1 // equivalent.h
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 //
16 // \file Functions and classes to determine the equivalence of two
17 // FSTs.
18
19 #ifndef FST_LIB_EQUIVALENT_H__
20 #define FST_LIB_EQUIVALENT_H__
21
22 #include <algorithm>
23
24 #include <ext/hash_map>
25 using __gnu_cxx::hash_map;
26
27 #include "fst/lib/encode.h"
28 #include "fst/lib/push.h"
29 #include "fst/lib/union-find.h"
30 #include "fst/lib/vector-fst.h"
31
32 namespace fst {
33
34 // Traits-like struct holding utility functions/typedefs/constants for
35 // the equivalence algorithm.
36 //
37 // Encoding device: in order to make the statesets of the two acceptors
38 // disjoint, we map Arc::StateId on the type MappedId. The states of
39 // the first acceptor are mapped on odd numbers (s -> 2s + 1), and
40 // those of the second one on even numbers (s -> 2s + 2). The number 0
41 // is reserved for an implicit (non-final) 'dead state' (required for
42 // the correct treatment of non-coaccessible states; kNoStateId is
43 // mapped to kDeadState for both acceptors). The union-find algorithm
44 // operates on the mapped IDs.
45 template <class Arc>
46 struct EquivalenceUtil {
47 typedef typename Arc::StateId StateId;
48 typedef typename Arc::Weight Weight;
49 typedef int32 MappedId; // ID for an equivalence class.
50
51 // MappedId for an implicit dead state.
52 static const MappedId kDeadState = 0;
53
54 // MappedId for lookup failure.
55 static const MappedId kInvalidId = -1;
56
57 // Maps state ID to the representative of the corresponding
58 // equivalence class. The parameter 'which_fst' takes the values 1
59 // and 2, identifying the input FST.
MapStateEquivalenceUtil60 static MappedId MapState(StateId s, int32 which_fst) {
61 return
62 (kNoStateId == s)
63 ?
64 kDeadState
65 :
66 (static_cast<MappedId>(s) << 1) + which_fst;
67 }
68 // Maps set ID to State ID.
UnMapStateEquivalenceUtil69 static StateId UnMapState(MappedId id) {
70 return static_cast<StateId>((--id) >> 1);
71 }
72 // Convenience function: checks if state with MappedId 's' is final
73 // in acceptor 'fa'.
IsFinalEquivalenceUtil74 static bool IsFinal(const Fst<Arc> &fa, MappedId s) {
75 return
76 (kDeadState == s) ?
77 false : (fa.Final(UnMapState(s)) != Weight::Zero());
78 }
79 // Convenience function: returns the representative of 'id' in 'sets',
80 // creating a new set if needed.
FindSetEquivalenceUtil81 static MappedId FindSet(UnionFind<MappedId> *sets, MappedId id) {
82 MappedId repr = sets->FindSet(id);
83 if (repr != kInvalidId) {
84 return repr;
85 } else {
86 sets->MakeSet(id);
87 return id;
88 }
89 }
90 };
91
92 // Equivalence checking algorithm: determines if the two FSTs
93 // <code>fst1</code> and <code>fst2</code> are equivalent. The input
94 // FSTs must be deterministic input-side epsilon-free acceptors,
95 // unweighted or with weights over a left semiring. Two acceptors are
96 // considered equivalent if they accept exactly the same set of
97 // strings (with the same weights).
98 //
99 // The algorithm (cf. Aho, Hopcroft and Ullman, "The Design and
100 // Analysis of Computer Programs") successively constructs sets of
101 // states that can be reached by the same prefixes, starting with a
102 // set containing the start states of both acceptors. A disjoint tree
103 // forest (the union-find algorithm) is used to represent the sets of
104 // states. The algorithm returns 'false' if one of the constructed
105 // sets contains both final and non-final states.
106 //
107 // Complexity: quasi-linear, i.e. O(n G(n)), where
108 // n = |S1| + |S2| is the number of states in both acceptors
109 // G(n) is a very slowly growing function that can be approximated
110 // by 4 by all practical purposes.
111 //
112 template <class Arc>
Equivalent(const Fst<Arc> & fst1,const Fst<Arc> & fst2)113 bool Equivalent(const Fst<Arc> &fst1, const Fst<Arc> &fst2) {
114 typedef typename Arc::Weight Weight;
115 // Check properties first:
116 uint64 props = kNoEpsilons | kIDeterministic | kAcceptor;
117 if (fst1.Properties(props, true) != props) {
118 LOG(FATAL) << "Equivalent: first argument not an"
119 << " epsilon-free deterministic acceptor";
120 }
121 if (fst2.Properties(props, true) != props) {
122 LOG(FATAL) << "Equivalent: second argument not an"
123 << " epsilon-free deterministic acceptor";
124 }
125
126 if ((fst1.Properties(kUnweighted , true) != kUnweighted)
127 || (fst2.Properties(kUnweighted , true) != kUnweighted)) {
128 VectorFst<Arc> efst1(fst1);
129 VectorFst<Arc> efst2(fst2);
130 Push(&efst1, REWEIGHT_TO_INITIAL);
131 Push(&efst2, REWEIGHT_TO_INITIAL);
132 Map(&efst1, QuantizeMapper<Arc>());
133 Map(&efst2, QuantizeMapper<Arc>());
134 EncodeMapper<Arc> mapper(kEncodeWeights|kEncodeLabels, ENCODE);
135 Map(&efst1, &mapper);
136 Map(&efst2, &mapper);
137 return Equivalent(efst1, efst2);
138 }
139
140 // Convenience typedefs:
141 typedef typename Arc::StateId StateId;
142 typedef EquivalenceUtil<Arc> Util;
143 typedef typename Util::MappedId MappedId;
144 enum { FST1 = 1, FST2 = 2 }; // Required by Util::MapState(...)
145
146 MappedId s1 = Util::MapState(fst1.Start(), FST1);
147 MappedId s2 = Util::MapState(fst2.Start(), FST2);
148
149 // The union-find structure.
150 UnionFind<MappedId> eq_classes(1000, Util::kInvalidId);
151
152 // Initialize the union-find structure.
153 eq_classes.MakeSet(s1);
154 eq_classes.MakeSet(s2);
155
156 // Early return if the start states differ w.r.t. being final.
157 if (Util::IsFinal(fst1, s1) != Util::IsFinal(fst2, s2)) {
158 return false;
159 }
160 // Data structure for the (partial) acceptor transition function of
161 // fst1 and fst2: input labels mapped to pairs of MappedId's
162 // representing destination states of the corresponding arcs in fst1
163 // and fst2, respectively.
164 typedef
165 hash_map<typename Arc::Label, pair<MappedId, MappedId> >
166 Label2StatePairMap;
167
168 Label2StatePairMap arc_pairs;
169
170 // Pairs of MappedId's to be processed, organized in a queue.
171 deque<pair<MappedId, MappedId> > q;
172
173 // Main loop: explores the two acceptors in a breadth-first manner,
174 // updating the equivalence relation on the statesets. Loop
175 // invariant: each block of states contains either final states only
176 // or non-final states only.
177 for (q.push_back(make_pair(s1, s2)); !q.empty(); q.pop_front()) {
178 s1 = q.front().first;
179 s2 = q.front().second;
180
181 // Representatives of the equivalence classes of s1/s2.
182 MappedId rep1 = Util::FindSet(&eq_classes, s1);
183 MappedId rep2 = Util::FindSet(&eq_classes, s2);
184
185 if (rep1 != rep2) {
186 eq_classes.Union(rep1, rep2);
187 arc_pairs.clear();
188
189 // Copy outgoing arcs starting at s1 into the hashtable.
190 if (Util::kDeadState != s1) {
191 ArcIterator<Fst<Arc> > arc_iter(fst1, Util::UnMapState(s1));
192 for (; !arc_iter.Done(); arc_iter.Next()) {
193 const Arc &arc = arc_iter.Value();
194 if (arc.weight != Weight::Zero()) { // Zero-weight arcs
195 // are treated as
196 // non-exisitent.
197 arc_pairs[arc.ilabel].first = Util::MapState(arc.nextstate, FST1);
198 }
199 }
200 }
201 // Copy outgoing arcs starting at s2 into the hashtable.
202 if (Util::kDeadState != s2) {
203 ArcIterator<Fst<Arc> > arc_iter(fst2, Util::UnMapState(s2));
204 for (; !arc_iter.Done(); arc_iter.Next()) {
205 const Arc &arc = arc_iter.Value();
206 if (arc.weight != Weight::Zero()) { // Zero-weight arcs
207 // are treated as
208 // non-existent.
209 arc_pairs[arc.ilabel].second = Util::MapState(arc.nextstate, FST2);
210 }
211 }
212 }
213 // Iterate through the hashtable and process pairs of target
214 // states.
215 for (typename Label2StatePairMap::const_iterator
216 arc_iter = arc_pairs.begin();
217 arc_iter != arc_pairs.end();
218 ++arc_iter) {
219 const pair<MappedId, MappedId> &p = arc_iter->second;
220 if (Util::IsFinal(fst1, p.first) != Util::IsFinal(fst2, p.second)) {
221 // Detected inconsistency: return false.
222 return false;
223 }
224 q.push_back(p);
225 }
226 }
227 }
228 return true;
229 }
230
231 } // namespace fst
232
233 #endif // FST_LIB_EQUIVALENT_H__
234