1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "v8.h"
29
30 #include "arm/lithium-gap-resolver-arm.h"
31 #include "arm/lithium-codegen-arm.h"
32
33 namespace v8 {
34 namespace internal {
35
36 static const Register kSavedValueRegister = { 9 };
37
LGapResolver(LCodeGen * owner)38 LGapResolver::LGapResolver(LCodeGen* owner)
39 : cgen_(owner), moves_(32), root_index_(0), in_cycle_(false),
40 saved_destination_(NULL) { }
41
42
Resolve(LParallelMove * parallel_move)43 void LGapResolver::Resolve(LParallelMove* parallel_move) {
44 ASSERT(moves_.is_empty());
45 // Build up a worklist of moves.
46 BuildInitialMoveList(parallel_move);
47
48 for (int i = 0; i < moves_.length(); ++i) {
49 LMoveOperands move = moves_[i];
50 // Skip constants to perform them last. They don't block other moves
51 // and skipping such moves with register destinations keeps those
52 // registers free for the whole algorithm.
53 if (!move.IsEliminated() && !move.source()->IsConstantOperand()) {
54 root_index_ = i; // Any cycle is found when by reaching this move again.
55 PerformMove(i);
56 if (in_cycle_) {
57 RestoreValue();
58 }
59 }
60 }
61
62 // Perform the moves with constant sources.
63 for (int i = 0; i < moves_.length(); ++i) {
64 if (!moves_[i].IsEliminated()) {
65 ASSERT(moves_[i].source()->IsConstantOperand());
66 EmitMove(i);
67 }
68 }
69
70 moves_.Rewind(0);
71 }
72
73
BuildInitialMoveList(LParallelMove * parallel_move)74 void LGapResolver::BuildInitialMoveList(LParallelMove* parallel_move) {
75 // Perform a linear sweep of the moves to add them to the initial list of
76 // moves to perform, ignoring any move that is redundant (the source is
77 // the same as the destination, the destination is ignored and
78 // unallocated, or the move was already eliminated).
79 const ZoneList<LMoveOperands>* moves = parallel_move->move_operands();
80 for (int i = 0; i < moves->length(); ++i) {
81 LMoveOperands move = moves->at(i);
82 if (!move.IsRedundant()) moves_.Add(move);
83 }
84 Verify();
85 }
86
87
PerformMove(int index)88 void LGapResolver::PerformMove(int index) {
89 // Each call to this function performs a move and deletes it from the move
90 // graph. We first recursively perform any move blocking this one. We
91 // mark a move as "pending" on entry to PerformMove in order to detect
92 // cycles in the move graph.
93
94 // We can only find a cycle, when doing a depth-first traversal of moves,
95 // be encountering the starting move again. So by spilling the source of
96 // the starting move, we break the cycle. All moves are then unblocked,
97 // and the starting move is completed by writing the spilled value to
98 // its destination. All other moves from the spilled source have been
99 // completed prior to breaking the cycle.
100 // An additional complication is that moves to MemOperands with large
101 // offsets (more than 1K or 4K) require us to spill this spilled value to
102 // the stack, to free up the register.
103 ASSERT(!moves_[index].IsPending());
104 ASSERT(!moves_[index].IsRedundant());
105
106 // Clear this move's destination to indicate a pending move. The actual
107 // destination is saved in a stack allocated local. Multiple moves can
108 // be pending because this function is recursive.
109 ASSERT(moves_[index].source() != NULL); // Or else it will look eliminated.
110 LOperand* destination = moves_[index].destination();
111 moves_[index].set_destination(NULL);
112
113 // Perform a depth-first traversal of the move graph to resolve
114 // dependencies. Any unperformed, unpending move with a source the same
115 // as this one's destination blocks this one so recursively perform all
116 // such moves.
117 for (int i = 0; i < moves_.length(); ++i) {
118 LMoveOperands other_move = moves_[i];
119 if (other_move.Blocks(destination) && !other_move.IsPending()) {
120 PerformMove(i);
121 // If there is a blocking, pending move it must be moves_[root_index_]
122 // and all other moves with the same source as moves_[root_index_] are
123 // sucessfully executed (because they are cycle-free) by this loop.
124 }
125 }
126
127 // We are about to resolve this move and don't need it marked as
128 // pending, so restore its destination.
129 moves_[index].set_destination(destination);
130
131 // The move may be blocked on a pending move, which must be the starting move.
132 // In this case, we have a cycle, and we save the source of this move to
133 // a scratch register to break it.
134 LMoveOperands other_move = moves_[root_index_];
135 if (other_move.Blocks(destination)) {
136 ASSERT(other_move.IsPending());
137 BreakCycle(index);
138 return;
139 }
140
141 // This move is no longer blocked.
142 EmitMove(index);
143 }
144
145
Verify()146 void LGapResolver::Verify() {
147 #ifdef ENABLE_SLOW_ASSERTS
148 // No operand should be the destination for more than one move.
149 for (int i = 0; i < moves_.length(); ++i) {
150 LOperand* destination = moves_[i].destination();
151 for (int j = i + 1; j < moves_.length(); ++j) {
152 SLOW_ASSERT(!destination->Equals(moves_[j].destination()));
153 }
154 }
155 #endif
156 }
157
158 #define __ ACCESS_MASM(cgen_->masm())
159
BreakCycle(int index)160 void LGapResolver::BreakCycle(int index) {
161 // We save in a register the value that should end up in the source of
162 // moves_[root_index]. After performing all moves in the tree rooted
163 // in that move, we save the value to that source.
164 ASSERT(moves_[index].destination()->Equals(moves_[root_index_].source()));
165 ASSERT(!in_cycle_);
166 in_cycle_ = true;
167 LOperand* source = moves_[index].source();
168 saved_destination_ = moves_[index].destination();
169 if (source->IsRegister()) {
170 __ mov(kSavedValueRegister, cgen_->ToRegister(source));
171 } else if (source->IsStackSlot()) {
172 __ ldr(kSavedValueRegister, cgen_->ToMemOperand(source));
173 } else if (source->IsDoubleRegister()) {
174 __ vmov(kScratchDoubleReg, cgen_->ToDoubleRegister(source));
175 } else if (source->IsDoubleStackSlot()) {
176 __ vldr(kScratchDoubleReg, cgen_->ToMemOperand(source));
177 } else {
178 UNREACHABLE();
179 }
180 // This move will be done by restoring the saved value to the destination.
181 moves_[index].Eliminate();
182 }
183
184
RestoreValue()185 void LGapResolver::RestoreValue() {
186 ASSERT(in_cycle_);
187 ASSERT(saved_destination_ != NULL);
188
189 // Spilled value is in kSavedValueRegister or kSavedDoubleValueRegister.
190 if (saved_destination_->IsRegister()) {
191 __ mov(cgen_->ToRegister(saved_destination_), kSavedValueRegister);
192 } else if (saved_destination_->IsStackSlot()) {
193 __ str(kSavedValueRegister, cgen_->ToMemOperand(saved_destination_));
194 } else if (saved_destination_->IsDoubleRegister()) {
195 __ vmov(cgen_->ToDoubleRegister(saved_destination_), kScratchDoubleReg);
196 } else if (saved_destination_->IsDoubleStackSlot()) {
197 __ vstr(kScratchDoubleReg, cgen_->ToMemOperand(saved_destination_));
198 } else {
199 UNREACHABLE();
200 }
201
202 in_cycle_ = false;
203 saved_destination_ = NULL;
204 }
205
206
EmitMove(int index)207 void LGapResolver::EmitMove(int index) {
208 LOperand* source = moves_[index].source();
209 LOperand* destination = moves_[index].destination();
210
211 // Dispatch on the source and destination operand kinds. Not all
212 // combinations are possible.
213
214 if (source->IsRegister()) {
215 Register source_register = cgen_->ToRegister(source);
216 if (destination->IsRegister()) {
217 __ mov(cgen_->ToRegister(destination), source_register);
218 } else {
219 ASSERT(destination->IsStackSlot());
220 __ str(source_register, cgen_->ToMemOperand(destination));
221 }
222
223 } else if (source->IsStackSlot()) {
224 MemOperand source_operand = cgen_->ToMemOperand(source);
225 if (destination->IsRegister()) {
226 __ ldr(cgen_->ToRegister(destination), source_operand);
227 } else {
228 ASSERT(destination->IsStackSlot());
229 MemOperand destination_operand = cgen_->ToMemOperand(destination);
230 if (in_cycle_) {
231 if (!destination_operand.OffsetIsUint12Encodable()) {
232 // ip is overwritten while saving the value to the destination.
233 // Therefore we can't use ip. It is OK if the read from the source
234 // destroys ip, since that happens before the value is read.
235 __ vldr(kScratchDoubleReg.low(), source_operand);
236 __ vstr(kScratchDoubleReg.low(), destination_operand);
237 } else {
238 __ ldr(ip, source_operand);
239 __ str(ip, destination_operand);
240 }
241 } else {
242 __ ldr(kSavedValueRegister, source_operand);
243 __ str(kSavedValueRegister, destination_operand);
244 }
245 }
246
247 } else if (source->IsConstantOperand()) {
248 LConstantOperand* constant_source = LConstantOperand::cast(source);
249 if (destination->IsRegister()) {
250 Register dst = cgen_->ToRegister(destination);
251 if (cgen_->IsInteger32(constant_source)) {
252 __ mov(dst, Operand(cgen_->ToInteger32(constant_source)));
253 } else {
254 __ LoadObject(dst, cgen_->ToHandle(constant_source));
255 }
256 } else {
257 ASSERT(destination->IsStackSlot());
258 ASSERT(!in_cycle_); // Constant moves happen after all cycles are gone.
259 if (cgen_->IsInteger32(constant_source)) {
260 __ mov(kSavedValueRegister,
261 Operand(cgen_->ToInteger32(constant_source)));
262 } else {
263 __ LoadObject(kSavedValueRegister,
264 cgen_->ToHandle(constant_source));
265 }
266 __ str(kSavedValueRegister, cgen_->ToMemOperand(destination));
267 }
268
269 } else if (source->IsDoubleRegister()) {
270 DoubleRegister source_register = cgen_->ToDoubleRegister(source);
271 if (destination->IsDoubleRegister()) {
272 __ vmov(cgen_->ToDoubleRegister(destination), source_register);
273 } else {
274 ASSERT(destination->IsDoubleStackSlot());
275 __ vstr(source_register, cgen_->ToMemOperand(destination));
276 }
277
278 } else if (source->IsDoubleStackSlot()) {
279 MemOperand source_operand = cgen_->ToMemOperand(source);
280 if (destination->IsDoubleRegister()) {
281 __ vldr(cgen_->ToDoubleRegister(destination), source_operand);
282 } else {
283 ASSERT(destination->IsDoubleStackSlot());
284 MemOperand destination_operand = cgen_->ToMemOperand(destination);
285 if (in_cycle_) {
286 // kSavedDoubleValueRegister was used to break the cycle,
287 // but kSavedValueRegister is free.
288 MemOperand source_high_operand =
289 cgen_->ToHighMemOperand(source);
290 MemOperand destination_high_operand =
291 cgen_->ToHighMemOperand(destination);
292 __ ldr(kSavedValueRegister, source_operand);
293 __ str(kSavedValueRegister, destination_operand);
294 __ ldr(kSavedValueRegister, source_high_operand);
295 __ str(kSavedValueRegister, destination_high_operand);
296 } else {
297 __ vldr(kScratchDoubleReg, source_operand);
298 __ vstr(kScratchDoubleReg, destination_operand);
299 }
300 }
301 } else {
302 UNREACHABLE();
303 }
304
305 moves_[index].Eliminate();
306 }
307
308
309 #undef __
310
311 } } // namespace v8::internal
312