1 //===-- Local.cpp - Functions to perform local transformations ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform various local transformations to the
11 // program.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/Constants.h"
17 #include "llvm/GlobalAlias.h"
18 #include "llvm/GlobalVariable.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/Intrinsics.h"
22 #include "llvm/IntrinsicInst.h"
23 #include "llvm/Metadata.h"
24 #include "llvm/Operator.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/Analysis/DebugInfo.h"
28 #include "llvm/Analysis/DIBuilder.h"
29 #include "llvm/Analysis/Dominators.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/MemoryBuiltins.h"
32 #include "llvm/Analysis/ProfileInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Target/TargetData.h"
35 #include "llvm/Support/CFG.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/GetElementPtrTypeIterator.h"
38 #include "llvm/Support/IRBuilder.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/ValueHandle.h"
41 #include "llvm/Support/raw_ostream.h"
42 using namespace llvm;
43
44 //===----------------------------------------------------------------------===//
45 // Local constant propagation.
46 //
47
48 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
49 /// constant value, convert it into an unconditional branch to the constant
50 /// destination. This is a nontrivial operation because the successors of this
51 /// basic block must have their PHI nodes updated.
52 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
53 /// conditions and indirectbr addresses this might make dead if
54 /// DeleteDeadConditions is true.
ConstantFoldTerminator(BasicBlock * BB,bool DeleteDeadConditions)55 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions) {
56 TerminatorInst *T = BB->getTerminator();
57 IRBuilder<> Builder(T);
58
59 // Branch - See if we are conditional jumping on constant
60 if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
61 if (BI->isUnconditional()) return false; // Can't optimize uncond branch
62 BasicBlock *Dest1 = BI->getSuccessor(0);
63 BasicBlock *Dest2 = BI->getSuccessor(1);
64
65 if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
66 // Are we branching on constant?
67 // YES. Change to unconditional branch...
68 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
69 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
70
71 //cerr << "Function: " << T->getParent()->getParent()
72 // << "\nRemoving branch from " << T->getParent()
73 // << "\n\nTo: " << OldDest << endl;
74
75 // Let the basic block know that we are letting go of it. Based on this,
76 // it will adjust it's PHI nodes.
77 OldDest->removePredecessor(BB);
78
79 // Replace the conditional branch with an unconditional one.
80 Builder.CreateBr(Destination);
81 BI->eraseFromParent();
82 return true;
83 }
84
85 if (Dest2 == Dest1) { // Conditional branch to same location?
86 // This branch matches something like this:
87 // br bool %cond, label %Dest, label %Dest
88 // and changes it into: br label %Dest
89
90 // Let the basic block know that we are letting go of one copy of it.
91 assert(BI->getParent() && "Terminator not inserted in block!");
92 Dest1->removePredecessor(BI->getParent());
93
94 // Replace the conditional branch with an unconditional one.
95 Builder.CreateBr(Dest1);
96 Value *Cond = BI->getCondition();
97 BI->eraseFromParent();
98 if (DeleteDeadConditions)
99 RecursivelyDeleteTriviallyDeadInstructions(Cond);
100 return true;
101 }
102 return false;
103 }
104
105 if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
106 // If we are switching on a constant, we can convert the switch into a
107 // single branch instruction!
108 ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
109 BasicBlock *TheOnlyDest = SI->getDefaultDest();
110 BasicBlock *DefaultDest = TheOnlyDest;
111
112 // Figure out which case it goes to.
113 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
114 i != e; ++i) {
115 // Found case matching a constant operand?
116 if (i.getCaseValue() == CI) {
117 TheOnlyDest = i.getCaseSuccessor();
118 break;
119 }
120
121 // Check to see if this branch is going to the same place as the default
122 // dest. If so, eliminate it as an explicit compare.
123 if (i.getCaseSuccessor() == DefaultDest) {
124 // Remove this entry.
125 DefaultDest->removePredecessor(SI->getParent());
126 SI->removeCase(i);
127 --i; --e;
128 continue;
129 }
130
131 // Otherwise, check to see if the switch only branches to one destination.
132 // We do this by reseting "TheOnlyDest" to null when we find two non-equal
133 // destinations.
134 if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = 0;
135 }
136
137 if (CI && !TheOnlyDest) {
138 // Branching on a constant, but not any of the cases, go to the default
139 // successor.
140 TheOnlyDest = SI->getDefaultDest();
141 }
142
143 // If we found a single destination that we can fold the switch into, do so
144 // now.
145 if (TheOnlyDest) {
146 // Insert the new branch.
147 Builder.CreateBr(TheOnlyDest);
148 BasicBlock *BB = SI->getParent();
149
150 // Remove entries from PHI nodes which we no longer branch to...
151 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
152 // Found case matching a constant operand?
153 BasicBlock *Succ = SI->getSuccessor(i);
154 if (Succ == TheOnlyDest)
155 TheOnlyDest = 0; // Don't modify the first branch to TheOnlyDest
156 else
157 Succ->removePredecessor(BB);
158 }
159
160 // Delete the old switch.
161 Value *Cond = SI->getCondition();
162 SI->eraseFromParent();
163 if (DeleteDeadConditions)
164 RecursivelyDeleteTriviallyDeadInstructions(Cond);
165 return true;
166 }
167
168 if (SI->getNumCases() == 1) {
169 // Otherwise, we can fold this switch into a conditional branch
170 // instruction if it has only one non-default destination.
171 SwitchInst::CaseIt FirstCase = SI->case_begin();
172 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
173 FirstCase.getCaseValue(), "cond");
174
175 // Insert the new branch.
176 Builder.CreateCondBr(Cond, FirstCase.getCaseSuccessor(),
177 SI->getDefaultDest());
178
179 // Delete the old switch.
180 SI->eraseFromParent();
181 return true;
182 }
183 return false;
184 }
185
186 if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
187 // indirectbr blockaddress(@F, @BB) -> br label @BB
188 if (BlockAddress *BA =
189 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
190 BasicBlock *TheOnlyDest = BA->getBasicBlock();
191 // Insert the new branch.
192 Builder.CreateBr(TheOnlyDest);
193
194 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
195 if (IBI->getDestination(i) == TheOnlyDest)
196 TheOnlyDest = 0;
197 else
198 IBI->getDestination(i)->removePredecessor(IBI->getParent());
199 }
200 Value *Address = IBI->getAddress();
201 IBI->eraseFromParent();
202 if (DeleteDeadConditions)
203 RecursivelyDeleteTriviallyDeadInstructions(Address);
204
205 // If we didn't find our destination in the IBI successor list, then we
206 // have undefined behavior. Replace the unconditional branch with an
207 // 'unreachable' instruction.
208 if (TheOnlyDest) {
209 BB->getTerminator()->eraseFromParent();
210 new UnreachableInst(BB->getContext(), BB);
211 }
212
213 return true;
214 }
215 }
216
217 return false;
218 }
219
220
221 //===----------------------------------------------------------------------===//
222 // Local dead code elimination.
223 //
224
225 /// isInstructionTriviallyDead - Return true if the result produced by the
226 /// instruction is not used, and the instruction has no side effects.
227 ///
isInstructionTriviallyDead(Instruction * I)228 bool llvm::isInstructionTriviallyDead(Instruction *I) {
229 if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
230
231 // We don't want the landingpad instruction removed by anything this general.
232 if (isa<LandingPadInst>(I))
233 return false;
234
235 // We don't want debug info removed by anything this general, unless
236 // debug info is empty.
237 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
238 if (DDI->getAddress())
239 return false;
240 return true;
241 }
242 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
243 if (DVI->getValue())
244 return false;
245 return true;
246 }
247
248 if (!I->mayHaveSideEffects()) return true;
249
250 // Special case intrinsics that "may have side effects" but can be deleted
251 // when dead.
252 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
253 // Safe to delete llvm.stacksave if dead.
254 if (II->getIntrinsicID() == Intrinsic::stacksave)
255 return true;
256
257 // Lifetime intrinsics are dead when their right-hand is undef.
258 if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
259 II->getIntrinsicID() == Intrinsic::lifetime_end)
260 return isa<UndefValue>(II->getArgOperand(1));
261 }
262
263 if (extractMallocCall(I)) return true;
264
265 if (CallInst *CI = isFreeCall(I))
266 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
267 return C->isNullValue() || isa<UndefValue>(C);
268
269 return false;
270 }
271
272 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
273 /// trivially dead instruction, delete it. If that makes any of its operands
274 /// trivially dead, delete them too, recursively. Return true if any
275 /// instructions were deleted.
RecursivelyDeleteTriviallyDeadInstructions(Value * V)276 bool llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V) {
277 Instruction *I = dyn_cast<Instruction>(V);
278 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I))
279 return false;
280
281 SmallVector<Instruction*, 16> DeadInsts;
282 DeadInsts.push_back(I);
283
284 do {
285 I = DeadInsts.pop_back_val();
286
287 // Null out all of the instruction's operands to see if any operand becomes
288 // dead as we go.
289 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
290 Value *OpV = I->getOperand(i);
291 I->setOperand(i, 0);
292
293 if (!OpV->use_empty()) continue;
294
295 // If the operand is an instruction that became dead as we nulled out the
296 // operand, and if it is 'trivially' dead, delete it in a future loop
297 // iteration.
298 if (Instruction *OpI = dyn_cast<Instruction>(OpV))
299 if (isInstructionTriviallyDead(OpI))
300 DeadInsts.push_back(OpI);
301 }
302
303 I->eraseFromParent();
304 } while (!DeadInsts.empty());
305
306 return true;
307 }
308
309 /// areAllUsesEqual - Check whether the uses of a value are all the same.
310 /// This is similar to Instruction::hasOneUse() except this will also return
311 /// true when there are no uses or multiple uses that all refer to the same
312 /// value.
areAllUsesEqual(Instruction * I)313 static bool areAllUsesEqual(Instruction *I) {
314 Value::use_iterator UI = I->use_begin();
315 Value::use_iterator UE = I->use_end();
316 if (UI == UE)
317 return true;
318
319 User *TheUse = *UI;
320 for (++UI; UI != UE; ++UI) {
321 if (*UI != TheUse)
322 return false;
323 }
324 return true;
325 }
326
327 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
328 /// dead PHI node, due to being a def-use chain of single-use nodes that
329 /// either forms a cycle or is terminated by a trivially dead instruction,
330 /// delete it. If that makes any of its operands trivially dead, delete them
331 /// too, recursively. Return true if a change was made.
RecursivelyDeleteDeadPHINode(PHINode * PN)332 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) {
333 SmallPtrSet<Instruction*, 4> Visited;
334 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
335 I = cast<Instruction>(*I->use_begin())) {
336 if (I->use_empty())
337 return RecursivelyDeleteTriviallyDeadInstructions(I);
338
339 // If we find an instruction more than once, we're on a cycle that
340 // won't prove fruitful.
341 if (!Visited.insert(I)) {
342 // Break the cycle and delete the instruction and its operands.
343 I->replaceAllUsesWith(UndefValue::get(I->getType()));
344 (void)RecursivelyDeleteTriviallyDeadInstructions(I);
345 return true;
346 }
347 }
348 return false;
349 }
350
351 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
352 /// simplify any instructions in it and recursively delete dead instructions.
353 ///
354 /// This returns true if it changed the code, note that it can delete
355 /// instructions in other blocks as well in this block.
SimplifyInstructionsInBlock(BasicBlock * BB,const TargetData * TD)356 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const TargetData *TD) {
357 bool MadeChange = false;
358
359 #ifndef NDEBUG
360 // In debug builds, ensure that the terminator of the block is never replaced
361 // or deleted by these simplifications. The idea of simplification is that it
362 // cannot introduce new instructions, and there is no way to replace the
363 // terminator of a block without introducing a new instruction.
364 AssertingVH<Instruction> TerminatorVH(--BB->end());
365 #endif
366
367 for (BasicBlock::iterator BI = BB->begin(), E = --BB->end(); BI != E; ) {
368 assert(!BI->isTerminator());
369 Instruction *Inst = BI++;
370
371 WeakVH BIHandle(BI);
372 if (recursivelySimplifyInstruction(Inst, TD)) {
373 MadeChange = true;
374 if (BIHandle != BI)
375 BI = BB->begin();
376 continue;
377 }
378
379 MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst);
380 if (BIHandle != BI)
381 BI = BB->begin();
382 }
383 return MadeChange;
384 }
385
386 //===----------------------------------------------------------------------===//
387 // Control Flow Graph Restructuring.
388 //
389
390
391 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
392 /// method is called when we're about to delete Pred as a predecessor of BB. If
393 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
394 ///
395 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
396 /// nodes that collapse into identity values. For example, if we have:
397 /// x = phi(1, 0, 0, 0)
398 /// y = and x, z
399 ///
400 /// .. and delete the predecessor corresponding to the '1', this will attempt to
401 /// recursively fold the and to 0.
RemovePredecessorAndSimplify(BasicBlock * BB,BasicBlock * Pred,TargetData * TD)402 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
403 TargetData *TD) {
404 // This only adjusts blocks with PHI nodes.
405 if (!isa<PHINode>(BB->begin()))
406 return;
407
408 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
409 // them down. This will leave us with single entry phi nodes and other phis
410 // that can be removed.
411 BB->removePredecessor(Pred, true);
412
413 WeakVH PhiIt = &BB->front();
414 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
415 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
416 Value *OldPhiIt = PhiIt;
417
418 if (!recursivelySimplifyInstruction(PN, TD))
419 continue;
420
421 // If recursive simplification ended up deleting the next PHI node we would
422 // iterate to, then our iterator is invalid, restart scanning from the top
423 // of the block.
424 if (PhiIt != OldPhiIt) PhiIt = &BB->front();
425 }
426 }
427
428
429 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
430 /// predecessor is known to have one successor (DestBB!). Eliminate the edge
431 /// between them, moving the instructions in the predecessor into DestBB and
432 /// deleting the predecessor block.
433 ///
MergeBasicBlockIntoOnlyPred(BasicBlock * DestBB,Pass * P)434 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) {
435 // If BB has single-entry PHI nodes, fold them.
436 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
437 Value *NewVal = PN->getIncomingValue(0);
438 // Replace self referencing PHI with undef, it must be dead.
439 if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
440 PN->replaceAllUsesWith(NewVal);
441 PN->eraseFromParent();
442 }
443
444 BasicBlock *PredBB = DestBB->getSinglePredecessor();
445 assert(PredBB && "Block doesn't have a single predecessor!");
446
447 // Zap anything that took the address of DestBB. Not doing this will give the
448 // address an invalid value.
449 if (DestBB->hasAddressTaken()) {
450 BlockAddress *BA = BlockAddress::get(DestBB);
451 Constant *Replacement =
452 ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
453 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
454 BA->getType()));
455 BA->destroyConstant();
456 }
457
458 // Anything that branched to PredBB now branches to DestBB.
459 PredBB->replaceAllUsesWith(DestBB);
460
461 // Splice all the instructions from PredBB to DestBB.
462 PredBB->getTerminator()->eraseFromParent();
463 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
464
465 if (P) {
466 DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>();
467 if (DT) {
468 BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock();
469 DT->changeImmediateDominator(DestBB, PredBBIDom);
470 DT->eraseNode(PredBB);
471 }
472 ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
473 if (PI) {
474 PI->replaceAllUses(PredBB, DestBB);
475 PI->removeEdge(ProfileInfo::getEdge(PredBB, DestBB));
476 }
477 }
478 // Nuke BB.
479 PredBB->eraseFromParent();
480 }
481
482 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
483 /// almost-empty BB ending in an unconditional branch to Succ, into succ.
484 ///
485 /// Assumption: Succ is the single successor for BB.
486 ///
CanPropagatePredecessorsForPHIs(BasicBlock * BB,BasicBlock * Succ)487 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
488 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
489
490 DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
491 << Succ->getName() << "\n");
492 // Shortcut, if there is only a single predecessor it must be BB and merging
493 // is always safe
494 if (Succ->getSinglePredecessor()) return true;
495
496 // Make a list of the predecessors of BB
497 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
498
499 // Look at all the phi nodes in Succ, to see if they present a conflict when
500 // merging these blocks
501 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
502 PHINode *PN = cast<PHINode>(I);
503
504 // If the incoming value from BB is again a PHINode in
505 // BB which has the same incoming value for *PI as PN does, we can
506 // merge the phi nodes and then the blocks can still be merged
507 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
508 if (BBPN && BBPN->getParent() == BB) {
509 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
510 BasicBlock *IBB = PN->getIncomingBlock(PI);
511 if (BBPreds.count(IBB) &&
512 BBPN->getIncomingValueForBlock(IBB) != PN->getIncomingValue(PI)) {
513 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
514 << Succ->getName() << " is conflicting with "
515 << BBPN->getName() << " with regard to common predecessor "
516 << IBB->getName() << "\n");
517 return false;
518 }
519 }
520 } else {
521 Value* Val = PN->getIncomingValueForBlock(BB);
522 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
523 // See if the incoming value for the common predecessor is equal to the
524 // one for BB, in which case this phi node will not prevent the merging
525 // of the block.
526 BasicBlock *IBB = PN->getIncomingBlock(PI);
527 if (BBPreds.count(IBB) && Val != PN->getIncomingValue(PI)) {
528 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
529 << Succ->getName() << " is conflicting with regard to common "
530 << "predecessor " << IBB->getName() << "\n");
531 return false;
532 }
533 }
534 }
535 }
536
537 return true;
538 }
539
540 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
541 /// unconditional branch, and contains no instructions other than PHI nodes,
542 /// potential side-effect free intrinsics and the branch. If possible,
543 /// eliminate BB by rewriting all the predecessors to branch to the successor
544 /// block and return true. If we can't transform, return false.
TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock * BB)545 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
546 assert(BB != &BB->getParent()->getEntryBlock() &&
547 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
548
549 // We can't eliminate infinite loops.
550 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
551 if (BB == Succ) return false;
552
553 // Check to see if merging these blocks would cause conflicts for any of the
554 // phi nodes in BB or Succ. If not, we can safely merge.
555 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
556
557 // Check for cases where Succ has multiple predecessors and a PHI node in BB
558 // has uses which will not disappear when the PHI nodes are merged. It is
559 // possible to handle such cases, but difficult: it requires checking whether
560 // BB dominates Succ, which is non-trivial to calculate in the case where
561 // Succ has multiple predecessors. Also, it requires checking whether
562 // constructing the necessary self-referential PHI node doesn't intoduce any
563 // conflicts; this isn't too difficult, but the previous code for doing this
564 // was incorrect.
565 //
566 // Note that if this check finds a live use, BB dominates Succ, so BB is
567 // something like a loop pre-header (or rarely, a part of an irreducible CFG);
568 // folding the branch isn't profitable in that case anyway.
569 if (!Succ->getSinglePredecessor()) {
570 BasicBlock::iterator BBI = BB->begin();
571 while (isa<PHINode>(*BBI)) {
572 for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
573 UI != E; ++UI) {
574 if (PHINode* PN = dyn_cast<PHINode>(*UI)) {
575 if (PN->getIncomingBlock(UI) != BB)
576 return false;
577 } else {
578 return false;
579 }
580 }
581 ++BBI;
582 }
583 }
584
585 DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
586
587 if (isa<PHINode>(Succ->begin())) {
588 // If there is more than one pred of succ, and there are PHI nodes in
589 // the successor, then we need to add incoming edges for the PHI nodes
590 //
591 const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
592
593 // Loop over all of the PHI nodes in the successor of BB.
594 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
595 PHINode *PN = cast<PHINode>(I);
596 Value *OldVal = PN->removeIncomingValue(BB, false);
597 assert(OldVal && "No entry in PHI for Pred BB!");
598
599 // If this incoming value is one of the PHI nodes in BB, the new entries
600 // in the PHI node are the entries from the old PHI.
601 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
602 PHINode *OldValPN = cast<PHINode>(OldVal);
603 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
604 // Note that, since we are merging phi nodes and BB and Succ might
605 // have common predecessors, we could end up with a phi node with
606 // identical incoming branches. This will be cleaned up later (and
607 // will trigger asserts if we try to clean it up now, without also
608 // simplifying the corresponding conditional branch).
609 PN->addIncoming(OldValPN->getIncomingValue(i),
610 OldValPN->getIncomingBlock(i));
611 } else {
612 // Add an incoming value for each of the new incoming values.
613 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i)
614 PN->addIncoming(OldVal, BBPreds[i]);
615 }
616 }
617 }
618
619 if (Succ->getSinglePredecessor()) {
620 // BB is the only predecessor of Succ, so Succ will end up with exactly
621 // the same predecessors BB had.
622
623 // Copy over any phi, debug or lifetime instruction.
624 BB->getTerminator()->eraseFromParent();
625 Succ->getInstList().splice(Succ->getFirstNonPHI(), BB->getInstList());
626 } else {
627 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
628 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
629 assert(PN->use_empty() && "There shouldn't be any uses here!");
630 PN->eraseFromParent();
631 }
632 }
633
634 // Everything that jumped to BB now goes to Succ.
635 BB->replaceAllUsesWith(Succ);
636 if (!Succ->hasName()) Succ->takeName(BB);
637 BB->eraseFromParent(); // Delete the old basic block.
638 return true;
639 }
640
641 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
642 /// nodes in this block. This doesn't try to be clever about PHI nodes
643 /// which differ only in the order of the incoming values, but instcombine
644 /// orders them so it usually won't matter.
645 ///
EliminateDuplicatePHINodes(BasicBlock * BB)646 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
647 bool Changed = false;
648
649 // This implementation doesn't currently consider undef operands
650 // specially. Theoretically, two phis which are identical except for
651 // one having an undef where the other doesn't could be collapsed.
652
653 // Map from PHI hash values to PHI nodes. If multiple PHIs have
654 // the same hash value, the element is the first PHI in the
655 // linked list in CollisionMap.
656 DenseMap<uintptr_t, PHINode *> HashMap;
657
658 // Maintain linked lists of PHI nodes with common hash values.
659 DenseMap<PHINode *, PHINode *> CollisionMap;
660
661 // Examine each PHI.
662 for (BasicBlock::iterator I = BB->begin();
663 PHINode *PN = dyn_cast<PHINode>(I++); ) {
664 // Compute a hash value on the operands. Instcombine will likely have sorted
665 // them, which helps expose duplicates, but we have to check all the
666 // operands to be safe in case instcombine hasn't run.
667 uintptr_t Hash = 0;
668 // This hash algorithm is quite weak as hash functions go, but it seems
669 // to do a good enough job for this particular purpose, and is very quick.
670 for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) {
671 Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I));
672 Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
673 }
674 for (PHINode::block_iterator I = PN->block_begin(), E = PN->block_end();
675 I != E; ++I) {
676 Hash ^= reinterpret_cast<uintptr_t>(static_cast<BasicBlock *>(*I));
677 Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
678 }
679 // Avoid colliding with the DenseMap sentinels ~0 and ~0-1.
680 Hash >>= 1;
681 // If we've never seen this hash value before, it's a unique PHI.
682 std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair =
683 HashMap.insert(std::make_pair(Hash, PN));
684 if (Pair.second) continue;
685 // Otherwise it's either a duplicate or a hash collision.
686 for (PHINode *OtherPN = Pair.first->second; ; ) {
687 if (OtherPN->isIdenticalTo(PN)) {
688 // A duplicate. Replace this PHI with its duplicate.
689 PN->replaceAllUsesWith(OtherPN);
690 PN->eraseFromParent();
691 Changed = true;
692 break;
693 }
694 // A non-duplicate hash collision.
695 DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN);
696 if (I == CollisionMap.end()) {
697 // Set this PHI to be the head of the linked list of colliding PHIs.
698 PHINode *Old = Pair.first->second;
699 Pair.first->second = PN;
700 CollisionMap[PN] = Old;
701 break;
702 }
703 // Procede to the next PHI in the list.
704 OtherPN = I->second;
705 }
706 }
707
708 return Changed;
709 }
710
711 /// enforceKnownAlignment - If the specified pointer points to an object that
712 /// we control, modify the object's alignment to PrefAlign. This isn't
713 /// often possible though. If alignment is important, a more reliable approach
714 /// is to simply align all global variables and allocation instructions to
715 /// their preferred alignment from the beginning.
716 ///
enforceKnownAlignment(Value * V,unsigned Align,unsigned PrefAlign,const TargetData * TD)717 static unsigned enforceKnownAlignment(Value *V, unsigned Align,
718 unsigned PrefAlign, const TargetData *TD) {
719 V = V->stripPointerCasts();
720
721 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
722 // If the preferred alignment is greater than the natural stack alignment
723 // then don't round up. This avoids dynamic stack realignment.
724 if (TD && TD->exceedsNaturalStackAlignment(PrefAlign))
725 return Align;
726 // If there is a requested alignment and if this is an alloca, round up.
727 if (AI->getAlignment() >= PrefAlign)
728 return AI->getAlignment();
729 AI->setAlignment(PrefAlign);
730 return PrefAlign;
731 }
732
733 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
734 // If there is a large requested alignment and we can, bump up the alignment
735 // of the global.
736 if (GV->isDeclaration()) return Align;
737 // If the memory we set aside for the global may not be the memory used by
738 // the final program then it is impossible for us to reliably enforce the
739 // preferred alignment.
740 if (GV->isWeakForLinker()) return Align;
741
742 if (GV->getAlignment() >= PrefAlign)
743 return GV->getAlignment();
744 // We can only increase the alignment of the global if it has no alignment
745 // specified or if it is not assigned a section. If it is assigned a
746 // section, the global could be densely packed with other objects in the
747 // section, increasing the alignment could cause padding issues.
748 if (!GV->hasSection() || GV->getAlignment() == 0)
749 GV->setAlignment(PrefAlign);
750 return GV->getAlignment();
751 }
752
753 return Align;
754 }
755
756 /// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
757 /// we can determine, return it, otherwise return 0. If PrefAlign is specified,
758 /// and it is more than the alignment of the ultimate object, see if we can
759 /// increase the alignment of the ultimate object, making this check succeed.
getOrEnforceKnownAlignment(Value * V,unsigned PrefAlign,const TargetData * TD)760 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
761 const TargetData *TD) {
762 assert(V->getType()->isPointerTy() &&
763 "getOrEnforceKnownAlignment expects a pointer!");
764 unsigned BitWidth = TD ? TD->getPointerSizeInBits() : 64;
765 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
766 ComputeMaskedBits(V, KnownZero, KnownOne, TD);
767 unsigned TrailZ = KnownZero.countTrailingOnes();
768
769 // Avoid trouble with rediculously large TrailZ values, such as
770 // those computed from a null pointer.
771 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
772
773 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
774
775 // LLVM doesn't support alignments larger than this currently.
776 Align = std::min(Align, +Value::MaximumAlignment);
777
778 if (PrefAlign > Align)
779 Align = enforceKnownAlignment(V, Align, PrefAlign, TD);
780
781 // We don't need to make any adjustment.
782 return Align;
783 }
784
785 ///===---------------------------------------------------------------------===//
786 /// Dbg Intrinsic utilities
787 ///
788
789 /// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value
790 /// that has an associated llvm.dbg.decl intrinsic.
ConvertDebugDeclareToDebugValue(DbgDeclareInst * DDI,StoreInst * SI,DIBuilder & Builder)791 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
792 StoreInst *SI, DIBuilder &Builder) {
793 DIVariable DIVar(DDI->getVariable());
794 if (!DIVar.Verify())
795 return false;
796
797 Instruction *DbgVal = NULL;
798 // If an argument is zero extended then use argument directly. The ZExt
799 // may be zapped by an optimization pass in future.
800 Argument *ExtendedArg = NULL;
801 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
802 ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
803 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
804 ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
805 if (ExtendedArg)
806 DbgVal = Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, SI);
807 else
808 DbgVal = Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, SI);
809
810 // Propagate any debug metadata from the store onto the dbg.value.
811 DebugLoc SIDL = SI->getDebugLoc();
812 if (!SIDL.isUnknown())
813 DbgVal->setDebugLoc(SIDL);
814 // Otherwise propagate debug metadata from dbg.declare.
815 else
816 DbgVal->setDebugLoc(DDI->getDebugLoc());
817 return true;
818 }
819
820 /// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value
821 /// that has an associated llvm.dbg.decl intrinsic.
ConvertDebugDeclareToDebugValue(DbgDeclareInst * DDI,LoadInst * LI,DIBuilder & Builder)822 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
823 LoadInst *LI, DIBuilder &Builder) {
824 DIVariable DIVar(DDI->getVariable());
825 if (!DIVar.Verify())
826 return false;
827
828 Instruction *DbgVal =
829 Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0,
830 DIVar, LI);
831
832 // Propagate any debug metadata from the store onto the dbg.value.
833 DebugLoc LIDL = LI->getDebugLoc();
834 if (!LIDL.isUnknown())
835 DbgVal->setDebugLoc(LIDL);
836 // Otherwise propagate debug metadata from dbg.declare.
837 else
838 DbgVal->setDebugLoc(DDI->getDebugLoc());
839 return true;
840 }
841
842 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
843 /// of llvm.dbg.value intrinsics.
LowerDbgDeclare(Function & F)844 bool llvm::LowerDbgDeclare(Function &F) {
845 DIBuilder DIB(*F.getParent());
846 SmallVector<DbgDeclareInst *, 4> Dbgs;
847 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
848 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) {
849 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(BI))
850 Dbgs.push_back(DDI);
851 }
852 if (Dbgs.empty())
853 return false;
854
855 for (SmallVector<DbgDeclareInst *, 4>::iterator I = Dbgs.begin(),
856 E = Dbgs.end(); I != E; ++I) {
857 DbgDeclareInst *DDI = *I;
858 if (AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress())) {
859 bool RemoveDDI = true;
860 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
861 UI != E; ++UI)
862 if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
863 ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
864 else if (LoadInst *LI = dyn_cast<LoadInst>(*UI))
865 ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
866 else
867 RemoveDDI = false;
868 if (RemoveDDI)
869 DDI->eraseFromParent();
870 }
871 }
872 return true;
873 }
874
875 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the
876 /// alloca 'V', if any.
FindAllocaDbgDeclare(Value * V)877 DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) {
878 if (MDNode *DebugNode = MDNode::getIfExists(V->getContext(), V))
879 for (Value::use_iterator UI = DebugNode->use_begin(),
880 E = DebugNode->use_end(); UI != E; ++UI)
881 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
882 return DDI;
883
884 return 0;
885 }
886