1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements induction variable simplification. It does
11 // not define any actual pass or policy, but provides a single function to
12 // simplify a loop's induction variables based on ScalarEvolution.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #define DEBUG_TYPE "indvars"
17
18 #include "llvm/Instructions.h"
19 #include "llvm/Analysis/Dominators.h"
20 #include "llvm/Analysis/IVUsers.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/LoopPass.h"
23 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
28 #include "llvm/Target/TargetData.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31
32 using namespace llvm;
33
34 STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
35 STATISTIC(NumElimOperand, "Number of IV operands folded into a use");
36 STATISTIC(NumElimRem , "Number of IV remainder operations eliminated");
37 STATISTIC(NumElimCmp , "Number of IV comparisons eliminated");
38
39 namespace {
40 /// SimplifyIndvar - This is a utility for simplifying induction variables
41 /// based on ScalarEvolution. It is the primary instrument of the
42 /// IndvarSimplify pass, but it may also be directly invoked to cleanup after
43 /// other loop passes that preserve SCEV.
44 class SimplifyIndvar {
45 Loop *L;
46 LoopInfo *LI;
47 DominatorTree *DT;
48 ScalarEvolution *SE;
49 const TargetData *TD; // May be NULL
50
51 SmallVectorImpl<WeakVH> &DeadInsts;
52
53 bool Changed;
54
55 public:
SimplifyIndvar(Loop * Loop,ScalarEvolution * SE,LPPassManager * LPM,SmallVectorImpl<WeakVH> & Dead,IVUsers * IVU=NULL)56 SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, LPPassManager *LPM,
57 SmallVectorImpl<WeakVH> &Dead, IVUsers *IVU = NULL) :
58 L(Loop),
59 LI(LPM->getAnalysisIfAvailable<LoopInfo>()),
60 SE(SE),
61 TD(LPM->getAnalysisIfAvailable<TargetData>()),
62 DeadInsts(Dead),
63 Changed(false) {
64 assert(LI && "IV simplification requires LoopInfo");
65 }
66
hasChanged() const67 bool hasChanged() const { return Changed; }
68
69 /// Iteratively perform simplification on a worklist of users of the
70 /// specified induction variable. This is the top-level driver that applies
71 /// all simplicitions to users of an IV.
72 void simplifyUsers(PHINode *CurrIV, IVVisitor *V = NULL);
73
74 Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand);
75
76 bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
77 void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
78 void eliminateIVRemainder(BinaryOperator *Rem, Value *IVOperand,
79 bool IsSigned);
80 };
81 }
82
83 /// foldIVUser - Fold an IV operand into its use. This removes increments of an
84 /// aligned IV when used by a instruction that ignores the low bits.
85 ///
86 /// IVOperand is guaranteed SCEVable, but UseInst may not be.
87 ///
88 /// Return the operand of IVOperand for this induction variable if IVOperand can
89 /// be folded (in case more folding opportunities have been exposed).
90 /// Otherwise return null.
foldIVUser(Instruction * UseInst,Instruction * IVOperand)91 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) {
92 Value *IVSrc = 0;
93 unsigned OperIdx = 0;
94 const SCEV *FoldedExpr = 0;
95 switch (UseInst->getOpcode()) {
96 default:
97 return 0;
98 case Instruction::UDiv:
99 case Instruction::LShr:
100 // We're only interested in the case where we know something about
101 // the numerator and have a constant denominator.
102 if (IVOperand != UseInst->getOperand(OperIdx) ||
103 !isa<ConstantInt>(UseInst->getOperand(1)))
104 return 0;
105
106 // Attempt to fold a binary operator with constant operand.
107 // e.g. ((I + 1) >> 2) => I >> 2
108 if (!isa<BinaryOperator>(IVOperand)
109 || !isa<ConstantInt>(IVOperand->getOperand(1)))
110 return 0;
111
112 IVSrc = IVOperand->getOperand(0);
113 // IVSrc must be the (SCEVable) IV, since the other operand is const.
114 assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand");
115
116 ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1));
117 if (UseInst->getOpcode() == Instruction::LShr) {
118 // Get a constant for the divisor. See createSCEV.
119 uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth();
120 if (D->getValue().uge(BitWidth))
121 return 0;
122
123 D = ConstantInt::get(UseInst->getContext(),
124 APInt(BitWidth, 1).shl(D->getZExtValue()));
125 }
126 FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D));
127 }
128 // We have something that might fold it's operand. Compare SCEVs.
129 if (!SE->isSCEVable(UseInst->getType()))
130 return 0;
131
132 // Bypass the operand if SCEV can prove it has no effect.
133 if (SE->getSCEV(UseInst) != FoldedExpr)
134 return 0;
135
136 DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand
137 << " -> " << *UseInst << '\n');
138
139 UseInst->setOperand(OperIdx, IVSrc);
140 assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper");
141
142 ++NumElimOperand;
143 Changed = true;
144 if (IVOperand->use_empty())
145 DeadInsts.push_back(IVOperand);
146 return IVSrc;
147 }
148
149 /// eliminateIVComparison - SimplifyIVUsers helper for eliminating useless
150 /// comparisons against an induction variable.
eliminateIVComparison(ICmpInst * ICmp,Value * IVOperand)151 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
152 unsigned IVOperIdx = 0;
153 ICmpInst::Predicate Pred = ICmp->getPredicate();
154 if (IVOperand != ICmp->getOperand(0)) {
155 // Swapped
156 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
157 IVOperIdx = 1;
158 Pred = ICmpInst::getSwappedPredicate(Pred);
159 }
160
161 // Get the SCEVs for the ICmp operands.
162 const SCEV *S = SE->getSCEV(ICmp->getOperand(IVOperIdx));
163 const SCEV *X = SE->getSCEV(ICmp->getOperand(1 - IVOperIdx));
164
165 // Simplify unnecessary loops away.
166 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
167 S = SE->getSCEVAtScope(S, ICmpLoop);
168 X = SE->getSCEVAtScope(X, ICmpLoop);
169
170 // If the condition is always true or always false, replace it with
171 // a constant value.
172 if (SE->isKnownPredicate(Pred, S, X))
173 ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext()));
174 else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X))
175 ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext()));
176 else
177 return;
178
179 DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
180 ++NumElimCmp;
181 Changed = true;
182 DeadInsts.push_back(ICmp);
183 }
184
185 /// eliminateIVRemainder - SimplifyIVUsers helper for eliminating useless
186 /// remainder operations operating on an induction variable.
eliminateIVRemainder(BinaryOperator * Rem,Value * IVOperand,bool IsSigned)187 void SimplifyIndvar::eliminateIVRemainder(BinaryOperator *Rem,
188 Value *IVOperand,
189 bool IsSigned) {
190 // We're only interested in the case where we know something about
191 // the numerator.
192 if (IVOperand != Rem->getOperand(0))
193 return;
194
195 // Get the SCEVs for the ICmp operands.
196 const SCEV *S = SE->getSCEV(Rem->getOperand(0));
197 const SCEV *X = SE->getSCEV(Rem->getOperand(1));
198
199 // Simplify unnecessary loops away.
200 const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
201 S = SE->getSCEVAtScope(S, ICmpLoop);
202 X = SE->getSCEVAtScope(X, ICmpLoop);
203
204 // i % n --> i if i is in [0,n).
205 if ((!IsSigned || SE->isKnownNonNegative(S)) &&
206 SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
207 S, X))
208 Rem->replaceAllUsesWith(Rem->getOperand(0));
209 else {
210 // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n).
211 const SCEV *LessOne =
212 SE->getMinusSCEV(S, SE->getConstant(S->getType(), 1));
213 if (IsSigned && !SE->isKnownNonNegative(LessOne))
214 return;
215
216 if (!SE->isKnownPredicate(IsSigned ?
217 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
218 LessOne, X))
219 return;
220
221 ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ,
222 Rem->getOperand(0), Rem->getOperand(1));
223 SelectInst *Sel =
224 SelectInst::Create(ICmp,
225 ConstantInt::get(Rem->getType(), 0),
226 Rem->getOperand(0), "tmp", Rem);
227 Rem->replaceAllUsesWith(Sel);
228 }
229
230 DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
231 ++NumElimRem;
232 Changed = true;
233 DeadInsts.push_back(Rem);
234 }
235
236 /// eliminateIVUser - Eliminate an operation that consumes a simple IV and has
237 /// no observable side-effect given the range of IV values.
238 /// IVOperand is guaranteed SCEVable, but UseInst may not be.
eliminateIVUser(Instruction * UseInst,Instruction * IVOperand)239 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst,
240 Instruction *IVOperand) {
241 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
242 eliminateIVComparison(ICmp, IVOperand);
243 return true;
244 }
245 if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) {
246 bool IsSigned = Rem->getOpcode() == Instruction::SRem;
247 if (IsSigned || Rem->getOpcode() == Instruction::URem) {
248 eliminateIVRemainder(Rem, IVOperand, IsSigned);
249 return true;
250 }
251 }
252
253 // Eliminate any operation that SCEV can prove is an identity function.
254 if (!SE->isSCEVable(UseInst->getType()) ||
255 (UseInst->getType() != IVOperand->getType()) ||
256 (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
257 return false;
258
259 DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
260
261 UseInst->replaceAllUsesWith(IVOperand);
262 ++NumElimIdentity;
263 Changed = true;
264 DeadInsts.push_back(UseInst);
265 return true;
266 }
267
268 /// pushIVUsers - Add all uses of Def to the current IV's worklist.
269 ///
pushIVUsers(Instruction * Def,SmallPtrSet<Instruction *,16> & Simplified,SmallVectorImpl<std::pair<Instruction *,Instruction * >> & SimpleIVUsers)270 static void pushIVUsers(
271 Instruction *Def,
272 SmallPtrSet<Instruction*,16> &Simplified,
273 SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
274
275 for (Value::use_iterator UI = Def->use_begin(), E = Def->use_end();
276 UI != E; ++UI) {
277 Instruction *User = cast<Instruction>(*UI);
278
279 // Avoid infinite or exponential worklist processing.
280 // Also ensure unique worklist users.
281 // If Def is a LoopPhi, it may not be in the Simplified set, so check for
282 // self edges first.
283 if (User != Def && Simplified.insert(User))
284 SimpleIVUsers.push_back(std::make_pair(User, Def));
285 }
286 }
287
288 /// isSimpleIVUser - Return true if this instruction generates a simple SCEV
289 /// expression in terms of that IV.
290 ///
291 /// This is similar to IVUsers' isInteresting() but processes each instruction
292 /// non-recursively when the operand is already known to be a simpleIVUser.
293 ///
isSimpleIVUser(Instruction * I,const Loop * L,ScalarEvolution * SE)294 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
295 if (!SE->isSCEVable(I->getType()))
296 return false;
297
298 // Get the symbolic expression for this instruction.
299 const SCEV *S = SE->getSCEV(I);
300
301 // Only consider affine recurrences.
302 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
303 if (AR && AR->getLoop() == L)
304 return true;
305
306 return false;
307 }
308
309 /// simplifyUsers - Iteratively perform simplification on a worklist of users
310 /// of the specified induction variable. Each successive simplification may push
311 /// more users which may themselves be candidates for simplification.
312 ///
313 /// This algorithm does not require IVUsers analysis. Instead, it simplifies
314 /// instructions in-place during analysis. Rather than rewriting induction
315 /// variables bottom-up from their users, it transforms a chain of IVUsers
316 /// top-down, updating the IR only when it encouters a clear optimization
317 /// opportunitiy.
318 ///
319 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
320 ///
simplifyUsers(PHINode * CurrIV,IVVisitor * V)321 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) {
322 if (!SE->isSCEVable(CurrIV->getType()))
323 return;
324
325 // Instructions processed by SimplifyIndvar for CurrIV.
326 SmallPtrSet<Instruction*,16> Simplified;
327
328 // Use-def pairs if IV users waiting to be processed for CurrIV.
329 SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
330
331 // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
332 // called multiple times for the same LoopPhi. This is the proper thing to
333 // do for loop header phis that use each other.
334 pushIVUsers(CurrIV, Simplified, SimpleIVUsers);
335
336 while (!SimpleIVUsers.empty()) {
337 std::pair<Instruction*, Instruction*> UseOper =
338 SimpleIVUsers.pop_back_val();
339 // Bypass back edges to avoid extra work.
340 if (UseOper.first == CurrIV) continue;
341
342 Instruction *IVOperand = UseOper.second;
343 for (unsigned N = 0; IVOperand; ++N) {
344 assert(N <= Simplified.size() && "runaway iteration");
345
346 Value *NewOper = foldIVUser(UseOper.first, IVOperand);
347 if (!NewOper)
348 break; // done folding
349 IVOperand = dyn_cast<Instruction>(NewOper);
350 }
351 if (!IVOperand)
352 continue;
353
354 if (eliminateIVUser(UseOper.first, IVOperand)) {
355 pushIVUsers(IVOperand, Simplified, SimpleIVUsers);
356 continue;
357 }
358 CastInst *Cast = dyn_cast<CastInst>(UseOper.first);
359 if (V && Cast) {
360 V->visitCast(Cast);
361 continue;
362 }
363 if (isSimpleIVUser(UseOper.first, L, SE)) {
364 pushIVUsers(UseOper.first, Simplified, SimpleIVUsers);
365 }
366 }
367 }
368
369 namespace llvm {
370
anchor()371 void IVVisitor::anchor() { }
372
373 /// simplifyUsersOfIV - Simplify instructions that use this induction variable
374 /// by using ScalarEvolution to analyze the IV's recurrence.
simplifyUsersOfIV(PHINode * CurrIV,ScalarEvolution * SE,LPPassManager * LPM,SmallVectorImpl<WeakVH> & Dead,IVVisitor * V)375 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, LPPassManager *LPM,
376 SmallVectorImpl<WeakVH> &Dead, IVVisitor *V)
377 {
378 LoopInfo *LI = &LPM->getAnalysis<LoopInfo>();
379 SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, LPM, Dead);
380 SIV.simplifyUsers(CurrIV, V);
381 return SIV.hasChanged();
382 }
383
384 /// simplifyLoopIVs - Simplify users of induction variables within this
385 /// loop. This does not actually change or add IVs.
simplifyLoopIVs(Loop * L,ScalarEvolution * SE,LPPassManager * LPM,SmallVectorImpl<WeakVH> & Dead)386 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, LPPassManager *LPM,
387 SmallVectorImpl<WeakVH> &Dead) {
388 bool Changed = false;
389 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
390 Changed |= simplifyUsersOfIV(cast<PHINode>(I), SE, LPM, Dead);
391 }
392 return Changed;
393 }
394
395 } // namespace llvm
396