1 //===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements Loop Rotation Pass.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "loop-rotate"
15 #include "llvm/Transforms/Scalar.h"
16 #include "llvm/Function.h"
17 #include "llvm/IntrinsicInst.h"
18 #include "llvm/Analysis/CodeMetrics.h"
19 #include "llvm/Analysis/LoopPass.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/ScalarEvolution.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/Transforms/Utils/Local.h"
24 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
25 #include "llvm/Transforms/Utils/SSAUpdater.h"
26 #include "llvm/Transforms/Utils/ValueMapper.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/ADT/Statistic.h"
29 using namespace llvm;
30
31 #define MAX_HEADER_SIZE 16
32
33 STATISTIC(NumRotated, "Number of loops rotated");
34 namespace {
35
36 class LoopRotate : public LoopPass {
37 public:
38 static char ID; // Pass ID, replacement for typeid
LoopRotate()39 LoopRotate() : LoopPass(ID) {
40 initializeLoopRotatePass(*PassRegistry::getPassRegistry());
41 }
42
43 // LCSSA form makes instruction renaming easier.
getAnalysisUsage(AnalysisUsage & AU) const44 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
45 AU.addPreserved<DominatorTree>();
46 AU.addRequired<LoopInfo>();
47 AU.addPreserved<LoopInfo>();
48 AU.addRequiredID(LoopSimplifyID);
49 AU.addPreservedID(LoopSimplifyID);
50 AU.addRequiredID(LCSSAID);
51 AU.addPreservedID(LCSSAID);
52 AU.addPreserved<ScalarEvolution>();
53 }
54
55 bool runOnLoop(Loop *L, LPPassManager &LPM);
56 void simplifyLoopLatch(Loop *L);
57 bool rotateLoop(Loop *L);
58
59 private:
60 LoopInfo *LI;
61 };
62 }
63
64 char LoopRotate::ID = 0;
65 INITIALIZE_PASS_BEGIN(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopInfo)66 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
67 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
68 INITIALIZE_PASS_DEPENDENCY(LCSSA)
69 INITIALIZE_PASS_END(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
70
71 Pass *llvm::createLoopRotatePass() { return new LoopRotate(); }
72
73 /// Rotate Loop L as many times as possible. Return true if
74 /// the loop is rotated at least once.
runOnLoop(Loop * L,LPPassManager & LPM)75 bool LoopRotate::runOnLoop(Loop *L, LPPassManager &LPM) {
76 LI = &getAnalysis<LoopInfo>();
77
78 // Simplify the loop latch before attempting to rotate the header
79 // upward. Rotation may not be needed if the loop tail can be folded into the
80 // loop exit.
81 simplifyLoopLatch(L);
82
83 // One loop can be rotated multiple times.
84 bool MadeChange = false;
85 while (rotateLoop(L))
86 MadeChange = true;
87
88 return MadeChange;
89 }
90
91 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
92 /// old header into the preheader. If there were uses of the values produced by
93 /// these instruction that were outside of the loop, we have to insert PHI nodes
94 /// to merge the two values. Do this now.
RewriteUsesOfClonedInstructions(BasicBlock * OrigHeader,BasicBlock * OrigPreheader,ValueToValueMapTy & ValueMap)95 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
96 BasicBlock *OrigPreheader,
97 ValueToValueMapTy &ValueMap) {
98 // Remove PHI node entries that are no longer live.
99 BasicBlock::iterator I, E = OrigHeader->end();
100 for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
101 PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
102
103 // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
104 // as necessary.
105 SSAUpdater SSA;
106 for (I = OrigHeader->begin(); I != E; ++I) {
107 Value *OrigHeaderVal = I;
108
109 // If there are no uses of the value (e.g. because it returns void), there
110 // is nothing to rewrite.
111 if (OrigHeaderVal->use_empty())
112 continue;
113
114 Value *OrigPreHeaderVal = ValueMap[OrigHeaderVal];
115
116 // The value now exits in two versions: the initial value in the preheader
117 // and the loop "next" value in the original header.
118 SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
119 SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
120 SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
121
122 // Visit each use of the OrigHeader instruction.
123 for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
124 UE = OrigHeaderVal->use_end(); UI != UE; ) {
125 // Grab the use before incrementing the iterator.
126 Use &U = UI.getUse();
127
128 // Increment the iterator before removing the use from the list.
129 ++UI;
130
131 // SSAUpdater can't handle a non-PHI use in the same block as an
132 // earlier def. We can easily handle those cases manually.
133 Instruction *UserInst = cast<Instruction>(U.getUser());
134 if (!isa<PHINode>(UserInst)) {
135 BasicBlock *UserBB = UserInst->getParent();
136
137 // The original users in the OrigHeader are already using the
138 // original definitions.
139 if (UserBB == OrigHeader)
140 continue;
141
142 // Users in the OrigPreHeader need to use the value to which the
143 // original definitions are mapped.
144 if (UserBB == OrigPreheader) {
145 U = OrigPreHeaderVal;
146 continue;
147 }
148 }
149
150 // Anything else can be handled by SSAUpdater.
151 SSA.RewriteUse(U);
152 }
153 }
154 }
155
156 /// Determine whether the instructions in this range my be safely and cheaply
157 /// speculated. This is not an important enough situation to develop complex
158 /// heuristics. We handle a single arithmetic instruction along with any type
159 /// conversions.
shouldSpeculateInstrs(BasicBlock::iterator Begin,BasicBlock::iterator End)160 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
161 BasicBlock::iterator End) {
162 bool seenIncrement = false;
163 for (BasicBlock::iterator I = Begin; I != End; ++I) {
164
165 if (!isSafeToSpeculativelyExecute(I))
166 return false;
167
168 if (isa<DbgInfoIntrinsic>(I))
169 continue;
170
171 switch (I->getOpcode()) {
172 default:
173 return false;
174 case Instruction::GetElementPtr:
175 // GEPs are cheap if all indices are constant.
176 if (!cast<GEPOperator>(I)->hasAllConstantIndices())
177 return false;
178 // fall-thru to increment case
179 case Instruction::Add:
180 case Instruction::Sub:
181 case Instruction::And:
182 case Instruction::Or:
183 case Instruction::Xor:
184 case Instruction::Shl:
185 case Instruction::LShr:
186 case Instruction::AShr:
187 if (seenIncrement)
188 return false;
189 seenIncrement = true;
190 break;
191 case Instruction::Trunc:
192 case Instruction::ZExt:
193 case Instruction::SExt:
194 // ignore type conversions
195 break;
196 }
197 }
198 return true;
199 }
200
201 /// Fold the loop tail into the loop exit by speculating the loop tail
202 /// instructions. Typically, this is a single post-increment. In the case of a
203 /// simple 2-block loop, hoisting the increment can be much better than
204 /// duplicating the entire loop header. In the cast of loops with early exits,
205 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in
206 /// canonical form so downstream passes can handle it.
207 ///
208 /// I don't believe this invalidates SCEV.
simplifyLoopLatch(Loop * L)209 void LoopRotate::simplifyLoopLatch(Loop *L) {
210 BasicBlock *Latch = L->getLoopLatch();
211 if (!Latch || Latch->hasAddressTaken())
212 return;
213
214 BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
215 if (!Jmp || !Jmp->isUnconditional())
216 return;
217
218 BasicBlock *LastExit = Latch->getSinglePredecessor();
219 if (!LastExit || !L->isLoopExiting(LastExit))
220 return;
221
222 BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
223 if (!BI)
224 return;
225
226 if (!shouldSpeculateInstrs(Latch->begin(), Jmp))
227 return;
228
229 DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
230 << LastExit->getName() << "\n");
231
232 // Hoist the instructions from Latch into LastExit.
233 LastExit->getInstList().splice(BI, Latch->getInstList(), Latch->begin(), Jmp);
234
235 unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1;
236 BasicBlock *Header = Jmp->getSuccessor(0);
237 assert(Header == L->getHeader() && "expected a backward branch");
238
239 // Remove Latch from the CFG so that LastExit becomes the new Latch.
240 BI->setSuccessor(FallThruPath, Header);
241 Latch->replaceSuccessorsPhiUsesWith(LastExit);
242 Jmp->eraseFromParent();
243
244 // Nuke the Latch block.
245 assert(Latch->empty() && "unable to evacuate Latch");
246 LI->removeBlock(Latch);
247 if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>())
248 DT->eraseNode(Latch);
249 Latch->eraseFromParent();
250 }
251
252 /// Rotate loop LP. Return true if the loop is rotated.
rotateLoop(Loop * L)253 bool LoopRotate::rotateLoop(Loop *L) {
254 // If the loop has only one block then there is not much to rotate.
255 if (L->getBlocks().size() == 1)
256 return false;
257
258 BasicBlock *OrigHeader = L->getHeader();
259
260 BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
261 if (BI == 0 || BI->isUnconditional())
262 return false;
263
264 // If the loop header is not one of the loop exiting blocks then
265 // either this loop is already rotated or it is not
266 // suitable for loop rotation transformations.
267 if (!L->isLoopExiting(OrigHeader))
268 return false;
269
270 // Updating PHInodes in loops with multiple exits adds complexity.
271 // Keep it simple, and restrict loop rotation to loops with one exit only.
272 // In future, lift this restriction and support for multiple exits if
273 // required.
274 SmallVector<BasicBlock*, 8> ExitBlocks;
275 L->getExitBlocks(ExitBlocks);
276 if (ExitBlocks.size() > 1)
277 return false;
278
279 // Check size of original header and reject loop if it is very big.
280 {
281 CodeMetrics Metrics;
282 Metrics.analyzeBasicBlock(OrigHeader);
283 if (Metrics.NumInsts > MAX_HEADER_SIZE)
284 return false;
285 }
286
287 // Now, this loop is suitable for rotation.
288 BasicBlock *OrigPreheader = L->getLoopPreheader();
289 BasicBlock *OrigLatch = L->getLoopLatch();
290
291 // If the loop could not be converted to canonical form, it must have an
292 // indirectbr in it, just give up.
293 if (OrigPreheader == 0 || OrigLatch == 0)
294 return false;
295
296 // Anything ScalarEvolution may know about this loop or the PHI nodes
297 // in its header will soon be invalidated.
298 if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>())
299 SE->forgetLoop(L);
300
301 // Find new Loop header. NewHeader is a Header's one and only successor
302 // that is inside loop. Header's other successor is outside the
303 // loop. Otherwise loop is not suitable for rotation.
304 BasicBlock *Exit = BI->getSuccessor(0);
305 BasicBlock *NewHeader = BI->getSuccessor(1);
306 if (L->contains(Exit))
307 std::swap(Exit, NewHeader);
308 assert(NewHeader && "Unable to determine new loop header");
309 assert(L->contains(NewHeader) && !L->contains(Exit) &&
310 "Unable to determine loop header and exit blocks");
311
312 // This code assumes that the new header has exactly one predecessor.
313 // Remove any single-entry PHI nodes in it.
314 assert(NewHeader->getSinglePredecessor() &&
315 "New header doesn't have one pred!");
316 FoldSingleEntryPHINodes(NewHeader);
317
318 // Begin by walking OrigHeader and populating ValueMap with an entry for
319 // each Instruction.
320 BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
321 ValueToValueMapTy ValueMap;
322
323 // For PHI nodes, the value available in OldPreHeader is just the
324 // incoming value from OldPreHeader.
325 for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
326 ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader);
327
328 // For the rest of the instructions, either hoist to the OrigPreheader if
329 // possible or create a clone in the OldPreHeader if not.
330 TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator();
331 while (I != E) {
332 Instruction *Inst = I++;
333
334 // If the instruction's operands are invariant and it doesn't read or write
335 // memory, then it is safe to hoist. Doing this doesn't change the order of
336 // execution in the preheader, but does prevent the instruction from
337 // executing in each iteration of the loop. This means it is safe to hoist
338 // something that might trap, but isn't safe to hoist something that reads
339 // memory (without proving that the loop doesn't write).
340 if (L->hasLoopInvariantOperands(Inst) &&
341 !Inst->mayReadFromMemory() && !Inst->mayWriteToMemory() &&
342 !isa<TerminatorInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst) &&
343 !isa<AllocaInst>(Inst)) {
344 Inst->moveBefore(LoopEntryBranch);
345 continue;
346 }
347
348 // Otherwise, create a duplicate of the instruction.
349 Instruction *C = Inst->clone();
350
351 // Eagerly remap the operands of the instruction.
352 RemapInstruction(C, ValueMap,
353 RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
354
355 // With the operands remapped, see if the instruction constant folds or is
356 // otherwise simplifyable. This commonly occurs because the entry from PHI
357 // nodes allows icmps and other instructions to fold.
358 Value *V = SimplifyInstruction(C);
359 if (V && LI->replacementPreservesLCSSAForm(C, V)) {
360 // If so, then delete the temporary instruction and stick the folded value
361 // in the map.
362 delete C;
363 ValueMap[Inst] = V;
364 } else {
365 // Otherwise, stick the new instruction into the new block!
366 C->setName(Inst->getName());
367 C->insertBefore(LoopEntryBranch);
368 ValueMap[Inst] = C;
369 }
370 }
371
372 // Along with all the other instructions, we just cloned OrigHeader's
373 // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
374 // successors by duplicating their incoming values for OrigHeader.
375 TerminatorInst *TI = OrigHeader->getTerminator();
376 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
377 for (BasicBlock::iterator BI = TI->getSuccessor(i)->begin();
378 PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
379 PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
380
381 // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
382 // OrigPreHeader's old terminator (the original branch into the loop), and
383 // remove the corresponding incoming values from the PHI nodes in OrigHeader.
384 LoopEntryBranch->eraseFromParent();
385
386 // If there were any uses of instructions in the duplicated block outside the
387 // loop, update them, inserting PHI nodes as required
388 RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap);
389
390 // NewHeader is now the header of the loop.
391 L->moveToHeader(NewHeader);
392 assert(L->getHeader() == NewHeader && "Latch block is our new header");
393
394
395 // At this point, we've finished our major CFG changes. As part of cloning
396 // the loop into the preheader we've simplified instructions and the
397 // duplicated conditional branch may now be branching on a constant. If it is
398 // branching on a constant and if that constant means that we enter the loop,
399 // then we fold away the cond branch to an uncond branch. This simplifies the
400 // loop in cases important for nested loops, and it also means we don't have
401 // to split as many edges.
402 BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
403 assert(PHBI->isConditional() && "Should be clone of BI condbr!");
404 if (!isa<ConstantInt>(PHBI->getCondition()) ||
405 PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero())
406 != NewHeader) {
407 // The conditional branch can't be folded, handle the general case.
408 // Update DominatorTree to reflect the CFG change we just made. Then split
409 // edges as necessary to preserve LoopSimplify form.
410 if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) {
411 // Since OrigPreheader now has the conditional branch to Exit block, it is
412 // the dominator of Exit.
413 DT->changeImmediateDominator(Exit, OrigPreheader);
414 DT->changeImmediateDominator(NewHeader, OrigPreheader);
415
416 // Update OrigHeader to be dominated by the new header block.
417 DT->changeImmediateDominator(OrigHeader, OrigLatch);
418 }
419
420 // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
421 // thus is not a preheader anymore. Split the edge to form a real preheader.
422 BasicBlock *NewPH = SplitCriticalEdge(OrigPreheader, NewHeader, this);
423 NewPH->setName(NewHeader->getName() + ".lr.ph");
424
425 // Preserve canonical loop form, which means that 'Exit' should have only one
426 // predecessor.
427 BasicBlock *ExitSplit = SplitCriticalEdge(L->getLoopLatch(), Exit, this);
428 ExitSplit->moveBefore(Exit);
429 } else {
430 // We can fold the conditional branch in the preheader, this makes things
431 // simpler. The first step is to remove the extra edge to the Exit block.
432 Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
433 BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
434 NewBI->setDebugLoc(PHBI->getDebugLoc());
435 PHBI->eraseFromParent();
436
437 // With our CFG finalized, update DomTree if it is available.
438 if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) {
439 // Update OrigHeader to be dominated by the new header block.
440 DT->changeImmediateDominator(NewHeader, OrigPreheader);
441 DT->changeImmediateDominator(OrigHeader, OrigLatch);
442 }
443 }
444
445 assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
446 assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
447
448 // Now that the CFG and DomTree are in a consistent state again, try to merge
449 // the OrigHeader block into OrigLatch. This will succeed if they are
450 // connected by an unconditional branch. This is just a cleanup so the
451 // emitted code isn't too gross in this common case.
452 MergeBlockIntoPredecessor(OrigHeader, this);
453
454 ++NumRotated;
455 return true;
456 }
457
458