1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #ifndef V8_JSREGEXP_H_
29 #define V8_JSREGEXP_H_
30
31 #include "allocation.h"
32 #include "assembler.h"
33 #include "zone-inl.h"
34
35 namespace v8 {
36 namespace internal {
37
38 class NodeVisitor;
39 class RegExpCompiler;
40 class RegExpMacroAssembler;
41 class RegExpNode;
42 class RegExpTree;
43
44 class RegExpImpl {
45 public:
46 // Whether V8 is compiled with native regexp support or not.
UsesNativeRegExp()47 static bool UsesNativeRegExp() {
48 #ifdef V8_INTERPRETED_REGEXP
49 return false;
50 #else
51 return true;
52 #endif
53 }
54
55 // Creates a regular expression literal in the old space.
56 // This function calls the garbage collector if necessary.
57 static Handle<Object> CreateRegExpLiteral(Handle<JSFunction> constructor,
58 Handle<String> pattern,
59 Handle<String> flags,
60 bool* has_pending_exception);
61
62 // Returns a string representation of a regular expression.
63 // Implements RegExp.prototype.toString, see ECMA-262 section 15.10.6.4.
64 // This function calls the garbage collector if necessary.
65 static Handle<String> ToString(Handle<Object> value);
66
67 // Parses the RegExp pattern and prepares the JSRegExp object with
68 // generic data and choice of implementation - as well as what
69 // the implementation wants to store in the data field.
70 // Returns false if compilation fails.
71 static Handle<Object> Compile(Handle<JSRegExp> re,
72 Handle<String> pattern,
73 Handle<String> flags);
74
75 // See ECMA-262 section 15.10.6.2.
76 // This function calls the garbage collector if necessary.
77 static Handle<Object> Exec(Handle<JSRegExp> regexp,
78 Handle<String> subject,
79 int index,
80 Handle<JSArray> lastMatchInfo);
81
82 // Prepares a JSRegExp object with Irregexp-specific data.
83 static void IrregexpInitialize(Handle<JSRegExp> re,
84 Handle<String> pattern,
85 JSRegExp::Flags flags,
86 int capture_register_count);
87
88
89 static void AtomCompile(Handle<JSRegExp> re,
90 Handle<String> pattern,
91 JSRegExp::Flags flags,
92 Handle<String> match_pattern);
93
94 static Handle<Object> AtomExec(Handle<JSRegExp> regexp,
95 Handle<String> subject,
96 int index,
97 Handle<JSArray> lastMatchInfo);
98
99 enum IrregexpResult { RE_FAILURE = 0, RE_SUCCESS = 1, RE_EXCEPTION = -1 };
100
101 // Prepare a RegExp for being executed one or more times (using
102 // IrregexpExecOnce) on the subject.
103 // This ensures that the regexp is compiled for the subject, and that
104 // the subject is flat.
105 // Returns the number of integer spaces required by IrregexpExecOnce
106 // as its "registers" argument. If the regexp cannot be compiled,
107 // an exception is set as pending, and this function returns negative.
108 static int IrregexpPrepare(Handle<JSRegExp> regexp,
109 Handle<String> subject);
110
111 // Execute a regular expression once on the subject, starting from
112 // character "index".
113 // If successful, returns RE_SUCCESS and set the capture positions
114 // in the first registers.
115 // If matching fails, returns RE_FAILURE.
116 // If execution fails, sets a pending exception and returns RE_EXCEPTION.
117 static IrregexpResult IrregexpExecOnce(Handle<JSRegExp> regexp,
118 Handle<String> subject,
119 int index,
120 Vector<int> registers);
121
122 // Execute an Irregexp bytecode pattern.
123 // On a successful match, the result is a JSArray containing
124 // captured positions. On a failure, the result is the null value.
125 // Returns an empty handle in case of an exception.
126 static Handle<Object> IrregexpExec(Handle<JSRegExp> regexp,
127 Handle<String> subject,
128 int index,
129 Handle<JSArray> lastMatchInfo);
130
131 // Array index in the lastMatchInfo array.
132 static const int kLastCaptureCount = 0;
133 static const int kLastSubject = 1;
134 static const int kLastInput = 2;
135 static const int kFirstCapture = 3;
136 static const int kLastMatchOverhead = 3;
137
138 // Direct offset into the lastMatchInfo array.
139 static const int kLastCaptureCountOffset =
140 FixedArray::kHeaderSize + kLastCaptureCount * kPointerSize;
141 static const int kLastSubjectOffset =
142 FixedArray::kHeaderSize + kLastSubject * kPointerSize;
143 static const int kLastInputOffset =
144 FixedArray::kHeaderSize + kLastInput * kPointerSize;
145 static const int kFirstCaptureOffset =
146 FixedArray::kHeaderSize + kFirstCapture * kPointerSize;
147
148 // Used to access the lastMatchInfo array.
GetCapture(FixedArray * array,int index)149 static int GetCapture(FixedArray* array, int index) {
150 return Smi::cast(array->get(index + kFirstCapture))->value();
151 }
152
SetLastCaptureCount(FixedArray * array,int to)153 static void SetLastCaptureCount(FixedArray* array, int to) {
154 array->set(kLastCaptureCount, Smi::FromInt(to));
155 }
156
SetLastSubject(FixedArray * array,String * to)157 static void SetLastSubject(FixedArray* array, String* to) {
158 array->set(kLastSubject, to);
159 }
160
SetLastInput(FixedArray * array,String * to)161 static void SetLastInput(FixedArray* array, String* to) {
162 array->set(kLastInput, to);
163 }
164
SetCapture(FixedArray * array,int index,int to)165 static void SetCapture(FixedArray* array, int index, int to) {
166 array->set(index + kFirstCapture, Smi::FromInt(to));
167 }
168
GetLastCaptureCount(FixedArray * array)169 static int GetLastCaptureCount(FixedArray* array) {
170 return Smi::cast(array->get(kLastCaptureCount))->value();
171 }
172
173 // For acting on the JSRegExp data FixedArray.
174 static int IrregexpMaxRegisterCount(FixedArray* re);
175 static void SetIrregexpMaxRegisterCount(FixedArray* re, int value);
176 static int IrregexpNumberOfCaptures(FixedArray* re);
177 static int IrregexpNumberOfRegisters(FixedArray* re);
178 static ByteArray* IrregexpByteCode(FixedArray* re, bool is_ascii);
179 static Code* IrregexpNativeCode(FixedArray* re, bool is_ascii);
180
181 // Limit the space regexps take up on the heap. In order to limit this we
182 // would like to keep track of the amount of regexp code on the heap. This
183 // is not tracked, however. As a conservative approximation we track the
184 // total regexp code compiled including code that has subsequently been freed
185 // and the total executable memory at any point.
186 static const int kRegExpExecutableMemoryLimit = 16 * MB;
187 static const int kRegWxpCompiledLimit = 1 * MB;
188
189 private:
190 static String* last_ascii_string_;
191 static String* two_byte_cached_string_;
192
193 static bool CompileIrregexp(Handle<JSRegExp> re, bool is_ascii);
194 static inline bool EnsureCompiledIrregexp(Handle<JSRegExp> re, bool is_ascii);
195
196
197 // Set the subject cache. The previous string buffer is not deleted, so the
198 // caller should ensure that it doesn't leak.
199 static void SetSubjectCache(String* subject,
200 char* utf8_subject,
201 int uft8_length,
202 int character_position,
203 int utf8_position);
204
205 // A one element cache of the last utf8_subject string and its length. The
206 // subject JS String object is cached in the heap. We also cache a
207 // translation between position and utf8 position.
208 static char* utf8_subject_cache_;
209 static int utf8_length_cache_;
210 static int utf8_position_;
211 static int character_position_;
212 };
213
214
215 // Represents the location of one element relative to the intersection of
216 // two sets. Corresponds to the four areas of a Venn diagram.
217 enum ElementInSetsRelation {
218 kInsideNone = 0,
219 kInsideFirst = 1,
220 kInsideSecond = 2,
221 kInsideBoth = 3
222 };
223
224
225 // Represents the relation of two sets.
226 // Sets can be either disjoint, partially or fully overlapping, or equal.
227 class SetRelation BASE_EMBEDDED {
228 public:
229 // Relation is represented by a bit saying whether there are elements in
230 // one set that is not in the other, and a bit saying that there are elements
231 // that are in both sets.
232
233 // Location of an element. Corresponds to the internal areas of
234 // a Venn diagram.
235 enum {
236 kInFirst = 1 << kInsideFirst,
237 kInSecond = 1 << kInsideSecond,
238 kInBoth = 1 << kInsideBoth
239 };
SetRelation()240 SetRelation() : bits_(0) {}
~SetRelation()241 ~SetRelation() {}
242 // Add the existence of objects in a particular
SetElementsInFirstSet()243 void SetElementsInFirstSet() { bits_ |= kInFirst; }
SetElementsInSecondSet()244 void SetElementsInSecondSet() { bits_ |= kInSecond; }
SetElementsInBothSets()245 void SetElementsInBothSets() { bits_ |= kInBoth; }
246 // Check the currently known relation of the sets (common functions only,
247 // for other combinations, use value() to get the bits and check them
248 // manually).
249 // Sets are completely disjoint.
Disjoint()250 bool Disjoint() { return (bits_ & kInBoth) == 0; }
251 // Sets are equal.
Equals()252 bool Equals() { return (bits_ & (kInFirst | kInSecond)) == 0; }
253 // First set contains second.
Contains()254 bool Contains() { return (bits_ & kInSecond) == 0; }
255 // Second set contains first.
ContainedIn()256 bool ContainedIn() { return (bits_ & kInFirst) == 0; }
NonTrivialIntersection()257 bool NonTrivialIntersection() {
258 return (bits_ == (kInFirst | kInSecond | kInBoth));
259 }
value()260 int value() { return bits_; }
261
262 private:
263 int bits_;
264 };
265
266
267 class CharacterRange {
268 public:
CharacterRange()269 CharacterRange() : from_(0), to_(0) { }
270 // For compatibility with the CHECK_OK macro
CharacterRange(void * null)271 CharacterRange(void* null) { ASSERT_EQ(NULL, null); } //NOLINT
CharacterRange(uc16 from,uc16 to)272 CharacterRange(uc16 from, uc16 to) : from_(from), to_(to) { }
273 static void AddClassEscape(uc16 type, ZoneList<CharacterRange>* ranges);
274 static Vector<const uc16> GetWordBounds();
Singleton(uc16 value)275 static inline CharacterRange Singleton(uc16 value) {
276 return CharacterRange(value, value);
277 }
Range(uc16 from,uc16 to)278 static inline CharacterRange Range(uc16 from, uc16 to) {
279 ASSERT(from <= to);
280 return CharacterRange(from, to);
281 }
Everything()282 static inline CharacterRange Everything() {
283 return CharacterRange(0, 0xFFFF);
284 }
Contains(uc16 i)285 bool Contains(uc16 i) { return from_ <= i && i <= to_; }
from()286 uc16 from() const { return from_; }
set_from(uc16 value)287 void set_from(uc16 value) { from_ = value; }
to()288 uc16 to() const { return to_; }
set_to(uc16 value)289 void set_to(uc16 value) { to_ = value; }
is_valid()290 bool is_valid() { return from_ <= to_; }
IsEverything(uc16 max)291 bool IsEverything(uc16 max) { return from_ == 0 && to_ >= max; }
IsSingleton()292 bool IsSingleton() { return (from_ == to_); }
293 void AddCaseEquivalents(ZoneList<CharacterRange>* ranges, bool is_ascii);
294 static void Split(ZoneList<CharacterRange>* base,
295 Vector<const uc16> overlay,
296 ZoneList<CharacterRange>** included,
297 ZoneList<CharacterRange>** excluded);
298 // Whether a range list is in canonical form: Ranges ordered by from value,
299 // and ranges non-overlapping and non-adjacent.
300 static bool IsCanonical(ZoneList<CharacterRange>* ranges);
301 // Convert range list to canonical form. The characters covered by the ranges
302 // will still be the same, but no character is in more than one range, and
303 // adjacent ranges are merged. The resulting list may be shorter than the
304 // original, but cannot be longer.
305 static void Canonicalize(ZoneList<CharacterRange>* ranges);
306 // Check how the set of characters defined by a CharacterRange list relates
307 // to the set of word characters. List must be in canonical form.
308 static SetRelation WordCharacterRelation(ZoneList<CharacterRange>* ranges);
309 // Takes two character range lists (representing character sets) in canonical
310 // form and merges them.
311 // The characters that are only covered by the first set are added to
312 // first_set_only_out. the characters that are only in the second set are
313 // added to second_set_only_out, and the characters that are in both are
314 // added to both_sets_out.
315 // The pointers to first_set_only_out, second_set_only_out and both_sets_out
316 // should be to empty lists, but they need not be distinct, and may be NULL.
317 // If NULL, the characters are dropped, and if two arguments are the same
318 // pointer, the result is the union of the two sets that would be created
319 // if the pointers had been distinct.
320 // This way, the Merge function can compute all the usual set operations:
321 // union (all three out-sets are equal), intersection (only both_sets_out is
322 // non-NULL), and set difference (only first_set is non-NULL).
323 static void Merge(ZoneList<CharacterRange>* first_set,
324 ZoneList<CharacterRange>* second_set,
325 ZoneList<CharacterRange>* first_set_only_out,
326 ZoneList<CharacterRange>* second_set_only_out,
327 ZoneList<CharacterRange>* both_sets_out);
328 // Negate the contents of a character range in canonical form.
329 static void Negate(ZoneList<CharacterRange>* src,
330 ZoneList<CharacterRange>* dst);
331 static const int kStartMarker = (1 << 24);
332 static const int kPayloadMask = (1 << 24) - 1;
333
334 private:
335 uc16 from_;
336 uc16 to_;
337 };
338
339
340 // A set of unsigned integers that behaves especially well on small
341 // integers (< 32). May do zone-allocation.
342 class OutSet: public ZoneObject {
343 public:
OutSet()344 OutSet() : first_(0), remaining_(NULL), successors_(NULL) { }
345 OutSet* Extend(unsigned value);
346 bool Get(unsigned value);
347 static const unsigned kFirstLimit = 32;
348
349 private:
350 // Destructively set a value in this set. In most cases you want
351 // to use Extend instead to ensure that only one instance exists
352 // that contains the same values.
353 void Set(unsigned value);
354
355 // The successors are a list of sets that contain the same values
356 // as this set and the one more value that is not present in this
357 // set.
successors()358 ZoneList<OutSet*>* successors() { return successors_; }
359
OutSet(uint32_t first,ZoneList<unsigned> * remaining)360 OutSet(uint32_t first, ZoneList<unsigned>* remaining)
361 : first_(first), remaining_(remaining), successors_(NULL) { }
362 uint32_t first_;
363 ZoneList<unsigned>* remaining_;
364 ZoneList<OutSet*>* successors_;
365 friend class Trace;
366 };
367
368
369 // A mapping from integers, specified as ranges, to a set of integers.
370 // Used for mapping character ranges to choices.
371 class DispatchTable : public ZoneObject {
372 public:
373 class Entry {
374 public:
Entry()375 Entry() : from_(0), to_(0), out_set_(NULL) { }
Entry(uc16 from,uc16 to,OutSet * out_set)376 Entry(uc16 from, uc16 to, OutSet* out_set)
377 : from_(from), to_(to), out_set_(out_set) { }
from()378 uc16 from() { return from_; }
to()379 uc16 to() { return to_; }
set_to(uc16 value)380 void set_to(uc16 value) { to_ = value; }
AddValue(int value)381 void AddValue(int value) { out_set_ = out_set_->Extend(value); }
out_set()382 OutSet* out_set() { return out_set_; }
383 private:
384 uc16 from_;
385 uc16 to_;
386 OutSet* out_set_;
387 };
388
389 class Config {
390 public:
391 typedef uc16 Key;
392 typedef Entry Value;
393 static const uc16 kNoKey;
NoValue()394 static const Entry NoValue() { return Value(); }
Compare(uc16 a,uc16 b)395 static inline int Compare(uc16 a, uc16 b) {
396 if (a == b)
397 return 0;
398 else if (a < b)
399 return -1;
400 else
401 return 1;
402 }
403 };
404
405 void AddRange(CharacterRange range, int value);
406 OutSet* Get(uc16 value);
407 void Dump();
408
409 template <typename Callback>
ForEach(Callback * callback)410 void ForEach(Callback* callback) { return tree()->ForEach(callback); }
411
412 private:
413 // There can't be a static empty set since it allocates its
414 // successors in a zone and caches them.
empty()415 OutSet* empty() { return &empty_; }
416 OutSet empty_;
tree()417 ZoneSplayTree<Config>* tree() { return &tree_; }
418 ZoneSplayTree<Config> tree_;
419 };
420
421
422 #define FOR_EACH_NODE_TYPE(VISIT) \
423 VISIT(End) \
424 VISIT(Action) \
425 VISIT(Choice) \
426 VISIT(BackReference) \
427 VISIT(Assertion) \
428 VISIT(Text)
429
430
431 #define FOR_EACH_REG_EXP_TREE_TYPE(VISIT) \
432 VISIT(Disjunction) \
433 VISIT(Alternative) \
434 VISIT(Assertion) \
435 VISIT(CharacterClass) \
436 VISIT(Atom) \
437 VISIT(Quantifier) \
438 VISIT(Capture) \
439 VISIT(Lookahead) \
440 VISIT(BackReference) \
441 VISIT(Empty) \
442 VISIT(Text)
443
444
445 #define FORWARD_DECLARE(Name) class RegExp##Name;
FOR_EACH_REG_EXP_TREE_TYPE(FORWARD_DECLARE)446 FOR_EACH_REG_EXP_TREE_TYPE(FORWARD_DECLARE)
447 #undef FORWARD_DECLARE
448
449
450 class TextElement {
451 public:
452 enum Type {UNINITIALIZED, ATOM, CHAR_CLASS};
453 TextElement() : type(UNINITIALIZED) { }
454 explicit TextElement(Type t) : type(t), cp_offset(-1) { }
455 static TextElement Atom(RegExpAtom* atom);
456 static TextElement CharClass(RegExpCharacterClass* char_class);
457 int length();
458 Type type;
459 union {
460 RegExpAtom* u_atom;
461 RegExpCharacterClass* u_char_class;
462 } data;
463 int cp_offset;
464 };
465
466
467 class Trace;
468
469
470 struct NodeInfo {
NodeInfoNodeInfo471 NodeInfo()
472 : being_analyzed(false),
473 been_analyzed(false),
474 follows_word_interest(false),
475 follows_newline_interest(false),
476 follows_start_interest(false),
477 at_end(false),
478 visited(false) { }
479
480 // Returns true if the interests and assumptions of this node
481 // matches the given one.
MatchesNodeInfo482 bool Matches(NodeInfo* that) {
483 return (at_end == that->at_end) &&
484 (follows_word_interest == that->follows_word_interest) &&
485 (follows_newline_interest == that->follows_newline_interest) &&
486 (follows_start_interest == that->follows_start_interest);
487 }
488
489 // Updates the interests of this node given the interests of the
490 // node preceding it.
AddFromPrecedingNodeInfo491 void AddFromPreceding(NodeInfo* that) {
492 at_end |= that->at_end;
493 follows_word_interest |= that->follows_word_interest;
494 follows_newline_interest |= that->follows_newline_interest;
495 follows_start_interest |= that->follows_start_interest;
496 }
497
HasLookbehindNodeInfo498 bool HasLookbehind() {
499 return follows_word_interest ||
500 follows_newline_interest ||
501 follows_start_interest;
502 }
503
504 // Sets the interests of this node to include the interests of the
505 // following node.
AddFromFollowingNodeInfo506 void AddFromFollowing(NodeInfo* that) {
507 follows_word_interest |= that->follows_word_interest;
508 follows_newline_interest |= that->follows_newline_interest;
509 follows_start_interest |= that->follows_start_interest;
510 }
511
ResetCompilationStateNodeInfo512 void ResetCompilationState() {
513 being_analyzed = false;
514 been_analyzed = false;
515 }
516
517 bool being_analyzed: 1;
518 bool been_analyzed: 1;
519
520 // These bits are set of this node has to know what the preceding
521 // character was.
522 bool follows_word_interest: 1;
523 bool follows_newline_interest: 1;
524 bool follows_start_interest: 1;
525
526 bool at_end: 1;
527 bool visited: 1;
528 };
529
530
531 class SiblingList {
532 public:
SiblingList()533 SiblingList() : list_(NULL) { }
length()534 int length() {
535 return list_ == NULL ? 0 : list_->length();
536 }
Ensure(RegExpNode * parent)537 void Ensure(RegExpNode* parent) {
538 if (list_ == NULL) {
539 list_ = new ZoneList<RegExpNode*>(2);
540 list_->Add(parent);
541 }
542 }
Add(RegExpNode * node)543 void Add(RegExpNode* node) { list_->Add(node); }
Get(int index)544 RegExpNode* Get(int index) { return list_->at(index); }
545 private:
546 ZoneList<RegExpNode*>* list_;
547 };
548
549
550 // Details of a quick mask-compare check that can look ahead in the
551 // input stream.
552 class QuickCheckDetails {
553 public:
QuickCheckDetails()554 QuickCheckDetails()
555 : characters_(0),
556 mask_(0),
557 value_(0),
558 cannot_match_(false) { }
QuickCheckDetails(int characters)559 explicit QuickCheckDetails(int characters)
560 : characters_(characters),
561 mask_(0),
562 value_(0),
563 cannot_match_(false) { }
564 bool Rationalize(bool ascii);
565 // Merge in the information from another branch of an alternation.
566 void Merge(QuickCheckDetails* other, int from_index);
567 // Advance the current position by some amount.
568 void Advance(int by, bool ascii);
569 void Clear();
cannot_match()570 bool cannot_match() { return cannot_match_; }
set_cannot_match()571 void set_cannot_match() { cannot_match_ = true; }
572 struct Position {
PositionPosition573 Position() : mask(0), value(0), determines_perfectly(false) { }
574 uc16 mask;
575 uc16 value;
576 bool determines_perfectly;
577 };
characters()578 int characters() { return characters_; }
set_characters(int characters)579 void set_characters(int characters) { characters_ = characters; }
positions(int index)580 Position* positions(int index) {
581 ASSERT(index >= 0);
582 ASSERT(index < characters_);
583 return positions_ + index;
584 }
mask()585 uint32_t mask() { return mask_; }
value()586 uint32_t value() { return value_; }
587
588 private:
589 // How many characters do we have quick check information from. This is
590 // the same for all branches of a choice node.
591 int characters_;
592 Position positions_[4];
593 // These values are the condensate of the above array after Rationalize().
594 uint32_t mask_;
595 uint32_t value_;
596 // If set to true, there is no way this quick check can match at all.
597 // E.g., if it requires to be at the start of the input, and isn't.
598 bool cannot_match_;
599 };
600
601
602 class RegExpNode: public ZoneObject {
603 public:
RegExpNode()604 RegExpNode() : first_character_set_(NULL), trace_count_(0) { }
605 virtual ~RegExpNode();
606 virtual void Accept(NodeVisitor* visitor) = 0;
607 // Generates a goto to this node or actually generates the code at this point.
608 virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0;
609 // How many characters must this node consume at a minimum in order to
610 // succeed. If we have found at least 'still_to_find' characters that
611 // must be consumed there is no need to ask any following nodes whether
612 // they are sure to eat any more characters. The not_at_start argument is
613 // used to indicate that we know we are not at the start of the input. In
614 // this case anchored branches will always fail and can be ignored when
615 // determining how many characters are consumed on success.
616 virtual int EatsAtLeast(int still_to_find,
617 int recursion_depth,
618 bool not_at_start) = 0;
619 // Emits some quick code that checks whether the preloaded characters match.
620 // Falls through on certain failure, jumps to the label on possible success.
621 // If the node cannot make a quick check it does nothing and returns false.
622 bool EmitQuickCheck(RegExpCompiler* compiler,
623 Trace* trace,
624 bool preload_has_checked_bounds,
625 Label* on_possible_success,
626 QuickCheckDetails* details_return,
627 bool fall_through_on_failure);
628 // For a given number of characters this returns a mask and a value. The
629 // next n characters are anded with the mask and compared with the value.
630 // A comparison failure indicates the node cannot match the next n characters.
631 // A comparison success indicates the node may match.
632 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
633 RegExpCompiler* compiler,
634 int characters_filled_in,
635 bool not_at_start) = 0;
636 static const int kNodeIsTooComplexForGreedyLoops = -1;
GreedyLoopTextLength()637 virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
label()638 Label* label() { return &label_; }
639 // If non-generic code is generated for a node (i.e. the node is not at the
640 // start of the trace) then it cannot be reused. This variable sets a limit
641 // on how often we allow that to happen before we insist on starting a new
642 // trace and generating generic code for a node that can be reused by flushing
643 // the deferred actions in the current trace and generating a goto.
644 static const int kMaxCopiesCodeGenerated = 10;
645
info()646 NodeInfo* info() { return &info_; }
647
AddSibling(RegExpNode * node)648 void AddSibling(RegExpNode* node) { siblings_.Add(node); }
649
650 // Static version of EnsureSibling that expresses the fact that the
651 // result has the same type as the input.
652 template <class C>
EnsureSibling(C * node,NodeInfo * info,bool * cloned)653 static C* EnsureSibling(C* node, NodeInfo* info, bool* cloned) {
654 return static_cast<C*>(node->EnsureSibling(info, cloned));
655 }
656
siblings()657 SiblingList* siblings() { return &siblings_; }
set_siblings(SiblingList * other)658 void set_siblings(SiblingList* other) { siblings_ = *other; }
659
660 // Return the set of possible next characters recognized by the regexp
661 // (or a safe subset, potentially the set of all characters).
662 ZoneList<CharacterRange>* FirstCharacterSet();
663
664 // Compute (if possible within the budget of traversed nodes) the
665 // possible first characters of the input matched by this node and
666 // its continuation. Returns the remaining budget after the computation.
667 // If the budget is spent, the result is negative, and the cached
668 // first_character_set_ value isn't set.
669 virtual int ComputeFirstCharacterSet(int budget);
670
671 // Get and set the cached first character set value.
first_character_set()672 ZoneList<CharacterRange>* first_character_set() {
673 return first_character_set_;
674 }
set_first_character_set(ZoneList<CharacterRange> * character_set)675 void set_first_character_set(ZoneList<CharacterRange>* character_set) {
676 first_character_set_ = character_set;
677 }
678
679 protected:
680 enum LimitResult { DONE, CONTINUE };
681 static const int kComputeFirstCharacterSetFail = -1;
682
683 LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace);
684
685 // Returns a sibling of this node whose interests and assumptions
686 // match the ones in the given node info. If no sibling exists NULL
687 // is returned.
688 RegExpNode* TryGetSibling(NodeInfo* info);
689
690 // Returns a sibling of this node whose interests match the ones in
691 // the given node info. The info must not contain any assertions.
692 // If no node exists a new one will be created by cloning the current
693 // node. The result will always be an instance of the same concrete
694 // class as this node.
695 RegExpNode* EnsureSibling(NodeInfo* info, bool* cloned);
696
697 // Returns a clone of this node initialized using the copy constructor
698 // of its concrete class. Note that the node may have to be pre-
699 // processed before it is on a usable state.
700 virtual RegExpNode* Clone() = 0;
701
702 private:
703 static const int kFirstCharBudget = 10;
704 Label label_;
705 NodeInfo info_;
706 SiblingList siblings_;
707 ZoneList<CharacterRange>* first_character_set_;
708 // This variable keeps track of how many times code has been generated for
709 // this node (in different traces). We don't keep track of where the
710 // generated code is located unless the code is generated at the start of
711 // a trace, in which case it is generic and can be reused by flushing the
712 // deferred operations in the current trace and generating a goto.
713 int trace_count_;
714 };
715
716
717 // A simple closed interval.
718 class Interval {
719 public:
Interval()720 Interval() : from_(kNone), to_(kNone) { }
Interval(int from,int to)721 Interval(int from, int to) : from_(from), to_(to) { }
Union(Interval that)722 Interval Union(Interval that) {
723 if (that.from_ == kNone)
724 return *this;
725 else if (from_ == kNone)
726 return that;
727 else
728 return Interval(Min(from_, that.from_), Max(to_, that.to_));
729 }
Contains(int value)730 bool Contains(int value) {
731 return (from_ <= value) && (value <= to_);
732 }
is_empty()733 bool is_empty() { return from_ == kNone; }
from()734 int from() { return from_; }
to()735 int to() { return to_; }
Empty()736 static Interval Empty() { return Interval(); }
737 static const int kNone = -1;
738 private:
739 int from_;
740 int to_;
741 };
742
743
744 class SeqRegExpNode: public RegExpNode {
745 public:
SeqRegExpNode(RegExpNode * on_success)746 explicit SeqRegExpNode(RegExpNode* on_success)
747 : on_success_(on_success) { }
on_success()748 RegExpNode* on_success() { return on_success_; }
set_on_success(RegExpNode * node)749 void set_on_success(RegExpNode* node) { on_success_ = node; }
750 private:
751 RegExpNode* on_success_;
752 };
753
754
755 class ActionNode: public SeqRegExpNode {
756 public:
757 enum Type {
758 SET_REGISTER,
759 INCREMENT_REGISTER,
760 STORE_POSITION,
761 BEGIN_SUBMATCH,
762 POSITIVE_SUBMATCH_SUCCESS,
763 EMPTY_MATCH_CHECK,
764 CLEAR_CAPTURES
765 };
766 static ActionNode* SetRegister(int reg, int val, RegExpNode* on_success);
767 static ActionNode* IncrementRegister(int reg, RegExpNode* on_success);
768 static ActionNode* StorePosition(int reg,
769 bool is_capture,
770 RegExpNode* on_success);
771 static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success);
772 static ActionNode* BeginSubmatch(int stack_pointer_reg,
773 int position_reg,
774 RegExpNode* on_success);
775 static ActionNode* PositiveSubmatchSuccess(int stack_pointer_reg,
776 int restore_reg,
777 int clear_capture_count,
778 int clear_capture_from,
779 RegExpNode* on_success);
780 static ActionNode* EmptyMatchCheck(int start_register,
781 int repetition_register,
782 int repetition_limit,
783 RegExpNode* on_success);
784 virtual void Accept(NodeVisitor* visitor);
785 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
786 virtual int EatsAtLeast(int still_to_find,
787 int recursion_depth,
788 bool not_at_start);
GetQuickCheckDetails(QuickCheckDetails * details,RegExpCompiler * compiler,int filled_in,bool not_at_start)789 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
790 RegExpCompiler* compiler,
791 int filled_in,
792 bool not_at_start) {
793 return on_success()->GetQuickCheckDetails(
794 details, compiler, filled_in, not_at_start);
795 }
type()796 Type type() { return type_; }
797 // TODO(erikcorry): We should allow some action nodes in greedy loops.
GreedyLoopTextLength()798 virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
Clone()799 virtual ActionNode* Clone() { return new ActionNode(*this); }
800 virtual int ComputeFirstCharacterSet(int budget);
801
802 private:
803 union {
804 struct {
805 int reg;
806 int value;
807 } u_store_register;
808 struct {
809 int reg;
810 } u_increment_register;
811 struct {
812 int reg;
813 bool is_capture;
814 } u_position_register;
815 struct {
816 int stack_pointer_register;
817 int current_position_register;
818 int clear_register_count;
819 int clear_register_from;
820 } u_submatch;
821 struct {
822 int start_register;
823 int repetition_register;
824 int repetition_limit;
825 } u_empty_match_check;
826 struct {
827 int range_from;
828 int range_to;
829 } u_clear_captures;
830 } data_;
ActionNode(Type type,RegExpNode * on_success)831 ActionNode(Type type, RegExpNode* on_success)
832 : SeqRegExpNode(on_success),
833 type_(type) { }
834 Type type_;
835 friend class DotPrinter;
836 };
837
838
839 class TextNode: public SeqRegExpNode {
840 public:
TextNode(ZoneList<TextElement> * elms,RegExpNode * on_success)841 TextNode(ZoneList<TextElement>* elms,
842 RegExpNode* on_success)
843 : SeqRegExpNode(on_success),
844 elms_(elms) { }
TextNode(RegExpCharacterClass * that,RegExpNode * on_success)845 TextNode(RegExpCharacterClass* that,
846 RegExpNode* on_success)
847 : SeqRegExpNode(on_success),
848 elms_(new ZoneList<TextElement>(1)) {
849 elms_->Add(TextElement::CharClass(that));
850 }
851 virtual void Accept(NodeVisitor* visitor);
852 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
853 virtual int EatsAtLeast(int still_to_find,
854 int recursion_depth,
855 bool not_at_start);
856 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
857 RegExpCompiler* compiler,
858 int characters_filled_in,
859 bool not_at_start);
elements()860 ZoneList<TextElement>* elements() { return elms_; }
861 void MakeCaseIndependent(bool is_ascii);
862 virtual int GreedyLoopTextLength();
Clone()863 virtual TextNode* Clone() {
864 TextNode* result = new TextNode(*this);
865 result->CalculateOffsets();
866 return result;
867 }
868 void CalculateOffsets();
869 virtual int ComputeFirstCharacterSet(int budget);
870
871 private:
872 enum TextEmitPassType {
873 NON_ASCII_MATCH, // Check for characters that can't match.
874 SIMPLE_CHARACTER_MATCH, // Case-dependent single character check.
875 NON_LETTER_CHARACTER_MATCH, // Check characters that have no case equivs.
876 CASE_CHARACTER_MATCH, // Case-independent single character check.
877 CHARACTER_CLASS_MATCH // Character class.
878 };
879 static bool SkipPass(int pass, bool ignore_case);
880 static const int kFirstRealPass = SIMPLE_CHARACTER_MATCH;
881 static const int kLastPass = CHARACTER_CLASS_MATCH;
882 void TextEmitPass(RegExpCompiler* compiler,
883 TextEmitPassType pass,
884 bool preloaded,
885 Trace* trace,
886 bool first_element_checked,
887 int* checked_up_to);
888 int Length();
889 ZoneList<TextElement>* elms_;
890 };
891
892
893 class AssertionNode: public SeqRegExpNode {
894 public:
895 enum AssertionNodeType {
896 AT_END,
897 AT_START,
898 AT_BOUNDARY,
899 AT_NON_BOUNDARY,
900 AFTER_NEWLINE,
901 // Types not directly expressible in regexp syntax.
902 // Used for modifying a boundary node if its following character is
903 // known to be word and/or non-word.
904 AFTER_NONWORD_CHARACTER,
905 AFTER_WORD_CHARACTER
906 };
AtEnd(RegExpNode * on_success)907 static AssertionNode* AtEnd(RegExpNode* on_success) {
908 return new AssertionNode(AT_END, on_success);
909 }
AtStart(RegExpNode * on_success)910 static AssertionNode* AtStart(RegExpNode* on_success) {
911 return new AssertionNode(AT_START, on_success);
912 }
AtBoundary(RegExpNode * on_success)913 static AssertionNode* AtBoundary(RegExpNode* on_success) {
914 return new AssertionNode(AT_BOUNDARY, on_success);
915 }
AtNonBoundary(RegExpNode * on_success)916 static AssertionNode* AtNonBoundary(RegExpNode* on_success) {
917 return new AssertionNode(AT_NON_BOUNDARY, on_success);
918 }
AfterNewline(RegExpNode * on_success)919 static AssertionNode* AfterNewline(RegExpNode* on_success) {
920 return new AssertionNode(AFTER_NEWLINE, on_success);
921 }
922 virtual void Accept(NodeVisitor* visitor);
923 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
924 virtual int EatsAtLeast(int still_to_find,
925 int recursion_depth,
926 bool not_at_start);
927 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
928 RegExpCompiler* compiler,
929 int filled_in,
930 bool not_at_start);
931 virtual int ComputeFirstCharacterSet(int budget);
Clone()932 virtual AssertionNode* Clone() { return new AssertionNode(*this); }
type()933 AssertionNodeType type() { return type_; }
set_type(AssertionNodeType type)934 void set_type(AssertionNodeType type) { type_ = type; }
935
936 private:
AssertionNode(AssertionNodeType t,RegExpNode * on_success)937 AssertionNode(AssertionNodeType t, RegExpNode* on_success)
938 : SeqRegExpNode(on_success), type_(t) { }
939 AssertionNodeType type_;
940 };
941
942
943 class BackReferenceNode: public SeqRegExpNode {
944 public:
BackReferenceNode(int start_reg,int end_reg,RegExpNode * on_success)945 BackReferenceNode(int start_reg,
946 int end_reg,
947 RegExpNode* on_success)
948 : SeqRegExpNode(on_success),
949 start_reg_(start_reg),
950 end_reg_(end_reg) { }
951 virtual void Accept(NodeVisitor* visitor);
start_register()952 int start_register() { return start_reg_; }
end_register()953 int end_register() { return end_reg_; }
954 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
955 virtual int EatsAtLeast(int still_to_find,
956 int recursion_depth,
957 bool not_at_start);
GetQuickCheckDetails(QuickCheckDetails * details,RegExpCompiler * compiler,int characters_filled_in,bool not_at_start)958 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
959 RegExpCompiler* compiler,
960 int characters_filled_in,
961 bool not_at_start) {
962 return;
963 }
Clone()964 virtual BackReferenceNode* Clone() { return new BackReferenceNode(*this); }
965 virtual int ComputeFirstCharacterSet(int budget);
966
967 private:
968 int start_reg_;
969 int end_reg_;
970 };
971
972
973 class EndNode: public RegExpNode {
974 public:
975 enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS };
EndNode(Action action)976 explicit EndNode(Action action) : action_(action) { }
977 virtual void Accept(NodeVisitor* visitor);
978 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
EatsAtLeast(int still_to_find,int recursion_depth,bool not_at_start)979 virtual int EatsAtLeast(int still_to_find,
980 int recursion_depth,
981 bool not_at_start) { return 0; }
GetQuickCheckDetails(QuickCheckDetails * details,RegExpCompiler * compiler,int characters_filled_in,bool not_at_start)982 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
983 RegExpCompiler* compiler,
984 int characters_filled_in,
985 bool not_at_start) {
986 // Returning 0 from EatsAtLeast should ensure we never get here.
987 UNREACHABLE();
988 }
Clone()989 virtual EndNode* Clone() { return new EndNode(*this); }
990 private:
991 Action action_;
992 };
993
994
995 class NegativeSubmatchSuccess: public EndNode {
996 public:
NegativeSubmatchSuccess(int stack_pointer_reg,int position_reg,int clear_capture_count,int clear_capture_start)997 NegativeSubmatchSuccess(int stack_pointer_reg,
998 int position_reg,
999 int clear_capture_count,
1000 int clear_capture_start)
1001 : EndNode(NEGATIVE_SUBMATCH_SUCCESS),
1002 stack_pointer_register_(stack_pointer_reg),
1003 current_position_register_(position_reg),
1004 clear_capture_count_(clear_capture_count),
1005 clear_capture_start_(clear_capture_start) { }
1006 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
1007
1008 private:
1009 int stack_pointer_register_;
1010 int current_position_register_;
1011 int clear_capture_count_;
1012 int clear_capture_start_;
1013 };
1014
1015
1016 class Guard: public ZoneObject {
1017 public:
1018 enum Relation { LT, GEQ };
Guard(int reg,Relation op,int value)1019 Guard(int reg, Relation op, int value)
1020 : reg_(reg),
1021 op_(op),
1022 value_(value) { }
reg()1023 int reg() { return reg_; }
op()1024 Relation op() { return op_; }
value()1025 int value() { return value_; }
1026
1027 private:
1028 int reg_;
1029 Relation op_;
1030 int value_;
1031 };
1032
1033
1034 class GuardedAlternative {
1035 public:
GuardedAlternative(RegExpNode * node)1036 explicit GuardedAlternative(RegExpNode* node) : node_(node), guards_(NULL) { }
1037 void AddGuard(Guard* guard);
node()1038 RegExpNode* node() { return node_; }
set_node(RegExpNode * node)1039 void set_node(RegExpNode* node) { node_ = node; }
guards()1040 ZoneList<Guard*>* guards() { return guards_; }
1041
1042 private:
1043 RegExpNode* node_;
1044 ZoneList<Guard*>* guards_;
1045 };
1046
1047
1048 class AlternativeGeneration;
1049
1050
1051 class ChoiceNode: public RegExpNode {
1052 public:
ChoiceNode(int expected_size)1053 explicit ChoiceNode(int expected_size)
1054 : alternatives_(new ZoneList<GuardedAlternative>(expected_size)),
1055 table_(NULL),
1056 not_at_start_(false),
1057 being_calculated_(false) { }
1058 virtual void Accept(NodeVisitor* visitor);
AddAlternative(GuardedAlternative node)1059 void AddAlternative(GuardedAlternative node) { alternatives()->Add(node); }
alternatives()1060 ZoneList<GuardedAlternative>* alternatives() { return alternatives_; }
1061 DispatchTable* GetTable(bool ignore_case);
1062 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
1063 virtual int EatsAtLeast(int still_to_find,
1064 int recursion_depth,
1065 bool not_at_start);
1066 int EatsAtLeastHelper(int still_to_find,
1067 int recursion_depth,
1068 RegExpNode* ignore_this_node,
1069 bool not_at_start);
1070 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
1071 RegExpCompiler* compiler,
1072 int characters_filled_in,
1073 bool not_at_start);
Clone()1074 virtual ChoiceNode* Clone() { return new ChoiceNode(*this); }
1075
being_calculated()1076 bool being_calculated() { return being_calculated_; }
not_at_start()1077 bool not_at_start() { return not_at_start_; }
set_not_at_start()1078 void set_not_at_start() { not_at_start_ = true; }
set_being_calculated(bool b)1079 void set_being_calculated(bool b) { being_calculated_ = b; }
try_to_emit_quick_check_for_alternative(int i)1080 virtual bool try_to_emit_quick_check_for_alternative(int i) { return true; }
1081
1082 protected:
1083 int GreedyLoopTextLengthForAlternative(GuardedAlternative* alternative);
1084 ZoneList<GuardedAlternative>* alternatives_;
1085
1086 private:
1087 friend class DispatchTableConstructor;
1088 friend class Analysis;
1089 void GenerateGuard(RegExpMacroAssembler* macro_assembler,
1090 Guard* guard,
1091 Trace* trace);
1092 int CalculatePreloadCharacters(RegExpCompiler* compiler, bool not_at_start);
1093 void EmitOutOfLineContinuation(RegExpCompiler* compiler,
1094 Trace* trace,
1095 GuardedAlternative alternative,
1096 AlternativeGeneration* alt_gen,
1097 int preload_characters,
1098 bool next_expects_preload);
1099 DispatchTable* table_;
1100 // If true, this node is never checked at the start of the input.
1101 // Allows a new trace to start with at_start() set to false.
1102 bool not_at_start_;
1103 bool being_calculated_;
1104 };
1105
1106
1107 class NegativeLookaheadChoiceNode: public ChoiceNode {
1108 public:
NegativeLookaheadChoiceNode(GuardedAlternative this_must_fail,GuardedAlternative then_do_this)1109 explicit NegativeLookaheadChoiceNode(GuardedAlternative this_must_fail,
1110 GuardedAlternative then_do_this)
1111 : ChoiceNode(2) {
1112 AddAlternative(this_must_fail);
1113 AddAlternative(then_do_this);
1114 }
1115 virtual int EatsAtLeast(int still_to_find,
1116 int recursion_depth,
1117 bool not_at_start);
1118 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
1119 RegExpCompiler* compiler,
1120 int characters_filled_in,
1121 bool not_at_start);
1122 // For a negative lookahead we don't emit the quick check for the
1123 // alternative that is expected to fail. This is because quick check code
1124 // starts by loading enough characters for the alternative that takes fewest
1125 // characters, but on a negative lookahead the negative branch did not take
1126 // part in that calculation (EatsAtLeast) so the assumptions don't hold.
try_to_emit_quick_check_for_alternative(int i)1127 virtual bool try_to_emit_quick_check_for_alternative(int i) { return i != 0; }
1128 virtual int ComputeFirstCharacterSet(int budget);
1129 };
1130
1131
1132 class LoopChoiceNode: public ChoiceNode {
1133 public:
LoopChoiceNode(bool body_can_be_zero_length)1134 explicit LoopChoiceNode(bool body_can_be_zero_length)
1135 : ChoiceNode(2),
1136 loop_node_(NULL),
1137 continue_node_(NULL),
1138 body_can_be_zero_length_(body_can_be_zero_length) { }
1139 void AddLoopAlternative(GuardedAlternative alt);
1140 void AddContinueAlternative(GuardedAlternative alt);
1141 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
1142 virtual int EatsAtLeast(int still_to_find,
1143 int recursion_depth,
1144 bool not_at_start);
1145 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
1146 RegExpCompiler* compiler,
1147 int characters_filled_in,
1148 bool not_at_start);
1149 virtual int ComputeFirstCharacterSet(int budget);
Clone()1150 virtual LoopChoiceNode* Clone() { return new LoopChoiceNode(*this); }
loop_node()1151 RegExpNode* loop_node() { return loop_node_; }
continue_node()1152 RegExpNode* continue_node() { return continue_node_; }
body_can_be_zero_length()1153 bool body_can_be_zero_length() { return body_can_be_zero_length_; }
1154 virtual void Accept(NodeVisitor* visitor);
1155
1156 private:
1157 // AddAlternative is made private for loop nodes because alternatives
1158 // should not be added freely, we need to keep track of which node
1159 // goes back to the node itself.
AddAlternative(GuardedAlternative node)1160 void AddAlternative(GuardedAlternative node) {
1161 ChoiceNode::AddAlternative(node);
1162 }
1163
1164 RegExpNode* loop_node_;
1165 RegExpNode* continue_node_;
1166 bool body_can_be_zero_length_;
1167 };
1168
1169
1170 // There are many ways to generate code for a node. This class encapsulates
1171 // the current way we should be generating. In other words it encapsulates
1172 // the current state of the code generator. The effect of this is that we
1173 // generate code for paths that the matcher can take through the regular
1174 // expression. A given node in the regexp can be code-generated several times
1175 // as it can be part of several traces. For example for the regexp:
1176 // /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part
1177 // of the foo-bar-baz trace and once as part of the foo-ip-baz trace. The code
1178 // to match foo is generated only once (the traces have a common prefix). The
1179 // code to store the capture is deferred and generated (twice) after the places
1180 // where baz has been matched.
1181 class Trace {
1182 public:
1183 // A value for a property that is either known to be true, know to be false,
1184 // or not known.
1185 enum TriBool {
1186 UNKNOWN = -1, FALSE = 0, TRUE = 1
1187 };
1188
1189 class DeferredAction {
1190 public:
DeferredAction(ActionNode::Type type,int reg)1191 DeferredAction(ActionNode::Type type, int reg)
1192 : type_(type), reg_(reg), next_(NULL) { }
next()1193 DeferredAction* next() { return next_; }
1194 bool Mentions(int reg);
reg()1195 int reg() { return reg_; }
type()1196 ActionNode::Type type() { return type_; }
1197 private:
1198 ActionNode::Type type_;
1199 int reg_;
1200 DeferredAction* next_;
1201 friend class Trace;
1202 };
1203
1204 class DeferredCapture : public DeferredAction {
1205 public:
DeferredCapture(int reg,bool is_capture,Trace * trace)1206 DeferredCapture(int reg, bool is_capture, Trace* trace)
1207 : DeferredAction(ActionNode::STORE_POSITION, reg),
1208 cp_offset_(trace->cp_offset()),
1209 is_capture_(is_capture) { }
cp_offset()1210 int cp_offset() { return cp_offset_; }
is_capture()1211 bool is_capture() { return is_capture_; }
1212 private:
1213 int cp_offset_;
1214 bool is_capture_;
set_cp_offset(int cp_offset)1215 void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; }
1216 };
1217
1218 class DeferredSetRegister : public DeferredAction {
1219 public:
DeferredSetRegister(int reg,int value)1220 DeferredSetRegister(int reg, int value)
1221 : DeferredAction(ActionNode::SET_REGISTER, reg),
1222 value_(value) { }
value()1223 int value() { return value_; }
1224 private:
1225 int value_;
1226 };
1227
1228 class DeferredClearCaptures : public DeferredAction {
1229 public:
DeferredClearCaptures(Interval range)1230 explicit DeferredClearCaptures(Interval range)
1231 : DeferredAction(ActionNode::CLEAR_CAPTURES, -1),
1232 range_(range) { }
range()1233 Interval range() { return range_; }
1234 private:
1235 Interval range_;
1236 };
1237
1238 class DeferredIncrementRegister : public DeferredAction {
1239 public:
DeferredIncrementRegister(int reg)1240 explicit DeferredIncrementRegister(int reg)
1241 : DeferredAction(ActionNode::INCREMENT_REGISTER, reg) { }
1242 };
1243
Trace()1244 Trace()
1245 : cp_offset_(0),
1246 actions_(NULL),
1247 backtrack_(NULL),
1248 stop_node_(NULL),
1249 loop_label_(NULL),
1250 characters_preloaded_(0),
1251 bound_checked_up_to_(0),
1252 flush_budget_(100),
1253 at_start_(UNKNOWN) { }
1254
1255 // End the trace. This involves flushing the deferred actions in the trace
1256 // and pushing a backtrack location onto the backtrack stack. Once this is
1257 // done we can start a new trace or go to one that has already been
1258 // generated.
1259 void Flush(RegExpCompiler* compiler, RegExpNode* successor);
cp_offset()1260 int cp_offset() { return cp_offset_; }
actions()1261 DeferredAction* actions() { return actions_; }
1262 // A trivial trace is one that has no deferred actions or other state that
1263 // affects the assumptions used when generating code. There is no recorded
1264 // backtrack location in a trivial trace, so with a trivial trace we will
1265 // generate code that, on a failure to match, gets the backtrack location
1266 // from the backtrack stack rather than using a direct jump instruction. We
1267 // always start code generation with a trivial trace and non-trivial traces
1268 // are created as we emit code for nodes or add to the list of deferred
1269 // actions in the trace. The location of the code generated for a node using
1270 // a trivial trace is recorded in a label in the node so that gotos can be
1271 // generated to that code.
is_trivial()1272 bool is_trivial() {
1273 return backtrack_ == NULL &&
1274 actions_ == NULL &&
1275 cp_offset_ == 0 &&
1276 characters_preloaded_ == 0 &&
1277 bound_checked_up_to_ == 0 &&
1278 quick_check_performed_.characters() == 0 &&
1279 at_start_ == UNKNOWN;
1280 }
at_start()1281 TriBool at_start() { return at_start_; }
set_at_start(bool at_start)1282 void set_at_start(bool at_start) { at_start_ = at_start ? TRUE : FALSE; }
backtrack()1283 Label* backtrack() { return backtrack_; }
loop_label()1284 Label* loop_label() { return loop_label_; }
stop_node()1285 RegExpNode* stop_node() { return stop_node_; }
characters_preloaded()1286 int characters_preloaded() { return characters_preloaded_; }
bound_checked_up_to()1287 int bound_checked_up_to() { return bound_checked_up_to_; }
flush_budget()1288 int flush_budget() { return flush_budget_; }
quick_check_performed()1289 QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; }
1290 bool mentions_reg(int reg);
1291 // Returns true if a deferred position store exists to the specified
1292 // register and stores the offset in the out-parameter. Otherwise
1293 // returns false.
1294 bool GetStoredPosition(int reg, int* cp_offset);
1295 // These set methods and AdvanceCurrentPositionInTrace should be used only on
1296 // new traces - the intention is that traces are immutable after creation.
add_action(DeferredAction * new_action)1297 void add_action(DeferredAction* new_action) {
1298 ASSERT(new_action->next_ == NULL);
1299 new_action->next_ = actions_;
1300 actions_ = new_action;
1301 }
set_backtrack(Label * backtrack)1302 void set_backtrack(Label* backtrack) { backtrack_ = backtrack; }
set_stop_node(RegExpNode * node)1303 void set_stop_node(RegExpNode* node) { stop_node_ = node; }
set_loop_label(Label * label)1304 void set_loop_label(Label* label) { loop_label_ = label; }
set_characters_preloaded(int count)1305 void set_characters_preloaded(int count) { characters_preloaded_ = count; }
set_bound_checked_up_to(int to)1306 void set_bound_checked_up_to(int to) { bound_checked_up_to_ = to; }
set_flush_budget(int to)1307 void set_flush_budget(int to) { flush_budget_ = to; }
set_quick_check_performed(QuickCheckDetails * d)1308 void set_quick_check_performed(QuickCheckDetails* d) {
1309 quick_check_performed_ = *d;
1310 }
1311 void InvalidateCurrentCharacter();
1312 void AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler);
1313
1314 private:
1315 int FindAffectedRegisters(OutSet* affected_registers);
1316 void PerformDeferredActions(RegExpMacroAssembler* macro,
1317 int max_register,
1318 OutSet& affected_registers,
1319 OutSet* registers_to_pop,
1320 OutSet* registers_to_clear);
1321 void RestoreAffectedRegisters(RegExpMacroAssembler* macro,
1322 int max_register,
1323 OutSet& registers_to_pop,
1324 OutSet& registers_to_clear);
1325 int cp_offset_;
1326 DeferredAction* actions_;
1327 Label* backtrack_;
1328 RegExpNode* stop_node_;
1329 Label* loop_label_;
1330 int characters_preloaded_;
1331 int bound_checked_up_to_;
1332 QuickCheckDetails quick_check_performed_;
1333 int flush_budget_;
1334 TriBool at_start_;
1335 };
1336
1337
1338 class NodeVisitor {
1339 public:
~NodeVisitor()1340 virtual ~NodeVisitor() { }
1341 #define DECLARE_VISIT(Type) \
1342 virtual void Visit##Type(Type##Node* that) = 0;
FOR_EACH_NODE_TYPE(DECLARE_VISIT)1343 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1344 #undef DECLARE_VISIT
1345 virtual void VisitLoopChoice(LoopChoiceNode* that) { VisitChoice(that); }
1346 };
1347
1348
1349 // Node visitor used to add the start set of the alternatives to the
1350 // dispatch table of a choice node.
1351 class DispatchTableConstructor: public NodeVisitor {
1352 public:
DispatchTableConstructor(DispatchTable * table,bool ignore_case)1353 DispatchTableConstructor(DispatchTable* table, bool ignore_case)
1354 : table_(table),
1355 choice_index_(-1),
1356 ignore_case_(ignore_case) { }
1357
1358 void BuildTable(ChoiceNode* node);
1359
AddRange(CharacterRange range)1360 void AddRange(CharacterRange range) {
1361 table()->AddRange(range, choice_index_);
1362 }
1363
1364 void AddInverse(ZoneList<CharacterRange>* ranges);
1365
1366 #define DECLARE_VISIT(Type) \
1367 virtual void Visit##Type(Type##Node* that);
FOR_EACH_NODE_TYPE(DECLARE_VISIT)1368 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1369 #undef DECLARE_VISIT
1370
1371 DispatchTable* table() { return table_; }
set_choice_index(int value)1372 void set_choice_index(int value) { choice_index_ = value; }
1373
1374 protected:
1375 DispatchTable* table_;
1376 int choice_index_;
1377 bool ignore_case_;
1378 };
1379
1380
1381 // Assertion propagation moves information about assertions such as
1382 // \b to the affected nodes. For instance, in /.\b./ information must
1383 // be propagated to the first '.' that whatever follows needs to know
1384 // if it matched a word or a non-word, and to the second '.' that it
1385 // has to check if it succeeds a word or non-word. In this case the
1386 // result will be something like:
1387 //
1388 // +-------+ +------------+
1389 // | . | | . |
1390 // +-------+ ---> +------------+
1391 // | word? | | check word |
1392 // +-------+ +------------+
1393 class Analysis: public NodeVisitor {
1394 public:
Analysis(bool ignore_case,bool is_ascii)1395 Analysis(bool ignore_case, bool is_ascii)
1396 : ignore_case_(ignore_case),
1397 is_ascii_(is_ascii),
1398 error_message_(NULL) { }
1399 void EnsureAnalyzed(RegExpNode* node);
1400
1401 #define DECLARE_VISIT(Type) \
1402 virtual void Visit##Type(Type##Node* that);
1403 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1404 #undef DECLARE_VISIT
1405 virtual void VisitLoopChoice(LoopChoiceNode* that);
1406
has_failed()1407 bool has_failed() { return error_message_ != NULL; }
error_message()1408 const char* error_message() {
1409 ASSERT(error_message_ != NULL);
1410 return error_message_;
1411 }
fail(const char * error_message)1412 void fail(const char* error_message) {
1413 error_message_ = error_message;
1414 }
1415
1416 private:
1417 bool ignore_case_;
1418 bool is_ascii_;
1419 const char* error_message_;
1420
1421 DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis);
1422 };
1423
1424
1425 struct RegExpCompileData {
RegExpCompileDataRegExpCompileData1426 RegExpCompileData()
1427 : tree(NULL),
1428 node(NULL),
1429 simple(true),
1430 contains_anchor(false),
1431 capture_count(0) { }
1432 RegExpTree* tree;
1433 RegExpNode* node;
1434 bool simple;
1435 bool contains_anchor;
1436 Handle<String> error;
1437 int capture_count;
1438 };
1439
1440
1441 class RegExpEngine: public AllStatic {
1442 public:
1443 struct CompilationResult {
CompilationResultCompilationResult1444 explicit CompilationResult(const char* error_message)
1445 : error_message(error_message),
1446 code(HEAP->the_hole_value()),
1447 num_registers(0) {}
CompilationResultCompilationResult1448 CompilationResult(Object* code, int registers)
1449 : error_message(NULL),
1450 code(code),
1451 num_registers(registers) {}
1452 const char* error_message;
1453 Object* code;
1454 int num_registers;
1455 };
1456
1457 static CompilationResult Compile(RegExpCompileData* input,
1458 bool ignore_case,
1459 bool multiline,
1460 Handle<String> pattern,
1461 bool is_ascii);
1462
1463 static void DotPrint(const char* label, RegExpNode* node, bool ignore_case);
1464 };
1465
1466
1467 class OffsetsVector {
1468 public:
OffsetsVector(int num_registers,Isolate * isolate)1469 inline OffsetsVector(int num_registers, Isolate* isolate)
1470 : offsets_vector_length_(num_registers) {
1471 if (offsets_vector_length_ > Isolate::kJSRegexpStaticOffsetsVectorSize) {
1472 vector_ = NewArray<int>(offsets_vector_length_);
1473 } else {
1474 vector_ = isolate->jsregexp_static_offsets_vector();
1475 }
1476 }
~OffsetsVector()1477 inline ~OffsetsVector() {
1478 if (offsets_vector_length_ > Isolate::kJSRegexpStaticOffsetsVectorSize) {
1479 DeleteArray(vector_);
1480 vector_ = NULL;
1481 }
1482 }
vector()1483 inline int* vector() { return vector_; }
length()1484 inline int length() { return offsets_vector_length_; }
1485
1486 static const int kStaticOffsetsVectorSize = 50;
1487
1488 private:
static_offsets_vector_address(Isolate * isolate)1489 static Address static_offsets_vector_address(Isolate* isolate) {
1490 return reinterpret_cast<Address>(isolate->jsregexp_static_offsets_vector());
1491 }
1492
1493 int* vector_;
1494 int offsets_vector_length_;
1495
1496 friend class ExternalReference;
1497 };
1498
1499
1500 } } // namespace v8::internal
1501
1502 #endif // V8_JSREGEXP_H_
1503