• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements some loop unrolling utilities. It does not define any
11 // actual pass or policy, but provides a single function to perform loop
12 // unrolling.
13 //
14 // The process of unrolling can produce extraneous basic blocks linked with
15 // unconditional branches.  This will be corrected in the future.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #define DEBUG_TYPE "loop-unroll"
20 #include "llvm/Transforms/Utils/UnrollLoop.h"
21 #include "llvm/BasicBlock.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/InstructionSimplify.h"
24 #include "llvm/Analysis/LoopIterator.h"
25 #include "llvm/Analysis/LoopPass.h"
26 #include "llvm/Analysis/ScalarEvolution.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
30 #include "llvm/Transforms/Utils/Cloning.h"
31 #include "llvm/Transforms/Utils/Local.h"
32 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
33 using namespace llvm;
34 
35 // TODO: Should these be here or in LoopUnroll?
36 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
37 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
38 
39 /// RemapInstruction - Convert the instruction operands from referencing the
40 /// current values into those specified by VMap.
RemapInstruction(Instruction * I,ValueToValueMapTy & VMap)41 static inline void RemapInstruction(Instruction *I,
42                                     ValueToValueMapTy &VMap) {
43   for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
44     Value *Op = I->getOperand(op);
45     ValueToValueMapTy::iterator It = VMap.find(Op);
46     if (It != VMap.end())
47       I->setOperand(op, It->second);
48   }
49 
50   if (PHINode *PN = dyn_cast<PHINode>(I)) {
51     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
52       ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
53       if (It != VMap.end())
54         PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
55     }
56   }
57 }
58 
59 /// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it
60 /// only has one predecessor, and that predecessor only has one successor.
61 /// The LoopInfo Analysis that is passed will be kept consistent.
62 /// Returns the new combined block.
FoldBlockIntoPredecessor(BasicBlock * BB,LoopInfo * LI,LPPassManager * LPM)63 static BasicBlock *FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI,
64                                             LPPassManager *LPM) {
65   // Merge basic blocks into their predecessor if there is only one distinct
66   // pred, and if there is only one distinct successor of the predecessor, and
67   // if there are no PHI nodes.
68   BasicBlock *OnlyPred = BB->getSinglePredecessor();
69   if (!OnlyPred) return 0;
70 
71   if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
72     return 0;
73 
74   DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred);
75 
76   // Resolve any PHI nodes at the start of the block.  They are all
77   // guaranteed to have exactly one entry if they exist, unless there are
78   // multiple duplicate (but guaranteed to be equal) entries for the
79   // incoming edges.  This occurs when there are multiple edges from
80   // OnlyPred to OnlySucc.
81   FoldSingleEntryPHINodes(BB);
82 
83   // Delete the unconditional branch from the predecessor...
84   OnlyPred->getInstList().pop_back();
85 
86   // Make all PHI nodes that referred to BB now refer to Pred as their
87   // source...
88   BB->replaceAllUsesWith(OnlyPred);
89 
90   // Move all definitions in the successor to the predecessor...
91   OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
92 
93   std::string OldName = BB->getName();
94 
95   // Erase basic block from the function...
96 
97   // ScalarEvolution holds references to loop exit blocks.
98   if (ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>()) {
99     if (Loop *L = LI->getLoopFor(BB))
100       SE->forgetLoop(L);
101   }
102   LI->removeBlock(BB);
103   BB->eraseFromParent();
104 
105   // Inherit predecessor's name if it exists...
106   if (!OldName.empty() && !OnlyPred->hasName())
107     OnlyPred->setName(OldName);
108 
109   return OnlyPred;
110 }
111 
112 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
113 /// if unrolling was successful, or false if the loop was unmodified. Unrolling
114 /// can only fail when the loop's latch block is not terminated by a conditional
115 /// branch instruction. However, if the trip count (and multiple) are not known,
116 /// loop unrolling will mostly produce more code that is no faster.
117 ///
118 /// TripCount is generally defined as the number of times the loop header
119 /// executes. UnrollLoop relaxes the definition to permit early exits: here
120 /// TripCount is the iteration on which control exits LatchBlock if no early
121 /// exits were taken. Note that UnrollLoop assumes that the loop counter test
122 /// terminates LatchBlock in order to remove unnecesssary instances of the
123 /// test. In other words, control may exit the loop prior to TripCount
124 /// iterations via an early branch, but control may not exit the loop from the
125 /// LatchBlock's terminator prior to TripCount iterations.
126 ///
127 /// Similarly, TripMultiple divides the number of times that the LatchBlock may
128 /// execute without exiting the loop.
129 ///
130 /// The LoopInfo Analysis that is passed will be kept consistent.
131 ///
132 /// If a LoopPassManager is passed in, and the loop is fully removed, it will be
133 /// removed from the LoopPassManager as well. LPM can also be NULL.
134 ///
135 /// This utility preserves LoopInfo. If DominatorTree or ScalarEvolution are
136 /// available it must also preserve those analyses.
UnrollLoop(Loop * L,unsigned Count,unsigned TripCount,bool AllowRuntime,unsigned TripMultiple,LoopInfo * LI,LPPassManager * LPM)137 bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
138                       bool AllowRuntime, unsigned TripMultiple,
139                       LoopInfo *LI, LPPassManager *LPM) {
140   BasicBlock *Preheader = L->getLoopPreheader();
141   if (!Preheader) {
142     DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
143     return false;
144   }
145 
146   BasicBlock *LatchBlock = L->getLoopLatch();
147   if (!LatchBlock) {
148     DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
149     return false;
150   }
151 
152   // Loops with indirectbr cannot be cloned.
153   if (!L->isSafeToClone()) {
154     DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
155     return false;
156   }
157 
158   BasicBlock *Header = L->getHeader();
159   BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
160 
161   if (!BI || BI->isUnconditional()) {
162     // The loop-rotate pass can be helpful to avoid this in many cases.
163     DEBUG(dbgs() <<
164              "  Can't unroll; loop not terminated by a conditional branch.\n");
165     return false;
166   }
167 
168   if (Header->hasAddressTaken()) {
169     // The loop-rotate pass can be helpful to avoid this in many cases.
170     DEBUG(dbgs() <<
171           "  Won't unroll loop: address of header block is taken.\n");
172     return false;
173   }
174 
175   if (TripCount != 0)
176     DEBUG(dbgs() << "  Trip Count = " << TripCount << "\n");
177   if (TripMultiple != 1)
178     DEBUG(dbgs() << "  Trip Multiple = " << TripMultiple << "\n");
179 
180   // Effectively "DCE" unrolled iterations that are beyond the tripcount
181   // and will never be executed.
182   if (TripCount != 0 && Count > TripCount)
183     Count = TripCount;
184 
185   // Don't enter the unroll code if there is nothing to do. This way we don't
186   // need to support "partial unrolling by 1".
187   if (TripCount == 0 && Count < 2)
188     return false;
189 
190   assert(Count > 0);
191   assert(TripMultiple > 0);
192   assert(TripCount == 0 || TripCount % TripMultiple == 0);
193 
194   // Are we eliminating the loop control altogether?
195   bool CompletelyUnroll = Count == TripCount;
196 
197   // We assume a run-time trip count if the compiler cannot
198   // figure out the loop trip count and the unroll-runtime
199   // flag is specified.
200   bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime);
201 
202   if (RuntimeTripCount && !UnrollRuntimeLoopProlog(L, Count, LI, LPM))
203     return false;
204 
205   // Notify ScalarEvolution that the loop will be substantially changed,
206   // if not outright eliminated.
207   ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>();
208   if (SE)
209     SE->forgetLoop(L);
210 
211   // If we know the trip count, we know the multiple...
212   unsigned BreakoutTrip = 0;
213   if (TripCount != 0) {
214     BreakoutTrip = TripCount % Count;
215     TripMultiple = 0;
216   } else {
217     // Figure out what multiple to use.
218     BreakoutTrip = TripMultiple =
219       (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
220   }
221 
222   if (CompletelyUnroll) {
223     DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
224           << " with trip count " << TripCount << "!\n");
225   } else {
226     DEBUG(dbgs() << "UNROLLING loop %" << Header->getName()
227           << " by " << Count);
228     if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
229       DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
230     } else if (TripMultiple != 1) {
231       DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
232     } else if (RuntimeTripCount) {
233       DEBUG(dbgs() << " with run-time trip count");
234     }
235     DEBUG(dbgs() << "!\n");
236   }
237 
238   std::vector<BasicBlock*> LoopBlocks = L->getBlocks();
239 
240   bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
241   BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
242 
243   // For the first iteration of the loop, we should use the precloned values for
244   // PHI nodes.  Insert associations now.
245   ValueToValueMapTy LastValueMap;
246   std::vector<PHINode*> OrigPHINode;
247   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
248     OrigPHINode.push_back(cast<PHINode>(I));
249   }
250 
251   std::vector<BasicBlock*> Headers;
252   std::vector<BasicBlock*> Latches;
253   Headers.push_back(Header);
254   Latches.push_back(LatchBlock);
255 
256   // The current on-the-fly SSA update requires blocks to be processed in
257   // reverse postorder so that LastValueMap contains the correct value at each
258   // exit.
259   LoopBlocksDFS DFS(L);
260   DFS.perform(LI);
261 
262   // Stash the DFS iterators before adding blocks to the loop.
263   LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
264   LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
265 
266   for (unsigned It = 1; It != Count; ++It) {
267     std::vector<BasicBlock*> NewBlocks;
268 
269     for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
270       ValueToValueMapTy VMap;
271       BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
272       Header->getParent()->getBasicBlockList().push_back(New);
273 
274       // Loop over all of the PHI nodes in the block, changing them to use the
275       // incoming values from the previous block.
276       if (*BB == Header)
277         for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
278           PHINode *NewPHI = cast<PHINode>(VMap[OrigPHINode[i]]);
279           Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
280           if (Instruction *InValI = dyn_cast<Instruction>(InVal))
281             if (It > 1 && L->contains(InValI))
282               InVal = LastValueMap[InValI];
283           VMap[OrigPHINode[i]] = InVal;
284           New->getInstList().erase(NewPHI);
285         }
286 
287       // Update our running map of newest clones
288       LastValueMap[*BB] = New;
289       for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
290            VI != VE; ++VI)
291         LastValueMap[VI->first] = VI->second;
292 
293       L->addBasicBlockToLoop(New, LI->getBase());
294 
295       // Add phi entries for newly created values to all exit blocks.
296       for (succ_iterator SI = succ_begin(*BB), SE = succ_end(*BB);
297            SI != SE; ++SI) {
298         if (L->contains(*SI))
299           continue;
300         for (BasicBlock::iterator BBI = (*SI)->begin();
301              PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) {
302           Value *Incoming = phi->getIncomingValueForBlock(*BB);
303           ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
304           if (It != LastValueMap.end())
305             Incoming = It->second;
306           phi->addIncoming(Incoming, New);
307         }
308       }
309       // Keep track of new headers and latches as we create them, so that
310       // we can insert the proper branches later.
311       if (*BB == Header)
312         Headers.push_back(New);
313       if (*BB == LatchBlock)
314         Latches.push_back(New);
315 
316       NewBlocks.push_back(New);
317     }
318 
319     // Remap all instructions in the most recent iteration
320     for (unsigned i = 0; i < NewBlocks.size(); ++i)
321       for (BasicBlock::iterator I = NewBlocks[i]->begin(),
322            E = NewBlocks[i]->end(); I != E; ++I)
323         ::RemapInstruction(I, LastValueMap);
324   }
325 
326   // Loop over the PHI nodes in the original block, setting incoming values.
327   for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
328     PHINode *PN = OrigPHINode[i];
329     if (CompletelyUnroll) {
330       PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
331       Header->getInstList().erase(PN);
332     }
333     else if (Count > 1) {
334       Value *InVal = PN->removeIncomingValue(LatchBlock, false);
335       // If this value was defined in the loop, take the value defined by the
336       // last iteration of the loop.
337       if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
338         if (L->contains(InValI))
339           InVal = LastValueMap[InVal];
340       }
341       assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
342       PN->addIncoming(InVal, Latches.back());
343     }
344   }
345 
346   // Now that all the basic blocks for the unrolled iterations are in place,
347   // set up the branches to connect them.
348   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
349     // The original branch was replicated in each unrolled iteration.
350     BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
351 
352     // The branch destination.
353     unsigned j = (i + 1) % e;
354     BasicBlock *Dest = Headers[j];
355     bool NeedConditional = true;
356 
357     if (RuntimeTripCount && j != 0) {
358       NeedConditional = false;
359     }
360 
361     // For a complete unroll, make the last iteration end with a branch
362     // to the exit block.
363     if (CompletelyUnroll && j == 0) {
364       Dest = LoopExit;
365       NeedConditional = false;
366     }
367 
368     // If we know the trip count or a multiple of it, we can safely use an
369     // unconditional branch for some iterations.
370     if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
371       NeedConditional = false;
372     }
373 
374     if (NeedConditional) {
375       // Update the conditional branch's successor for the following
376       // iteration.
377       Term->setSuccessor(!ContinueOnTrue, Dest);
378     } else {
379       // Remove phi operands at this loop exit
380       if (Dest != LoopExit) {
381         BasicBlock *BB = Latches[i];
382         for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
383              SI != SE; ++SI) {
384           if (*SI == Headers[i])
385             continue;
386           for (BasicBlock::iterator BBI = (*SI)->begin();
387                PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) {
388             Phi->removeIncomingValue(BB, false);
389           }
390         }
391       }
392       // Replace the conditional branch with an unconditional one.
393       BranchInst::Create(Dest, Term);
394       Term->eraseFromParent();
395     }
396   }
397 
398   // Merge adjacent basic blocks, if possible.
399   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
400     BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
401     if (Term->isUnconditional()) {
402       BasicBlock *Dest = Term->getSuccessor(0);
403       if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI, LPM))
404         std::replace(Latches.begin(), Latches.end(), Dest, Fold);
405     }
406   }
407 
408   // FIXME: Reconstruct dom info, because it is not preserved properly.
409   // Incrementally updating domtree after loop unrolling would be easy.
410   if (DominatorTree *DT = LPM->getAnalysisIfAvailable<DominatorTree>())
411     DT->runOnFunction(*L->getHeader()->getParent());
412 
413   // Simplify any new induction variables in the partially unrolled loop.
414   if (SE && !CompletelyUnroll) {
415     SmallVector<WeakVH, 16> DeadInsts;
416     simplifyLoopIVs(L, SE, LPM, DeadInsts);
417 
418     // Aggressively clean up dead instructions that simplifyLoopIVs already
419     // identified. Any remaining should be cleaned up below.
420     while (!DeadInsts.empty())
421       if (Instruction *Inst =
422           dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
423         RecursivelyDeleteTriviallyDeadInstructions(Inst);
424   }
425 
426   // At this point, the code is well formed.  We now do a quick sweep over the
427   // inserted code, doing constant propagation and dead code elimination as we
428   // go.
429   const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
430   for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(),
431        BBE = NewLoopBlocks.end(); BB != BBE; ++BB)
432     for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) {
433       Instruction *Inst = I++;
434 
435       if (isInstructionTriviallyDead(Inst))
436         (*BB)->getInstList().erase(Inst);
437       else if (Value *V = SimplifyInstruction(Inst))
438         if (LI->replacementPreservesLCSSAForm(Inst, V)) {
439           Inst->replaceAllUsesWith(V);
440           (*BB)->getInstList().erase(Inst);
441         }
442     }
443 
444   NumCompletelyUnrolled += CompletelyUnroll;
445   ++NumUnrolled;
446   // Remove the loop from the LoopPassManager if it's completely removed.
447   if (CompletelyUnroll && LPM != NULL)
448     LPM->deleteLoopFromQueue(L);
449 
450   return true;
451 }
452