• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // sparse-power-weight.h
2 
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // Copyright 2005-2010 Google, Inc.
16 // Author: krr@google.com (Kasturi Rangan Raghavan)
17 // Inspiration: allauzen@google.com (Cyril Allauzen)
18 //
19 // \file
20 // Cartesian power weight semiring operation definitions.
21 // Uses SparseTupleWeight as underlying representation.
22 
23 #ifndef FST_LIB_SPARSE_POWER_WEIGHT_H__
24 #define FST_LIB_SPARSE_POWER_WEIGHT_H__
25 
26 #include<string>
27 
28 #include <fst/sparse-tuple-weight.h>
29 #include <fst/weight.h>
30 
31 
32 namespace fst {
33 
34 // Below SparseTupleWeight*Mapper are used in conjunction with
35 // SparseTupleWeightMap to compute the respective semiring operations
36 template<class W, class K>
37 struct SparseTupleWeightPlusMapper {
MapSparseTupleWeightPlusMapper38   W Map(const K& k, const W& v1, const W& v2) const {
39     return Plus(v1, v2);
40   }
41 };
42 
43 template<class W, class K>
44 struct SparseTupleWeightTimesMapper {
MapSparseTupleWeightTimesMapper45   W Map(const K& k, const W& v1, const W& v2) const {
46     return Times(v1, v2);
47   }
48 };
49 
50 template<class W, class K>
51 struct SparseTupleWeightDivideMapper {
SparseTupleWeightDivideMapperSparseTupleWeightDivideMapper52   SparseTupleWeightDivideMapper(DivideType divide_type) {
53     divide_type_ = divide_type;
54   }
MapSparseTupleWeightDivideMapper55   W Map(const K& k, const W& v1, const W& v2) const {
56     return Divide(v1, v2, divide_type_);
57   }
58   DivideType divide_type_;
59 };
60 
61 template<class W, class K>
62 struct SparseTupleWeightApproxMapper {
SparseTupleWeightApproxMapperSparseTupleWeightApproxMapper63   SparseTupleWeightApproxMapper(float delta) { delta_ = delta; }
MapSparseTupleWeightApproxMapper64   W Map(const K& k, const W& v1, const W& v2) const {
65     return ApproxEqual(v1, v2, delta_) ? W::One() : W::Zero();
66   }
67   float delta_;
68 };
69 
70 // Sparse cartesian power semiring: W ^ n
71 // Forms:
72 //  - a left semimodule when W is a left semiring,
73 //  - a right semimodule when W is a right semiring,
74 //  - a bisemimodule when W is a semiring,
75 //    the free semimodule of rank n over W
76 // The Times operation is overloaded to provide the
77 // left and right scalar products.
78 // K is the key value type. kNoKey(-1) is reserved for internal use
79 template <class W, class K = int>
80 class SparsePowerWeight : public SparseTupleWeight<W, K> {
81  public:
82   using SparseTupleWeight<W, K>::Zero;
83   using SparseTupleWeight<W, K>::One;
84   using SparseTupleWeight<W, K>::NoWeight;
85   using SparseTupleWeight<W, K>::Quantize;
86   using SparseTupleWeight<W, K>::Reverse;
87 
88   typedef SparsePowerWeight<typename W::ReverseWeight, K> ReverseWeight;
89 
SparsePowerWeight()90   SparsePowerWeight() {}
91 
SparsePowerWeight(const SparseTupleWeight<W,K> & w)92   SparsePowerWeight(const SparseTupleWeight<W, K> &w) :
93     SparseTupleWeight<W, K>(w) { }
94 
95   template <class Iterator>
SparsePowerWeight(Iterator begin,Iterator end)96   SparsePowerWeight(Iterator begin, Iterator end) :
97     SparseTupleWeight<W, K>(begin, end) { }
98 
SparsePowerWeight(const K & key,const W & w)99   SparsePowerWeight(const K &key, const W &w) :
100     SparseTupleWeight<W, K>(key, w) { }
101 
Zero()102   static const SparsePowerWeight<W, K> &Zero() {
103     static const SparsePowerWeight<W, K> zero(SparseTupleWeight<W, K>::Zero());
104     return zero;
105   }
106 
One()107   static const SparsePowerWeight<W, K> &One() {
108     static const SparsePowerWeight<W, K> one(SparseTupleWeight<W, K>::One());
109     return one;
110   }
111 
NoWeight()112   static const SparsePowerWeight<W, K> &NoWeight() {
113     static const SparsePowerWeight<W, K> no_weight(
114         SparseTupleWeight<W, K>::NoWeight());
115     return no_weight;
116   }
117 
118   // Overide this: Overwrite the Type method to reflect the key type
119   // if using non-default key type.
Type()120   static const string &Type() {
121     static string type;
122     if(type.empty()) {
123       type = W::Type() + "_^n";
124       if(sizeof(K) != sizeof(uint32)) {
125         string size;
126         Int64ToStr(8 * sizeof(K), &size);
127         type += "_" + size;
128       }
129     }
130     return type;
131   }
132 
Properties()133   static uint64 Properties() {
134     uint64 props = W::Properties();
135     return props & (kLeftSemiring | kRightSemiring |
136                     kCommutative | kIdempotent);
137   }
138 
139   SparsePowerWeight<W, K> Quantize(float delta = kDelta) const {
140     return SparseTupleWeight<W, K>::Quantize(delta);
141   }
142 
Reverse()143   ReverseWeight Reverse() const {
144     return SparseTupleWeight<W, K>::Reverse();
145   }
146 };
147 
148 // Semimodule plus operation
149 template <class W, class K>
Plus(const SparsePowerWeight<W,K> & w1,const SparsePowerWeight<W,K> & w2)150 inline SparsePowerWeight<W, K> Plus(const SparsePowerWeight<W, K> &w1,
151                                     const SparsePowerWeight<W, K> &w2) {
152   SparsePowerWeight<W, K> ret;
153   SparseTupleWeightPlusMapper<W, K> operator_mapper;
154   SparseTupleWeightMap(&ret, w1, w2, operator_mapper);
155   return ret;
156 }
157 
158 // Semimodule times operation
159 template <class W, class K>
Times(const SparsePowerWeight<W,K> & w1,const SparsePowerWeight<W,K> & w2)160 inline SparsePowerWeight<W, K> Times(const SparsePowerWeight<W, K> &w1,
161                                      const SparsePowerWeight<W, K> &w2) {
162   SparsePowerWeight<W, K> ret;
163   SparseTupleWeightTimesMapper<W, K> operator_mapper;
164   SparseTupleWeightMap(&ret, w1, w2, operator_mapper);
165   return ret;
166 }
167 
168 // Semimodule divide operation
169 template <class W, class K>
170 inline SparsePowerWeight<W, K> Divide(const SparsePowerWeight<W, K> &w1,
171                                       const SparsePowerWeight<W, K> &w2,
172                                       DivideType type = DIVIDE_ANY) {
173   SparsePowerWeight<W, K> ret;
174   SparseTupleWeightDivideMapper<W, K> operator_mapper(type);
175   SparseTupleWeightMap(&ret, w1, w2, operator_mapper);
176   return ret;
177 }
178 
179 // Semimodule dot product
180 template <class W, class K>
DotProduct(const SparsePowerWeight<W,K> & w1,const SparsePowerWeight<W,K> & w2)181 inline const W& DotProduct(const SparsePowerWeight<W, K> &w1,
182                     const SparsePowerWeight<W, K> &w2) {
183   const SparsePowerWeight<W, K>& product = Times(w1, w2);
184   W ret(W::Zero());
185   for (SparseTupleWeightIterator<W, K> it(product); !it.Done(); it.Next()) {
186     ret = Plus(ret, it.Value().second);
187   }
188   return ret;
189 }
190 
191 template <class W, class K>
192 inline bool ApproxEqual(const SparsePowerWeight<W, K> &w1,
193                         const SparsePowerWeight<W, K> &w2,
194                         float delta = kDelta) {
195   SparseTupleWeight<W, K> ret;
196   SparseTupleWeightApproxMapper<W, K> operator_mapper(kDelta);
197   SparseTupleWeightMap(&ret, w1, w2, operator_mapper);
198   return ret == SparsePowerWeight<W, K>::One();
199 }
200 
201 template <class W, class K>
Times(const W & k,const SparsePowerWeight<W,K> & w2)202 inline SparsePowerWeight<W, K> Times(const W &k,
203                                      const SparsePowerWeight<W, K> &w2) {
204   SparsePowerWeight<W, K> w1(k);
205   return Times(w1, w2);
206 }
207 
208 template <class W, class K>
Times(const SparsePowerWeight<W,K> & w1,const W & k)209 inline SparsePowerWeight<W, K> Times(const SparsePowerWeight<W, K> &w1,
210                                      const W &k) {
211   SparsePowerWeight<W, K> w2(k);
212   return Times(w1, w2);
213 }
214 
215 template <class W, class K>
216 inline SparsePowerWeight<W, K> Divide(const SparsePowerWeight<W, K> &w1,
217                                       const W &k,
218                                       DivideType divide_type = DIVIDE_ANY) {
219   SparsePowerWeight<W, K> w2(k);
220   return Divide(w1, w2, divide_type);
221 }
222 
223 }  // namespace fst
224 
225 #endif  // FST_LIB_SPARSE_POWER_WEIGHT_H__
226