1#!/usr/bin/env perl 2# 3# ==================================================================== 4# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL 5# project. The module is, however, dual licensed under OpenSSL and 6# CRYPTOGAMS licenses depending on where you obtain it. For further 7# details see http://www.openssl.org/~appro/cryptogams/. 8# ==================================================================== 9# 10# March, June 2010 11# 12# The module implements "4-bit" GCM GHASH function and underlying 13# single multiplication operation in GF(2^128). "4-bit" means that 14# it uses 256 bytes per-key table [+128 bytes shared table]. GHASH 15# function features so called "528B" variant utilizing additional 16# 256+16 bytes of per-key storage [+512 bytes shared table]. 17# Performance results are for this streamed GHASH subroutine and are 18# expressed in cycles per processed byte, less is better: 19# 20# gcc 3.4.x(*) assembler 21# 22# P4 28.6 14.0 +100% 23# Opteron 19.3 7.7 +150% 24# Core2 17.8 8.1(**) +120% 25# 26# (*) comparison is not completely fair, because C results are 27# for vanilla "256B" implementation, while assembler results 28# are for "528B";-) 29# (**) it's mystery [to me] why Core2 result is not same as for 30# Opteron; 31 32# May 2010 33# 34# Add PCLMULQDQ version performing at 2.02 cycles per processed byte. 35# See ghash-x86.pl for background information and details about coding 36# techniques. 37# 38# Special thanks to David Woodhouse <dwmw2@infradead.org> for 39# providing access to a Westmere-based system on behalf of Intel 40# Open Source Technology Centre. 41 42$flavour = shift; 43$output = shift; 44if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } 45 46$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); 47 48$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; 49( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or 50( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or 51die "can't locate x86_64-xlate.pl"; 52 53open STDOUT,"| $^X $xlate $flavour $output"; 54 55# common register layout 56$nlo="%rax"; 57$nhi="%rbx"; 58$Zlo="%r8"; 59$Zhi="%r9"; 60$tmp="%r10"; 61$rem_4bit = "%r11"; 62 63$Xi="%rdi"; 64$Htbl="%rsi"; 65 66# per-function register layout 67$cnt="%rcx"; 68$rem="%rdx"; 69 70sub LB() { my $r=shift; $r =~ s/%[er]([a-d])x/%\1l/ or 71 $r =~ s/%[er]([sd]i)/%\1l/ or 72 $r =~ s/%[er](bp)/%\1l/ or 73 $r =~ s/%(r[0-9]+)[d]?/%\1b/; $r; } 74 75sub AUTOLOAD() # thunk [simplified] 32-bit style perlasm 76{ my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; 77 my $arg = pop; 78 $arg = "\$$arg" if ($arg*1 eq $arg); 79 $code .= "\t$opcode\t".join(',',$arg,reverse @_)."\n"; 80} 81 82{ my $N; 83 sub loop() { 84 my $inp = shift; 85 86 $N++; 87$code.=<<___; 88 xor $nlo,$nlo 89 xor $nhi,$nhi 90 mov `&LB("$Zlo")`,`&LB("$nlo")` 91 mov `&LB("$Zlo")`,`&LB("$nhi")` 92 shl \$4,`&LB("$nlo")` 93 mov \$14,$cnt 94 mov 8($Htbl,$nlo),$Zlo 95 mov ($Htbl,$nlo),$Zhi 96 and \$0xf0,`&LB("$nhi")` 97 mov $Zlo,$rem 98 jmp .Loop$N 99 100.align 16 101.Loop$N: 102 shr \$4,$Zlo 103 and \$0xf,$rem 104 mov $Zhi,$tmp 105 mov ($inp,$cnt),`&LB("$nlo")` 106 shr \$4,$Zhi 107 xor 8($Htbl,$nhi),$Zlo 108 shl \$60,$tmp 109 xor ($Htbl,$nhi),$Zhi 110 mov `&LB("$nlo")`,`&LB("$nhi")` 111 xor ($rem_4bit,$rem,8),$Zhi 112 mov $Zlo,$rem 113 shl \$4,`&LB("$nlo")` 114 xor $tmp,$Zlo 115 dec $cnt 116 js .Lbreak$N 117 118 shr \$4,$Zlo 119 and \$0xf,$rem 120 mov $Zhi,$tmp 121 shr \$4,$Zhi 122 xor 8($Htbl,$nlo),$Zlo 123 shl \$60,$tmp 124 xor ($Htbl,$nlo),$Zhi 125 and \$0xf0,`&LB("$nhi")` 126 xor ($rem_4bit,$rem,8),$Zhi 127 mov $Zlo,$rem 128 xor $tmp,$Zlo 129 jmp .Loop$N 130 131.align 16 132.Lbreak$N: 133 shr \$4,$Zlo 134 and \$0xf,$rem 135 mov $Zhi,$tmp 136 shr \$4,$Zhi 137 xor 8($Htbl,$nlo),$Zlo 138 shl \$60,$tmp 139 xor ($Htbl,$nlo),$Zhi 140 and \$0xf0,`&LB("$nhi")` 141 xor ($rem_4bit,$rem,8),$Zhi 142 mov $Zlo,$rem 143 xor $tmp,$Zlo 144 145 shr \$4,$Zlo 146 and \$0xf,$rem 147 mov $Zhi,$tmp 148 shr \$4,$Zhi 149 xor 8($Htbl,$nhi),$Zlo 150 shl \$60,$tmp 151 xor ($Htbl,$nhi),$Zhi 152 xor $tmp,$Zlo 153 xor ($rem_4bit,$rem,8),$Zhi 154 155 bswap $Zlo 156 bswap $Zhi 157___ 158}} 159 160$code=<<___; 161.text 162 163.globl gcm_gmult_4bit 164.type gcm_gmult_4bit,\@function,2 165.align 16 166gcm_gmult_4bit: 167 push %rbx 168 push %rbp # %rbp and %r12 are pushed exclusively in 169 push %r12 # order to reuse Win64 exception handler... 170.Lgmult_prologue: 171 172 movzb 15($Xi),$Zlo 173 lea .Lrem_4bit(%rip),$rem_4bit 174___ 175 &loop ($Xi); 176$code.=<<___; 177 mov $Zlo,8($Xi) 178 mov $Zhi,($Xi) 179 180 mov 16(%rsp),%rbx 181 lea 24(%rsp),%rsp 182.Lgmult_epilogue: 183 ret 184.size gcm_gmult_4bit,.-gcm_gmult_4bit 185___ 186 187# per-function register layout 188$inp="%rdx"; 189$len="%rcx"; 190$rem_8bit=$rem_4bit; 191 192$code.=<<___; 193.globl gcm_ghash_4bit 194.type gcm_ghash_4bit,\@function,4 195.align 16 196gcm_ghash_4bit: 197 push %rbx 198 push %rbp 199 push %r12 200 push %r13 201 push %r14 202 push %r15 203 sub \$280,%rsp 204.Lghash_prologue: 205 mov $inp,%r14 # reassign couple of args 206 mov $len,%r15 207___ 208{ my $inp="%r14"; 209 my $dat="%edx"; 210 my $len="%r15"; 211 my @nhi=("%ebx","%ecx"); 212 my @rem=("%r12","%r13"); 213 my $Hshr4="%rbp"; 214 215 &sub ($Htbl,-128); # size optimization 216 &lea ($Hshr4,"16+128(%rsp)"); 217 { my @lo =($nlo,$nhi); 218 my @hi =($Zlo,$Zhi); 219 220 &xor ($dat,$dat); 221 for ($i=0,$j=-2;$i<18;$i++,$j++) { 222 &mov ("$j(%rsp)",&LB($dat)) if ($i>1); 223 &or ($lo[0],$tmp) if ($i>1); 224 &mov (&LB($dat),&LB($lo[1])) if ($i>0 && $i<17); 225 &shr ($lo[1],4) if ($i>0 && $i<17); 226 &mov ($tmp,$hi[1]) if ($i>0 && $i<17); 227 &shr ($hi[1],4) if ($i>0 && $i<17); 228 &mov ("8*$j($Hshr4)",$hi[0]) if ($i>1); 229 &mov ($hi[0],"16*$i+0-128($Htbl)") if ($i<16); 230 &shl (&LB($dat),4) if ($i>0 && $i<17); 231 &mov ("8*$j-128($Hshr4)",$lo[0]) if ($i>1); 232 &mov ($lo[0],"16*$i+8-128($Htbl)") if ($i<16); 233 &shl ($tmp,60) if ($i>0 && $i<17); 234 235 push (@lo,shift(@lo)); 236 push (@hi,shift(@hi)); 237 } 238 } 239 &add ($Htbl,-128); 240 &mov ($Zlo,"8($Xi)"); 241 &mov ($Zhi,"0($Xi)"); 242 &add ($len,$inp); # pointer to the end of data 243 &lea ($rem_8bit,".Lrem_8bit(%rip)"); 244 &jmp (".Louter_loop"); 245 246$code.=".align 16\n.Louter_loop:\n"; 247 &xor ($Zhi,"($inp)"); 248 &mov ("%rdx","8($inp)"); 249 &lea ($inp,"16($inp)"); 250 &xor ("%rdx",$Zlo); 251 &mov ("($Xi)",$Zhi); 252 &mov ("8($Xi)","%rdx"); 253 &shr ("%rdx",32); 254 255 &xor ($nlo,$nlo); 256 &rol ($dat,8); 257 &mov (&LB($nlo),&LB($dat)); 258 &movz ($nhi[0],&LB($dat)); 259 &shl (&LB($nlo),4); 260 &shr ($nhi[0],4); 261 262 for ($j=11,$i=0;$i<15;$i++) { 263 &rol ($dat,8); 264 &xor ($Zlo,"8($Htbl,$nlo)") if ($i>0); 265 &xor ($Zhi,"($Htbl,$nlo)") if ($i>0); 266 &mov ($Zlo,"8($Htbl,$nlo)") if ($i==0); 267 &mov ($Zhi,"($Htbl,$nlo)") if ($i==0); 268 269 &mov (&LB($nlo),&LB($dat)); 270 &xor ($Zlo,$tmp) if ($i>0); 271 &movzw ($rem[1],"($rem_8bit,$rem[1],2)") if ($i>0); 272 273 &movz ($nhi[1],&LB($dat)); 274 &shl (&LB($nlo),4); 275 &movzb ($rem[0],"(%rsp,$nhi[0])"); 276 277 &shr ($nhi[1],4) if ($i<14); 278 &and ($nhi[1],0xf0) if ($i==14); 279 &shl ($rem[1],48) if ($i>0); 280 &xor ($rem[0],$Zlo); 281 282 &mov ($tmp,$Zhi); 283 &xor ($Zhi,$rem[1]) if ($i>0); 284 &shr ($Zlo,8); 285 286 &movz ($rem[0],&LB($rem[0])); 287 &mov ($dat,"$j($Xi)") if (--$j%4==0); 288 &shr ($Zhi,8); 289 290 &xor ($Zlo,"-128($Hshr4,$nhi[0],8)"); 291 &shl ($tmp,56); 292 &xor ($Zhi,"($Hshr4,$nhi[0],8)"); 293 294 unshift (@nhi,pop(@nhi)); # "rotate" registers 295 unshift (@rem,pop(@rem)); 296 } 297 &movzw ($rem[1],"($rem_8bit,$rem[1],2)"); 298 &xor ($Zlo,"8($Htbl,$nlo)"); 299 &xor ($Zhi,"($Htbl,$nlo)"); 300 301 &shl ($rem[1],48); 302 &xor ($Zlo,$tmp); 303 304 &xor ($Zhi,$rem[1]); 305 &movz ($rem[0],&LB($Zlo)); 306 &shr ($Zlo,4); 307 308 &mov ($tmp,$Zhi); 309 &shl (&LB($rem[0]),4); 310 &shr ($Zhi,4); 311 312 &xor ($Zlo,"8($Htbl,$nhi[0])"); 313 &movzw ($rem[0],"($rem_8bit,$rem[0],2)"); 314 &shl ($tmp,60); 315 316 &xor ($Zhi,"($Htbl,$nhi[0])"); 317 &xor ($Zlo,$tmp); 318 &shl ($rem[0],48); 319 320 &bswap ($Zlo); 321 &xor ($Zhi,$rem[0]); 322 323 &bswap ($Zhi); 324 &cmp ($inp,$len); 325 &jb (".Louter_loop"); 326} 327$code.=<<___; 328 mov $Zlo,8($Xi) 329 mov $Zhi,($Xi) 330 331 lea 280(%rsp),%rsi 332 mov 0(%rsi),%r15 333 mov 8(%rsi),%r14 334 mov 16(%rsi),%r13 335 mov 24(%rsi),%r12 336 mov 32(%rsi),%rbp 337 mov 40(%rsi),%rbx 338 lea 48(%rsi),%rsp 339.Lghash_epilogue: 340 ret 341.size gcm_ghash_4bit,.-gcm_ghash_4bit 342___ 343 344###################################################################### 345# PCLMULQDQ version. 346 347@_4args=$win64? ("%rcx","%rdx","%r8", "%r9") : # Win64 order 348 ("%rdi","%rsi","%rdx","%rcx"); # Unix order 349 350($Xi,$Xhi)=("%xmm0","%xmm1"); $Hkey="%xmm2"; 351($T1,$T2,$T3)=("%xmm3","%xmm4","%xmm5"); 352 353sub clmul64x64_T2 { # minimal register pressure 354my ($Xhi,$Xi,$Hkey,$modulo)=@_; 355 356$code.=<<___ if (!defined($modulo)); 357 movdqa $Xi,$Xhi # 358 pshufd \$0b01001110,$Xi,$T1 359 pshufd \$0b01001110,$Hkey,$T2 360 pxor $Xi,$T1 # 361 pxor $Hkey,$T2 362___ 363$code.=<<___; 364 pclmulqdq \$0x00,$Hkey,$Xi ####### 365 pclmulqdq \$0x11,$Hkey,$Xhi ####### 366 pclmulqdq \$0x00,$T2,$T1 ####### 367 pxor $Xi,$T1 # 368 pxor $Xhi,$T1 # 369 370 movdqa $T1,$T2 # 371 psrldq \$8,$T1 372 pslldq \$8,$T2 # 373 pxor $T1,$Xhi 374 pxor $T2,$Xi # 375___ 376} 377 378sub reduction_alg9 { # 17/13 times faster than Intel version 379my ($Xhi,$Xi) = @_; 380 381$code.=<<___; 382 # 1st phase 383 movdqa $Xi,$T1 # 384 psllq \$1,$Xi 385 pxor $T1,$Xi # 386 psllq \$5,$Xi # 387 pxor $T1,$Xi # 388 psllq \$57,$Xi # 389 movdqa $Xi,$T2 # 390 pslldq \$8,$Xi 391 psrldq \$8,$T2 # 392 pxor $T1,$Xi 393 pxor $T2,$Xhi # 394 395 # 2nd phase 396 movdqa $Xi,$T2 397 psrlq \$5,$Xi 398 pxor $T2,$Xi # 399 psrlq \$1,$Xi # 400 pxor $T2,$Xi # 401 pxor $Xhi,$T2 402 psrlq \$1,$Xi # 403 pxor $T2,$Xi # 404___ 405} 406 407{ my ($Htbl,$Xip)=@_4args; 408 409$code.=<<___; 410.globl gcm_init_clmul 411.type gcm_init_clmul,\@abi-omnipotent 412.align 16 413gcm_init_clmul: 414 movdqu ($Xip),$Hkey 415 pshufd \$0b01001110,$Hkey,$Hkey # dword swap 416 417 # <<1 twist 418 pshufd \$0b11111111,$Hkey,$T2 # broadcast uppermost dword 419 movdqa $Hkey,$T1 420 psllq \$1,$Hkey 421 pxor $T3,$T3 # 422 psrlq \$63,$T1 423 pcmpgtd $T2,$T3 # broadcast carry bit 424 pslldq \$8,$T1 425 por $T1,$Hkey # H<<=1 426 427 # magic reduction 428 pand .L0x1c2_polynomial(%rip),$T3 429 pxor $T3,$Hkey # if(carry) H^=0x1c2_polynomial 430 431 # calculate H^2 432 movdqa $Hkey,$Xi 433___ 434 &clmul64x64_T2 ($Xhi,$Xi,$Hkey); 435 &reduction_alg9 ($Xhi,$Xi); 436$code.=<<___; 437 movdqu $Hkey,($Htbl) # save H 438 movdqu $Xi,16($Htbl) # save H^2 439 ret 440.size gcm_init_clmul,.-gcm_init_clmul 441___ 442} 443 444{ my ($Xip,$Htbl)=@_4args; 445 446$code.=<<___; 447.globl gcm_gmult_clmul 448.type gcm_gmult_clmul,\@abi-omnipotent 449.align 16 450gcm_gmult_clmul: 451 movdqu ($Xip),$Xi 452 movdqa .Lbswap_mask(%rip),$T3 453 movdqu ($Htbl),$Hkey 454 pshufb $T3,$Xi 455___ 456 &clmul64x64_T2 ($Xhi,$Xi,$Hkey); 457 &reduction_alg9 ($Xhi,$Xi); 458$code.=<<___; 459 pshufb $T3,$Xi 460 movdqu $Xi,($Xip) 461 ret 462.size gcm_gmult_clmul,.-gcm_gmult_clmul 463___ 464} 465 466{ my ($Xip,$Htbl,$inp,$len)=@_4args; 467 my $Xn="%xmm6"; 468 my $Xhn="%xmm7"; 469 my $Hkey2="%xmm8"; 470 my $T1n="%xmm9"; 471 my $T2n="%xmm10"; 472 473$code.=<<___; 474.globl gcm_ghash_clmul 475.type gcm_ghash_clmul,\@abi-omnipotent 476.align 16 477gcm_ghash_clmul: 478___ 479$code.=<<___ if ($win64); 480.LSEH_begin_gcm_ghash_clmul: 481 # I can't trust assembler to use specific encoding:-( 482 .byte 0x48,0x83,0xec,0x58 #sub \$0x58,%rsp 483 .byte 0x0f,0x29,0x34,0x24 #movaps %xmm6,(%rsp) 484 .byte 0x0f,0x29,0x7c,0x24,0x10 #movdqa %xmm7,0x10(%rsp) 485 .byte 0x44,0x0f,0x29,0x44,0x24,0x20 #movaps %xmm8,0x20(%rsp) 486 .byte 0x44,0x0f,0x29,0x4c,0x24,0x30 #movaps %xmm9,0x30(%rsp) 487 .byte 0x44,0x0f,0x29,0x54,0x24,0x40 #movaps %xmm10,0x40(%rsp) 488___ 489$code.=<<___; 490 movdqa .Lbswap_mask(%rip),$T3 491 492 movdqu ($Xip),$Xi 493 movdqu ($Htbl),$Hkey 494 pshufb $T3,$Xi 495 496 sub \$0x10,$len 497 jz .Lodd_tail 498 499 movdqu 16($Htbl),$Hkey2 500 ####### 501 # Xi+2 =[H*(Ii+1 + Xi+1)] mod P = 502 # [(H*Ii+1) + (H*Xi+1)] mod P = 503 # [(H*Ii+1) + H^2*(Ii+Xi)] mod P 504 # 505 movdqu ($inp),$T1 # Ii 506 movdqu 16($inp),$Xn # Ii+1 507 pshufb $T3,$T1 508 pshufb $T3,$Xn 509 pxor $T1,$Xi # Ii+Xi 510___ 511 &clmul64x64_T2 ($Xhn,$Xn,$Hkey); # H*Ii+1 512$code.=<<___; 513 movdqa $Xi,$Xhi # 514 pshufd \$0b01001110,$Xi,$T1 515 pshufd \$0b01001110,$Hkey2,$T2 516 pxor $Xi,$T1 # 517 pxor $Hkey2,$T2 518 519 lea 32($inp),$inp # i+=2 520 sub \$0x20,$len 521 jbe .Leven_tail 522 523.Lmod_loop: 524___ 525 &clmul64x64_T2 ($Xhi,$Xi,$Hkey2,1); # H^2*(Ii+Xi) 526$code.=<<___; 527 movdqu ($inp),$T1 # Ii 528 pxor $Xn,$Xi # (H*Ii+1) + H^2*(Ii+Xi) 529 pxor $Xhn,$Xhi 530 531 movdqu 16($inp),$Xn # Ii+1 532 pshufb $T3,$T1 533 pshufb $T3,$Xn 534 535 movdqa $Xn,$Xhn # 536 pshufd \$0b01001110,$Xn,$T1n 537 pshufd \$0b01001110,$Hkey,$T2n 538 pxor $Xn,$T1n # 539 pxor $Hkey,$T2n 540 pxor $T1,$Xhi # "Ii+Xi", consume early 541 542 movdqa $Xi,$T1 # 1st phase 543 psllq \$1,$Xi 544 pxor $T1,$Xi # 545 psllq \$5,$Xi # 546 pxor $T1,$Xi # 547 pclmulqdq \$0x00,$Hkey,$Xn ####### 548 psllq \$57,$Xi # 549 movdqa $Xi,$T2 # 550 pslldq \$8,$Xi 551 psrldq \$8,$T2 # 552 pxor $T1,$Xi 553 pxor $T2,$Xhi # 554 555 pclmulqdq \$0x11,$Hkey,$Xhn ####### 556 movdqa $Xi,$T2 # 2nd phase 557 psrlq \$5,$Xi 558 pxor $T2,$Xi # 559 psrlq \$1,$Xi # 560 pxor $T2,$Xi # 561 pxor $Xhi,$T2 562 psrlq \$1,$Xi # 563 pxor $T2,$Xi # 564 565 pclmulqdq \$0x00,$T2n,$T1n ####### 566 movdqa $Xi,$Xhi # 567 pshufd \$0b01001110,$Xi,$T1 568 pshufd \$0b01001110,$Hkey2,$T2 569 pxor $Xi,$T1 # 570 pxor $Hkey2,$T2 571 572 pxor $Xn,$T1n # 573 pxor $Xhn,$T1n # 574 movdqa $T1n,$T2n # 575 psrldq \$8,$T1n 576 pslldq \$8,$T2n # 577 pxor $T1n,$Xhn 578 pxor $T2n,$Xn # 579 580 lea 32($inp),$inp 581 sub \$0x20,$len 582 ja .Lmod_loop 583 584.Leven_tail: 585___ 586 &clmul64x64_T2 ($Xhi,$Xi,$Hkey2,1); # H^2*(Ii+Xi) 587$code.=<<___; 588 pxor $Xn,$Xi # (H*Ii+1) + H^2*(Ii+Xi) 589 pxor $Xhn,$Xhi 590___ 591 &reduction_alg9 ($Xhi,$Xi); 592$code.=<<___; 593 test $len,$len 594 jnz .Ldone 595 596.Lodd_tail: 597 movdqu ($inp),$T1 # Ii 598 pshufb $T3,$T1 599 pxor $T1,$Xi # Ii+Xi 600___ 601 &clmul64x64_T2 ($Xhi,$Xi,$Hkey); # H*(Ii+Xi) 602 &reduction_alg9 ($Xhi,$Xi); 603$code.=<<___; 604.Ldone: 605 pshufb $T3,$Xi 606 movdqu $Xi,($Xip) 607___ 608$code.=<<___ if ($win64); 609 movaps (%rsp),%xmm6 610 movaps 0x10(%rsp),%xmm7 611 movaps 0x20(%rsp),%xmm8 612 movaps 0x30(%rsp),%xmm9 613 movaps 0x40(%rsp),%xmm10 614 add \$0x58,%rsp 615___ 616$code.=<<___; 617 ret 618.LSEH_end_gcm_ghash_clmul: 619.size gcm_ghash_clmul,.-gcm_ghash_clmul 620___ 621} 622 623$code.=<<___; 624.align 64 625.Lbswap_mask: 626 .byte 15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0 627.L0x1c2_polynomial: 628 .byte 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2 629.align 64 630.type .Lrem_4bit,\@object 631.Lrem_4bit: 632 .long 0,`0x0000<<16`,0,`0x1C20<<16`,0,`0x3840<<16`,0,`0x2460<<16` 633 .long 0,`0x7080<<16`,0,`0x6CA0<<16`,0,`0x48C0<<16`,0,`0x54E0<<16` 634 .long 0,`0xE100<<16`,0,`0xFD20<<16`,0,`0xD940<<16`,0,`0xC560<<16` 635 .long 0,`0x9180<<16`,0,`0x8DA0<<16`,0,`0xA9C0<<16`,0,`0xB5E0<<16` 636.type .Lrem_8bit,\@object 637.Lrem_8bit: 638 .value 0x0000,0x01C2,0x0384,0x0246,0x0708,0x06CA,0x048C,0x054E 639 .value 0x0E10,0x0FD2,0x0D94,0x0C56,0x0918,0x08DA,0x0A9C,0x0B5E 640 .value 0x1C20,0x1DE2,0x1FA4,0x1E66,0x1B28,0x1AEA,0x18AC,0x196E 641 .value 0x1230,0x13F2,0x11B4,0x1076,0x1538,0x14FA,0x16BC,0x177E 642 .value 0x3840,0x3982,0x3BC4,0x3A06,0x3F48,0x3E8A,0x3CCC,0x3D0E 643 .value 0x3650,0x3792,0x35D4,0x3416,0x3158,0x309A,0x32DC,0x331E 644 .value 0x2460,0x25A2,0x27E4,0x2626,0x2368,0x22AA,0x20EC,0x212E 645 .value 0x2A70,0x2BB2,0x29F4,0x2836,0x2D78,0x2CBA,0x2EFC,0x2F3E 646 .value 0x7080,0x7142,0x7304,0x72C6,0x7788,0x764A,0x740C,0x75CE 647 .value 0x7E90,0x7F52,0x7D14,0x7CD6,0x7998,0x785A,0x7A1C,0x7BDE 648 .value 0x6CA0,0x6D62,0x6F24,0x6EE6,0x6BA8,0x6A6A,0x682C,0x69EE 649 .value 0x62B0,0x6372,0x6134,0x60F6,0x65B8,0x647A,0x663C,0x67FE 650 .value 0x48C0,0x4902,0x4B44,0x4A86,0x4FC8,0x4E0A,0x4C4C,0x4D8E 651 .value 0x46D0,0x4712,0x4554,0x4496,0x41D8,0x401A,0x425C,0x439E 652 .value 0x54E0,0x5522,0x5764,0x56A6,0x53E8,0x522A,0x506C,0x51AE 653 .value 0x5AF0,0x5B32,0x5974,0x58B6,0x5DF8,0x5C3A,0x5E7C,0x5FBE 654 .value 0xE100,0xE0C2,0xE284,0xE346,0xE608,0xE7CA,0xE58C,0xE44E 655 .value 0xEF10,0xEED2,0xEC94,0xED56,0xE818,0xE9DA,0xEB9C,0xEA5E 656 .value 0xFD20,0xFCE2,0xFEA4,0xFF66,0xFA28,0xFBEA,0xF9AC,0xF86E 657 .value 0xF330,0xF2F2,0xF0B4,0xF176,0xF438,0xF5FA,0xF7BC,0xF67E 658 .value 0xD940,0xD882,0xDAC4,0xDB06,0xDE48,0xDF8A,0xDDCC,0xDC0E 659 .value 0xD750,0xD692,0xD4D4,0xD516,0xD058,0xD19A,0xD3DC,0xD21E 660 .value 0xC560,0xC4A2,0xC6E4,0xC726,0xC268,0xC3AA,0xC1EC,0xC02E 661 .value 0xCB70,0xCAB2,0xC8F4,0xC936,0xCC78,0xCDBA,0xCFFC,0xCE3E 662 .value 0x9180,0x9042,0x9204,0x93C6,0x9688,0x974A,0x950C,0x94CE 663 .value 0x9F90,0x9E52,0x9C14,0x9DD6,0x9898,0x995A,0x9B1C,0x9ADE 664 .value 0x8DA0,0x8C62,0x8E24,0x8FE6,0x8AA8,0x8B6A,0x892C,0x88EE 665 .value 0x83B0,0x8272,0x8034,0x81F6,0x84B8,0x857A,0x873C,0x86FE 666 .value 0xA9C0,0xA802,0xAA44,0xAB86,0xAEC8,0xAF0A,0xAD4C,0xAC8E 667 .value 0xA7D0,0xA612,0xA454,0xA596,0xA0D8,0xA11A,0xA35C,0xA29E 668 .value 0xB5E0,0xB422,0xB664,0xB7A6,0xB2E8,0xB32A,0xB16C,0xB0AE 669 .value 0xBBF0,0xBA32,0xB874,0xB9B6,0xBCF8,0xBD3A,0xBF7C,0xBEBE 670 671.asciz "GHASH for x86_64, CRYPTOGAMS by <appro\@openssl.org>" 672.align 64 673___ 674 675# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, 676# CONTEXT *context,DISPATCHER_CONTEXT *disp) 677if ($win64) { 678$rec="%rcx"; 679$frame="%rdx"; 680$context="%r8"; 681$disp="%r9"; 682 683$code.=<<___; 684.extern __imp_RtlVirtualUnwind 685.type se_handler,\@abi-omnipotent 686.align 16 687se_handler: 688 push %rsi 689 push %rdi 690 push %rbx 691 push %rbp 692 push %r12 693 push %r13 694 push %r14 695 push %r15 696 pushfq 697 sub \$64,%rsp 698 699 mov 120($context),%rax # pull context->Rax 700 mov 248($context),%rbx # pull context->Rip 701 702 mov 8($disp),%rsi # disp->ImageBase 703 mov 56($disp),%r11 # disp->HandlerData 704 705 mov 0(%r11),%r10d # HandlerData[0] 706 lea (%rsi,%r10),%r10 # prologue label 707 cmp %r10,%rbx # context->Rip<prologue label 708 jb .Lin_prologue 709 710 mov 152($context),%rax # pull context->Rsp 711 712 mov 4(%r11),%r10d # HandlerData[1] 713 lea (%rsi,%r10),%r10 # epilogue label 714 cmp %r10,%rbx # context->Rip>=epilogue label 715 jae .Lin_prologue 716 717 lea 24(%rax),%rax # adjust "rsp" 718 719 mov -8(%rax),%rbx 720 mov -16(%rax),%rbp 721 mov -24(%rax),%r12 722 mov %rbx,144($context) # restore context->Rbx 723 mov %rbp,160($context) # restore context->Rbp 724 mov %r12,216($context) # restore context->R12 725 726.Lin_prologue: 727 mov 8(%rax),%rdi 728 mov 16(%rax),%rsi 729 mov %rax,152($context) # restore context->Rsp 730 mov %rsi,168($context) # restore context->Rsi 731 mov %rdi,176($context) # restore context->Rdi 732 733 mov 40($disp),%rdi # disp->ContextRecord 734 mov $context,%rsi # context 735 mov \$`1232/8`,%ecx # sizeof(CONTEXT) 736 .long 0xa548f3fc # cld; rep movsq 737 738 mov $disp,%rsi 739 xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER 740 mov 8(%rsi),%rdx # arg2, disp->ImageBase 741 mov 0(%rsi),%r8 # arg3, disp->ControlPc 742 mov 16(%rsi),%r9 # arg4, disp->FunctionEntry 743 mov 40(%rsi),%r10 # disp->ContextRecord 744 lea 56(%rsi),%r11 # &disp->HandlerData 745 lea 24(%rsi),%r12 # &disp->EstablisherFrame 746 mov %r10,32(%rsp) # arg5 747 mov %r11,40(%rsp) # arg6 748 mov %r12,48(%rsp) # arg7 749 mov %rcx,56(%rsp) # arg8, (NULL) 750 call *__imp_RtlVirtualUnwind(%rip) 751 752 mov \$1,%eax # ExceptionContinueSearch 753 add \$64,%rsp 754 popfq 755 pop %r15 756 pop %r14 757 pop %r13 758 pop %r12 759 pop %rbp 760 pop %rbx 761 pop %rdi 762 pop %rsi 763 ret 764.size se_handler,.-se_handler 765 766.section .pdata 767.align 4 768 .rva .LSEH_begin_gcm_gmult_4bit 769 .rva .LSEH_end_gcm_gmult_4bit 770 .rva .LSEH_info_gcm_gmult_4bit 771 772 .rva .LSEH_begin_gcm_ghash_4bit 773 .rva .LSEH_end_gcm_ghash_4bit 774 .rva .LSEH_info_gcm_ghash_4bit 775 776 .rva .LSEH_begin_gcm_ghash_clmul 777 .rva .LSEH_end_gcm_ghash_clmul 778 .rva .LSEH_info_gcm_ghash_clmul 779 780.section .xdata 781.align 8 782.LSEH_info_gcm_gmult_4bit: 783 .byte 9,0,0,0 784 .rva se_handler 785 .rva .Lgmult_prologue,.Lgmult_epilogue # HandlerData 786.LSEH_info_gcm_ghash_4bit: 787 .byte 9,0,0,0 788 .rva se_handler 789 .rva .Lghash_prologue,.Lghash_epilogue # HandlerData 790.LSEH_info_gcm_ghash_clmul: 791 .byte 0x01,0x1f,0x0b,0x00 792 .byte 0x1f,0xa8,0x04,0x00 #movaps 0x40(rsp),xmm10 793 .byte 0x19,0x98,0x03,0x00 #movaps 0x30(rsp),xmm9 794 .byte 0x13,0x88,0x02,0x00 #movaps 0x20(rsp),xmm8 795 .byte 0x0d,0x78,0x01,0x00 #movaps 0x10(rsp),xmm7 796 .byte 0x08,0x68,0x00,0x00 #movaps (rsp),xmm6 797 .byte 0x04,0xa2,0x00,0x00 #sub rsp,0x58 798___ 799} 800 801$code =~ s/\`([^\`]*)\`/eval($1)/gem; 802 803print $code; 804 805close STDOUT; 806