1; RUN: llc < %s -march=cellspu -enable-unsafe-fp-math > %t1.s 2; RUN: grep fa %t1.s | count 2 3; RUN: grep fs %t1.s | count 2 4; RUN: grep fm %t1.s | count 6 5; RUN: grep fma %t1.s | count 2 6; RUN: grep fms %t1.s | count 2 7; RUN: grep fnms %t1.s | count 3 8; 9; This file includes standard floating point arithmetic instructions 10; NOTE fdiv is tested separately since it is a compound operation 11target datalayout = "E-p:32:32:128-f64:64:128-f32:32:128-i64:32:128-i32:32:128-i16:16:128-i8:8:128-i1:8:128-a0:0:128-v128:128:128-s0:128:128" 12target triple = "spu" 13 14define float @fp_add(float %arg1, float %arg2) { 15 %A = fadd float %arg1, %arg2 ; <float> [#uses=1] 16 ret float %A 17} 18 19define <4 x float> @fp_add_vec(<4 x float> %arg1, <4 x float> %arg2) { 20 %A = fadd <4 x float> %arg1, %arg2 ; <<4 x float>> [#uses=1] 21 ret <4 x float> %A 22} 23 24define float @fp_sub(float %arg1, float %arg2) { 25 %A = fsub float %arg1, %arg2 ; <float> [#uses=1] 26 ret float %A 27} 28 29define <4 x float> @fp_sub_vec(<4 x float> %arg1, <4 x float> %arg2) { 30 %A = fsub <4 x float> %arg1, %arg2 ; <<4 x float>> [#uses=1] 31 ret <4 x float> %A 32} 33 34define float @fp_mul(float %arg1, float %arg2) { 35 %A = fmul float %arg1, %arg2 ; <float> [#uses=1] 36 ret float %A 37} 38 39define <4 x float> @fp_mul_vec(<4 x float> %arg1, <4 x float> %arg2) { 40 %A = fmul <4 x float> %arg1, %arg2 ; <<4 x float>> [#uses=1] 41 ret <4 x float> %A 42} 43 44define float @fp_mul_add(float %arg1, float %arg2, float %arg3) { 45 %A = fmul float %arg1, %arg2 ; <float> [#uses=1] 46 %B = fadd float %A, %arg3 ; <float> [#uses=1] 47 ret float %B 48} 49 50define <4 x float> @fp_mul_add_vec(<4 x float> %arg1, <4 x float> %arg2, <4 x float> %arg3) { 51 %A = fmul <4 x float> %arg1, %arg2 ; <<4 x float>> [#uses=1] 52 %B = fadd <4 x float> %A, %arg3 ; <<4 x float>> [#uses=1] 53 ret <4 x float> %B 54} 55 56define float @fp_mul_sub(float %arg1, float %arg2, float %arg3) { 57 %A = fmul float %arg1, %arg2 ; <float> [#uses=1] 58 %B = fsub float %A, %arg3 ; <float> [#uses=1] 59 ret float %B 60} 61 62define <4 x float> @fp_mul_sub_vec(<4 x float> %arg1, <4 x float> %arg2, <4 x float> %arg3) { 63 %A = fmul <4 x float> %arg1, %arg2 ; <<4 x float>> [#uses=1] 64 %B = fsub <4 x float> %A, %arg3 ; <<4 x float>> [#uses=1] 65 ret <4 x float> %B 66} 67 68; Test the straightforward way of getting fnms 69; c - a * b 70define float @fp_neg_mul_sub_1(float %arg1, float %arg2, float %arg3) { 71 %A = fmul float %arg1, %arg2 72 %B = fsub float %arg3, %A 73 ret float %B 74} 75 76; Test another way of getting fnms 77; - ( a *b -c ) = c - a * b 78define float @fp_neg_mul_sub_2(float %arg1, float %arg2, float %arg3) { 79 %A = fmul float %arg1, %arg2 80 %B = fsub float %A, %arg3 81 %C = fsub float -0.0, %B 82 ret float %C 83} 84 85define <4 x float> @fp_neg_mul_sub_vec(<4 x float> %arg1, <4 x float> %arg2, <4 x float> %arg3) { 86 %A = fmul <4 x float> %arg1, %arg2 87 %B = fsub <4 x float> %A, %arg3 88 %D = fsub <4 x float> < float -0.0, float -0.0, float -0.0, float -0.0 >, %B 89 ret <4 x float> %D 90} 91