1 //===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms loops that contain branches on loop-invariant conditions
11 // to have multiple loops. For example, it turns the left into the right code:
12 //
13 // for (...) if (lic)
14 // A for (...)
15 // if (lic) A; B; C
16 // B else
17 // C for (...)
18 // A; C
19 //
20 // This can increase the size of the code exponentially (doubling it every time
21 // a loop is unswitched) so we only unswitch if the resultant code will be
22 // smaller than a threshold.
23 //
24 // This pass expects LICM to be run before it to hoist invariant conditions out
25 // of the loop, to make the unswitching opportunity obvious.
26 //
27 //===----------------------------------------------------------------------===//
28
29 #define DEBUG_TYPE "loop-unswitch"
30 #include "llvm/Transforms/Scalar.h"
31 #include "llvm/Constants.h"
32 #include "llvm/DerivedTypes.h"
33 #include "llvm/Function.h"
34 #include "llvm/Instructions.h"
35 #include "llvm/Analysis/CodeMetrics.h"
36 #include "llvm/Analysis/InstructionSimplify.h"
37 #include "llvm/Analysis/LoopInfo.h"
38 #include "llvm/Analysis/LoopPass.h"
39 #include "llvm/Analysis/Dominators.h"
40 #include "llvm/Analysis/ScalarEvolution.h"
41 #include "llvm/Transforms/Utils/Cloning.h"
42 #include "llvm/Transforms/Utils/Local.h"
43 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/ADT/SmallPtrSet.h"
46 #include "llvm/ADT/STLExtras.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include <algorithm>
51 #include <map>
52 #include <set>
53 using namespace llvm;
54
55 STATISTIC(NumBranches, "Number of branches unswitched");
56 STATISTIC(NumSwitches, "Number of switches unswitched");
57 STATISTIC(NumSelects , "Number of selects unswitched");
58 STATISTIC(NumTrivial , "Number of unswitches that are trivial");
59 STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
60 STATISTIC(TotalInsts, "Total number of instructions analyzed");
61
62 // The specific value of 100 here was chosen based only on intuition and a
63 // few specific examples.
64 static cl::opt<unsigned>
65 Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
66 cl::init(100), cl::Hidden);
67
68 namespace {
69
70 class LUAnalysisCache {
71
72 typedef DenseMap<const SwitchInst*, SmallPtrSet<const Value *, 8> >
73 UnswitchedValsMap;
74
75 typedef UnswitchedValsMap::iterator UnswitchedValsIt;
76
77 struct LoopProperties {
78 unsigned CanBeUnswitchedCount;
79 unsigned SizeEstimation;
80 UnswitchedValsMap UnswitchedVals;
81 };
82
83 // Here we use std::map instead of DenseMap, since we need to keep valid
84 // LoopProperties pointer for current loop for better performance.
85 typedef std::map<const Loop*, LoopProperties> LoopPropsMap;
86 typedef LoopPropsMap::iterator LoopPropsMapIt;
87
88 LoopPropsMap LoopsProperties;
89 UnswitchedValsMap* CurLoopInstructions;
90 LoopProperties* CurrentLoopProperties;
91
92 // Max size of code we can produce on remained iterations.
93 unsigned MaxSize;
94
95 public:
96
LUAnalysisCache()97 LUAnalysisCache() :
98 CurLoopInstructions(NULL), CurrentLoopProperties(NULL),
99 MaxSize(Threshold)
100 {}
101
102 // Analyze loop. Check its size, calculate is it possible to unswitch
103 // it. Returns true if we can unswitch this loop.
104 bool countLoop(const Loop* L);
105
106 // Clean all data related to given loop.
107 void forgetLoop(const Loop* L);
108
109 // Mark case value as unswitched.
110 // Since SI instruction can be partly unswitched, in order to avoid
111 // extra unswitching in cloned loops keep track all unswitched values.
112 void setUnswitched(const SwitchInst* SI, const Value* V);
113
114 // Check was this case value unswitched before or not.
115 bool isUnswitched(const SwitchInst* SI, const Value* V);
116
117 // Clone all loop-unswitch related loop properties.
118 // Redistribute unswitching quotas.
119 // Note, that new loop data is stored inside the VMap.
120 void cloneData(const Loop* NewLoop, const Loop* OldLoop,
121 const ValueToValueMapTy& VMap);
122 };
123
124 class LoopUnswitch : public LoopPass {
125 LoopInfo *LI; // Loop information
126 LPPassManager *LPM;
127
128 // LoopProcessWorklist - Used to check if second loop needs processing
129 // after RewriteLoopBodyWithConditionConstant rewrites first loop.
130 std::vector<Loop*> LoopProcessWorklist;
131
132 LUAnalysisCache BranchesInfo;
133
134 bool OptimizeForSize;
135 bool redoLoop;
136
137 Loop *currentLoop;
138 DominatorTree *DT;
139 BasicBlock *loopHeader;
140 BasicBlock *loopPreheader;
141
142 // LoopBlocks contains all of the basic blocks of the loop, including the
143 // preheader of the loop, the body of the loop, and the exit blocks of the
144 // loop, in that order.
145 std::vector<BasicBlock*> LoopBlocks;
146 // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
147 std::vector<BasicBlock*> NewBlocks;
148
149 public:
150 static char ID; // Pass ID, replacement for typeid
LoopUnswitch(bool Os=false)151 explicit LoopUnswitch(bool Os = false) :
152 LoopPass(ID), OptimizeForSize(Os), redoLoop(false),
153 currentLoop(NULL), DT(NULL), loopHeader(NULL),
154 loopPreheader(NULL) {
155 initializeLoopUnswitchPass(*PassRegistry::getPassRegistry());
156 }
157
158 bool runOnLoop(Loop *L, LPPassManager &LPM);
159 bool processCurrentLoop();
160
161 /// This transformation requires natural loop information & requires that
162 /// loop preheaders be inserted into the CFG.
163 ///
getAnalysisUsage(AnalysisUsage & AU) const164 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
165 AU.addRequiredID(LoopSimplifyID);
166 AU.addPreservedID(LoopSimplifyID);
167 AU.addRequired<LoopInfo>();
168 AU.addPreserved<LoopInfo>();
169 AU.addRequiredID(LCSSAID);
170 AU.addPreservedID(LCSSAID);
171 AU.addPreserved<DominatorTree>();
172 AU.addPreserved<ScalarEvolution>();
173 }
174
175 private:
176
releaseMemory()177 virtual void releaseMemory() {
178 BranchesInfo.forgetLoop(currentLoop);
179 }
180
181 /// RemoveLoopFromWorklist - If the specified loop is on the loop worklist,
182 /// remove it.
RemoveLoopFromWorklist(Loop * L)183 void RemoveLoopFromWorklist(Loop *L) {
184 std::vector<Loop*>::iterator I = std::find(LoopProcessWorklist.begin(),
185 LoopProcessWorklist.end(), L);
186 if (I != LoopProcessWorklist.end())
187 LoopProcessWorklist.erase(I);
188 }
189
initLoopData()190 void initLoopData() {
191 loopHeader = currentLoop->getHeader();
192 loopPreheader = currentLoop->getLoopPreheader();
193 }
194
195 /// Split all of the edges from inside the loop to their exit blocks.
196 /// Update the appropriate Phi nodes as we do so.
197 void SplitExitEdges(Loop *L, const SmallVector<BasicBlock *, 8> &ExitBlocks);
198
199 bool UnswitchIfProfitable(Value *LoopCond, Constant *Val);
200 void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
201 BasicBlock *ExitBlock);
202 void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L);
203
204 void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
205 Constant *Val, bool isEqual);
206
207 void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
208 BasicBlock *TrueDest,
209 BasicBlock *FalseDest,
210 Instruction *InsertPt);
211
212 void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L);
213 void RemoveBlockIfDead(BasicBlock *BB,
214 std::vector<Instruction*> &Worklist, Loop *l);
215 void RemoveLoopFromHierarchy(Loop *L);
216 bool IsTrivialUnswitchCondition(Value *Cond, Constant **Val = 0,
217 BasicBlock **LoopExit = 0);
218
219 };
220 }
221
222 // Analyze loop. Check its size, calculate is it possible to unswitch
223 // it. Returns true if we can unswitch this loop.
countLoop(const Loop * L)224 bool LUAnalysisCache::countLoop(const Loop* L) {
225
226 std::pair<LoopPropsMapIt, bool> InsertRes =
227 LoopsProperties.insert(std::make_pair(L, LoopProperties()));
228
229 LoopProperties& Props = InsertRes.first->second;
230
231 if (InsertRes.second) {
232 // New loop.
233
234 // Limit the number of instructions to avoid causing significant code
235 // expansion, and the number of basic blocks, to avoid loops with
236 // large numbers of branches which cause loop unswitching to go crazy.
237 // This is a very ad-hoc heuristic.
238
239 // FIXME: This is overly conservative because it does not take into
240 // consideration code simplification opportunities and code that can
241 // be shared by the resultant unswitched loops.
242 CodeMetrics Metrics;
243 for (Loop::block_iterator I = L->block_begin(),
244 E = L->block_end();
245 I != E; ++I)
246 Metrics.analyzeBasicBlock(*I);
247
248 Props.SizeEstimation = std::min(Metrics.NumInsts, Metrics.NumBlocks * 5);
249 Props.CanBeUnswitchedCount = MaxSize / (Props.SizeEstimation);
250 MaxSize -= Props.SizeEstimation * Props.CanBeUnswitchedCount;
251 }
252
253 if (!Props.CanBeUnswitchedCount) {
254 DEBUG(dbgs() << "NOT unswitching loop %"
255 << L->getHeader()->getName() << ", cost too high: "
256 << L->getBlocks().size() << "\n");
257
258 return false;
259 }
260
261 // Be careful. This links are good only before new loop addition.
262 CurrentLoopProperties = &Props;
263 CurLoopInstructions = &Props.UnswitchedVals;
264
265 return true;
266 }
267
268 // Clean all data related to given loop.
forgetLoop(const Loop * L)269 void LUAnalysisCache::forgetLoop(const Loop* L) {
270
271 LoopPropsMapIt LIt = LoopsProperties.find(L);
272
273 if (LIt != LoopsProperties.end()) {
274 LoopProperties& Props = LIt->second;
275 MaxSize += Props.CanBeUnswitchedCount * Props.SizeEstimation;
276 LoopsProperties.erase(LIt);
277 }
278
279 CurrentLoopProperties = NULL;
280 CurLoopInstructions = NULL;
281 }
282
283 // Mark case value as unswitched.
284 // Since SI instruction can be partly unswitched, in order to avoid
285 // extra unswitching in cloned loops keep track all unswitched values.
setUnswitched(const SwitchInst * SI,const Value * V)286 void LUAnalysisCache::setUnswitched(const SwitchInst* SI, const Value* V) {
287 (*CurLoopInstructions)[SI].insert(V);
288 }
289
290 // Check was this case value unswitched before or not.
isUnswitched(const SwitchInst * SI,const Value * V)291 bool LUAnalysisCache::isUnswitched(const SwitchInst* SI, const Value* V) {
292 return (*CurLoopInstructions)[SI].count(V);
293 }
294
295 // Clone all loop-unswitch related loop properties.
296 // Redistribute unswitching quotas.
297 // Note, that new loop data is stored inside the VMap.
cloneData(const Loop * NewLoop,const Loop * OldLoop,const ValueToValueMapTy & VMap)298 void LUAnalysisCache::cloneData(const Loop* NewLoop, const Loop* OldLoop,
299 const ValueToValueMapTy& VMap) {
300
301 LoopProperties& NewLoopProps = LoopsProperties[NewLoop];
302 LoopProperties& OldLoopProps = *CurrentLoopProperties;
303 UnswitchedValsMap& Insts = OldLoopProps.UnswitchedVals;
304
305 // Reallocate "can-be-unswitched quota"
306
307 --OldLoopProps.CanBeUnswitchedCount;
308 unsigned Quota = OldLoopProps.CanBeUnswitchedCount;
309 NewLoopProps.CanBeUnswitchedCount = Quota / 2;
310 OldLoopProps.CanBeUnswitchedCount = Quota - Quota / 2;
311
312 NewLoopProps.SizeEstimation = OldLoopProps.SizeEstimation;
313
314 // Clone unswitched values info:
315 // for new loop switches we clone info about values that was
316 // already unswitched and has redundant successors.
317 for (UnswitchedValsIt I = Insts.begin(); I != Insts.end(); ++I) {
318 const SwitchInst* OldInst = I->first;
319 Value* NewI = VMap.lookup(OldInst);
320 const SwitchInst* NewInst = cast_or_null<SwitchInst>(NewI);
321 assert(NewInst && "All instructions that are in SrcBB must be in VMap.");
322
323 NewLoopProps.UnswitchedVals[NewInst] = OldLoopProps.UnswitchedVals[OldInst];
324 }
325 }
326
327 char LoopUnswitch::ID = 0;
328 INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops",
329 false, false)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)330 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
331 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
332 INITIALIZE_PASS_DEPENDENCY(LCSSA)
333 INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops",
334 false, false)
335
336 Pass *llvm::createLoopUnswitchPass(bool Os) {
337 return new LoopUnswitch(Os);
338 }
339
340 /// FindLIVLoopCondition - Cond is a condition that occurs in L. If it is
341 /// invariant in the loop, or has an invariant piece, return the invariant.
342 /// Otherwise, return null.
FindLIVLoopCondition(Value * Cond,Loop * L,bool & Changed)343 static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) {
344
345 // We started analyze new instruction, increment scanned instructions counter.
346 ++TotalInsts;
347
348 // We can never unswitch on vector conditions.
349 if (Cond->getType()->isVectorTy())
350 return 0;
351
352 // Constants should be folded, not unswitched on!
353 if (isa<Constant>(Cond)) return 0;
354
355 // TODO: Handle: br (VARIANT|INVARIANT).
356
357 // Hoist simple values out.
358 if (L->makeLoopInvariant(Cond, Changed))
359 return Cond;
360
361 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
362 if (BO->getOpcode() == Instruction::And ||
363 BO->getOpcode() == Instruction::Or) {
364 // If either the left or right side is invariant, we can unswitch on this,
365 // which will cause the branch to go away in one loop and the condition to
366 // simplify in the other one.
367 if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed))
368 return LHS;
369 if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed))
370 return RHS;
371 }
372
373 return 0;
374 }
375
runOnLoop(Loop * L,LPPassManager & LPM_Ref)376 bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
377 LI = &getAnalysis<LoopInfo>();
378 LPM = &LPM_Ref;
379 DT = getAnalysisIfAvailable<DominatorTree>();
380 currentLoop = L;
381 Function *F = currentLoop->getHeader()->getParent();
382 bool Changed = false;
383 do {
384 assert(currentLoop->isLCSSAForm(*DT));
385 redoLoop = false;
386 Changed |= processCurrentLoop();
387 } while(redoLoop);
388
389 if (Changed) {
390 // FIXME: Reconstruct dom info, because it is not preserved properly.
391 if (DT)
392 DT->runOnFunction(*F);
393 }
394 return Changed;
395 }
396
397 /// processCurrentLoop - Do actual work and unswitch loop if possible
398 /// and profitable.
processCurrentLoop()399 bool LoopUnswitch::processCurrentLoop() {
400 bool Changed = false;
401
402 initLoopData();
403
404 // If LoopSimplify was unable to form a preheader, don't do any unswitching.
405 if (!loopPreheader)
406 return false;
407
408 // Loops with indirectbr cannot be cloned.
409 if (!currentLoop->isSafeToClone())
410 return false;
411
412 // Loops with invokes, whose unwind edge escapes the loop, cannot be
413 // unswitched because splitting their edges are non-trivial and don't preserve
414 // loop simplify information.
415 for (Loop::block_iterator I = currentLoop->block_begin(),
416 E = currentLoop->block_end(); I != E; ++I)
417 if (const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator()))
418 if (!currentLoop->contains(II->getUnwindDest()))
419 return false;
420
421 // Without dedicated exits, splitting the exit edge may fail.
422 if (!currentLoop->hasDedicatedExits())
423 return false;
424
425 LLVMContext &Context = loopHeader->getContext();
426
427 // Probably we reach the quota of branches for this loop. If so
428 // stop unswitching.
429 if (!BranchesInfo.countLoop(currentLoop))
430 return false;
431
432 // Loop over all of the basic blocks in the loop. If we find an interior
433 // block that is branching on a loop-invariant condition, we can unswitch this
434 // loop.
435 for (Loop::block_iterator I = currentLoop->block_begin(),
436 E = currentLoop->block_end(); I != E; ++I) {
437 TerminatorInst *TI = (*I)->getTerminator();
438 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
439 // If this isn't branching on an invariant condition, we can't unswitch
440 // it.
441 if (BI->isConditional()) {
442 // See if this, or some part of it, is loop invariant. If so, we can
443 // unswitch on it if we desire.
444 Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
445 currentLoop, Changed);
446 if (LoopCond && UnswitchIfProfitable(LoopCond,
447 ConstantInt::getTrue(Context))) {
448 ++NumBranches;
449 return true;
450 }
451 }
452 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
453 Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
454 currentLoop, Changed);
455 unsigned NumCases = SI->getNumCases();
456 if (LoopCond && NumCases) {
457 // Find a value to unswitch on:
458 // FIXME: this should chose the most expensive case!
459 // FIXME: scan for a case with a non-critical edge?
460 Constant *UnswitchVal = NULL;
461
462 // Do not process same value again and again.
463 // At this point we have some cases already unswitched and
464 // some not yet unswitched. Let's find the first not yet unswitched one.
465 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
466 i != e; ++i) {
467 Constant* UnswitchValCandidate = i.getCaseValue();
468 if (!BranchesInfo.isUnswitched(SI, UnswitchValCandidate)) {
469 UnswitchVal = UnswitchValCandidate;
470 break;
471 }
472 }
473
474 if (!UnswitchVal)
475 continue;
476
477 if (UnswitchIfProfitable(LoopCond, UnswitchVal)) {
478 ++NumSwitches;
479 return true;
480 }
481 }
482 }
483
484 // Scan the instructions to check for unswitchable values.
485 for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
486 BBI != E; ++BBI)
487 if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
488 Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
489 currentLoop, Changed);
490 if (LoopCond && UnswitchIfProfitable(LoopCond,
491 ConstantInt::getTrue(Context))) {
492 ++NumSelects;
493 return true;
494 }
495 }
496 }
497 return Changed;
498 }
499
500 /// isTrivialLoopExitBlock - Check to see if all paths from BB exit the
501 /// loop with no side effects (including infinite loops).
502 ///
503 /// If true, we return true and set ExitBB to the block we
504 /// exit through.
505 ///
isTrivialLoopExitBlockHelper(Loop * L,BasicBlock * BB,BasicBlock * & ExitBB,std::set<BasicBlock * > & Visited)506 static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
507 BasicBlock *&ExitBB,
508 std::set<BasicBlock*> &Visited) {
509 if (!Visited.insert(BB).second) {
510 // Already visited. Without more analysis, this could indicate an infinite
511 // loop.
512 return false;
513 } else if (!L->contains(BB)) {
514 // Otherwise, this is a loop exit, this is fine so long as this is the
515 // first exit.
516 if (ExitBB != 0) return false;
517 ExitBB = BB;
518 return true;
519 }
520
521 // Otherwise, this is an unvisited intra-loop node. Check all successors.
522 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
523 // Check to see if the successor is a trivial loop exit.
524 if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
525 return false;
526 }
527
528 // Okay, everything after this looks good, check to make sure that this block
529 // doesn't include any side effects.
530 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
531 if (I->mayHaveSideEffects())
532 return false;
533
534 return true;
535 }
536
537 /// isTrivialLoopExitBlock - Return true if the specified block unconditionally
538 /// leads to an exit from the specified loop, and has no side-effects in the
539 /// process. If so, return the block that is exited to, otherwise return null.
isTrivialLoopExitBlock(Loop * L,BasicBlock * BB)540 static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
541 std::set<BasicBlock*> Visited;
542 Visited.insert(L->getHeader()); // Branches to header make infinite loops.
543 BasicBlock *ExitBB = 0;
544 if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
545 return ExitBB;
546 return 0;
547 }
548
549 /// IsTrivialUnswitchCondition - Check to see if this unswitch condition is
550 /// trivial: that is, that the condition controls whether or not the loop does
551 /// anything at all. If this is a trivial condition, unswitching produces no
552 /// code duplications (equivalently, it produces a simpler loop and a new empty
553 /// loop, which gets deleted).
554 ///
555 /// If this is a trivial condition, return true, otherwise return false. When
556 /// returning true, this sets Cond and Val to the condition that controls the
557 /// trivial condition: when Cond dynamically equals Val, the loop is known to
558 /// exit. Finally, this sets LoopExit to the BB that the loop exits to when
559 /// Cond == Val.
560 ///
IsTrivialUnswitchCondition(Value * Cond,Constant ** Val,BasicBlock ** LoopExit)561 bool LoopUnswitch::IsTrivialUnswitchCondition(Value *Cond, Constant **Val,
562 BasicBlock **LoopExit) {
563 BasicBlock *Header = currentLoop->getHeader();
564 TerminatorInst *HeaderTerm = Header->getTerminator();
565 LLVMContext &Context = Header->getContext();
566
567 BasicBlock *LoopExitBB = 0;
568 if (BranchInst *BI = dyn_cast<BranchInst>(HeaderTerm)) {
569 // If the header block doesn't end with a conditional branch on Cond, we
570 // can't handle it.
571 if (!BI->isConditional() || BI->getCondition() != Cond)
572 return false;
573
574 // Check to see if a successor of the branch is guaranteed to
575 // exit through a unique exit block without having any
576 // side-effects. If so, determine the value of Cond that causes it to do
577 // this.
578 if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
579 BI->getSuccessor(0)))) {
580 if (Val) *Val = ConstantInt::getTrue(Context);
581 } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
582 BI->getSuccessor(1)))) {
583 if (Val) *Val = ConstantInt::getFalse(Context);
584 }
585 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(HeaderTerm)) {
586 // If this isn't a switch on Cond, we can't handle it.
587 if (SI->getCondition() != Cond) return false;
588
589 // Check to see if a successor of the switch is guaranteed to go to the
590 // latch block or exit through a one exit block without having any
591 // side-effects. If so, determine the value of Cond that causes it to do
592 // this.
593 // Note that we can't trivially unswitch on the default case or
594 // on already unswitched cases.
595 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
596 i != e; ++i) {
597 BasicBlock* LoopExitCandidate;
598 if ((LoopExitCandidate = isTrivialLoopExitBlock(currentLoop,
599 i.getCaseSuccessor()))) {
600 // Okay, we found a trivial case, remember the value that is trivial.
601 ConstantInt* CaseVal = i.getCaseValue();
602
603 // Check that it was not unswitched before, since already unswitched
604 // trivial vals are looks trivial too.
605 if (BranchesInfo.isUnswitched(SI, CaseVal))
606 continue;
607 LoopExitBB = LoopExitCandidate;
608 if (Val) *Val = CaseVal;
609 break;
610 }
611 }
612 }
613
614 // If we didn't find a single unique LoopExit block, or if the loop exit block
615 // contains phi nodes, this isn't trivial.
616 if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
617 return false; // Can't handle this.
618
619 if (LoopExit) *LoopExit = LoopExitBB;
620
621 // We already know that nothing uses any scalar values defined inside of this
622 // loop. As such, we just have to check to see if this loop will execute any
623 // side-effecting instructions (e.g. stores, calls, volatile loads) in the
624 // part of the loop that the code *would* execute. We already checked the
625 // tail, check the header now.
626 for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I)
627 if (I->mayHaveSideEffects())
628 return false;
629 return true;
630 }
631
632 /// UnswitchIfProfitable - We have found that we can unswitch currentLoop when
633 /// LoopCond == Val to simplify the loop. If we decide that this is profitable,
634 /// unswitch the loop, reprocess the pieces, then return true.
UnswitchIfProfitable(Value * LoopCond,Constant * Val)635 bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val) {
636
637 Function *F = loopHeader->getParent();
638
639 Constant *CondVal = 0;
640 BasicBlock *ExitBlock = 0;
641 if (IsTrivialUnswitchCondition(LoopCond, &CondVal, &ExitBlock)) {
642 // If the condition is trivial, always unswitch. There is no code growth
643 // for this case.
644 UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, ExitBlock);
645 return true;
646 }
647
648 // Check to see if it would be profitable to unswitch current loop.
649
650 // Do not do non-trivial unswitch while optimizing for size.
651 if (OptimizeForSize || F->hasFnAttr(Attribute::OptimizeForSize))
652 return false;
653
654 UnswitchNontrivialCondition(LoopCond, Val, currentLoop);
655 return true;
656 }
657
658 /// CloneLoop - Recursively clone the specified loop and all of its children,
659 /// mapping the blocks with the specified map.
CloneLoop(Loop * L,Loop * PL,ValueToValueMapTy & VM,LoopInfo * LI,LPPassManager * LPM)660 static Loop *CloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
661 LoopInfo *LI, LPPassManager *LPM) {
662 Loop *New = new Loop();
663 LPM->insertLoop(New, PL);
664
665 // Add all of the blocks in L to the new loop.
666 for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
667 I != E; ++I)
668 if (LI->getLoopFor(*I) == L)
669 New->addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), LI->getBase());
670
671 // Add all of the subloops to the new loop.
672 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
673 CloneLoop(*I, New, VM, LI, LPM);
674
675 return New;
676 }
677
678 /// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values
679 /// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest. Insert the
680 /// code immediately before InsertPt.
EmitPreheaderBranchOnCondition(Value * LIC,Constant * Val,BasicBlock * TrueDest,BasicBlock * FalseDest,Instruction * InsertPt)681 void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
682 BasicBlock *TrueDest,
683 BasicBlock *FalseDest,
684 Instruction *InsertPt) {
685 // Insert a conditional branch on LIC to the two preheaders. The original
686 // code is the true version and the new code is the false version.
687 Value *BranchVal = LIC;
688 if (!isa<ConstantInt>(Val) ||
689 Val->getType() != Type::getInt1Ty(LIC->getContext()))
690 BranchVal = new ICmpInst(InsertPt, ICmpInst::ICMP_EQ, LIC, Val);
691 else if (Val != ConstantInt::getTrue(Val->getContext()))
692 // We want to enter the new loop when the condition is true.
693 std::swap(TrueDest, FalseDest);
694
695 // Insert the new branch.
696 BranchInst *BI = BranchInst::Create(TrueDest, FalseDest, BranchVal, InsertPt);
697
698 // If either edge is critical, split it. This helps preserve LoopSimplify
699 // form for enclosing loops.
700 SplitCriticalEdge(BI, 0, this);
701 SplitCriticalEdge(BI, 1, this);
702 }
703
704 /// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable
705 /// condition in it (a cond branch from its header block to its latch block,
706 /// where the path through the loop that doesn't execute its body has no
707 /// side-effects), unswitch it. This doesn't involve any code duplication, just
708 /// moving the conditional branch outside of the loop and updating loop info.
UnswitchTrivialCondition(Loop * L,Value * Cond,Constant * Val,BasicBlock * ExitBlock)709 void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond,
710 Constant *Val,
711 BasicBlock *ExitBlock) {
712 DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %"
713 << loopHeader->getName() << " [" << L->getBlocks().size()
714 << " blocks] in Function " << L->getHeader()->getParent()->getName()
715 << " on cond: " << *Val << " == " << *Cond << "\n");
716
717 // First step, split the preheader, so that we know that there is a safe place
718 // to insert the conditional branch. We will change loopPreheader to have a
719 // conditional branch on Cond.
720 BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, this);
721
722 // Now that we have a place to insert the conditional branch, create a place
723 // to branch to: this is the exit block out of the loop that we should
724 // short-circuit to.
725
726 // Split this block now, so that the loop maintains its exit block, and so
727 // that the jump from the preheader can execute the contents of the exit block
728 // without actually branching to it (the exit block should be dominated by the
729 // loop header, not the preheader).
730 assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
731 BasicBlock *NewExit = SplitBlock(ExitBlock, ExitBlock->begin(), this);
732
733 // Okay, now we have a position to branch from and a position to branch to,
734 // insert the new conditional branch.
735 EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH,
736 loopPreheader->getTerminator());
737 LPM->deleteSimpleAnalysisValue(loopPreheader->getTerminator(), L);
738 loopPreheader->getTerminator()->eraseFromParent();
739
740 // We need to reprocess this loop, it could be unswitched again.
741 redoLoop = true;
742
743 // Now that we know that the loop is never entered when this condition is a
744 // particular value, rewrite the loop with this info. We know that this will
745 // at least eliminate the old branch.
746 RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
747 ++NumTrivial;
748 }
749
750 /// SplitExitEdges - Split all of the edges from inside the loop to their exit
751 /// blocks. Update the appropriate Phi nodes as we do so.
SplitExitEdges(Loop * L,const SmallVector<BasicBlock *,8> & ExitBlocks)752 void LoopUnswitch::SplitExitEdges(Loop *L,
753 const SmallVector<BasicBlock *, 8> &ExitBlocks){
754
755 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
756 BasicBlock *ExitBlock = ExitBlocks[i];
757 SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock),
758 pred_end(ExitBlock));
759
760 // Although SplitBlockPredecessors doesn't preserve loop-simplify in
761 // general, if we call it on all predecessors of all exits then it does.
762 if (!ExitBlock->isLandingPad()) {
763 SplitBlockPredecessors(ExitBlock, Preds, ".us-lcssa", this);
764 } else {
765 SmallVector<BasicBlock*, 2> NewBBs;
766 SplitLandingPadPredecessors(ExitBlock, Preds, ".us-lcssa", ".us-lcssa",
767 this, NewBBs);
768 }
769 }
770 }
771
772 /// UnswitchNontrivialCondition - We determined that the loop is profitable
773 /// to unswitch when LIC equal Val. Split it into loop versions and test the
774 /// condition outside of either loop. Return the loops created as Out1/Out2.
UnswitchNontrivialCondition(Value * LIC,Constant * Val,Loop * L)775 void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
776 Loop *L) {
777 Function *F = loopHeader->getParent();
778 DEBUG(dbgs() << "loop-unswitch: Unswitching loop %"
779 << loopHeader->getName() << " [" << L->getBlocks().size()
780 << " blocks] in Function " << F->getName()
781 << " when '" << *Val << "' == " << *LIC << "\n");
782
783 if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>())
784 SE->forgetLoop(L);
785
786 LoopBlocks.clear();
787 NewBlocks.clear();
788
789 // First step, split the preheader and exit blocks, and add these blocks to
790 // the LoopBlocks list.
791 BasicBlock *NewPreheader = SplitEdge(loopPreheader, loopHeader, this);
792 LoopBlocks.push_back(NewPreheader);
793
794 // We want the loop to come after the preheader, but before the exit blocks.
795 LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
796
797 SmallVector<BasicBlock*, 8> ExitBlocks;
798 L->getUniqueExitBlocks(ExitBlocks);
799
800 // Split all of the edges from inside the loop to their exit blocks. Update
801 // the appropriate Phi nodes as we do so.
802 SplitExitEdges(L, ExitBlocks);
803
804 // The exit blocks may have been changed due to edge splitting, recompute.
805 ExitBlocks.clear();
806 L->getUniqueExitBlocks(ExitBlocks);
807
808 // Add exit blocks to the loop blocks.
809 LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
810
811 // Next step, clone all of the basic blocks that make up the loop (including
812 // the loop preheader and exit blocks), keeping track of the mapping between
813 // the instructions and blocks.
814 NewBlocks.reserve(LoopBlocks.size());
815 ValueToValueMapTy VMap;
816 for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
817 BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], VMap, ".us", F);
818
819 NewBlocks.push_back(NewBB);
820 VMap[LoopBlocks[i]] = NewBB; // Keep the BB mapping.
821 LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L);
822 }
823
824 // Splice the newly inserted blocks into the function right before the
825 // original preheader.
826 F->getBasicBlockList().splice(NewPreheader, F->getBasicBlockList(),
827 NewBlocks[0], F->end());
828
829 // Now we create the new Loop object for the versioned loop.
830 Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM);
831
832 // Recalculate unswitching quota, inherit simplified switches info for NewBB,
833 // Probably clone more loop-unswitch related loop properties.
834 BranchesInfo.cloneData(NewLoop, L, VMap);
835
836 Loop *ParentLoop = L->getParentLoop();
837 if (ParentLoop) {
838 // Make sure to add the cloned preheader and exit blocks to the parent loop
839 // as well.
840 ParentLoop->addBasicBlockToLoop(NewBlocks[0], LI->getBase());
841 }
842
843 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
844 BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[i]]);
845 // The new exit block should be in the same loop as the old one.
846 if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
847 ExitBBLoop->addBasicBlockToLoop(NewExit, LI->getBase());
848
849 assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
850 "Exit block should have been split to have one successor!");
851 BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
852
853 // If the successor of the exit block had PHI nodes, add an entry for
854 // NewExit.
855 PHINode *PN;
856 for (BasicBlock::iterator I = ExitSucc->begin(); isa<PHINode>(I); ++I) {
857 PN = cast<PHINode>(I);
858 Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]);
859 ValueToValueMapTy::iterator It = VMap.find(V);
860 if (It != VMap.end()) V = It->second;
861 PN->addIncoming(V, NewExit);
862 }
863
864 if (LandingPadInst *LPad = NewExit->getLandingPadInst()) {
865 PN = PHINode::Create(LPad->getType(), 0, "",
866 ExitSucc->getFirstInsertionPt());
867
868 for (pred_iterator I = pred_begin(ExitSucc), E = pred_end(ExitSucc);
869 I != E; ++I) {
870 BasicBlock *BB = *I;
871 LandingPadInst *LPI = BB->getLandingPadInst();
872 LPI->replaceAllUsesWith(PN);
873 PN->addIncoming(LPI, BB);
874 }
875 }
876 }
877
878 // Rewrite the code to refer to itself.
879 for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i)
880 for (BasicBlock::iterator I = NewBlocks[i]->begin(),
881 E = NewBlocks[i]->end(); I != E; ++I)
882 RemapInstruction(I, VMap,RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
883
884 // Rewrite the original preheader to select between versions of the loop.
885 BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator());
886 assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
887 "Preheader splitting did not work correctly!");
888
889 // Emit the new branch that selects between the two versions of this loop.
890 EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR);
891 LPM->deleteSimpleAnalysisValue(OldBR, L);
892 OldBR->eraseFromParent();
893
894 LoopProcessWorklist.push_back(NewLoop);
895 redoLoop = true;
896
897 // Keep a WeakVH holding onto LIC. If the first call to RewriteLoopBody
898 // deletes the instruction (for example by simplifying a PHI that feeds into
899 // the condition that we're unswitching on), we don't rewrite the second
900 // iteration.
901 WeakVH LICHandle(LIC);
902
903 // Now we rewrite the original code to know that the condition is true and the
904 // new code to know that the condition is false.
905 RewriteLoopBodyWithConditionConstant(L, LIC, Val, false);
906
907 // It's possible that simplifying one loop could cause the other to be
908 // changed to another value or a constant. If its a constant, don't simplify
909 // it.
910 if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop &&
911 LICHandle && !isa<Constant>(LICHandle))
912 RewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, true);
913 }
914
915 /// RemoveFromWorklist - Remove all instances of I from the worklist vector
916 /// specified.
RemoveFromWorklist(Instruction * I,std::vector<Instruction * > & Worklist)917 static void RemoveFromWorklist(Instruction *I,
918 std::vector<Instruction*> &Worklist) {
919 std::vector<Instruction*>::iterator WI = std::find(Worklist.begin(),
920 Worklist.end(), I);
921 while (WI != Worklist.end()) {
922 unsigned Offset = WI-Worklist.begin();
923 Worklist.erase(WI);
924 WI = std::find(Worklist.begin()+Offset, Worklist.end(), I);
925 }
926 }
927
928 /// ReplaceUsesOfWith - When we find that I really equals V, remove I from the
929 /// program, replacing all uses with V and update the worklist.
ReplaceUsesOfWith(Instruction * I,Value * V,std::vector<Instruction * > & Worklist,Loop * L,LPPassManager * LPM)930 static void ReplaceUsesOfWith(Instruction *I, Value *V,
931 std::vector<Instruction*> &Worklist,
932 Loop *L, LPPassManager *LPM) {
933 DEBUG(dbgs() << "Replace with '" << *V << "': " << *I);
934
935 // Add uses to the worklist, which may be dead now.
936 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
937 if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
938 Worklist.push_back(Use);
939
940 // Add users to the worklist which may be simplified now.
941 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
942 UI != E; ++UI)
943 Worklist.push_back(cast<Instruction>(*UI));
944 LPM->deleteSimpleAnalysisValue(I, L);
945 RemoveFromWorklist(I, Worklist);
946 I->replaceAllUsesWith(V);
947 I->eraseFromParent();
948 ++NumSimplify;
949 }
950
951 /// RemoveBlockIfDead - If the specified block is dead, remove it, update loop
952 /// information, and remove any dead successors it has.
953 ///
RemoveBlockIfDead(BasicBlock * BB,std::vector<Instruction * > & Worklist,Loop * L)954 void LoopUnswitch::RemoveBlockIfDead(BasicBlock *BB,
955 std::vector<Instruction*> &Worklist,
956 Loop *L) {
957 if (pred_begin(BB) != pred_end(BB)) {
958 // This block isn't dead, since an edge to BB was just removed, see if there
959 // are any easy simplifications we can do now.
960 if (BasicBlock *Pred = BB->getSinglePredecessor()) {
961 // If it has one pred, fold phi nodes in BB.
962 while (isa<PHINode>(BB->begin()))
963 ReplaceUsesOfWith(BB->begin(),
964 cast<PHINode>(BB->begin())->getIncomingValue(0),
965 Worklist, L, LPM);
966
967 // If this is the header of a loop and the only pred is the latch, we now
968 // have an unreachable loop.
969 if (Loop *L = LI->getLoopFor(BB))
970 if (loopHeader == BB && L->contains(Pred)) {
971 // Remove the branch from the latch to the header block, this makes
972 // the header dead, which will make the latch dead (because the header
973 // dominates the latch).
974 LPM->deleteSimpleAnalysisValue(Pred->getTerminator(), L);
975 Pred->getTerminator()->eraseFromParent();
976 new UnreachableInst(BB->getContext(), Pred);
977
978 // The loop is now broken, remove it from LI.
979 RemoveLoopFromHierarchy(L);
980
981 // Reprocess the header, which now IS dead.
982 RemoveBlockIfDead(BB, Worklist, L);
983 return;
984 }
985
986 // If pred ends in a uncond branch, add uncond branch to worklist so that
987 // the two blocks will get merged.
988 if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator()))
989 if (BI->isUnconditional())
990 Worklist.push_back(BI);
991 }
992 return;
993 }
994
995 DEBUG(dbgs() << "Nuking dead block: " << *BB);
996
997 // Remove the instructions in the basic block from the worklist.
998 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
999 RemoveFromWorklist(I, Worklist);
1000
1001 // Anything that uses the instructions in this basic block should have their
1002 // uses replaced with undefs.
1003 // If I is not void type then replaceAllUsesWith undef.
1004 // This allows ValueHandlers and custom metadata to adjust itself.
1005 if (!I->getType()->isVoidTy())
1006 I->replaceAllUsesWith(UndefValue::get(I->getType()));
1007 }
1008
1009 // If this is the edge to the header block for a loop, remove the loop and
1010 // promote all subloops.
1011 if (Loop *BBLoop = LI->getLoopFor(BB)) {
1012 if (BBLoop->getLoopLatch() == BB) {
1013 RemoveLoopFromHierarchy(BBLoop);
1014 if (currentLoop == BBLoop) {
1015 currentLoop = 0;
1016 redoLoop = false;
1017 }
1018 }
1019 }
1020
1021 // Remove the block from the loop info, which removes it from any loops it
1022 // was in.
1023 LI->removeBlock(BB);
1024
1025
1026 // Remove phi node entries in successors for this block.
1027 TerminatorInst *TI = BB->getTerminator();
1028 SmallVector<BasicBlock*, 4> Succs;
1029 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1030 Succs.push_back(TI->getSuccessor(i));
1031 TI->getSuccessor(i)->removePredecessor(BB);
1032 }
1033
1034 // Unique the successors, remove anything with multiple uses.
1035 array_pod_sort(Succs.begin(), Succs.end());
1036 Succs.erase(std::unique(Succs.begin(), Succs.end()), Succs.end());
1037
1038 // Remove the basic block, including all of the instructions contained in it.
1039 LPM->deleteSimpleAnalysisValue(BB, L);
1040 BB->eraseFromParent();
1041 // Remove successor blocks here that are not dead, so that we know we only
1042 // have dead blocks in this list. Nondead blocks have a way of becoming dead,
1043 // then getting removed before we revisit them, which is badness.
1044 //
1045 for (unsigned i = 0; i != Succs.size(); ++i)
1046 if (pred_begin(Succs[i]) != pred_end(Succs[i])) {
1047 // One exception is loop headers. If this block was the preheader for a
1048 // loop, then we DO want to visit the loop so the loop gets deleted.
1049 // We know that if the successor is a loop header, that this loop had to
1050 // be the preheader: the case where this was the latch block was handled
1051 // above and headers can only have two predecessors.
1052 if (!LI->isLoopHeader(Succs[i])) {
1053 Succs.erase(Succs.begin()+i);
1054 --i;
1055 }
1056 }
1057
1058 for (unsigned i = 0, e = Succs.size(); i != e; ++i)
1059 RemoveBlockIfDead(Succs[i], Worklist, L);
1060 }
1061
1062 /// RemoveLoopFromHierarchy - We have discovered that the specified loop has
1063 /// become unwrapped, either because the backedge was deleted, or because the
1064 /// edge into the header was removed. If the edge into the header from the
1065 /// latch block was removed, the loop is unwrapped but subloops are still alive,
1066 /// so they just reparent loops. If the loops are actually dead, they will be
1067 /// removed later.
RemoveLoopFromHierarchy(Loop * L)1068 void LoopUnswitch::RemoveLoopFromHierarchy(Loop *L) {
1069 LPM->deleteLoopFromQueue(L);
1070 RemoveLoopFromWorklist(L);
1071 }
1072
1073 // RewriteLoopBodyWithConditionConstant - We know either that the value LIC has
1074 // the value specified by Val in the specified loop, or we know it does NOT have
1075 // that value. Rewrite any uses of LIC or of properties correlated to it.
RewriteLoopBodyWithConditionConstant(Loop * L,Value * LIC,Constant * Val,bool IsEqual)1076 void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
1077 Constant *Val,
1078 bool IsEqual) {
1079 assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
1080
1081 // FIXME: Support correlated properties, like:
1082 // for (...)
1083 // if (li1 < li2)
1084 // ...
1085 // if (li1 > li2)
1086 // ...
1087
1088 // FOLD boolean conditions (X|LIC), (X&LIC). Fold conditional branches,
1089 // selects, switches.
1090 std::vector<Instruction*> Worklist;
1091 LLVMContext &Context = Val->getContext();
1092
1093
1094 // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
1095 // in the loop with the appropriate one directly.
1096 if (IsEqual || (isa<ConstantInt>(Val) &&
1097 Val->getType()->isIntegerTy(1))) {
1098 Value *Replacement;
1099 if (IsEqual)
1100 Replacement = Val;
1101 else
1102 Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()),
1103 !cast<ConstantInt>(Val)->getZExtValue());
1104
1105 for (Value::use_iterator UI = LIC->use_begin(), E = LIC->use_end();
1106 UI != E; ++UI) {
1107 Instruction *U = dyn_cast<Instruction>(*UI);
1108 if (!U || !L->contains(U))
1109 continue;
1110 Worklist.push_back(U);
1111 }
1112
1113 for (std::vector<Instruction*>::iterator UI = Worklist.begin();
1114 UI != Worklist.end(); ++UI)
1115 (*UI)->replaceUsesOfWith(LIC, Replacement);
1116
1117 SimplifyCode(Worklist, L);
1118 return;
1119 }
1120
1121 // Otherwise, we don't know the precise value of LIC, but we do know that it
1122 // is certainly NOT "Val". As such, simplify any uses in the loop that we
1123 // can. This case occurs when we unswitch switch statements.
1124 for (Value::use_iterator UI = LIC->use_begin(), E = LIC->use_end();
1125 UI != E; ++UI) {
1126 Instruction *U = dyn_cast<Instruction>(*UI);
1127 if (!U || !L->contains(U))
1128 continue;
1129
1130 Worklist.push_back(U);
1131
1132 // TODO: We could do other simplifications, for example, turning
1133 // 'icmp eq LIC, Val' -> false.
1134
1135 // If we know that LIC is not Val, use this info to simplify code.
1136 SwitchInst *SI = dyn_cast<SwitchInst>(U);
1137 if (SI == 0 || !isa<ConstantInt>(Val)) continue;
1138
1139 SwitchInst::CaseIt DeadCase = SI->findCaseValue(cast<ConstantInt>(Val));
1140 // Default case is live for multiple values.
1141 if (DeadCase == SI->case_default()) continue;
1142
1143 // Found a dead case value. Don't remove PHI nodes in the
1144 // successor if they become single-entry, those PHI nodes may
1145 // be in the Users list.
1146
1147 BasicBlock *Switch = SI->getParent();
1148 BasicBlock *SISucc = DeadCase.getCaseSuccessor();
1149 BasicBlock *Latch = L->getLoopLatch();
1150
1151 BranchesInfo.setUnswitched(SI, Val);
1152
1153 if (!SI->findCaseDest(SISucc)) continue; // Edge is critical.
1154 // If the DeadCase successor dominates the loop latch, then the
1155 // transformation isn't safe since it will delete the sole predecessor edge
1156 // to the latch.
1157 if (Latch && DT->dominates(SISucc, Latch))
1158 continue;
1159
1160 // FIXME: This is a hack. We need to keep the successor around
1161 // and hooked up so as to preserve the loop structure, because
1162 // trying to update it is complicated. So instead we preserve the
1163 // loop structure and put the block on a dead code path.
1164 SplitEdge(Switch, SISucc, this);
1165 // Compute the successors instead of relying on the return value
1166 // of SplitEdge, since it may have split the switch successor
1167 // after PHI nodes.
1168 BasicBlock *NewSISucc = DeadCase.getCaseSuccessor();
1169 BasicBlock *OldSISucc = *succ_begin(NewSISucc);
1170 // Create an "unreachable" destination.
1171 BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable",
1172 Switch->getParent(),
1173 OldSISucc);
1174 new UnreachableInst(Context, Abort);
1175 // Force the new case destination to branch to the "unreachable"
1176 // block while maintaining a (dead) CFG edge to the old block.
1177 NewSISucc->getTerminator()->eraseFromParent();
1178 BranchInst::Create(Abort, OldSISucc,
1179 ConstantInt::getTrue(Context), NewSISucc);
1180 // Release the PHI operands for this edge.
1181 for (BasicBlock::iterator II = NewSISucc->begin();
1182 PHINode *PN = dyn_cast<PHINode>(II); ++II)
1183 PN->setIncomingValue(PN->getBasicBlockIndex(Switch),
1184 UndefValue::get(PN->getType()));
1185 // Tell the domtree about the new block. We don't fully update the
1186 // domtree here -- instead we force it to do a full recomputation
1187 // after the pass is complete -- but we do need to inform it of
1188 // new blocks.
1189 if (DT)
1190 DT->addNewBlock(Abort, NewSISucc);
1191 }
1192
1193 SimplifyCode(Worklist, L);
1194 }
1195
1196 /// SimplifyCode - Okay, now that we have simplified some instructions in the
1197 /// loop, walk over it and constant prop, dce, and fold control flow where
1198 /// possible. Note that this is effectively a very simple loop-structure-aware
1199 /// optimizer. During processing of this loop, L could very well be deleted, so
1200 /// it must not be used.
1201 ///
1202 /// FIXME: When the loop optimizer is more mature, separate this out to a new
1203 /// pass.
1204 ///
SimplifyCode(std::vector<Instruction * > & Worklist,Loop * L)1205 void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
1206 while (!Worklist.empty()) {
1207 Instruction *I = Worklist.back();
1208 Worklist.pop_back();
1209
1210 // Simple DCE.
1211 if (isInstructionTriviallyDead(I)) {
1212 DEBUG(dbgs() << "Remove dead instruction '" << *I);
1213
1214 // Add uses to the worklist, which may be dead now.
1215 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1216 if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
1217 Worklist.push_back(Use);
1218 LPM->deleteSimpleAnalysisValue(I, L);
1219 RemoveFromWorklist(I, Worklist);
1220 I->eraseFromParent();
1221 ++NumSimplify;
1222 continue;
1223 }
1224
1225 // See if instruction simplification can hack this up. This is common for
1226 // things like "select false, X, Y" after unswitching made the condition be
1227 // 'false'.
1228 if (Value *V = SimplifyInstruction(I, 0, 0, DT))
1229 if (LI->replacementPreservesLCSSAForm(I, V)) {
1230 ReplaceUsesOfWith(I, V, Worklist, L, LPM);
1231 continue;
1232 }
1233
1234 // Special case hacks that appear commonly in unswitched code.
1235 if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1236 if (BI->isUnconditional()) {
1237 // If BI's parent is the only pred of the successor, fold the two blocks
1238 // together.
1239 BasicBlock *Pred = BI->getParent();
1240 BasicBlock *Succ = BI->getSuccessor(0);
1241 BasicBlock *SinglePred = Succ->getSinglePredecessor();
1242 if (!SinglePred) continue; // Nothing to do.
1243 assert(SinglePred == Pred && "CFG broken");
1244
1245 DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- "
1246 << Succ->getName() << "\n");
1247
1248 // Resolve any single entry PHI nodes in Succ.
1249 while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
1250 ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM);
1251
1252 // If Succ has any successors with PHI nodes, update them to have
1253 // entries coming from Pred instead of Succ.
1254 Succ->replaceAllUsesWith(Pred);
1255
1256 // Move all of the successor contents from Succ to Pred.
1257 Pred->getInstList().splice(BI, Succ->getInstList(), Succ->begin(),
1258 Succ->end());
1259 LPM->deleteSimpleAnalysisValue(BI, L);
1260 BI->eraseFromParent();
1261 RemoveFromWorklist(BI, Worklist);
1262
1263 // Remove Succ from the loop tree.
1264 LI->removeBlock(Succ);
1265 LPM->deleteSimpleAnalysisValue(Succ, L);
1266 Succ->eraseFromParent();
1267 ++NumSimplify;
1268 continue;
1269 }
1270
1271 if (ConstantInt *CB = dyn_cast<ConstantInt>(BI->getCondition())){
1272 // Conditional branch. Turn it into an unconditional branch, then
1273 // remove dead blocks.
1274 continue; // FIXME: Enable.
1275
1276 DEBUG(dbgs() << "Folded branch: " << *BI);
1277 BasicBlock *DeadSucc = BI->getSuccessor(CB->getZExtValue());
1278 BasicBlock *LiveSucc = BI->getSuccessor(!CB->getZExtValue());
1279 DeadSucc->removePredecessor(BI->getParent(), true);
1280 Worklist.push_back(BranchInst::Create(LiveSucc, BI));
1281 LPM->deleteSimpleAnalysisValue(BI, L);
1282 BI->eraseFromParent();
1283 RemoveFromWorklist(BI, Worklist);
1284 ++NumSimplify;
1285
1286 RemoveBlockIfDead(DeadSucc, Worklist, L);
1287 }
1288 continue;
1289 }
1290 }
1291 }
1292