetLibraryInfo *TLI; // TargetLibraryInfo for constant folding.
105
106 // State that is updated as we process loops.
107 bool Changed; // Set to true when we change anything.
108 BasicBlock *Preheader; // The preheader block of the current loop...
109 Loop *CurLoop; // The current loop we are working on...
110 AliasSetTracker *CurAST; // AliasSet information for the current loop...
111 DenseMap<Loop*, AliasSetTracker*> LoopToAliasSetMap;
112
113 /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
114 void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L);
115
116 /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
117 /// set.
118 void deleteAnalysisValue(Value *V, Loop *L);
119
120 /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
121 /// dominated by the specified block, and that are in the current loop) in
122 /// reverse depth first order w.r.t the DominatorTree. This allows us to
123 /// visit uses before definitions, allowing us to sink a loop body in one
124 /// pass without iteration.
125 ///
126 void SinkRegion(DomTreeNode *N);
127
128 /// HoistRegion - Walk the specified region of the CFG (defined by all
129 /// blocks dominated by the specified block, and that are in the current
130 /// loop) in depth first order w.r.t the DominatorTree. This allows us to
131 /// visit definitions before uses, allowing us to hoist a loop body in one
132 /// pass without iteration.
133 ///
134 void HoistRegion(DomTreeNode *N);
135
136 /// inSubLoop - Little predicate that returns true if the specified basic
137 /// block is in a subloop of the current one, not the current one itself.
138 ///
inSubLoop__anon679acffe0111::LICM139 bool inSubLoop(BasicBlock *BB) {
140 assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
141 return LI->getLoopFor(BB) != CurLoop;
142 }
143
144 /// sink - When an instruction is found to only be used outside of the loop,
145 /// this function moves it to the exit blocks and patches up SSA form as
146 /// needed.
147 ///
148 void sink(Instruction &I);
149
150 /// hoist - When an instruction is found to only use loop invariant operands
151 /// that is safe to hoist, this instruction is called to do the dirty work.
152 ///
153 void hoist(Instruction &I);
154
155 /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it
156 /// is not a trapping instruction or if it is a trapping instruction and is
157 /// guaranteed to execute.
158 ///
159 bool isSafeToExecuteUnconditionally(Instruction &I);
160
161 /// isGuaranteedToExecute - Check that the instruction is guaranteed to
162 /// execute.
163 ///
164 bool isGuaranteedToExecute(Instruction &I);
165
166 /// pointerInvalidatedByLoop - Return true if the body of this loop may
167 /// store into the memory location pointed to by V.
168 ///
pointerInvalidatedByLoop__anon679acffe0111::LICM169 bool pointerInvalidatedByLoop(Value *V, uint64_t Size,
170 const MDNode *TBAAInfo) {
171 // Check to see if any of the basic blocks in CurLoop invalidate *V.
172 return CurAST->getAliasSetForPointer(V, Size, TBAAInfo).isMod();
173 }
174
175 bool canSinkOrHoistInst(Instruction &I);
176 bool isNotUsedInLoop(Instruction &I);
177
178 void PromoteAliasSet(AliasSet &AS);
179 };
180 }
181
182 char LICM::ID = 0;
183 INITIALIZE_PASS_BEGIN(LICM, "licm", "Loop Invariant Code Motion", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTree)184 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
185 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
186 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
187 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
188 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
189 INITIALIZE_PASS_END(LICM, "licm", "Loop Invariant Code Motion", false, false)
190
191 Pass *llvm::createLICMPass() { return new LICM(); }
192
193 /// Hoist expressions out of the specified loop. Note, alias info for inner
194 /// loop is not preserved so it is not a good idea to run LICM multiple
195 /// times on one loop.
196 ///
runOnLoop(Loop * L,LPPassManager & LPM)197 bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
198 Changed = false;
199
200 // Get our Loop and Alias Analysis information...
201 LI = &getAnalysis<LoopInfo>();
202 AA = &getAnalysis<AliasAnalysis>();
203 DT = &getAnalysis<DominatorTree>();
204
205 TD = getAnalysisIfAvailable<TargetData>();
206 TLI = &getAnalysis<TargetLibraryInfo>();
207
208 CurAST = new AliasSetTracker(*AA);
209 // Collect Alias info from subloops.
210 for (Loop::iterator LoopItr = L->begin(), LoopItrE = L->end();
211 LoopItr != LoopItrE; ++LoopItr) {
212 Loop *InnerL = *LoopItr;
213 AliasSetTracker *InnerAST = LoopToAliasSetMap[InnerL];
214 assert(InnerAST && "Where is my AST?");
215
216 // What if InnerLoop was modified by other passes ?
217 CurAST->add(*InnerAST);
218
219 // Once we've incorporated the inner loop's AST into ours, we don't need the
220 // subloop's anymore.
221 delete InnerAST;
222 LoopToAliasSetMap.erase(InnerL);
223 }
224
225 CurLoop = L;
226
227 // Get the preheader block to move instructions into...
228 Preheader = L->getLoopPreheader();
229
230 // Loop over the body of this loop, looking for calls, invokes, and stores.
231 // Because subloops have already been incorporated into AST, we skip blocks in
232 // subloops.
233 //
234 for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
235 I != E; ++I) {
236 BasicBlock *BB = *I;
237 if (LI->getLoopFor(BB) == L) // Ignore blocks in subloops.
238 CurAST->add(*BB); // Incorporate the specified basic block
239 }
240
241 // We want to visit all of the instructions in this loop... that are not parts
242 // of our subloops (they have already had their invariants hoisted out of
243 // their loop, into this loop, so there is no need to process the BODIES of
244 // the subloops).
245 //
246 // Traverse the body of the loop in depth first order on the dominator tree so
247 // that we are guaranteed to see definitions before we see uses. This allows
248 // us to sink instructions in one pass, without iteration. After sinking
249 // instructions, we perform another pass to hoist them out of the loop.
250 //
251 if (L->hasDedicatedExits())
252 SinkRegion(DT->getNode(L->getHeader()));
253 if (Preheader)
254 HoistRegion(DT->getNode(L->getHeader()));
255
256 // Now that all loop invariants have been removed from the loop, promote any
257 // memory references to scalars that we can.
258 if (!DisablePromotion && Preheader && L->hasDedicatedExits()) {
259 // Loop over all of the alias sets in the tracker object.
260 for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
261 I != E; ++I)
262 PromoteAliasSet(*I);
263 }
264
265 // Clear out loops state information for the next iteration
266 CurLoop = 0;
267 Preheader = 0;
268
269 // If this loop is nested inside of another one, save the alias information
270 // for when we process the outer loop.
271 if (L->getParentLoop())
272 LoopToAliasSetMap[L] = CurAST;
273 else
274 delete CurAST;
275 return Changed;
276 }
277
278 /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
279 /// dominated by the specified block, and that are in the current loop) in
280 /// reverse depth first order w.r.t the DominatorTree. This allows us to visit
281 /// uses before definitions, allowing us to sink a loop body in one pass without
282 /// iteration.
283 ///
SinkRegion(DomTreeNode * N)284 void LICM::SinkRegion(DomTreeNode *N) {
285 assert(N != 0 && "Null dominator tree node?");
286 BasicBlock *BB = N->getBlock();
287
288 // If this subregion is not in the top level loop at all, exit.
289 if (!CurLoop->contains(BB)) return;
290
291 // We are processing blocks in reverse dfo, so process children first.
292 const std::vector<DomTreeNode*> &Children = N->getChildren();
293 for (unsigned i = 0, e = Children.size(); i != e; ++i)
294 SinkRegion(Children[i]);
295
296 // Only need to process the contents of this block if it is not part of a
297 // subloop (which would already have been processed).
298 if (inSubLoop(BB)) return;
299
300 for (BasicBlock::iterator II = BB->end(); II != BB->begin(); ) {
301 Instruction &I = *--II;
302
303 // If the instruction is dead, we would try to sink it because it isn't used
304 // in the loop, instead, just delete it.
305 if (isInstructionTriviallyDead(&I)) {
306 DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n');
307 ++II;
308 CurAST->deleteValue(&I);
309 I.eraseFromParent();
310 Changed = true;
311 continue;
312 }
313
314 // Check to see if we can sink this instruction to the exit blocks
315 // of the loop. We can do this if the all users of the instruction are
316 // outside of the loop. In this case, it doesn't even matter if the
317 // operands of the instruction are loop invariant.
318 //
319 if (isNotUsedInLoop(I) && canSinkOrHoistInst(I)) {
320 ++II;
321 sink(I);
322 }
323 }
324 }
325
326 /// HoistRegion - Walk the specified region of the CFG (defined by all blocks
327 /// dominated by the specified block, and that are in the current loop) in depth
328 /// first order w.r.t the DominatorTree. This allows us to visit definitions
329 /// before uses, allowing us to hoist a loop body in one pass without iteration.
330 ///
HoistRegion(DomTreeNode * N)331 void LICM::HoistRegion(DomTreeNode *N) {
332 assert(N != 0 && "Null dominator tree node?");
333 BasicBlock *BB = N->getBlock();
334
335 // If this subregion is not in the top level loop at all, exit.
336 if (!CurLoop->contains(BB)) return;
337
338 // Only need to process the contents of this block if it is not part of a
339 // subloop (which would already have been processed).
340 if (!inSubLoop(BB))
341 for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ) {
342 Instruction &I = *II++;
343
344 // Try constant folding this instruction. If all the operands are
345 // constants, it is technically hoistable, but it would be better to just
346 // fold it.
347 if (Constant *C = ConstantFoldInstruction(&I, TD, TLI)) {
348 DEBUG(dbgs() << "LICM folding inst: " << I << " --> " << *C << '\n');
349 CurAST->copyValue(&I, C);
350 CurAST->deleteValue(&I);
351 I.replaceAllUsesWith(C);
352 I.eraseFromParent();
353 continue;
354 }
355
356 // Try hoisting the instruction out to the preheader. We can only do this
357 // if all of the operands of the instruction are loop invariant and if it
358 // is safe to hoist the instruction.
359 //
360 if (CurLoop->hasLoopInvariantOperands(&I) && canSinkOrHoistInst(I) &&
361 isSafeToExecuteUnconditionally(I))
362 hoist(I);
363 }
364
365 const std::vector<DomTreeNode*> &Children = N->getChildren();
366 for (unsigned i = 0, e = Children.size(); i != e; ++i)
367 HoistRegion(Children[i]);
368 }
369
370 /// canSinkOrHoistInst - Return true if the hoister and sinker can handle this
371 /// instruction.
372 ///
canSinkOrHoistInst(Instruction & I)373 bool LICM::canSinkOrHoistInst(Instruction &I) {
374 // Loads have extra constraints we have to verify before we can hoist them.
375 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
376 if (!LI->isUnordered())
377 return false; // Don't hoist volatile/atomic loads!
378
379 // Loads from constant memory are always safe to move, even if they end up
380 // in the same alias set as something that ends up being modified.
381 if (AA->pointsToConstantMemory(LI->getOperand(0)))
382 return true;
383 if (LI->getMetadata("invariant.load"))
384 return true;
385
386 // Don't hoist loads which have may-aliased stores in loop.
387 uint64_t Size = 0;
388 if (LI->getType()->isSized())
389 Size = AA->getTypeStoreSize(LI->getType());
390 return !pointerInvalidatedByLoop(LI->getOperand(0), Size,
391 LI->getMetadata(LLVMContext::MD_tbaa));
392 } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
393 // Don't sink or hoist dbg info; it's legal, but not useful.
394 if (isa<DbgInfoIntrinsic>(I))
395 return false;
396
397 // Handle simple cases by querying alias analysis.
398 AliasAnalysis::ModRefBehavior Behavior = AA->getModRefBehavior(CI);
399 if (Behavior == AliasAnalysis::DoesNotAccessMemory)
400 return true;
401 if (AliasAnalysis::onlyReadsMemory(Behavior)) {
402 // If this call only reads from memory and there are no writes to memory
403 // in the loop, we can hoist or sink the call as appropriate.
404 bool FoundMod = false;
405 for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
406 I != E; ++I) {
407 AliasSet &AS = *I;
408 if (!AS.isForwardingAliasSet() && AS.isMod()) {
409 FoundMod = true;
410 break;
411 }
412 }
413 if (!FoundMod) return true;
414 }
415
416 // FIXME: This should use mod/ref information to see if we can hoist or sink
417 // the call.
418
419 return false;
420 }
421
422 // Otherwise these instructions are hoistable/sinkable
423 return isa<BinaryOperator>(I) || isa<CastInst>(I) ||
424 isa<SelectInst>(I) || isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
425 isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
426 isa<ShuffleVectorInst>(I);
427 }
428
429 /// isNotUsedInLoop - Return true if the only users of this instruction are
430 /// outside of the loop. If this is true, we can sink the instruction to the
431 /// exit blocks of the loop.
432 ///
isNotUsedInLoop(Instruction & I)433 bool LICM::isNotUsedInLoop(Instruction &I) {
434 for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) {
435 Instruction *User = cast<Instruction>(*UI);
436 if (PHINode *PN = dyn_cast<PHINode>(User)) {
437 // PHI node uses occur in predecessor blocks!
438 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
439 if (PN->getIncomingValue(i) == &I)
440 if (CurLoop->contains(PN->getIncomingBlock(i)))
441 return false;
442 } else if (CurLoop->contains(User)) {
443 return false;
444 }
445 }
446 return true;
447 }
448
449
450 /// sink - When an instruction is found to only be used outside of the loop,
451 /// this function moves it to the exit blocks and patches up SSA form as needed.
452 /// This method is guaranteed to remove the original instruction from its
453 /// position, and may either delete it or move it to outside of the loop.
454 ///
sink(Instruction & I)455 void LICM::sink(Instruction &I) {
456 DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");
457
458 SmallVector<BasicBlock*, 8> ExitBlocks;
459 CurLoop->getUniqueExitBlocks(ExitBlocks);
460
461 if (isa<LoadInst>(I)) ++NumMovedLoads;
462 else if (isa<CallInst>(I)) ++NumMovedCalls;
463 ++NumSunk;
464 Changed = true;
465
466 // The case where there is only a single exit node of this loop is common
467 // enough that we handle it as a special (more efficient) case. It is more
468 // efficient to handle because there are no PHI nodes that need to be placed.
469 if (ExitBlocks.size() == 1) {
470 if (!DT->dominates(I.getParent(), ExitBlocks[0])) {
471 // Instruction is not used, just delete it.
472 CurAST->deleteValue(&I);
473 // If I has users in unreachable blocks, eliminate.
474 // If I is not void type then replaceAllUsesWith undef.
475 // This allows ValueHandlers and custom metadata to adjust itself.
476 if (!I.use_empty())
477 I.replaceAllUsesWith(UndefValue::get(I.getType()));
478 I.eraseFromParent();
479 } else {
480 // Move the instruction to the start of the exit block, after any PHI
481 // nodes in it.
482 I.moveBefore(ExitBlocks[0]->getFirstInsertionPt());
483
484 // This instruction is no longer in the AST for the current loop, because
485 // we just sunk it out of the loop. If we just sunk it into an outer
486 // loop, we will rediscover the operation when we process it.
487 CurAST->deleteValue(&I);
488 }
489 return;
490 }
491
492 if (ExitBlocks.empty()) {
493 // The instruction is actually dead if there ARE NO exit blocks.
494 CurAST->deleteValue(&I);
495 // If I has users in unreachable blocks, eliminate.
496 // If I is not void type then replaceAllUsesWith undef.
497 // This allows ValueHandlers and custom metadata to adjust itself.
498 if (!I.use_empty())
499 I.replaceAllUsesWith(UndefValue::get(I.getType()));
500 I.eraseFromParent();
501 return;
502 }
503
504 // Otherwise, if we have multiple exits, use the SSAUpdater to do all of the
505 // hard work of inserting PHI nodes as necessary.
506 SmallVector<PHINode*, 8> NewPHIs;
507 SSAUpdater SSA(&NewPHIs);
508
509 if (!I.use_empty())
510 SSA.Initialize(I.getType(), I.getName());
511
512 // Insert a copy of the instruction in each exit block of the loop that is
513 // dominated by the instruction. Each exit block is known to only be in the
514 // ExitBlocks list once.
515 BasicBlock *InstOrigBB = I.getParent();
516 unsigned NumInserted = 0;
517
518 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
519 BasicBlock *ExitBlock = ExitBlocks[i];
520
521 if (!DT->dominates(InstOrigBB, ExitBlock))
522 continue;
523
524 // Insert the code after the last PHI node.
525 BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt();
526
527 // If this is the first exit block processed, just move the original
528 // instruction, otherwise clone the original instruction and insert
529 // the copy.
530 Instruction *New;
531 if (NumInserted++ == 0) {
532 I.moveBefore(InsertPt);
533 New = &I;
534 } else {
535 New = I.clone();
536 if (!I.getName().empty())
537 New->setName(I.getName()+".le");
538 ExitBlock->getInstList().insert(InsertPt, New);
539 }
540
541 // Now that we have inserted the instruction, inform SSAUpdater.
542 if (!I.use_empty())
543 SSA.AddAvailableValue(ExitBlock, New);
544 }
545
546 // If the instruction doesn't dominate any exit blocks, it must be dead.
547 if (NumInserted == 0) {
548 CurAST->deleteValue(&I);
549 if (!I.use_empty())
550 I.replaceAllUsesWith(UndefValue::get(I.getType()));
551 I.eraseFromParent();
552 return;
553 }
554
555 // Next, rewrite uses of the instruction, inserting PHI nodes as needed.
556 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; ) {
557 // Grab the use before incrementing the iterator.
558 Use &U = UI.getUse();
559 // Increment the iterator before removing the use from the list.
560 ++UI;
561 SSA.RewriteUseAfterInsertions(U);
562 }
563
564 // Update CurAST for NewPHIs if I had pointer type.
565 if (I.getType()->isPointerTy())
566 for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
567 CurAST->copyValue(&I, NewPHIs[i]);
568
569 // Finally, remove the instruction from CurAST. It is no longer in the loop.
570 CurAST->deleteValue(&I);
571 }
572
573 /// hoist - When an instruction is found to only use loop invariant operands
574 /// that is safe to hoist, this instruction is called to do the dirty work.
575 ///
hoist(Instruction & I)576 void LICM::hoist(Instruction &I) {
577 DEBUG(dbgs() << "LICM hoisting to " << Preheader->getName() << ": "
578 << I << "\n");
579
580 // Move the new node to the Preheader, before its terminator.
581 I.moveBefore(Preheader->getTerminator());
582
583 if (isa<LoadInst>(I)) ++NumMovedLoads;
584 else if (isa<CallInst>(I)) ++NumMovedCalls;
585 ++NumHoisted;
586 Changed = true;
587 }
588
589 /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it is
590 /// not a trapping instruction or if it is a trapping instruction and is
591 /// guaranteed to execute.
592 ///
isSafeToExecuteUnconditionally(Instruction & Inst)593 bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) {
594 // If it is not a trapping instruction, it is always safe to hoist.
595 if (isSafeToSpeculativelyExecute(&Inst))
596 return true;
597
598 return isGuaranteedToExecute(Inst);
599 }
600
isGuaranteedToExecute(Instruction & Inst)601 bool LICM::isGuaranteedToExecute(Instruction &Inst) {
602 // Otherwise we have to check to make sure that the instruction dominates all
603 // of the exit blocks. If it doesn't, then there is a path out of the loop
604 // which does not execute this instruction, so we can't hoist it.
605
606 // If the instruction is in the header block for the loop (which is very
607 // common), it is always guaranteed to dominate the exit blocks. Since this
608 // is a common case, and can save some work, check it now.
609 if (Inst.getParent() == CurLoop->getHeader())
610 return true;
611
612 // Get the exit blocks for the current loop.
613 SmallVector<BasicBlock*, 8> ExitBlocks;
614 CurLoop->getExitBlocks(ExitBlocks);
615
616 // Verify that the block dominates each of the exit blocks of the loop.
617 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
618 if (!DT->dominates(Inst.getParent(), ExitBlocks[i]))
619 return false;
620
621 return true;
622 }
623
624 namespace {
625 class LoopPromoter : public LoadAndStorePromoter {
626 Value *SomePtr; // Designated pointer to store to.
627 SmallPtrSet<Value*, 4> &PointerMustAliases;
628 SmallVectorImpl<BasicBlock*> &LoopExitBlocks;
629 AliasSetTracker &AST;
630 DebugLoc DL;
631 int Alignment;
632 public:
LoopPromoter(Value * SP,const SmallVectorImpl<Instruction * > & Insts,SSAUpdater & S,SmallPtrSet<Value *,4> & PMA,SmallVectorImpl<BasicBlock * > & LEB,AliasSetTracker & ast,DebugLoc dl,int alignment)633 LoopPromoter(Value *SP,
634 const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
635 SmallPtrSet<Value*, 4> &PMA,
636 SmallVectorImpl<BasicBlock*> &LEB, AliasSetTracker &ast,
637 DebugLoc dl, int alignment)
638 : LoadAndStorePromoter(Insts, S), SomePtr(SP),
639 PointerMustAliases(PMA), LoopExitBlocks(LEB), AST(ast), DL(dl),
640 Alignment(alignment) {}
641
isInstInList(Instruction * I,const SmallVectorImpl<Instruction * > &) const642 virtual bool isInstInList(Instruction *I,
643 const SmallVectorImpl<Instruction*> &) const {
644 Value *Ptr;
645 if (LoadInst *LI = dyn_cast<LoadInst>(I))
646 Ptr = LI->getOperand(0);
647 else
648 Ptr = cast<StoreInst>(I)->getPointerOperand();
649 return PointerMustAliases.count(Ptr);
650 }
651
doExtraRewritesBeforeFinalDeletion() const652 virtual void doExtraRewritesBeforeFinalDeletion() const {
653 // Insert stores after in the loop exit blocks. Each exit block gets a
654 // store of the live-out values that feed them. Since we've already told
655 // the SSA updater about the defs in the loop and the preheader
656 // definition, it is all set and we can start using it.
657 for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) {
658 BasicBlock *ExitBlock = LoopExitBlocks[i];
659 Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
660 Instruction *InsertPos = ExitBlock->getFirstInsertionPt();
661 StoreInst *NewSI = new StoreInst(LiveInValue, SomePtr, InsertPos);
662 NewSI->setAlignment(Alignment);
663 NewSI->setDebugLoc(DL);
664 }
665 }
666
replaceLoadWithValue(LoadInst * LI,Value * V) const667 virtual void replaceLoadWithValue(LoadInst *LI, Value *V) const {
668 // Update alias analysis.
669 AST.copyValue(LI, V);
670 }
instructionDeleted(Instruction * I) const671 virtual void instructionDeleted(Instruction *I) const {
672 AST.deleteValue(I);
673 }
674 };
675 } // end anon namespace
676
677 /// PromoteAliasSet - Try to promote memory values to scalars by sinking
678 /// stores out of the loop and moving loads to before the loop. We do this by
679 /// looping over the stores in the loop, looking for stores to Must pointers
680 /// which are loop invariant.
681 ///
PromoteAliasSet(AliasSet & AS)682 void LICM::PromoteAliasSet(AliasSet &AS) {
683 // We can promote this alias set if it has a store, if it is a "Must" alias
684 // set, if the pointer is loop invariant, and if we are not eliminating any
685 // volatile loads or stores.
686 if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
687 AS.isVolatile() || !CurLoop->isLoopInvariant(AS.begin()->getValue()))
688 return;
689
690 assert(!AS.empty() &&
691 "Must alias set should have at least one pointer element in it!");
692 Value *SomePtr = AS.begin()->getValue();
693
694 // It isn't safe to promote a load/store from the loop if the load/store is
695 // conditional. For example, turning:
696 //
697 // for () { if (c) *P += 1; }
698 //
699 // into:
700 //
701 // tmp = *P; for () { if (c) tmp +=1; } *P = tmp;
702 //
703 // is not safe, because *P may only be valid to access if 'c' is true.
704 //
705 // It is safe to promote P if all uses are direct load/stores and if at
706 // least one is guaranteed to be executed.
707 bool GuaranteedToExecute = false;
708
709 SmallVector<Instruction*, 64> LoopUses;
710 SmallPtrSet<Value*, 4> PointerMustAliases;
711
712 // We start with an alignment of one and try to find instructions that allow
713 // us to prove better alignment.
714 unsigned Alignment = 1;
715
716 // Check that all of the pointers in the alias set have the same type. We
717 // cannot (yet) promote a memory location that is loaded and stored in
718 // different sizes.
719 for (AliasSet::iterator ASI = AS.begin(), E = AS.end(); ASI != E; ++ASI) {
720 Value *ASIV = ASI->getValue();
721 PointerMustAliases.insert(ASIV);
722
723 // Check that all of the pointers in the alias set have the same type. We
724 // cannot (yet) promote a memory location that is loaded and stored in
725 // different sizes.
726 if (SomePtr->getType() != ASIV->getType())
727 return;
728
729 for (Value::use_iterator UI = ASIV->use_begin(), UE = ASIV->use_end();
730 UI != UE; ++UI) {
731 // Ignore instructions that are outside the loop.
732 Instruction *Use = dyn_cast<Instruction>(*UI);
733 if (!Use || !CurLoop->contains(Use))
734 continue;
735
736 // If there is an non-load/store instruction in the loop, we can't promote
737 // it.
738 if (LoadInst *load = dyn_cast<LoadInst>(Use)) {
739 assert(!load->isVolatile() && "AST broken");
740 if (!load->isSimple())
741 return;
742 } else if (StoreInst *store = dyn_cast<StoreInst>(Use)) {
743 // Stores *of* the pointer are not interesting, only stores *to* the
744 // pointer.
745 if (Use->getOperand(1) != ASIV)
746 continue;
747 assert(!store->isVolatile() && "AST broken");
748 if (!store->isSimple())
749 return;
750
751 // Note that we only check GuaranteedToExecute inside the store case
752 // so that we do not introduce stores where they did not exist before
753 // (which would break the LLVM concurrency model).
754
755 // If the alignment of this instruction allows us to specify a more
756 // restrictive (and performant) alignment and if we are sure this
757 // instruction will be executed, update the alignment.
758 // Larger is better, with the exception of 0 being the best alignment.
759 unsigned InstAlignment = store->getAlignment();
760 if ((InstAlignment > Alignment || InstAlignment == 0)
761 && (Alignment != 0))
762 if (isGuaranteedToExecute(*Use)) {
763 GuaranteedToExecute = true;
764 Alignment = InstAlignment;
765 }
766
767 if (!GuaranteedToExecute)
768 GuaranteedToExecute = isGuaranteedToExecute(*Use);
769
770 } else
771 return; // Not a load or store.
772
773 LoopUses.push_back(Use);
774 }
775 }
776
777 // If there isn't a guaranteed-to-execute instruction, we can't promote.
778 if (!GuaranteedToExecute)
779 return;
780
781 // Otherwise, this is safe to promote, lets do it!
782 DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " <<*SomePtr<<'\n');
783 Changed = true;
784 ++NumPromoted;
785
786 // Grab a debug location for the inserted loads/stores; given that the
787 // inserted loads/stores have little relation to the original loads/stores,
788 // this code just arbitrarily picks a location from one, since any debug
789 // location is better than none.
790 DebugLoc DL = LoopUses[0]->getDebugLoc();
791
792 SmallVector<BasicBlock*, 8> ExitBlocks;
793 CurLoop->getUniqueExitBlocks(ExitBlocks);
794
795 // We use the SSAUpdater interface to insert phi nodes as required.
796 SmallVector<PHINode*, 16> NewPHIs;
797 SSAUpdater SSA(&NewPHIs);
798 LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks,
799 *CurAST, DL, Alignment);
800
801 // Set up the preheader to have a definition of the value. It is the live-out
802 // value from the preheader that uses in the loop will use.
803 LoadInst *PreheaderLoad =
804 new LoadInst(SomePtr, SomePtr->getName()+".promoted",
805 Preheader->getTerminator());
806 PreheaderLoad->setAlignment(Alignment);
807 PreheaderLoad->setDebugLoc(DL);
808 SSA.AddAvailableValue(Preheader, PreheaderLoad);
809
810 // Rewrite all the loads in the loop and remember all the definitions from
811 // stores in the loop.
812 Promoter.run(LoopUses);
813
814 // If the SSAUpdater didn't use the load in the preheader, just zap it now.
815 if (PreheaderLoad->use_empty())
816 PreheaderLoad->eraseFromParent();
817 }
818
819
820 /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
cloneBasicBlockAnalysis(BasicBlock * From,BasicBlock * To,Loop * L)821 void LICM::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L) {
822 AliasSetTracker *AST = LoopToAliasSetMap.lookup(L);
823 if (!AST)
824 return;
825
826 AST->copyValue(From, To);
827 }
828
829 /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
830 /// set.
deleteAnalysisValue(Value * V,Loop * L)831 void LICM::deleteAnalysisValue(Value *V, Loop *L) {
832 AliasSetTracker *AST = LoopToAliasSetMap.lookup(L);
833 if (!AST)
834 return;
835
836 AST->deleteValue(V);
837 }
838