• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 ** License Applicability. Except to the extent portions of this file are
3 ** made subject to an alternative license as permitted in the SGI Free
4 ** Software License B, Version 1.1 (the "License"), the contents of this
5 ** file are subject only to the provisions of the License. You may not use
6 ** this file except in compliance with the License. You may obtain a copy
7 ** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600
8 ** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at:
9 **
10 ** http://oss.sgi.com/projects/FreeB
11 **
12 ** Note that, as provided in the License, the Software is distributed on an
13 ** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS
14 ** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND
15 ** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
16 ** PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
17 **
18 ** Original Code. The Original Code is: OpenGL Sample Implementation,
19 ** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics,
20 ** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc.
21 ** Copyright in any portions created by third parties is as indicated
22 ** elsewhere herein. All Rights Reserved.
23 **
24 ** Additional Notice Provisions: The application programming interfaces
25 ** established by SGI in conjunction with the Original Code are The
26 ** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released
27 ** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version
28 ** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X
29 ** Window System(R) (Version 1.3), released October 19, 1998. This software
30 ** was created using the OpenGL(R) version 1.2.1 Sample Implementation
31 ** published by SGI, but has not been independently verified as being
32 ** compliant with the OpenGL(R) version 1.2.1 Specification.
33 **
34 */
35 /*
36 ** Author: Eric Veach, July 1994.
37 **
38 ** $Date$ $Revision$
39 ** $Header: //depot/main/gfx/lib/glu/libtess/tessmono.c#5 $
40 */
41 
42 #include "gluos.h"
43 #include <stdlib.h>
44 #include "geom.h"
45 #include "mesh.h"
46 #include "tessmono.h"
47 #include <assert.h>
48 
49 #define AddWinding(eDst,eSrc)	(eDst->winding += eSrc->winding, \
50 				 eDst->Sym->winding += eSrc->Sym->winding)
51 
52 /* __gl_meshTessellateMonoRegion( face ) tessellates a monotone region
53  * (what else would it do??)  The region must consist of a single
54  * loop of half-edges (see mesh.h) oriented CCW.  "Monotone" in this
55  * case means that any vertical line intersects the interior of the
56  * region in a single interval.
57  *
58  * Tessellation consists of adding interior edges (actually pairs of
59  * half-edges), to split the region into non-overlapping triangles.
60  *
61  * The basic idea is explained in Preparata and Shamos (which I don''t
62  * have handy right now), although their implementation is more
63  * complicated than this one.  The are two edge chains, an upper chain
64  * and a lower chain.  We process all vertices from both chains in order,
65  * from right to left.
66  *
67  * The algorithm ensures that the following invariant holds after each
68  * vertex is processed: the untessellated region consists of two
69  * chains, where one chain (say the upper) is a single edge, and
70  * the other chain is concave.  The left vertex of the single edge
71  * is always to the left of all vertices in the concave chain.
72  *
73  * Each step consists of adding the rightmost unprocessed vertex to one
74  * of the two chains, and forming a fan of triangles from the rightmost
75  * of two chain endpoints.  Determining whether we can add each triangle
76  * to the fan is a simple orientation test.  By making the fan as large
77  * as possible, we restore the invariant (check it yourself).
78  */
__gl_meshTessellateMonoRegion(GLUface * face)79 int __gl_meshTessellateMonoRegion( GLUface *face )
80 {
81   GLUhalfEdge *up, *lo;
82 
83   /* All edges are oriented CCW around the boundary of the region.
84    * First, find the half-edge whose origin vertex is rightmost.
85    * Since the sweep goes from left to right, face->anEdge should
86    * be close to the edge we want.
87    */
88   up = face->anEdge;
89   assert( up->Lnext != up && up->Lnext->Lnext != up );
90 
91   for( ; VertLeq( up->Dst, up->Org ); up = up->Lprev )
92     ;
93   for( ; VertLeq( up->Org, up->Dst ); up = up->Lnext )
94     ;
95   lo = up->Lprev;
96 
97   while( up->Lnext != lo ) {
98     if( VertLeq( up->Dst, lo->Org )) {
99       /* up->Dst is on the left.  It is safe to form triangles from lo->Org.
100        * The EdgeGoesLeft test guarantees progress even when some triangles
101        * are CW, given that the upper and lower chains are truly monotone.
102        */
103       while( lo->Lnext != up && (EdgeGoesLeft( lo->Lnext )
104 	     || EdgeSign( lo->Org, lo->Dst, lo->Lnext->Dst ) <= 0 )) {
105 	GLUhalfEdge *tempHalfEdge= __gl_meshConnect( lo->Lnext, lo );
106 	if (tempHalfEdge == NULL) return 0;
107 	lo = tempHalfEdge->Sym;
108       }
109       lo = lo->Lprev;
110     } else {
111       /* lo->Org is on the left.  We can make CCW triangles from up->Dst. */
112       while( lo->Lnext != up && (EdgeGoesRight( up->Lprev )
113 	     || EdgeSign( up->Dst, up->Org, up->Lprev->Org ) >= 0 )) {
114 	GLUhalfEdge *tempHalfEdge= __gl_meshConnect( up, up->Lprev );
115 	if (tempHalfEdge == NULL) return 0;
116 	up = tempHalfEdge->Sym;
117       }
118       up = up->Lnext;
119     }
120   }
121 
122   /* Now lo->Org == up->Dst == the leftmost vertex.  The remaining region
123    * can be tessellated in a fan from this leftmost vertex.
124    */
125   assert( lo->Lnext != up );
126   while( lo->Lnext->Lnext != up ) {
127     GLUhalfEdge *tempHalfEdge= __gl_meshConnect( lo->Lnext, lo );
128     if (tempHalfEdge == NULL) return 0;
129     lo = tempHalfEdge->Sym;
130   }
131 
132   return 1;
133 }
134 
135 
136 /* __gl_meshTessellateInterior( mesh ) tessellates each region of
137  * the mesh which is marked "inside" the polygon.  Each such region
138  * must be monotone.
139  */
__gl_meshTessellateInterior(GLUmesh * mesh)140 int __gl_meshTessellateInterior( GLUmesh *mesh )
141 {
142   GLUface *f, *next;
143 
144   /*LINTED*/
145   for( f = mesh->fHead.next; f != &mesh->fHead; f = next ) {
146     /* Make sure we don''t try to tessellate the new triangles. */
147     next = f->next;
148     if( f->inside ) {
149       if ( !__gl_meshTessellateMonoRegion( f ) ) return 0;
150     }
151   }
152 
153   return 1;
154 }
155 
156 
157 /* __gl_meshDiscardExterior( mesh ) zaps (ie. sets to NULL) all faces
158  * which are not marked "inside" the polygon.  Since further mesh operations
159  * on NULL faces are not allowed, the main purpose is to clean up the
160  * mesh so that exterior loops are not represented in the data structure.
161  */
__gl_meshDiscardExterior(GLUmesh * mesh)162 void __gl_meshDiscardExterior( GLUmesh *mesh )
163 {
164   GLUface *f, *next;
165 
166   /*LINTED*/
167   for( f = mesh->fHead.next; f != &mesh->fHead; f = next ) {
168     /* Since f will be destroyed, save its next pointer. */
169     next = f->next;
170     if( ! f->inside ) {
171       __gl_meshZapFace( f );
172     }
173   }
174 }
175 
176 #define MARKED_FOR_DELETION	0x7fffffff
177 
178 /* __gl_meshSetWindingNumber( mesh, value, keepOnlyBoundary ) resets the
179  * winding numbers on all edges so that regions marked "inside" the
180  * polygon have a winding number of "value", and regions outside
181  * have a winding number of 0.
182  *
183  * If keepOnlyBoundary is TRUE, it also deletes all edges which do not
184  * separate an interior region from an exterior one.
185  */
__gl_meshSetWindingNumber(GLUmesh * mesh,int value,GLboolean keepOnlyBoundary)186 int __gl_meshSetWindingNumber( GLUmesh *mesh, int value,
187 			        GLboolean keepOnlyBoundary )
188 {
189   GLUhalfEdge *e, *eNext;
190 
191   for( e = mesh->eHead.next; e != &mesh->eHead; e = eNext ) {
192     eNext = e->next;
193     if( e->Rface->inside != e->Lface->inside ) {
194 
195       /* This is a boundary edge (one side is interior, one is exterior). */
196       e->winding = (e->Lface->inside) ? value : -value;
197     } else {
198 
199       /* Both regions are interior, or both are exterior. */
200       if( ! keepOnlyBoundary ) {
201 	e->winding = 0;
202       } else {
203 	if ( !__gl_meshDelete( e ) ) return 0;
204       }
205     }
206   }
207   return 1;
208 }
209