1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "v8.h"
29
30 #if defined(V8_TARGET_ARCH_MIPS)
31
32 // Note on Mips implementation:
33 //
34 // The result_register() for mips is the 'v0' register, which is defined
35 // by the ABI to contain function return values. However, the first
36 // parameter to a function is defined to be 'a0'. So there are many
37 // places where we have to move a previous result in v0 to a0 for the
38 // next call: mov(a0, v0). This is not needed on the other architectures.
39
40 #include "code-stubs.h"
41 #include "codegen.h"
42 #include "compiler.h"
43 #include "debug.h"
44 #include "full-codegen.h"
45 #include "isolate-inl.h"
46 #include "parser.h"
47 #include "scopes.h"
48 #include "stub-cache.h"
49
50 #include "mips/code-stubs-mips.h"
51 #include "mips/macro-assembler-mips.h"
52
53 namespace v8 {
54 namespace internal {
55
56 #define __ ACCESS_MASM(masm_)
57
58
59 // A patch site is a location in the code which it is possible to patch. This
60 // class has a number of methods to emit the code which is patchable and the
61 // method EmitPatchInfo to record a marker back to the patchable code. This
62 // marker is a andi zero_reg, rx, #yyyy instruction, and rx * 0x0000ffff + yyyy
63 // (raw 16 bit immediate value is used) is the delta from the pc to the first
64 // instruction of the patchable code.
65 // The marker instruction is effectively a NOP (dest is zero_reg) and will
66 // never be emitted by normal code.
67 class JumpPatchSite BASE_EMBEDDED {
68 public:
JumpPatchSite(MacroAssembler * masm)69 explicit JumpPatchSite(MacroAssembler* masm) : masm_(masm) {
70 #ifdef DEBUG
71 info_emitted_ = false;
72 #endif
73 }
74
~JumpPatchSite()75 ~JumpPatchSite() {
76 ASSERT(patch_site_.is_bound() == info_emitted_);
77 }
78
79 // When initially emitting this ensure that a jump is always generated to skip
80 // the inlined smi code.
EmitJumpIfNotSmi(Register reg,Label * target)81 void EmitJumpIfNotSmi(Register reg, Label* target) {
82 ASSERT(!patch_site_.is_bound() && !info_emitted_);
83 Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
84 __ bind(&patch_site_);
85 __ andi(at, reg, 0);
86 // Always taken before patched.
87 __ Branch(target, eq, at, Operand(zero_reg));
88 }
89
90 // When initially emitting this ensure that a jump is never generated to skip
91 // the inlined smi code.
EmitJumpIfSmi(Register reg,Label * target)92 void EmitJumpIfSmi(Register reg, Label* target) {
93 Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
94 ASSERT(!patch_site_.is_bound() && !info_emitted_);
95 __ bind(&patch_site_);
96 __ andi(at, reg, 0);
97 // Never taken before patched.
98 __ Branch(target, ne, at, Operand(zero_reg));
99 }
100
EmitPatchInfo()101 void EmitPatchInfo() {
102 if (patch_site_.is_bound()) {
103 int delta_to_patch_site = masm_->InstructionsGeneratedSince(&patch_site_);
104 Register reg = Register::from_code(delta_to_patch_site / kImm16Mask);
105 __ andi(zero_reg, reg, delta_to_patch_site % kImm16Mask);
106 #ifdef DEBUG
107 info_emitted_ = true;
108 #endif
109 } else {
110 __ nop(); // Signals no inlined code.
111 }
112 }
113
114 private:
115 MacroAssembler* masm_;
116 Label patch_site_;
117 #ifdef DEBUG
118 bool info_emitted_;
119 #endif
120 };
121
122
123 // TODO(jkummerow): Obsolete as soon as x64 is updated. Remove.
self_optimization_header_size()124 int FullCodeGenerator::self_optimization_header_size() {
125 UNREACHABLE();
126 return 10 * Instruction::kInstrSize;
127 }
128
129
130 // Generate code for a JS function. On entry to the function the receiver
131 // and arguments have been pushed on the stack left to right. The actual
132 // argument count matches the formal parameter count expected by the
133 // function.
134 //
135 // The live registers are:
136 // o a1: the JS function object being called (i.e. ourselves)
137 // o cp: our context
138 // o fp: our caller's frame pointer
139 // o sp: stack pointer
140 // o ra: return address
141 //
142 // The function builds a JS frame. Please see JavaScriptFrameConstants in
143 // frames-mips.h for its layout.
Generate()144 void FullCodeGenerator::Generate() {
145 CompilationInfo* info = info_;
146 handler_table_ =
147 isolate()->factory()->NewFixedArray(function()->handler_count(), TENURED);
148 profiling_counter_ = isolate()->factory()->NewJSGlobalPropertyCell(
149 Handle<Smi>(Smi::FromInt(FLAG_interrupt_budget)));
150 SetFunctionPosition(function());
151 Comment cmnt(masm_, "[ function compiled by full code generator");
152
153 #ifdef DEBUG
154 if (strlen(FLAG_stop_at) > 0 &&
155 info->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) {
156 __ stop("stop-at");
157 }
158 #endif
159
160 // Strict mode functions and builtins need to replace the receiver
161 // with undefined when called as functions (without an explicit
162 // receiver object). t1 is zero for method calls and non-zero for
163 // function calls.
164 if (!info->is_classic_mode() || info->is_native()) {
165 Label ok;
166 __ Branch(&ok, eq, t1, Operand(zero_reg));
167 int receiver_offset = info->scope()->num_parameters() * kPointerSize;
168 __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
169 __ sw(a2, MemOperand(sp, receiver_offset));
170 __ bind(&ok);
171 }
172
173 // Open a frame scope to indicate that there is a frame on the stack. The
174 // MANUAL indicates that the scope shouldn't actually generate code to set up
175 // the frame (that is done below).
176 FrameScope frame_scope(masm_, StackFrame::MANUAL);
177
178 int locals_count = info->scope()->num_stack_slots();
179
180 __ Push(ra, fp, cp, a1);
181 if (locals_count > 0) {
182 // Load undefined value here, so the value is ready for the loop
183 // below.
184 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
185 }
186 // Adjust fp to point to caller's fp.
187 __ Addu(fp, sp, Operand(2 * kPointerSize));
188
189 { Comment cmnt(masm_, "[ Allocate locals");
190 for (int i = 0; i < locals_count; i++) {
191 __ push(at);
192 }
193 }
194
195 bool function_in_register = true;
196
197 // Possibly allocate a local context.
198 int heap_slots = info->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
199 if (heap_slots > 0) {
200 Comment cmnt(masm_, "[ Allocate local context");
201 // Argument to NewContext is the function, which is in a1.
202 __ push(a1);
203 if (heap_slots <= FastNewContextStub::kMaximumSlots) {
204 FastNewContextStub stub(heap_slots);
205 __ CallStub(&stub);
206 } else {
207 __ CallRuntime(Runtime::kNewFunctionContext, 1);
208 }
209 function_in_register = false;
210 // Context is returned in both v0 and cp. It replaces the context
211 // passed to us. It's saved in the stack and kept live in cp.
212 __ sw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
213 // Copy any necessary parameters into the context.
214 int num_parameters = info->scope()->num_parameters();
215 for (int i = 0; i < num_parameters; i++) {
216 Variable* var = scope()->parameter(i);
217 if (var->IsContextSlot()) {
218 int parameter_offset = StandardFrameConstants::kCallerSPOffset +
219 (num_parameters - 1 - i) * kPointerSize;
220 // Load parameter from stack.
221 __ lw(a0, MemOperand(fp, parameter_offset));
222 // Store it in the context.
223 MemOperand target = ContextOperand(cp, var->index());
224 __ sw(a0, target);
225
226 // Update the write barrier.
227 __ RecordWriteContextSlot(
228 cp, target.offset(), a0, a3, kRAHasBeenSaved, kDontSaveFPRegs);
229 }
230 }
231 }
232
233 Variable* arguments = scope()->arguments();
234 if (arguments != NULL) {
235 // Function uses arguments object.
236 Comment cmnt(masm_, "[ Allocate arguments object");
237 if (!function_in_register) {
238 // Load this again, if it's used by the local context below.
239 __ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
240 } else {
241 __ mov(a3, a1);
242 }
243 // Receiver is just before the parameters on the caller's stack.
244 int num_parameters = info->scope()->num_parameters();
245 int offset = num_parameters * kPointerSize;
246 __ Addu(a2, fp,
247 Operand(StandardFrameConstants::kCallerSPOffset + offset));
248 __ li(a1, Operand(Smi::FromInt(num_parameters)));
249 __ Push(a3, a2, a1);
250
251 // Arguments to ArgumentsAccessStub:
252 // function, receiver address, parameter count.
253 // The stub will rewrite receiever and parameter count if the previous
254 // stack frame was an arguments adapter frame.
255 ArgumentsAccessStub::Type type;
256 if (!is_classic_mode()) {
257 type = ArgumentsAccessStub::NEW_STRICT;
258 } else if (function()->has_duplicate_parameters()) {
259 type = ArgumentsAccessStub::NEW_NON_STRICT_SLOW;
260 } else {
261 type = ArgumentsAccessStub::NEW_NON_STRICT_FAST;
262 }
263 ArgumentsAccessStub stub(type);
264 __ CallStub(&stub);
265
266 SetVar(arguments, v0, a1, a2);
267 }
268
269 if (FLAG_trace) {
270 __ CallRuntime(Runtime::kTraceEnter, 0);
271 }
272
273 // Visit the declarations and body unless there is an illegal
274 // redeclaration.
275 if (scope()->HasIllegalRedeclaration()) {
276 Comment cmnt(masm_, "[ Declarations");
277 scope()->VisitIllegalRedeclaration(this);
278
279 } else {
280 PrepareForBailoutForId(AstNode::kFunctionEntryId, NO_REGISTERS);
281 { Comment cmnt(masm_, "[ Declarations");
282 // For named function expressions, declare the function name as a
283 // constant.
284 if (scope()->is_function_scope() && scope()->function() != NULL) {
285 VariableProxy* proxy = scope()->function();
286 ASSERT(proxy->var()->mode() == CONST ||
287 proxy->var()->mode() == CONST_HARMONY);
288 ASSERT(proxy->var()->location() != Variable::UNALLOCATED);
289 EmitDeclaration(proxy, proxy->var()->mode(), NULL);
290 }
291 VisitDeclarations(scope()->declarations());
292 }
293
294 { Comment cmnt(masm_, "[ Stack check");
295 PrepareForBailoutForId(AstNode::kDeclarationsId, NO_REGISTERS);
296 Label ok;
297 __ LoadRoot(t0, Heap::kStackLimitRootIndex);
298 __ Branch(&ok, hs, sp, Operand(t0));
299 StackCheckStub stub;
300 __ CallStub(&stub);
301 __ bind(&ok);
302 }
303
304 { Comment cmnt(masm_, "[ Body");
305 ASSERT(loop_depth() == 0);
306 VisitStatements(function()->body());
307 ASSERT(loop_depth() == 0);
308 }
309 }
310
311 // Always emit a 'return undefined' in case control fell off the end of
312 // the body.
313 { Comment cmnt(masm_, "[ return <undefined>;");
314 __ LoadRoot(v0, Heap::kUndefinedValueRootIndex);
315 }
316 EmitReturnSequence();
317 }
318
319
ClearAccumulator()320 void FullCodeGenerator::ClearAccumulator() {
321 ASSERT(Smi::FromInt(0) == 0);
322 __ mov(v0, zero_reg);
323 }
324
325
EmitProfilingCounterDecrement(int delta)326 void FullCodeGenerator::EmitProfilingCounterDecrement(int delta) {
327 __ li(a2, Operand(profiling_counter_));
328 __ lw(a3, FieldMemOperand(a2, JSGlobalPropertyCell::kValueOffset));
329 __ Subu(a3, a3, Operand(Smi::FromInt(delta)));
330 __ sw(a3, FieldMemOperand(a2, JSGlobalPropertyCell::kValueOffset));
331 }
332
333
EmitProfilingCounterReset()334 void FullCodeGenerator::EmitProfilingCounterReset() {
335 int reset_value = FLAG_interrupt_budget;
336 if (info_->ShouldSelfOptimize() && !FLAG_retry_self_opt) {
337 // Self-optimization is a one-off thing: if it fails, don't try again.
338 reset_value = Smi::kMaxValue;
339 }
340 if (isolate()->IsDebuggerActive()) {
341 // Detect debug break requests as soon as possible.
342 reset_value = 10;
343 }
344 __ li(a2, Operand(profiling_counter_));
345 __ li(a3, Operand(Smi::FromInt(reset_value)));
346 __ sw(a3, FieldMemOperand(a2, JSGlobalPropertyCell::kValueOffset));
347 }
348
349
350 static const int kMaxBackEdgeWeight = 127;
351 static const int kBackEdgeDistanceDivisor = 142;
352
353
EmitStackCheck(IterationStatement * stmt,Label * back_edge_target)354 void FullCodeGenerator::EmitStackCheck(IterationStatement* stmt,
355 Label* back_edge_target) {
356 // The generated code is used in Deoptimizer::PatchStackCheckCodeAt so we need
357 // to make sure it is constant. Branch may emit a skip-or-jump sequence
358 // instead of the normal Branch. It seems that the "skip" part of that
359 // sequence is about as long as this Branch would be so it is safe to ignore
360 // that.
361 Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
362 Comment cmnt(masm_, "[ Stack check");
363 Label ok;
364 if (FLAG_count_based_interrupts) {
365 int weight = 1;
366 if (FLAG_weighted_back_edges) {
367 ASSERT(back_edge_target->is_bound());
368 int distance = masm_->SizeOfCodeGeneratedSince(back_edge_target);
369 weight = Min(kMaxBackEdgeWeight,
370 Max(1, distance / kBackEdgeDistanceDivisor));
371 }
372 EmitProfilingCounterDecrement(weight);
373 __ slt(at, a3, zero_reg);
374 __ beq(at, zero_reg, &ok);
375 // CallStub will emit a li t9 first, so it is safe to use the delay slot.
376 InterruptStub stub;
377 __ CallStub(&stub);
378 } else {
379 __ LoadRoot(t0, Heap::kStackLimitRootIndex);
380 __ sltu(at, sp, t0);
381 __ beq(at, zero_reg, &ok);
382 // CallStub will emit a li t9 first, so it is safe to use the delay slot.
383 StackCheckStub stub;
384 __ CallStub(&stub);
385 }
386 // Record a mapping of this PC offset to the OSR id. This is used to find
387 // the AST id from the unoptimized code in order to use it as a key into
388 // the deoptimization input data found in the optimized code.
389 RecordStackCheck(stmt->OsrEntryId());
390 if (FLAG_count_based_interrupts) {
391 EmitProfilingCounterReset();
392 }
393
394 __ bind(&ok);
395 PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
396 // Record a mapping of the OSR id to this PC. This is used if the OSR
397 // entry becomes the target of a bailout. We don't expect it to be, but
398 // we want it to work if it is.
399 PrepareForBailoutForId(stmt->OsrEntryId(), NO_REGISTERS);
400 }
401
402
EmitReturnSequence()403 void FullCodeGenerator::EmitReturnSequence() {
404 Comment cmnt(masm_, "[ Return sequence");
405 if (return_label_.is_bound()) {
406 __ Branch(&return_label_);
407 } else {
408 __ bind(&return_label_);
409 if (FLAG_trace) {
410 // Push the return value on the stack as the parameter.
411 // Runtime::TraceExit returns its parameter in v0.
412 __ push(v0);
413 __ CallRuntime(Runtime::kTraceExit, 1);
414 }
415 if (FLAG_interrupt_at_exit || FLAG_self_optimization) {
416 // Pretend that the exit is a backwards jump to the entry.
417 int weight = 1;
418 if (info_->ShouldSelfOptimize()) {
419 weight = FLAG_interrupt_budget / FLAG_self_opt_count;
420 } else if (FLAG_weighted_back_edges) {
421 int distance = masm_->pc_offset();
422 weight = Min(kMaxBackEdgeWeight,
423 Max(1, distance / kBackEdgeDistanceDivisor));
424 }
425 EmitProfilingCounterDecrement(weight);
426 Label ok;
427 __ Branch(&ok, ge, a3, Operand(zero_reg));
428 __ push(v0);
429 if (info_->ShouldSelfOptimize() && FLAG_direct_self_opt) {
430 __ lw(a2, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
431 __ push(a2);
432 __ CallRuntime(Runtime::kOptimizeFunctionOnNextCall, 1);
433 } else {
434 InterruptStub stub;
435 __ CallStub(&stub);
436 }
437 __ pop(v0);
438 EmitProfilingCounterReset();
439 __ bind(&ok);
440 }
441
442 #ifdef DEBUG
443 // Add a label for checking the size of the code used for returning.
444 Label check_exit_codesize;
445 masm_->bind(&check_exit_codesize);
446 #endif
447 // Make sure that the constant pool is not emitted inside of the return
448 // sequence.
449 { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
450 // Here we use masm_-> instead of the __ macro to avoid the code coverage
451 // tool from instrumenting as we rely on the code size here.
452 int32_t sp_delta = (info_->scope()->num_parameters() + 1) * kPointerSize;
453 CodeGenerator::RecordPositions(masm_, function()->end_position() - 1);
454 __ RecordJSReturn();
455 masm_->mov(sp, fp);
456 masm_->MultiPop(static_cast<RegList>(fp.bit() | ra.bit()));
457 masm_->Addu(sp, sp, Operand(sp_delta));
458 masm_->Jump(ra);
459 }
460
461 #ifdef DEBUG
462 // Check that the size of the code used for returning is large enough
463 // for the debugger's requirements.
464 ASSERT(Assembler::kJSReturnSequenceInstructions <=
465 masm_->InstructionsGeneratedSince(&check_exit_codesize));
466 #endif
467 }
468 }
469
470
Plug(Variable * var) const471 void FullCodeGenerator::EffectContext::Plug(Variable* var) const {
472 ASSERT(var->IsStackAllocated() || var->IsContextSlot());
473 }
474
475
Plug(Variable * var) const476 void FullCodeGenerator::AccumulatorValueContext::Plug(Variable* var) const {
477 ASSERT(var->IsStackAllocated() || var->IsContextSlot());
478 codegen()->GetVar(result_register(), var);
479 }
480
481
Plug(Variable * var) const482 void FullCodeGenerator::StackValueContext::Plug(Variable* var) const {
483 ASSERT(var->IsStackAllocated() || var->IsContextSlot());
484 codegen()->GetVar(result_register(), var);
485 __ push(result_register());
486 }
487
488
Plug(Variable * var) const489 void FullCodeGenerator::TestContext::Plug(Variable* var) const {
490 // For simplicity we always test the accumulator register.
491 codegen()->GetVar(result_register(), var);
492 codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
493 codegen()->DoTest(this);
494 }
495
496
Plug(Heap::RootListIndex index) const497 void FullCodeGenerator::EffectContext::Plug(Heap::RootListIndex index) const {
498 }
499
500
Plug(Heap::RootListIndex index) const501 void FullCodeGenerator::AccumulatorValueContext::Plug(
502 Heap::RootListIndex index) const {
503 __ LoadRoot(result_register(), index);
504 }
505
506
Plug(Heap::RootListIndex index) const507 void FullCodeGenerator::StackValueContext::Plug(
508 Heap::RootListIndex index) const {
509 __ LoadRoot(result_register(), index);
510 __ push(result_register());
511 }
512
513
Plug(Heap::RootListIndex index) const514 void FullCodeGenerator::TestContext::Plug(Heap::RootListIndex index) const {
515 codegen()->PrepareForBailoutBeforeSplit(condition(),
516 true,
517 true_label_,
518 false_label_);
519 if (index == Heap::kUndefinedValueRootIndex ||
520 index == Heap::kNullValueRootIndex ||
521 index == Heap::kFalseValueRootIndex) {
522 if (false_label_ != fall_through_) __ Branch(false_label_);
523 } else if (index == Heap::kTrueValueRootIndex) {
524 if (true_label_ != fall_through_) __ Branch(true_label_);
525 } else {
526 __ LoadRoot(result_register(), index);
527 codegen()->DoTest(this);
528 }
529 }
530
531
Plug(Handle<Object> lit) const532 void FullCodeGenerator::EffectContext::Plug(Handle<Object> lit) const {
533 }
534
535
Plug(Handle<Object> lit) const536 void FullCodeGenerator::AccumulatorValueContext::Plug(
537 Handle<Object> lit) const {
538 __ li(result_register(), Operand(lit));
539 }
540
541
Plug(Handle<Object> lit) const542 void FullCodeGenerator::StackValueContext::Plug(Handle<Object> lit) const {
543 // Immediates cannot be pushed directly.
544 __ li(result_register(), Operand(lit));
545 __ push(result_register());
546 }
547
548
Plug(Handle<Object> lit) const549 void FullCodeGenerator::TestContext::Plug(Handle<Object> lit) const {
550 codegen()->PrepareForBailoutBeforeSplit(condition(),
551 true,
552 true_label_,
553 false_label_);
554 ASSERT(!lit->IsUndetectableObject()); // There are no undetectable literals.
555 if (lit->IsUndefined() || lit->IsNull() || lit->IsFalse()) {
556 if (false_label_ != fall_through_) __ Branch(false_label_);
557 } else if (lit->IsTrue() || lit->IsJSObject()) {
558 if (true_label_ != fall_through_) __ Branch(true_label_);
559 } else if (lit->IsString()) {
560 if (String::cast(*lit)->length() == 0) {
561 if (false_label_ != fall_through_) __ Branch(false_label_);
562 } else {
563 if (true_label_ != fall_through_) __ Branch(true_label_);
564 }
565 } else if (lit->IsSmi()) {
566 if (Smi::cast(*lit)->value() == 0) {
567 if (false_label_ != fall_through_) __ Branch(false_label_);
568 } else {
569 if (true_label_ != fall_through_) __ Branch(true_label_);
570 }
571 } else {
572 // For simplicity we always test the accumulator register.
573 __ li(result_register(), Operand(lit));
574 codegen()->DoTest(this);
575 }
576 }
577
578
DropAndPlug(int count,Register reg) const579 void FullCodeGenerator::EffectContext::DropAndPlug(int count,
580 Register reg) const {
581 ASSERT(count > 0);
582 __ Drop(count);
583 }
584
585
DropAndPlug(int count,Register reg) const586 void FullCodeGenerator::AccumulatorValueContext::DropAndPlug(
587 int count,
588 Register reg) const {
589 ASSERT(count > 0);
590 __ Drop(count);
591 __ Move(result_register(), reg);
592 }
593
594
DropAndPlug(int count,Register reg) const595 void FullCodeGenerator::StackValueContext::DropAndPlug(int count,
596 Register reg) const {
597 ASSERT(count > 0);
598 if (count > 1) __ Drop(count - 1);
599 __ sw(reg, MemOperand(sp, 0));
600 }
601
602
DropAndPlug(int count,Register reg) const603 void FullCodeGenerator::TestContext::DropAndPlug(int count,
604 Register reg) const {
605 ASSERT(count > 0);
606 // For simplicity we always test the accumulator register.
607 __ Drop(count);
608 __ Move(result_register(), reg);
609 codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
610 codegen()->DoTest(this);
611 }
612
613
Plug(Label * materialize_true,Label * materialize_false) const614 void FullCodeGenerator::EffectContext::Plug(Label* materialize_true,
615 Label* materialize_false) const {
616 ASSERT(materialize_true == materialize_false);
617 __ bind(materialize_true);
618 }
619
620
Plug(Label * materialize_true,Label * materialize_false) const621 void FullCodeGenerator::AccumulatorValueContext::Plug(
622 Label* materialize_true,
623 Label* materialize_false) const {
624 Label done;
625 __ bind(materialize_true);
626 __ LoadRoot(result_register(), Heap::kTrueValueRootIndex);
627 __ Branch(&done);
628 __ bind(materialize_false);
629 __ LoadRoot(result_register(), Heap::kFalseValueRootIndex);
630 __ bind(&done);
631 }
632
633
Plug(Label * materialize_true,Label * materialize_false) const634 void FullCodeGenerator::StackValueContext::Plug(
635 Label* materialize_true,
636 Label* materialize_false) const {
637 Label done;
638 __ bind(materialize_true);
639 __ LoadRoot(at, Heap::kTrueValueRootIndex);
640 __ push(at);
641 __ Branch(&done);
642 __ bind(materialize_false);
643 __ LoadRoot(at, Heap::kFalseValueRootIndex);
644 __ push(at);
645 __ bind(&done);
646 }
647
648
Plug(Label * materialize_true,Label * materialize_false) const649 void FullCodeGenerator::TestContext::Plug(Label* materialize_true,
650 Label* materialize_false) const {
651 ASSERT(materialize_true == true_label_);
652 ASSERT(materialize_false == false_label_);
653 }
654
655
Plug(bool flag) const656 void FullCodeGenerator::EffectContext::Plug(bool flag) const {
657 }
658
659
Plug(bool flag) const660 void FullCodeGenerator::AccumulatorValueContext::Plug(bool flag) const {
661 Heap::RootListIndex value_root_index =
662 flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
663 __ LoadRoot(result_register(), value_root_index);
664 }
665
666
Plug(bool flag) const667 void FullCodeGenerator::StackValueContext::Plug(bool flag) const {
668 Heap::RootListIndex value_root_index =
669 flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
670 __ LoadRoot(at, value_root_index);
671 __ push(at);
672 }
673
674
Plug(bool flag) const675 void FullCodeGenerator::TestContext::Plug(bool flag) const {
676 codegen()->PrepareForBailoutBeforeSplit(condition(),
677 true,
678 true_label_,
679 false_label_);
680 if (flag) {
681 if (true_label_ != fall_through_) __ Branch(true_label_);
682 } else {
683 if (false_label_ != fall_through_) __ Branch(false_label_);
684 }
685 }
686
687
DoTest(Expression * condition,Label * if_true,Label * if_false,Label * fall_through)688 void FullCodeGenerator::DoTest(Expression* condition,
689 Label* if_true,
690 Label* if_false,
691 Label* fall_through) {
692 if (CpuFeatures::IsSupported(FPU)) {
693 ToBooleanStub stub(result_register());
694 __ CallStub(&stub);
695 __ mov(at, zero_reg);
696 } else {
697 // Call the runtime to find the boolean value of the source and then
698 // translate it into control flow to the pair of labels.
699 __ push(result_register());
700 __ CallRuntime(Runtime::kToBool, 1);
701 __ LoadRoot(at, Heap::kFalseValueRootIndex);
702 }
703 Split(ne, v0, Operand(at), if_true, if_false, fall_through);
704 }
705
706
Split(Condition cc,Register lhs,const Operand & rhs,Label * if_true,Label * if_false,Label * fall_through)707 void FullCodeGenerator::Split(Condition cc,
708 Register lhs,
709 const Operand& rhs,
710 Label* if_true,
711 Label* if_false,
712 Label* fall_through) {
713 if (if_false == fall_through) {
714 __ Branch(if_true, cc, lhs, rhs);
715 } else if (if_true == fall_through) {
716 __ Branch(if_false, NegateCondition(cc), lhs, rhs);
717 } else {
718 __ Branch(if_true, cc, lhs, rhs);
719 __ Branch(if_false);
720 }
721 }
722
723
StackOperand(Variable * var)724 MemOperand FullCodeGenerator::StackOperand(Variable* var) {
725 ASSERT(var->IsStackAllocated());
726 // Offset is negative because higher indexes are at lower addresses.
727 int offset = -var->index() * kPointerSize;
728 // Adjust by a (parameter or local) base offset.
729 if (var->IsParameter()) {
730 offset += (info_->scope()->num_parameters() + 1) * kPointerSize;
731 } else {
732 offset += JavaScriptFrameConstants::kLocal0Offset;
733 }
734 return MemOperand(fp, offset);
735 }
736
737
VarOperand(Variable * var,Register scratch)738 MemOperand FullCodeGenerator::VarOperand(Variable* var, Register scratch) {
739 ASSERT(var->IsContextSlot() || var->IsStackAllocated());
740 if (var->IsContextSlot()) {
741 int context_chain_length = scope()->ContextChainLength(var->scope());
742 __ LoadContext(scratch, context_chain_length);
743 return ContextOperand(scratch, var->index());
744 } else {
745 return StackOperand(var);
746 }
747 }
748
749
GetVar(Register dest,Variable * var)750 void FullCodeGenerator::GetVar(Register dest, Variable* var) {
751 // Use destination as scratch.
752 MemOperand location = VarOperand(var, dest);
753 __ lw(dest, location);
754 }
755
756
SetVar(Variable * var,Register src,Register scratch0,Register scratch1)757 void FullCodeGenerator::SetVar(Variable* var,
758 Register src,
759 Register scratch0,
760 Register scratch1) {
761 ASSERT(var->IsContextSlot() || var->IsStackAllocated());
762 ASSERT(!scratch0.is(src));
763 ASSERT(!scratch0.is(scratch1));
764 ASSERT(!scratch1.is(src));
765 MemOperand location = VarOperand(var, scratch0);
766 __ sw(src, location);
767 // Emit the write barrier code if the location is in the heap.
768 if (var->IsContextSlot()) {
769 __ RecordWriteContextSlot(scratch0,
770 location.offset(),
771 src,
772 scratch1,
773 kRAHasBeenSaved,
774 kDontSaveFPRegs);
775 }
776 }
777
778
PrepareForBailoutBeforeSplit(Expression * expr,bool should_normalize,Label * if_true,Label * if_false)779 void FullCodeGenerator::PrepareForBailoutBeforeSplit(Expression* expr,
780 bool should_normalize,
781 Label* if_true,
782 Label* if_false) {
783 // Only prepare for bailouts before splits if we're in a test
784 // context. Otherwise, we let the Visit function deal with the
785 // preparation to avoid preparing with the same AST id twice.
786 if (!context()->IsTest() || !info_->IsOptimizable()) return;
787
788 Label skip;
789 if (should_normalize) __ Branch(&skip);
790 PrepareForBailout(expr, TOS_REG);
791 if (should_normalize) {
792 __ LoadRoot(t0, Heap::kTrueValueRootIndex);
793 Split(eq, a0, Operand(t0), if_true, if_false, NULL);
794 __ bind(&skip);
795 }
796 }
797
798
EmitDeclaration(VariableProxy * proxy,VariableMode mode,FunctionLiteral * function)799 void FullCodeGenerator::EmitDeclaration(VariableProxy* proxy,
800 VariableMode mode,
801 FunctionLiteral* function) {
802 // If it was not possible to allocate the variable at compile time, we
803 // need to "declare" it at runtime to make sure it actually exists in the
804 // local context.
805 Variable* variable = proxy->var();
806 bool binding_needs_init = (function == NULL) &&
807 (mode == CONST || mode == CONST_HARMONY || mode == LET);
808 switch (variable->location()) {
809 case Variable::UNALLOCATED:
810 ++global_count_;
811 break;
812
813 case Variable::PARAMETER:
814 case Variable::LOCAL:
815 if (function != NULL) {
816 Comment cmnt(masm_, "[ Declaration");
817 VisitForAccumulatorValue(function);
818 __ sw(result_register(), StackOperand(variable));
819 } else if (binding_needs_init) {
820 Comment cmnt(masm_, "[ Declaration");
821 __ LoadRoot(t0, Heap::kTheHoleValueRootIndex);
822 __ sw(t0, StackOperand(variable));
823 }
824 break;
825
826 case Variable::CONTEXT:
827 // The variable in the decl always resides in the current function
828 // context.
829 ASSERT_EQ(0, scope()->ContextChainLength(variable->scope()));
830 if (FLAG_debug_code) {
831 // Check that we're not inside a with or catch context.
832 __ lw(a1, FieldMemOperand(cp, HeapObject::kMapOffset));
833 __ LoadRoot(t0, Heap::kWithContextMapRootIndex);
834 __ Check(ne, "Declaration in with context.",
835 a1, Operand(t0));
836 __ LoadRoot(t0, Heap::kCatchContextMapRootIndex);
837 __ Check(ne, "Declaration in catch context.",
838 a1, Operand(t0));
839 }
840 if (function != NULL) {
841 Comment cmnt(masm_, "[ Declaration");
842 VisitForAccumulatorValue(function);
843 __ sw(result_register(), ContextOperand(cp, variable->index()));
844 int offset = Context::SlotOffset(variable->index());
845 // We know that we have written a function, which is not a smi.
846 __ RecordWriteContextSlot(cp,
847 offset,
848 result_register(),
849 a2,
850 kRAHasBeenSaved,
851 kDontSaveFPRegs,
852 EMIT_REMEMBERED_SET,
853 OMIT_SMI_CHECK);
854 PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
855 } else if (binding_needs_init) {
856 Comment cmnt(masm_, "[ Declaration");
857 __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
858 __ sw(at, ContextOperand(cp, variable->index()));
859 // No write barrier since the_hole_value is in old space.
860 PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
861 }
862 break;
863
864 case Variable::LOOKUP: {
865 Comment cmnt(masm_, "[ Declaration");
866 __ li(a2, Operand(variable->name()));
867 // Declaration nodes are always introduced in one of four modes.
868 ASSERT(mode == VAR ||
869 mode == CONST ||
870 mode == CONST_HARMONY ||
871 mode == LET);
872 PropertyAttributes attr = (mode == CONST || mode == CONST_HARMONY)
873 ? READ_ONLY : NONE;
874 __ li(a1, Operand(Smi::FromInt(attr)));
875 // Push initial value, if any.
876 // Note: For variables we must not push an initial value (such as
877 // 'undefined') because we may have a (legal) redeclaration and we
878 // must not destroy the current value.
879 if (function != NULL) {
880 __ Push(cp, a2, a1);
881 // Push initial value for function declaration.
882 VisitForStackValue(function);
883 } else if (binding_needs_init) {
884 __ LoadRoot(a0, Heap::kTheHoleValueRootIndex);
885 __ Push(cp, a2, a1, a0);
886 } else {
887 ASSERT(Smi::FromInt(0) == 0);
888 __ mov(a0, zero_reg); // Smi::FromInt(0) indicates no initial value.
889 __ Push(cp, a2, a1, a0);
890 }
891 __ CallRuntime(Runtime::kDeclareContextSlot, 4);
892 break;
893 }
894 }
895 }
896
897
DeclareGlobals(Handle<FixedArray> pairs)898 void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
899 // Call the runtime to declare the globals.
900 // The context is the first argument.
901 __ li(a1, Operand(pairs));
902 __ li(a0, Operand(Smi::FromInt(DeclareGlobalsFlags())));
903 __ Push(cp, a1, a0);
904 __ CallRuntime(Runtime::kDeclareGlobals, 3);
905 // Return value is ignored.
906 }
907
908
VisitSwitchStatement(SwitchStatement * stmt)909 void FullCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) {
910 Comment cmnt(masm_, "[ SwitchStatement");
911 Breakable nested_statement(this, stmt);
912 SetStatementPosition(stmt);
913
914 // Keep the switch value on the stack until a case matches.
915 VisitForStackValue(stmt->tag());
916 PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
917
918 ZoneList<CaseClause*>* clauses = stmt->cases();
919 CaseClause* default_clause = NULL; // Can occur anywhere in the list.
920
921 Label next_test; // Recycled for each test.
922 // Compile all the tests with branches to their bodies.
923 for (int i = 0; i < clauses->length(); i++) {
924 CaseClause* clause = clauses->at(i);
925 clause->body_target()->Unuse();
926
927 // The default is not a test, but remember it as final fall through.
928 if (clause->is_default()) {
929 default_clause = clause;
930 continue;
931 }
932
933 Comment cmnt(masm_, "[ Case comparison");
934 __ bind(&next_test);
935 next_test.Unuse();
936
937 // Compile the label expression.
938 VisitForAccumulatorValue(clause->label());
939 __ mov(a0, result_register()); // CompareStub requires args in a0, a1.
940
941 // Perform the comparison as if via '==='.
942 __ lw(a1, MemOperand(sp, 0)); // Switch value.
943 bool inline_smi_code = ShouldInlineSmiCase(Token::EQ_STRICT);
944 JumpPatchSite patch_site(masm_);
945 if (inline_smi_code) {
946 Label slow_case;
947 __ or_(a2, a1, a0);
948 patch_site.EmitJumpIfNotSmi(a2, &slow_case);
949
950 __ Branch(&next_test, ne, a1, Operand(a0));
951 __ Drop(1); // Switch value is no longer needed.
952 __ Branch(clause->body_target());
953
954 __ bind(&slow_case);
955 }
956
957 // Record position before stub call for type feedback.
958 SetSourcePosition(clause->position());
959 Handle<Code> ic = CompareIC::GetUninitialized(Token::EQ_STRICT);
960 CallIC(ic, RelocInfo::CODE_TARGET, clause->CompareId());
961 patch_site.EmitPatchInfo();
962
963 __ Branch(&next_test, ne, v0, Operand(zero_reg));
964 __ Drop(1); // Switch value is no longer needed.
965 __ Branch(clause->body_target());
966 }
967
968 // Discard the test value and jump to the default if present, otherwise to
969 // the end of the statement.
970 __ bind(&next_test);
971 __ Drop(1); // Switch value is no longer needed.
972 if (default_clause == NULL) {
973 __ Branch(nested_statement.break_label());
974 } else {
975 __ Branch(default_clause->body_target());
976 }
977
978 // Compile all the case bodies.
979 for (int i = 0; i < clauses->length(); i++) {
980 Comment cmnt(masm_, "[ Case body");
981 CaseClause* clause = clauses->at(i);
982 __ bind(clause->body_target());
983 PrepareForBailoutForId(clause->EntryId(), NO_REGISTERS);
984 VisitStatements(clause->statements());
985 }
986
987 __ bind(nested_statement.break_label());
988 PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
989 }
990
991
VisitForInStatement(ForInStatement * stmt)992 void FullCodeGenerator::VisitForInStatement(ForInStatement* stmt) {
993 Comment cmnt(masm_, "[ ForInStatement");
994 SetStatementPosition(stmt);
995
996 Label loop, exit;
997 ForIn loop_statement(this, stmt);
998 increment_loop_depth();
999
1000 // Get the object to enumerate over. Both SpiderMonkey and JSC
1001 // ignore null and undefined in contrast to the specification; see
1002 // ECMA-262 section 12.6.4.
1003 VisitForAccumulatorValue(stmt->enumerable());
1004 __ mov(a0, result_register()); // Result as param to InvokeBuiltin below.
1005 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
1006 __ Branch(&exit, eq, a0, Operand(at));
1007 Register null_value = t1;
1008 __ LoadRoot(null_value, Heap::kNullValueRootIndex);
1009 __ Branch(&exit, eq, a0, Operand(null_value));
1010 PrepareForBailoutForId(stmt->PrepareId(), TOS_REG);
1011 __ mov(a0, v0);
1012 // Convert the object to a JS object.
1013 Label convert, done_convert;
1014 __ JumpIfSmi(a0, &convert);
1015 __ GetObjectType(a0, a1, a1);
1016 __ Branch(&done_convert, ge, a1, Operand(FIRST_SPEC_OBJECT_TYPE));
1017 __ bind(&convert);
1018 __ push(a0);
1019 __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
1020 __ mov(a0, v0);
1021 __ bind(&done_convert);
1022 __ push(a0);
1023
1024 // Check for proxies.
1025 Label call_runtime;
1026 STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
1027 __ GetObjectType(a0, a1, a1);
1028 __ Branch(&call_runtime, le, a1, Operand(LAST_JS_PROXY_TYPE));
1029
1030 // Check cache validity in generated code. This is a fast case for
1031 // the JSObject::IsSimpleEnum cache validity checks. If we cannot
1032 // guarantee cache validity, call the runtime system to check cache
1033 // validity or get the property names in a fixed array.
1034 __ CheckEnumCache(null_value, &call_runtime);
1035
1036 // The enum cache is valid. Load the map of the object being
1037 // iterated over and use the cache for the iteration.
1038 Label use_cache;
1039 __ lw(v0, FieldMemOperand(a0, HeapObject::kMapOffset));
1040 __ Branch(&use_cache);
1041
1042 // Get the set of properties to enumerate.
1043 __ bind(&call_runtime);
1044 __ push(a0); // Duplicate the enumerable object on the stack.
1045 __ CallRuntime(Runtime::kGetPropertyNamesFast, 1);
1046
1047 // If we got a map from the runtime call, we can do a fast
1048 // modification check. Otherwise, we got a fixed array, and we have
1049 // to do a slow check.
1050 Label fixed_array;
1051 __ mov(a2, v0);
1052 __ lw(a1, FieldMemOperand(a2, HeapObject::kMapOffset));
1053 __ LoadRoot(at, Heap::kMetaMapRootIndex);
1054 __ Branch(&fixed_array, ne, a1, Operand(at));
1055
1056 // We got a map in register v0. Get the enumeration cache from it.
1057 __ bind(&use_cache);
1058 __ LoadInstanceDescriptors(v0, a1);
1059 __ lw(a1, FieldMemOperand(a1, DescriptorArray::kEnumerationIndexOffset));
1060 __ lw(a2, FieldMemOperand(a1, DescriptorArray::kEnumCacheBridgeCacheOffset));
1061
1062 // Set up the four remaining stack slots.
1063 __ push(v0); // Map.
1064 __ lw(a1, FieldMemOperand(a2, FixedArray::kLengthOffset));
1065 __ li(a0, Operand(Smi::FromInt(0)));
1066 // Push enumeration cache, enumeration cache length (as smi) and zero.
1067 __ Push(a2, a1, a0);
1068 __ jmp(&loop);
1069
1070 // We got a fixed array in register v0. Iterate through that.
1071 Label non_proxy;
1072 __ bind(&fixed_array);
1073
1074 Handle<JSGlobalPropertyCell> cell =
1075 isolate()->factory()->NewJSGlobalPropertyCell(
1076 Handle<Object>(
1077 Smi::FromInt(TypeFeedbackCells::kForInFastCaseMarker)));
1078 RecordTypeFeedbackCell(stmt->PrepareId(), cell);
1079 __ LoadHeapObject(a1, cell);
1080 __ li(a2, Operand(Smi::FromInt(TypeFeedbackCells::kForInSlowCaseMarker)));
1081 __ sw(a2, FieldMemOperand(a1, JSGlobalPropertyCell::kValueOffset));
1082
1083 __ li(a1, Operand(Smi::FromInt(1))); // Smi indicates slow check
1084 __ lw(a2, MemOperand(sp, 0 * kPointerSize)); // Get enumerated object
1085 STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
1086 __ GetObjectType(a2, a3, a3);
1087 __ Branch(&non_proxy, gt, a3, Operand(LAST_JS_PROXY_TYPE));
1088 __ li(a1, Operand(Smi::FromInt(0))); // Zero indicates proxy
1089 __ bind(&non_proxy);
1090 __ Push(a1, v0); // Smi and array
1091 __ lw(a1, FieldMemOperand(v0, FixedArray::kLengthOffset));
1092 __ li(a0, Operand(Smi::FromInt(0)));
1093 __ Push(a1, a0); // Fixed array length (as smi) and initial index.
1094
1095 // Generate code for doing the condition check.
1096 PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS);
1097 __ bind(&loop);
1098 // Load the current count to a0, load the length to a1.
1099 __ lw(a0, MemOperand(sp, 0 * kPointerSize));
1100 __ lw(a1, MemOperand(sp, 1 * kPointerSize));
1101 __ Branch(loop_statement.break_label(), hs, a0, Operand(a1));
1102
1103 // Get the current entry of the array into register a3.
1104 __ lw(a2, MemOperand(sp, 2 * kPointerSize));
1105 __ Addu(a2, a2, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
1106 __ sll(t0, a0, kPointerSizeLog2 - kSmiTagSize);
1107 __ addu(t0, a2, t0); // Array base + scaled (smi) index.
1108 __ lw(a3, MemOperand(t0)); // Current entry.
1109
1110 // Get the expected map from the stack or a smi in the
1111 // permanent slow case into register a2.
1112 __ lw(a2, MemOperand(sp, 3 * kPointerSize));
1113
1114 // Check if the expected map still matches that of the enumerable.
1115 // If not, we may have to filter the key.
1116 Label update_each;
1117 __ lw(a1, MemOperand(sp, 4 * kPointerSize));
1118 __ lw(t0, FieldMemOperand(a1, HeapObject::kMapOffset));
1119 __ Branch(&update_each, eq, t0, Operand(a2));
1120
1121 // For proxies, no filtering is done.
1122 // TODO(rossberg): What if only a prototype is a proxy? Not specified yet.
1123 ASSERT_EQ(Smi::FromInt(0), 0);
1124 __ Branch(&update_each, eq, a2, Operand(zero_reg));
1125
1126 // Convert the entry to a string or (smi) 0 if it isn't a property
1127 // any more. If the property has been removed while iterating, we
1128 // just skip it.
1129 __ push(a1); // Enumerable.
1130 __ push(a3); // Current entry.
1131 __ InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION);
1132 __ mov(a3, result_register());
1133 __ Branch(loop_statement.continue_label(), eq, a3, Operand(zero_reg));
1134
1135 // Update the 'each' property or variable from the possibly filtered
1136 // entry in register a3.
1137 __ bind(&update_each);
1138 __ mov(result_register(), a3);
1139 // Perform the assignment as if via '='.
1140 { EffectContext context(this);
1141 EmitAssignment(stmt->each());
1142 }
1143
1144 // Generate code for the body of the loop.
1145 Visit(stmt->body());
1146
1147 // Generate code for the going to the next element by incrementing
1148 // the index (smi) stored on top of the stack.
1149 __ bind(loop_statement.continue_label());
1150 __ pop(a0);
1151 __ Addu(a0, a0, Operand(Smi::FromInt(1)));
1152 __ push(a0);
1153
1154 EmitStackCheck(stmt, &loop);
1155 __ Branch(&loop);
1156
1157 // Remove the pointers stored on the stack.
1158 __ bind(loop_statement.break_label());
1159 __ Drop(5);
1160
1161 // Exit and decrement the loop depth.
1162 PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
1163 __ bind(&exit);
1164 decrement_loop_depth();
1165 }
1166
1167
EmitNewClosure(Handle<SharedFunctionInfo> info,bool pretenure)1168 void FullCodeGenerator::EmitNewClosure(Handle<SharedFunctionInfo> info,
1169 bool pretenure) {
1170 // Use the fast case closure allocation code that allocates in new
1171 // space for nested functions that don't need literals cloning. If
1172 // we're running with the --always-opt or the --prepare-always-opt
1173 // flag, we need to use the runtime function so that the new function
1174 // we are creating here gets a chance to have its code optimized and
1175 // doesn't just get a copy of the existing unoptimized code.
1176 if (!FLAG_always_opt &&
1177 !FLAG_prepare_always_opt &&
1178 !pretenure &&
1179 scope()->is_function_scope() &&
1180 info->num_literals() == 0) {
1181 FastNewClosureStub stub(info->language_mode());
1182 __ li(a0, Operand(info));
1183 __ push(a0);
1184 __ CallStub(&stub);
1185 } else {
1186 __ li(a0, Operand(info));
1187 __ LoadRoot(a1, pretenure ? Heap::kTrueValueRootIndex
1188 : Heap::kFalseValueRootIndex);
1189 __ Push(cp, a0, a1);
1190 __ CallRuntime(Runtime::kNewClosure, 3);
1191 }
1192 context()->Plug(v0);
1193 }
1194
1195
VisitVariableProxy(VariableProxy * expr)1196 void FullCodeGenerator::VisitVariableProxy(VariableProxy* expr) {
1197 Comment cmnt(masm_, "[ VariableProxy");
1198 EmitVariableLoad(expr);
1199 }
1200
1201
EmitLoadGlobalCheckExtensions(Variable * var,TypeofState typeof_state,Label * slow)1202 void FullCodeGenerator::EmitLoadGlobalCheckExtensions(Variable* var,
1203 TypeofState typeof_state,
1204 Label* slow) {
1205 Register current = cp;
1206 Register next = a1;
1207 Register temp = a2;
1208
1209 Scope* s = scope();
1210 while (s != NULL) {
1211 if (s->num_heap_slots() > 0) {
1212 if (s->calls_non_strict_eval()) {
1213 // Check that extension is NULL.
1214 __ lw(temp, ContextOperand(current, Context::EXTENSION_INDEX));
1215 __ Branch(slow, ne, temp, Operand(zero_reg));
1216 }
1217 // Load next context in chain.
1218 __ lw(next, ContextOperand(current, Context::PREVIOUS_INDEX));
1219 // Walk the rest of the chain without clobbering cp.
1220 current = next;
1221 }
1222 // If no outer scope calls eval, we do not need to check more
1223 // context extensions.
1224 if (!s->outer_scope_calls_non_strict_eval() || s->is_eval_scope()) break;
1225 s = s->outer_scope();
1226 }
1227
1228 if (s->is_eval_scope()) {
1229 Label loop, fast;
1230 if (!current.is(next)) {
1231 __ Move(next, current);
1232 }
1233 __ bind(&loop);
1234 // Terminate at global context.
1235 __ lw(temp, FieldMemOperand(next, HeapObject::kMapOffset));
1236 __ LoadRoot(t0, Heap::kGlobalContextMapRootIndex);
1237 __ Branch(&fast, eq, temp, Operand(t0));
1238 // Check that extension is NULL.
1239 __ lw(temp, ContextOperand(next, Context::EXTENSION_INDEX));
1240 __ Branch(slow, ne, temp, Operand(zero_reg));
1241 // Load next context in chain.
1242 __ lw(next, ContextOperand(next, Context::PREVIOUS_INDEX));
1243 __ Branch(&loop);
1244 __ bind(&fast);
1245 }
1246
1247 __ lw(a0, GlobalObjectOperand());
1248 __ li(a2, Operand(var->name()));
1249 RelocInfo::Mode mode = (typeof_state == INSIDE_TYPEOF)
1250 ? RelocInfo::CODE_TARGET
1251 : RelocInfo::CODE_TARGET_CONTEXT;
1252 Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
1253 CallIC(ic, mode);
1254 }
1255
1256
ContextSlotOperandCheckExtensions(Variable * var,Label * slow)1257 MemOperand FullCodeGenerator::ContextSlotOperandCheckExtensions(Variable* var,
1258 Label* slow) {
1259 ASSERT(var->IsContextSlot());
1260 Register context = cp;
1261 Register next = a3;
1262 Register temp = t0;
1263
1264 for (Scope* s = scope(); s != var->scope(); s = s->outer_scope()) {
1265 if (s->num_heap_slots() > 0) {
1266 if (s->calls_non_strict_eval()) {
1267 // Check that extension is NULL.
1268 __ lw(temp, ContextOperand(context, Context::EXTENSION_INDEX));
1269 __ Branch(slow, ne, temp, Operand(zero_reg));
1270 }
1271 __ lw(next, ContextOperand(context, Context::PREVIOUS_INDEX));
1272 // Walk the rest of the chain without clobbering cp.
1273 context = next;
1274 }
1275 }
1276 // Check that last extension is NULL.
1277 __ lw(temp, ContextOperand(context, Context::EXTENSION_INDEX));
1278 __ Branch(slow, ne, temp, Operand(zero_reg));
1279
1280 // This function is used only for loads, not stores, so it's safe to
1281 // return an cp-based operand (the write barrier cannot be allowed to
1282 // destroy the cp register).
1283 return ContextOperand(context, var->index());
1284 }
1285
1286
EmitDynamicLookupFastCase(Variable * var,TypeofState typeof_state,Label * slow,Label * done)1287 void FullCodeGenerator::EmitDynamicLookupFastCase(Variable* var,
1288 TypeofState typeof_state,
1289 Label* slow,
1290 Label* done) {
1291 // Generate fast-case code for variables that might be shadowed by
1292 // eval-introduced variables. Eval is used a lot without
1293 // introducing variables. In those cases, we do not want to
1294 // perform a runtime call for all variables in the scope
1295 // containing the eval.
1296 if (var->mode() == DYNAMIC_GLOBAL) {
1297 EmitLoadGlobalCheckExtensions(var, typeof_state, slow);
1298 __ Branch(done);
1299 } else if (var->mode() == DYNAMIC_LOCAL) {
1300 Variable* local = var->local_if_not_shadowed();
1301 __ lw(v0, ContextSlotOperandCheckExtensions(local, slow));
1302 if (local->mode() == CONST ||
1303 local->mode() == CONST_HARMONY ||
1304 local->mode() == LET) {
1305 __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
1306 __ subu(at, v0, at); // Sub as compare: at == 0 on eq.
1307 if (local->mode() == CONST) {
1308 __ LoadRoot(a0, Heap::kUndefinedValueRootIndex);
1309 __ Movz(v0, a0, at); // Conditional move: return Undefined if TheHole.
1310 } else { // LET || CONST_HARMONY
1311 __ Branch(done, ne, at, Operand(zero_reg));
1312 __ li(a0, Operand(var->name()));
1313 __ push(a0);
1314 __ CallRuntime(Runtime::kThrowReferenceError, 1);
1315 }
1316 }
1317 __ Branch(done);
1318 }
1319 }
1320
1321
EmitVariableLoad(VariableProxy * proxy)1322 void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy) {
1323 // Record position before possible IC call.
1324 SetSourcePosition(proxy->position());
1325 Variable* var = proxy->var();
1326
1327 // Three cases: global variables, lookup variables, and all other types of
1328 // variables.
1329 switch (var->location()) {
1330 case Variable::UNALLOCATED: {
1331 Comment cmnt(masm_, "Global variable");
1332 // Use inline caching. Variable name is passed in a2 and the global
1333 // object (receiver) in a0.
1334 __ lw(a0, GlobalObjectOperand());
1335 __ li(a2, Operand(var->name()));
1336 Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
1337 CallIC(ic, RelocInfo::CODE_TARGET_CONTEXT);
1338 context()->Plug(v0);
1339 break;
1340 }
1341
1342 case Variable::PARAMETER:
1343 case Variable::LOCAL:
1344 case Variable::CONTEXT: {
1345 Comment cmnt(masm_, var->IsContextSlot()
1346 ? "Context variable"
1347 : "Stack variable");
1348 if (var->binding_needs_init()) {
1349 // var->scope() may be NULL when the proxy is located in eval code and
1350 // refers to a potential outside binding. Currently those bindings are
1351 // always looked up dynamically, i.e. in that case
1352 // var->location() == LOOKUP.
1353 // always holds.
1354 ASSERT(var->scope() != NULL);
1355
1356 // Check if the binding really needs an initialization check. The check
1357 // can be skipped in the following situation: we have a LET or CONST
1358 // binding in harmony mode, both the Variable and the VariableProxy have
1359 // the same declaration scope (i.e. they are both in global code, in the
1360 // same function or in the same eval code) and the VariableProxy is in
1361 // the source physically located after the initializer of the variable.
1362 //
1363 // We cannot skip any initialization checks for CONST in non-harmony
1364 // mode because const variables may be declared but never initialized:
1365 // if (false) { const x; }; var y = x;
1366 //
1367 // The condition on the declaration scopes is a conservative check for
1368 // nested functions that access a binding and are called before the
1369 // binding is initialized:
1370 // function() { f(); let x = 1; function f() { x = 2; } }
1371 //
1372 bool skip_init_check;
1373 if (var->scope()->DeclarationScope() != scope()->DeclarationScope()) {
1374 skip_init_check = false;
1375 } else {
1376 // Check that we always have valid source position.
1377 ASSERT(var->initializer_position() != RelocInfo::kNoPosition);
1378 ASSERT(proxy->position() != RelocInfo::kNoPosition);
1379 skip_init_check = var->mode() != CONST &&
1380 var->initializer_position() < proxy->position();
1381 }
1382
1383 if (!skip_init_check) {
1384 // Let and const need a read barrier.
1385 GetVar(v0, var);
1386 __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
1387 __ subu(at, v0, at); // Sub as compare: at == 0 on eq.
1388 if (var->mode() == LET || var->mode() == CONST_HARMONY) {
1389 // Throw a reference error when using an uninitialized let/const
1390 // binding in harmony mode.
1391 Label done;
1392 __ Branch(&done, ne, at, Operand(zero_reg));
1393 __ li(a0, Operand(var->name()));
1394 __ push(a0);
1395 __ CallRuntime(Runtime::kThrowReferenceError, 1);
1396 __ bind(&done);
1397 } else {
1398 // Uninitalized const bindings outside of harmony mode are unholed.
1399 ASSERT(var->mode() == CONST);
1400 __ LoadRoot(a0, Heap::kUndefinedValueRootIndex);
1401 __ Movz(v0, a0, at); // Conditional move: Undefined if TheHole.
1402 }
1403 context()->Plug(v0);
1404 break;
1405 }
1406 }
1407 context()->Plug(var);
1408 break;
1409 }
1410
1411 case Variable::LOOKUP: {
1412 Label done, slow;
1413 // Generate code for loading from variables potentially shadowed
1414 // by eval-introduced variables.
1415 EmitDynamicLookupFastCase(var, NOT_INSIDE_TYPEOF, &slow, &done);
1416 __ bind(&slow);
1417 Comment cmnt(masm_, "Lookup variable");
1418 __ li(a1, Operand(var->name()));
1419 __ Push(cp, a1); // Context and name.
1420 __ CallRuntime(Runtime::kLoadContextSlot, 2);
1421 __ bind(&done);
1422 context()->Plug(v0);
1423 }
1424 }
1425 }
1426
1427
VisitRegExpLiteral(RegExpLiteral * expr)1428 void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) {
1429 Comment cmnt(masm_, "[ RegExpLiteral");
1430 Label materialized;
1431 // Registers will be used as follows:
1432 // t1 = materialized value (RegExp literal)
1433 // t0 = JS function, literals array
1434 // a3 = literal index
1435 // a2 = RegExp pattern
1436 // a1 = RegExp flags
1437 // a0 = RegExp literal clone
1438 __ lw(a0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
1439 __ lw(t0, FieldMemOperand(a0, JSFunction::kLiteralsOffset));
1440 int literal_offset =
1441 FixedArray::kHeaderSize + expr->literal_index() * kPointerSize;
1442 __ lw(t1, FieldMemOperand(t0, literal_offset));
1443 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
1444 __ Branch(&materialized, ne, t1, Operand(at));
1445
1446 // Create regexp literal using runtime function.
1447 // Result will be in v0.
1448 __ li(a3, Operand(Smi::FromInt(expr->literal_index())));
1449 __ li(a2, Operand(expr->pattern()));
1450 __ li(a1, Operand(expr->flags()));
1451 __ Push(t0, a3, a2, a1);
1452 __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4);
1453 __ mov(t1, v0);
1454
1455 __ bind(&materialized);
1456 int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
1457 Label allocated, runtime_allocate;
1458 __ AllocateInNewSpace(size, v0, a2, a3, &runtime_allocate, TAG_OBJECT);
1459 __ jmp(&allocated);
1460
1461 __ bind(&runtime_allocate);
1462 __ push(t1);
1463 __ li(a0, Operand(Smi::FromInt(size)));
1464 __ push(a0);
1465 __ CallRuntime(Runtime::kAllocateInNewSpace, 1);
1466 __ pop(t1);
1467
1468 __ bind(&allocated);
1469
1470 // After this, registers are used as follows:
1471 // v0: Newly allocated regexp.
1472 // t1: Materialized regexp.
1473 // a2: temp.
1474 __ CopyFields(v0, t1, a2.bit(), size / kPointerSize);
1475 context()->Plug(v0);
1476 }
1477
1478
EmitAccessor(Expression * expression)1479 void FullCodeGenerator::EmitAccessor(Expression* expression) {
1480 if (expression == NULL) {
1481 __ LoadRoot(a1, Heap::kNullValueRootIndex);
1482 __ push(a1);
1483 } else {
1484 VisitForStackValue(expression);
1485 }
1486 }
1487
1488
VisitObjectLiteral(ObjectLiteral * expr)1489 void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) {
1490 Comment cmnt(masm_, "[ ObjectLiteral");
1491 Handle<FixedArray> constant_properties = expr->constant_properties();
1492 __ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
1493 __ lw(a3, FieldMemOperand(a3, JSFunction::kLiteralsOffset));
1494 __ li(a2, Operand(Smi::FromInt(expr->literal_index())));
1495 __ li(a1, Operand(constant_properties));
1496 int flags = expr->fast_elements()
1497 ? ObjectLiteral::kFastElements
1498 : ObjectLiteral::kNoFlags;
1499 flags |= expr->has_function()
1500 ? ObjectLiteral::kHasFunction
1501 : ObjectLiteral::kNoFlags;
1502 __ li(a0, Operand(Smi::FromInt(flags)));
1503 __ Push(a3, a2, a1, a0);
1504 int properties_count = constant_properties->length() / 2;
1505 if (expr->depth() > 1) {
1506 __ CallRuntime(Runtime::kCreateObjectLiteral, 4);
1507 } else if (flags != ObjectLiteral::kFastElements ||
1508 properties_count > FastCloneShallowObjectStub::kMaximumClonedProperties) {
1509 __ CallRuntime(Runtime::kCreateObjectLiteralShallow, 4);
1510 } else {
1511 FastCloneShallowObjectStub stub(properties_count);
1512 __ CallStub(&stub);
1513 }
1514
1515 // If result_saved is true the result is on top of the stack. If
1516 // result_saved is false the result is in v0.
1517 bool result_saved = false;
1518
1519 // Mark all computed expressions that are bound to a key that
1520 // is shadowed by a later occurrence of the same key. For the
1521 // marked expressions, no store code is emitted.
1522 expr->CalculateEmitStore();
1523
1524 AccessorTable accessor_table(isolate()->zone());
1525 for (int i = 0; i < expr->properties()->length(); i++) {
1526 ObjectLiteral::Property* property = expr->properties()->at(i);
1527 if (property->IsCompileTimeValue()) continue;
1528
1529 Literal* key = property->key();
1530 Expression* value = property->value();
1531 if (!result_saved) {
1532 __ push(v0); // Save result on stack.
1533 result_saved = true;
1534 }
1535 switch (property->kind()) {
1536 case ObjectLiteral::Property::CONSTANT:
1537 UNREACHABLE();
1538 case ObjectLiteral::Property::MATERIALIZED_LITERAL:
1539 ASSERT(!CompileTimeValue::IsCompileTimeValue(property->value()));
1540 // Fall through.
1541 case ObjectLiteral::Property::COMPUTED:
1542 if (key->handle()->IsSymbol()) {
1543 if (property->emit_store()) {
1544 VisitForAccumulatorValue(value);
1545 __ mov(a0, result_register());
1546 __ li(a2, Operand(key->handle()));
1547 __ lw(a1, MemOperand(sp));
1548 Handle<Code> ic = is_classic_mode()
1549 ? isolate()->builtins()->StoreIC_Initialize()
1550 : isolate()->builtins()->StoreIC_Initialize_Strict();
1551 CallIC(ic, RelocInfo::CODE_TARGET, key->id());
1552 PrepareForBailoutForId(key->id(), NO_REGISTERS);
1553 } else {
1554 VisitForEffect(value);
1555 }
1556 break;
1557 }
1558 // Fall through.
1559 case ObjectLiteral::Property::PROTOTYPE:
1560 // Duplicate receiver on stack.
1561 __ lw(a0, MemOperand(sp));
1562 __ push(a0);
1563 VisitForStackValue(key);
1564 VisitForStackValue(value);
1565 if (property->emit_store()) {
1566 __ li(a0, Operand(Smi::FromInt(NONE))); // PropertyAttributes.
1567 __ push(a0);
1568 __ CallRuntime(Runtime::kSetProperty, 4);
1569 } else {
1570 __ Drop(3);
1571 }
1572 break;
1573 case ObjectLiteral::Property::GETTER:
1574 accessor_table.lookup(key)->second->getter = value;
1575 break;
1576 case ObjectLiteral::Property::SETTER:
1577 accessor_table.lookup(key)->second->setter = value;
1578 break;
1579 }
1580 }
1581
1582 // Emit code to define accessors, using only a single call to the runtime for
1583 // each pair of corresponding getters and setters.
1584 for (AccessorTable::Iterator it = accessor_table.begin();
1585 it != accessor_table.end();
1586 ++it) {
1587 __ lw(a0, MemOperand(sp)); // Duplicate receiver.
1588 __ push(a0);
1589 VisitForStackValue(it->first);
1590 EmitAccessor(it->second->getter);
1591 EmitAccessor(it->second->setter);
1592 __ li(a0, Operand(Smi::FromInt(NONE)));
1593 __ push(a0);
1594 __ CallRuntime(Runtime::kDefineOrRedefineAccessorProperty, 5);
1595 }
1596
1597 if (expr->has_function()) {
1598 ASSERT(result_saved);
1599 __ lw(a0, MemOperand(sp));
1600 __ push(a0);
1601 __ CallRuntime(Runtime::kToFastProperties, 1);
1602 }
1603
1604 if (result_saved) {
1605 context()->PlugTOS();
1606 } else {
1607 context()->Plug(v0);
1608 }
1609 }
1610
1611
VisitArrayLiteral(ArrayLiteral * expr)1612 void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) {
1613 Comment cmnt(masm_, "[ ArrayLiteral");
1614
1615 ZoneList<Expression*>* subexprs = expr->values();
1616 int length = subexprs->length();
1617
1618 Handle<FixedArray> constant_elements = expr->constant_elements();
1619 ASSERT_EQ(2, constant_elements->length());
1620 ElementsKind constant_elements_kind =
1621 static_cast<ElementsKind>(Smi::cast(constant_elements->get(0))->value());
1622 bool has_fast_elements = constant_elements_kind == FAST_ELEMENTS;
1623 Handle<FixedArrayBase> constant_elements_values(
1624 FixedArrayBase::cast(constant_elements->get(1)));
1625
1626 __ mov(a0, result_register());
1627 __ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
1628 __ lw(a3, FieldMemOperand(a3, JSFunction::kLiteralsOffset));
1629 __ li(a2, Operand(Smi::FromInt(expr->literal_index())));
1630 __ li(a1, Operand(constant_elements));
1631 __ Push(a3, a2, a1);
1632 if (has_fast_elements && constant_elements_values->map() ==
1633 isolate()->heap()->fixed_cow_array_map()) {
1634 FastCloneShallowArrayStub stub(
1635 FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS, length);
1636 __ CallStub(&stub);
1637 __ IncrementCounter(isolate()->counters()->cow_arrays_created_stub(),
1638 1, a1, a2);
1639 } else if (expr->depth() > 1) {
1640 __ CallRuntime(Runtime::kCreateArrayLiteral, 3);
1641 } else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) {
1642 __ CallRuntime(Runtime::kCreateArrayLiteralShallow, 3);
1643 } else {
1644 ASSERT(constant_elements_kind == FAST_ELEMENTS ||
1645 constant_elements_kind == FAST_SMI_ONLY_ELEMENTS ||
1646 FLAG_smi_only_arrays);
1647 FastCloneShallowArrayStub::Mode mode = has_fast_elements
1648 ? FastCloneShallowArrayStub::CLONE_ELEMENTS
1649 : FastCloneShallowArrayStub::CLONE_ANY_ELEMENTS;
1650 FastCloneShallowArrayStub stub(mode, length);
1651 __ CallStub(&stub);
1652 }
1653
1654 bool result_saved = false; // Is the result saved to the stack?
1655
1656 // Emit code to evaluate all the non-constant subexpressions and to store
1657 // them into the newly cloned array.
1658 for (int i = 0; i < length; i++) {
1659 Expression* subexpr = subexprs->at(i);
1660 // If the subexpression is a literal or a simple materialized literal it
1661 // is already set in the cloned array.
1662 if (subexpr->AsLiteral() != NULL ||
1663 CompileTimeValue::IsCompileTimeValue(subexpr)) {
1664 continue;
1665 }
1666
1667 if (!result_saved) {
1668 __ push(v0);
1669 result_saved = true;
1670 }
1671
1672 VisitForAccumulatorValue(subexpr);
1673
1674 if (constant_elements_kind == FAST_ELEMENTS) {
1675 int offset = FixedArray::kHeaderSize + (i * kPointerSize);
1676 __ lw(t2, MemOperand(sp)); // Copy of array literal.
1677 __ lw(a1, FieldMemOperand(t2, JSObject::kElementsOffset));
1678 __ sw(result_register(), FieldMemOperand(a1, offset));
1679 // Update the write barrier for the array store.
1680 __ RecordWriteField(a1, offset, result_register(), a2,
1681 kRAHasBeenSaved, kDontSaveFPRegs,
1682 EMIT_REMEMBERED_SET, INLINE_SMI_CHECK);
1683 } else {
1684 __ lw(a1, MemOperand(sp)); // Copy of array literal.
1685 __ lw(a2, FieldMemOperand(a1, JSObject::kMapOffset));
1686 __ li(a3, Operand(Smi::FromInt(i)));
1687 __ li(t0, Operand(Smi::FromInt(expr->literal_index())));
1688 __ mov(a0, result_register());
1689 StoreArrayLiteralElementStub stub;
1690 __ CallStub(&stub);
1691 }
1692
1693 PrepareForBailoutForId(expr->GetIdForElement(i), NO_REGISTERS);
1694 }
1695 if (result_saved) {
1696 context()->PlugTOS();
1697 } else {
1698 context()->Plug(v0);
1699 }
1700 }
1701
1702
VisitAssignment(Assignment * expr)1703 void FullCodeGenerator::VisitAssignment(Assignment* expr) {
1704 Comment cmnt(masm_, "[ Assignment");
1705 // Invalid left-hand sides are rewritten to have a 'throw ReferenceError'
1706 // on the left-hand side.
1707 if (!expr->target()->IsValidLeftHandSide()) {
1708 VisitForEffect(expr->target());
1709 return;
1710 }
1711
1712 // Left-hand side can only be a property, a global or a (parameter or local)
1713 // slot.
1714 enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
1715 LhsKind assign_type = VARIABLE;
1716 Property* property = expr->target()->AsProperty();
1717 if (property != NULL) {
1718 assign_type = (property->key()->IsPropertyName())
1719 ? NAMED_PROPERTY
1720 : KEYED_PROPERTY;
1721 }
1722
1723 // Evaluate LHS expression.
1724 switch (assign_type) {
1725 case VARIABLE:
1726 // Nothing to do here.
1727 break;
1728 case NAMED_PROPERTY:
1729 if (expr->is_compound()) {
1730 // We need the receiver both on the stack and in the accumulator.
1731 VisitForAccumulatorValue(property->obj());
1732 __ push(result_register());
1733 } else {
1734 VisitForStackValue(property->obj());
1735 }
1736 break;
1737 case KEYED_PROPERTY:
1738 // We need the key and receiver on both the stack and in v0 and a1.
1739 if (expr->is_compound()) {
1740 VisitForStackValue(property->obj());
1741 VisitForAccumulatorValue(property->key());
1742 __ lw(a1, MemOperand(sp, 0));
1743 __ push(v0);
1744 } else {
1745 VisitForStackValue(property->obj());
1746 VisitForStackValue(property->key());
1747 }
1748 break;
1749 }
1750
1751 // For compound assignments we need another deoptimization point after the
1752 // variable/property load.
1753 if (expr->is_compound()) {
1754 { AccumulatorValueContext context(this);
1755 switch (assign_type) {
1756 case VARIABLE:
1757 EmitVariableLoad(expr->target()->AsVariableProxy());
1758 PrepareForBailout(expr->target(), TOS_REG);
1759 break;
1760 case NAMED_PROPERTY:
1761 EmitNamedPropertyLoad(property);
1762 PrepareForBailoutForId(expr->CompoundLoadId(), TOS_REG);
1763 break;
1764 case KEYED_PROPERTY:
1765 EmitKeyedPropertyLoad(property);
1766 PrepareForBailoutForId(expr->CompoundLoadId(), TOS_REG);
1767 break;
1768 }
1769 }
1770
1771 Token::Value op = expr->binary_op();
1772 __ push(v0); // Left operand goes on the stack.
1773 VisitForAccumulatorValue(expr->value());
1774
1775 OverwriteMode mode = expr->value()->ResultOverwriteAllowed()
1776 ? OVERWRITE_RIGHT
1777 : NO_OVERWRITE;
1778 SetSourcePosition(expr->position() + 1);
1779 AccumulatorValueContext context(this);
1780 if (ShouldInlineSmiCase(op)) {
1781 EmitInlineSmiBinaryOp(expr->binary_operation(),
1782 op,
1783 mode,
1784 expr->target(),
1785 expr->value());
1786 } else {
1787 EmitBinaryOp(expr->binary_operation(), op, mode);
1788 }
1789
1790 // Deoptimization point in case the binary operation may have side effects.
1791 PrepareForBailout(expr->binary_operation(), TOS_REG);
1792 } else {
1793 VisitForAccumulatorValue(expr->value());
1794 }
1795
1796 // Record source position before possible IC call.
1797 SetSourcePosition(expr->position());
1798
1799 // Store the value.
1800 switch (assign_type) {
1801 case VARIABLE:
1802 EmitVariableAssignment(expr->target()->AsVariableProxy()->var(),
1803 expr->op());
1804 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
1805 context()->Plug(v0);
1806 break;
1807 case NAMED_PROPERTY:
1808 EmitNamedPropertyAssignment(expr);
1809 break;
1810 case KEYED_PROPERTY:
1811 EmitKeyedPropertyAssignment(expr);
1812 break;
1813 }
1814 }
1815
1816
EmitNamedPropertyLoad(Property * prop)1817 void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) {
1818 SetSourcePosition(prop->position());
1819 Literal* key = prop->key()->AsLiteral();
1820 __ mov(a0, result_register());
1821 __ li(a2, Operand(key->handle()));
1822 // Call load IC. It has arguments receiver and property name a0 and a2.
1823 Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
1824 CallIC(ic, RelocInfo::CODE_TARGET, prop->id());
1825 }
1826
1827
EmitKeyedPropertyLoad(Property * prop)1828 void FullCodeGenerator::EmitKeyedPropertyLoad(Property* prop) {
1829 SetSourcePosition(prop->position());
1830 __ mov(a0, result_register());
1831 // Call keyed load IC. It has arguments key and receiver in a0 and a1.
1832 Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize();
1833 CallIC(ic, RelocInfo::CODE_TARGET, prop->id());
1834 }
1835
1836
EmitInlineSmiBinaryOp(BinaryOperation * expr,Token::Value op,OverwriteMode mode,Expression * left_expr,Expression * right_expr)1837 void FullCodeGenerator::EmitInlineSmiBinaryOp(BinaryOperation* expr,
1838 Token::Value op,
1839 OverwriteMode mode,
1840 Expression* left_expr,
1841 Expression* right_expr) {
1842 Label done, smi_case, stub_call;
1843
1844 Register scratch1 = a2;
1845 Register scratch2 = a3;
1846
1847 // Get the arguments.
1848 Register left = a1;
1849 Register right = a0;
1850 __ pop(left);
1851 __ mov(a0, result_register());
1852
1853 // Perform combined smi check on both operands.
1854 __ Or(scratch1, left, Operand(right));
1855 STATIC_ASSERT(kSmiTag == 0);
1856 JumpPatchSite patch_site(masm_);
1857 patch_site.EmitJumpIfSmi(scratch1, &smi_case);
1858
1859 __ bind(&stub_call);
1860 BinaryOpStub stub(op, mode);
1861 CallIC(stub.GetCode(), RelocInfo::CODE_TARGET, expr->id());
1862 patch_site.EmitPatchInfo();
1863 __ jmp(&done);
1864
1865 __ bind(&smi_case);
1866 // Smi case. This code works the same way as the smi-smi case in the type
1867 // recording binary operation stub, see
1868 // BinaryOpStub::GenerateSmiSmiOperation for comments.
1869 switch (op) {
1870 case Token::SAR:
1871 __ Branch(&stub_call);
1872 __ GetLeastBitsFromSmi(scratch1, right, 5);
1873 __ srav(right, left, scratch1);
1874 __ And(v0, right, Operand(~kSmiTagMask));
1875 break;
1876 case Token::SHL: {
1877 __ Branch(&stub_call);
1878 __ SmiUntag(scratch1, left);
1879 __ GetLeastBitsFromSmi(scratch2, right, 5);
1880 __ sllv(scratch1, scratch1, scratch2);
1881 __ Addu(scratch2, scratch1, Operand(0x40000000));
1882 __ Branch(&stub_call, lt, scratch2, Operand(zero_reg));
1883 __ SmiTag(v0, scratch1);
1884 break;
1885 }
1886 case Token::SHR: {
1887 __ Branch(&stub_call);
1888 __ SmiUntag(scratch1, left);
1889 __ GetLeastBitsFromSmi(scratch2, right, 5);
1890 __ srlv(scratch1, scratch1, scratch2);
1891 __ And(scratch2, scratch1, 0xc0000000);
1892 __ Branch(&stub_call, ne, scratch2, Operand(zero_reg));
1893 __ SmiTag(v0, scratch1);
1894 break;
1895 }
1896 case Token::ADD:
1897 __ AdduAndCheckForOverflow(v0, left, right, scratch1);
1898 __ BranchOnOverflow(&stub_call, scratch1);
1899 break;
1900 case Token::SUB:
1901 __ SubuAndCheckForOverflow(v0, left, right, scratch1);
1902 __ BranchOnOverflow(&stub_call, scratch1);
1903 break;
1904 case Token::MUL: {
1905 __ SmiUntag(scratch1, right);
1906 __ Mult(left, scratch1);
1907 __ mflo(scratch1);
1908 __ mfhi(scratch2);
1909 __ sra(scratch1, scratch1, 31);
1910 __ Branch(&stub_call, ne, scratch1, Operand(scratch2));
1911 __ mflo(v0);
1912 __ Branch(&done, ne, v0, Operand(zero_reg));
1913 __ Addu(scratch2, right, left);
1914 __ Branch(&stub_call, lt, scratch2, Operand(zero_reg));
1915 ASSERT(Smi::FromInt(0) == 0);
1916 __ mov(v0, zero_reg);
1917 break;
1918 }
1919 case Token::BIT_OR:
1920 __ Or(v0, left, Operand(right));
1921 break;
1922 case Token::BIT_AND:
1923 __ And(v0, left, Operand(right));
1924 break;
1925 case Token::BIT_XOR:
1926 __ Xor(v0, left, Operand(right));
1927 break;
1928 default:
1929 UNREACHABLE();
1930 }
1931
1932 __ bind(&done);
1933 context()->Plug(v0);
1934 }
1935
1936
EmitBinaryOp(BinaryOperation * expr,Token::Value op,OverwriteMode mode)1937 void FullCodeGenerator::EmitBinaryOp(BinaryOperation* expr,
1938 Token::Value op,
1939 OverwriteMode mode) {
1940 __ mov(a0, result_register());
1941 __ pop(a1);
1942 BinaryOpStub stub(op, mode);
1943 JumpPatchSite patch_site(masm_); // unbound, signals no inlined smi code.
1944 CallIC(stub.GetCode(), RelocInfo::CODE_TARGET, expr->id());
1945 patch_site.EmitPatchInfo();
1946 context()->Plug(v0);
1947 }
1948
1949
EmitAssignment(Expression * expr)1950 void FullCodeGenerator::EmitAssignment(Expression* expr) {
1951 // Invalid left-hand sides are rewritten to have a 'throw
1952 // ReferenceError' on the left-hand side.
1953 if (!expr->IsValidLeftHandSide()) {
1954 VisitForEffect(expr);
1955 return;
1956 }
1957
1958 // Left-hand side can only be a property, a global or a (parameter or local)
1959 // slot.
1960 enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
1961 LhsKind assign_type = VARIABLE;
1962 Property* prop = expr->AsProperty();
1963 if (prop != NULL) {
1964 assign_type = (prop->key()->IsPropertyName())
1965 ? NAMED_PROPERTY
1966 : KEYED_PROPERTY;
1967 }
1968
1969 switch (assign_type) {
1970 case VARIABLE: {
1971 Variable* var = expr->AsVariableProxy()->var();
1972 EffectContext context(this);
1973 EmitVariableAssignment(var, Token::ASSIGN);
1974 break;
1975 }
1976 case NAMED_PROPERTY: {
1977 __ push(result_register()); // Preserve value.
1978 VisitForAccumulatorValue(prop->obj());
1979 __ mov(a1, result_register());
1980 __ pop(a0); // Restore value.
1981 __ li(a2, Operand(prop->key()->AsLiteral()->handle()));
1982 Handle<Code> ic = is_classic_mode()
1983 ? isolate()->builtins()->StoreIC_Initialize()
1984 : isolate()->builtins()->StoreIC_Initialize_Strict();
1985 CallIC(ic);
1986 break;
1987 }
1988 case KEYED_PROPERTY: {
1989 __ push(result_register()); // Preserve value.
1990 VisitForStackValue(prop->obj());
1991 VisitForAccumulatorValue(prop->key());
1992 __ mov(a1, result_register());
1993 __ pop(a2);
1994 __ pop(a0); // Restore value.
1995 Handle<Code> ic = is_classic_mode()
1996 ? isolate()->builtins()->KeyedStoreIC_Initialize()
1997 : isolate()->builtins()->KeyedStoreIC_Initialize_Strict();
1998 CallIC(ic);
1999 break;
2000 }
2001 }
2002 context()->Plug(v0);
2003 }
2004
2005
EmitVariableAssignment(Variable * var,Token::Value op)2006 void FullCodeGenerator::EmitVariableAssignment(Variable* var,
2007 Token::Value op) {
2008 if (var->IsUnallocated()) {
2009 // Global var, const, or let.
2010 __ mov(a0, result_register());
2011 __ li(a2, Operand(var->name()));
2012 __ lw(a1, GlobalObjectOperand());
2013 Handle<Code> ic = is_classic_mode()
2014 ? isolate()->builtins()->StoreIC_Initialize()
2015 : isolate()->builtins()->StoreIC_Initialize_Strict();
2016 CallIC(ic, RelocInfo::CODE_TARGET_CONTEXT);
2017
2018 } else if (op == Token::INIT_CONST) {
2019 // Const initializers need a write barrier.
2020 ASSERT(!var->IsParameter()); // No const parameters.
2021 if (var->IsStackLocal()) {
2022 Label skip;
2023 __ lw(a1, StackOperand(var));
2024 __ LoadRoot(t0, Heap::kTheHoleValueRootIndex);
2025 __ Branch(&skip, ne, a1, Operand(t0));
2026 __ sw(result_register(), StackOperand(var));
2027 __ bind(&skip);
2028 } else {
2029 ASSERT(var->IsContextSlot() || var->IsLookupSlot());
2030 // Like var declarations, const declarations are hoisted to function
2031 // scope. However, unlike var initializers, const initializers are
2032 // able to drill a hole to that function context, even from inside a
2033 // 'with' context. We thus bypass the normal static scope lookup for
2034 // var->IsContextSlot().
2035 __ push(v0);
2036 __ li(a0, Operand(var->name()));
2037 __ Push(cp, a0); // Context and name.
2038 __ CallRuntime(Runtime::kInitializeConstContextSlot, 3);
2039 }
2040
2041 } else if (var->mode() == LET && op != Token::INIT_LET) {
2042 // Non-initializing assignment to let variable needs a write barrier.
2043 if (var->IsLookupSlot()) {
2044 __ push(v0); // Value.
2045 __ li(a1, Operand(var->name()));
2046 __ li(a0, Operand(Smi::FromInt(language_mode())));
2047 __ Push(cp, a1, a0); // Context, name, strict mode.
2048 __ CallRuntime(Runtime::kStoreContextSlot, 4);
2049 } else {
2050 ASSERT(var->IsStackAllocated() || var->IsContextSlot());
2051 Label assign;
2052 MemOperand location = VarOperand(var, a1);
2053 __ lw(a3, location);
2054 __ LoadRoot(t0, Heap::kTheHoleValueRootIndex);
2055 __ Branch(&assign, ne, a3, Operand(t0));
2056 __ li(a3, Operand(var->name()));
2057 __ push(a3);
2058 __ CallRuntime(Runtime::kThrowReferenceError, 1);
2059 // Perform the assignment.
2060 __ bind(&assign);
2061 __ sw(result_register(), location);
2062 if (var->IsContextSlot()) {
2063 // RecordWrite may destroy all its register arguments.
2064 __ mov(a3, result_register());
2065 int offset = Context::SlotOffset(var->index());
2066 __ RecordWriteContextSlot(
2067 a1, offset, a3, a2, kRAHasBeenSaved, kDontSaveFPRegs);
2068 }
2069 }
2070
2071 } else if (!var->is_const_mode() || op == Token::INIT_CONST_HARMONY) {
2072 // Assignment to var or initializing assignment to let/const
2073 // in harmony mode.
2074 if (var->IsStackAllocated() || var->IsContextSlot()) {
2075 MemOperand location = VarOperand(var, a1);
2076 if (FLAG_debug_code && op == Token::INIT_LET) {
2077 // Check for an uninitialized let binding.
2078 __ lw(a2, location);
2079 __ LoadRoot(t0, Heap::kTheHoleValueRootIndex);
2080 __ Check(eq, "Let binding re-initialization.", a2, Operand(t0));
2081 }
2082 // Perform the assignment.
2083 __ sw(v0, location);
2084 if (var->IsContextSlot()) {
2085 __ mov(a3, v0);
2086 int offset = Context::SlotOffset(var->index());
2087 __ RecordWriteContextSlot(
2088 a1, offset, a3, a2, kRAHasBeenSaved, kDontSaveFPRegs);
2089 }
2090 } else {
2091 ASSERT(var->IsLookupSlot());
2092 __ push(v0); // Value.
2093 __ li(a1, Operand(var->name()));
2094 __ li(a0, Operand(Smi::FromInt(language_mode())));
2095 __ Push(cp, a1, a0); // Context, name, strict mode.
2096 __ CallRuntime(Runtime::kStoreContextSlot, 4);
2097 }
2098 }
2099 // Non-initializing assignments to consts are ignored.
2100 }
2101
2102
EmitNamedPropertyAssignment(Assignment * expr)2103 void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) {
2104 // Assignment to a property, using a named store IC.
2105 Property* prop = expr->target()->AsProperty();
2106 ASSERT(prop != NULL);
2107 ASSERT(prop->key()->AsLiteral() != NULL);
2108
2109 // If the assignment starts a block of assignments to the same object,
2110 // change to slow case to avoid the quadratic behavior of repeatedly
2111 // adding fast properties.
2112 if (expr->starts_initialization_block()) {
2113 __ push(result_register());
2114 __ lw(t0, MemOperand(sp, kPointerSize)); // Receiver is now under value.
2115 __ push(t0);
2116 __ CallRuntime(Runtime::kToSlowProperties, 1);
2117 __ pop(result_register());
2118 }
2119
2120 // Record source code position before IC call.
2121 SetSourcePosition(expr->position());
2122 __ mov(a0, result_register()); // Load the value.
2123 __ li(a2, Operand(prop->key()->AsLiteral()->handle()));
2124 // Load receiver to a1. Leave a copy in the stack if needed for turning the
2125 // receiver into fast case.
2126 if (expr->ends_initialization_block()) {
2127 __ lw(a1, MemOperand(sp));
2128 } else {
2129 __ pop(a1);
2130 }
2131
2132 Handle<Code> ic = is_classic_mode()
2133 ? isolate()->builtins()->StoreIC_Initialize()
2134 : isolate()->builtins()->StoreIC_Initialize_Strict();
2135 CallIC(ic, RelocInfo::CODE_TARGET, expr->id());
2136
2137 // If the assignment ends an initialization block, revert to fast case.
2138 if (expr->ends_initialization_block()) {
2139 __ push(v0); // Result of assignment, saved even if not needed.
2140 // Receiver is under the result value.
2141 __ lw(t0, MemOperand(sp, kPointerSize));
2142 __ push(t0);
2143 __ CallRuntime(Runtime::kToFastProperties, 1);
2144 __ pop(v0);
2145 __ Drop(1);
2146 }
2147 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
2148 context()->Plug(v0);
2149 }
2150
2151
EmitKeyedPropertyAssignment(Assignment * expr)2152 void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) {
2153 // Assignment to a property, using a keyed store IC.
2154
2155 // If the assignment starts a block of assignments to the same object,
2156 // change to slow case to avoid the quadratic behavior of repeatedly
2157 // adding fast properties.
2158 if (expr->starts_initialization_block()) {
2159 __ push(result_register());
2160 // Receiver is now under the key and value.
2161 __ lw(t0, MemOperand(sp, 2 * kPointerSize));
2162 __ push(t0);
2163 __ CallRuntime(Runtime::kToSlowProperties, 1);
2164 __ pop(result_register());
2165 }
2166
2167 // Record source code position before IC call.
2168 SetSourcePosition(expr->position());
2169 // Call keyed store IC.
2170 // The arguments are:
2171 // - a0 is the value,
2172 // - a1 is the key,
2173 // - a2 is the receiver.
2174 __ mov(a0, result_register());
2175 __ pop(a1); // Key.
2176 // Load receiver to a2. Leave a copy in the stack if needed for turning the
2177 // receiver into fast case.
2178 if (expr->ends_initialization_block()) {
2179 __ lw(a2, MemOperand(sp));
2180 } else {
2181 __ pop(a2);
2182 }
2183
2184 Handle<Code> ic = is_classic_mode()
2185 ? isolate()->builtins()->KeyedStoreIC_Initialize()
2186 : isolate()->builtins()->KeyedStoreIC_Initialize_Strict();
2187 CallIC(ic, RelocInfo::CODE_TARGET, expr->id());
2188
2189 // If the assignment ends an initialization block, revert to fast case.
2190 if (expr->ends_initialization_block()) {
2191 __ push(v0); // Result of assignment, saved even if not needed.
2192 // Receiver is under the result value.
2193 __ lw(t0, MemOperand(sp, kPointerSize));
2194 __ push(t0);
2195 __ CallRuntime(Runtime::kToFastProperties, 1);
2196 __ pop(v0);
2197 __ Drop(1);
2198 }
2199 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
2200 context()->Plug(v0);
2201 }
2202
2203
VisitProperty(Property * expr)2204 void FullCodeGenerator::VisitProperty(Property* expr) {
2205 Comment cmnt(masm_, "[ Property");
2206 Expression* key = expr->key();
2207
2208 if (key->IsPropertyName()) {
2209 VisitForAccumulatorValue(expr->obj());
2210 EmitNamedPropertyLoad(expr);
2211 context()->Plug(v0);
2212 } else {
2213 VisitForStackValue(expr->obj());
2214 VisitForAccumulatorValue(expr->key());
2215 __ pop(a1);
2216 EmitKeyedPropertyLoad(expr);
2217 context()->Plug(v0);
2218 }
2219 }
2220
2221
CallIC(Handle<Code> code,RelocInfo::Mode rmode,unsigned ast_id)2222 void FullCodeGenerator::CallIC(Handle<Code> code,
2223 RelocInfo::Mode rmode,
2224 unsigned ast_id) {
2225 ic_total_count_++;
2226 __ Call(code, rmode, ast_id);
2227 }
2228
2229
EmitCallWithIC(Call * expr,Handle<Object> name,RelocInfo::Mode mode)2230 void FullCodeGenerator::EmitCallWithIC(Call* expr,
2231 Handle<Object> name,
2232 RelocInfo::Mode mode) {
2233 // Code common for calls using the IC.
2234 ZoneList<Expression*>* args = expr->arguments();
2235 int arg_count = args->length();
2236 { PreservePositionScope scope(masm()->positions_recorder());
2237 for (int i = 0; i < arg_count; i++) {
2238 VisitForStackValue(args->at(i));
2239 }
2240 __ li(a2, Operand(name));
2241 }
2242 // Record source position for debugger.
2243 SetSourcePosition(expr->position());
2244 // Call the IC initialization code.
2245 Handle<Code> ic =
2246 isolate()->stub_cache()->ComputeCallInitialize(arg_count, mode);
2247 CallIC(ic, mode, expr->id());
2248 RecordJSReturnSite(expr);
2249 // Restore context register.
2250 __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2251 context()->Plug(v0);
2252 }
2253
2254
EmitKeyedCallWithIC(Call * expr,Expression * key)2255 void FullCodeGenerator::EmitKeyedCallWithIC(Call* expr,
2256 Expression* key) {
2257 // Load the key.
2258 VisitForAccumulatorValue(key);
2259
2260 // Swap the name of the function and the receiver on the stack to follow
2261 // the calling convention for call ICs.
2262 __ pop(a1);
2263 __ push(v0);
2264 __ push(a1);
2265
2266 // Code common for calls using the IC.
2267 ZoneList<Expression*>* args = expr->arguments();
2268 int arg_count = args->length();
2269 { PreservePositionScope scope(masm()->positions_recorder());
2270 for (int i = 0; i < arg_count; i++) {
2271 VisitForStackValue(args->at(i));
2272 }
2273 }
2274 // Record source position for debugger.
2275 SetSourcePosition(expr->position());
2276 // Call the IC initialization code.
2277 Handle<Code> ic =
2278 isolate()->stub_cache()->ComputeKeyedCallInitialize(arg_count);
2279 __ lw(a2, MemOperand(sp, (arg_count + 1) * kPointerSize)); // Key.
2280 CallIC(ic, RelocInfo::CODE_TARGET, expr->id());
2281 RecordJSReturnSite(expr);
2282 // Restore context register.
2283 __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2284 context()->DropAndPlug(1, v0); // Drop the key still on the stack.
2285 }
2286
2287
EmitCallWithStub(Call * expr,CallFunctionFlags flags)2288 void FullCodeGenerator::EmitCallWithStub(Call* expr, CallFunctionFlags flags) {
2289 // Code common for calls using the call stub.
2290 ZoneList<Expression*>* args = expr->arguments();
2291 int arg_count = args->length();
2292 { PreservePositionScope scope(masm()->positions_recorder());
2293 for (int i = 0; i < arg_count; i++) {
2294 VisitForStackValue(args->at(i));
2295 }
2296 }
2297 // Record source position for debugger.
2298 SetSourcePosition(expr->position());
2299 CallFunctionStub stub(arg_count, flags);
2300 __ lw(a1, MemOperand(sp, (arg_count + 1) * kPointerSize));
2301 __ CallStub(&stub);
2302 RecordJSReturnSite(expr);
2303 // Restore context register.
2304 __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2305 context()->DropAndPlug(1, v0);
2306 }
2307
2308
EmitResolvePossiblyDirectEval(int arg_count)2309 void FullCodeGenerator::EmitResolvePossiblyDirectEval(int arg_count) {
2310 // Push copy of the first argument or undefined if it doesn't exist.
2311 if (arg_count > 0) {
2312 __ lw(a1, MemOperand(sp, arg_count * kPointerSize));
2313 } else {
2314 __ LoadRoot(a1, Heap::kUndefinedValueRootIndex);
2315 }
2316 __ push(a1);
2317
2318 // Push the receiver of the enclosing function.
2319 int receiver_offset = 2 + info_->scope()->num_parameters();
2320 __ lw(a1, MemOperand(fp, receiver_offset * kPointerSize));
2321 __ push(a1);
2322 // Push the language mode.
2323 __ li(a1, Operand(Smi::FromInt(language_mode())));
2324 __ push(a1);
2325
2326 // Push the start position of the scope the calls resides in.
2327 __ li(a1, Operand(Smi::FromInt(scope()->start_position())));
2328 __ push(a1);
2329
2330 // Do the runtime call.
2331 __ CallRuntime(Runtime::kResolvePossiblyDirectEval, 5);
2332 }
2333
2334
VisitCall(Call * expr)2335 void FullCodeGenerator::VisitCall(Call* expr) {
2336 #ifdef DEBUG
2337 // We want to verify that RecordJSReturnSite gets called on all paths
2338 // through this function. Avoid early returns.
2339 expr->return_is_recorded_ = false;
2340 #endif
2341
2342 Comment cmnt(masm_, "[ Call");
2343 Expression* callee = expr->expression();
2344 VariableProxy* proxy = callee->AsVariableProxy();
2345 Property* property = callee->AsProperty();
2346
2347 if (proxy != NULL && proxy->var()->is_possibly_eval()) {
2348 // In a call to eval, we first call %ResolvePossiblyDirectEval to
2349 // resolve the function we need to call and the receiver of the
2350 // call. Then we call the resolved function using the given
2351 // arguments.
2352 ZoneList<Expression*>* args = expr->arguments();
2353 int arg_count = args->length();
2354
2355 { PreservePositionScope pos_scope(masm()->positions_recorder());
2356 VisitForStackValue(callee);
2357 __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
2358 __ push(a2); // Reserved receiver slot.
2359
2360 // Push the arguments.
2361 for (int i = 0; i < arg_count; i++) {
2362 VisitForStackValue(args->at(i));
2363 }
2364
2365 // Push a copy of the function (found below the arguments) and
2366 // resolve eval.
2367 __ lw(a1, MemOperand(sp, (arg_count + 1) * kPointerSize));
2368 __ push(a1);
2369 EmitResolvePossiblyDirectEval(arg_count);
2370
2371 // The runtime call returns a pair of values in v0 (function) and
2372 // v1 (receiver). Touch up the stack with the right values.
2373 __ sw(v0, MemOperand(sp, (arg_count + 1) * kPointerSize));
2374 __ sw(v1, MemOperand(sp, arg_count * kPointerSize));
2375 }
2376 // Record source position for debugger.
2377 SetSourcePosition(expr->position());
2378 CallFunctionStub stub(arg_count, RECEIVER_MIGHT_BE_IMPLICIT);
2379 __ lw(a1, MemOperand(sp, (arg_count + 1) * kPointerSize));
2380 __ CallStub(&stub);
2381 RecordJSReturnSite(expr);
2382 // Restore context register.
2383 __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2384 context()->DropAndPlug(1, v0);
2385 } else if (proxy != NULL && proxy->var()->IsUnallocated()) {
2386 // Push global object as receiver for the call IC.
2387 __ lw(a0, GlobalObjectOperand());
2388 __ push(a0);
2389 EmitCallWithIC(expr, proxy->name(), RelocInfo::CODE_TARGET_CONTEXT);
2390 } else if (proxy != NULL && proxy->var()->IsLookupSlot()) {
2391 // Call to a lookup slot (dynamically introduced variable).
2392 Label slow, done;
2393
2394 { PreservePositionScope scope(masm()->positions_recorder());
2395 // Generate code for loading from variables potentially shadowed
2396 // by eval-introduced variables.
2397 EmitDynamicLookupFastCase(proxy->var(), NOT_INSIDE_TYPEOF, &slow, &done);
2398 }
2399
2400 __ bind(&slow);
2401 // Call the runtime to find the function to call (returned in v0)
2402 // and the object holding it (returned in v1).
2403 __ push(context_register());
2404 __ li(a2, Operand(proxy->name()));
2405 __ push(a2);
2406 __ CallRuntime(Runtime::kLoadContextSlot, 2);
2407 __ Push(v0, v1); // Function, receiver.
2408
2409 // If fast case code has been generated, emit code to push the
2410 // function and receiver and have the slow path jump around this
2411 // code.
2412 if (done.is_linked()) {
2413 Label call;
2414 __ Branch(&call);
2415 __ bind(&done);
2416 // Push function.
2417 __ push(v0);
2418 // The receiver is implicitly the global receiver. Indicate this
2419 // by passing the hole to the call function stub.
2420 __ LoadRoot(a1, Heap::kTheHoleValueRootIndex);
2421 __ push(a1);
2422 __ bind(&call);
2423 }
2424
2425 // The receiver is either the global receiver or an object found
2426 // by LoadContextSlot. That object could be the hole if the
2427 // receiver is implicitly the global object.
2428 EmitCallWithStub(expr, RECEIVER_MIGHT_BE_IMPLICIT);
2429 } else if (property != NULL) {
2430 { PreservePositionScope scope(masm()->positions_recorder());
2431 VisitForStackValue(property->obj());
2432 }
2433 if (property->key()->IsPropertyName()) {
2434 EmitCallWithIC(expr,
2435 property->key()->AsLiteral()->handle(),
2436 RelocInfo::CODE_TARGET);
2437 } else {
2438 EmitKeyedCallWithIC(expr, property->key());
2439 }
2440 } else {
2441 // Call to an arbitrary expression not handled specially above.
2442 { PreservePositionScope scope(masm()->positions_recorder());
2443 VisitForStackValue(callee);
2444 }
2445 // Load global receiver object.
2446 __ lw(a1, GlobalObjectOperand());
2447 __ lw(a1, FieldMemOperand(a1, GlobalObject::kGlobalReceiverOffset));
2448 __ push(a1);
2449 // Emit function call.
2450 EmitCallWithStub(expr, NO_CALL_FUNCTION_FLAGS);
2451 }
2452
2453 #ifdef DEBUG
2454 // RecordJSReturnSite should have been called.
2455 ASSERT(expr->return_is_recorded_);
2456 #endif
2457 }
2458
2459
VisitCallNew(CallNew * expr)2460 void FullCodeGenerator::VisitCallNew(CallNew* expr) {
2461 Comment cmnt(masm_, "[ CallNew");
2462 // According to ECMA-262, section 11.2.2, page 44, the function
2463 // expression in new calls must be evaluated before the
2464 // arguments.
2465
2466 // Push constructor on the stack. If it's not a function it's used as
2467 // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is
2468 // ignored.
2469 VisitForStackValue(expr->expression());
2470
2471 // Push the arguments ("left-to-right") on the stack.
2472 ZoneList<Expression*>* args = expr->arguments();
2473 int arg_count = args->length();
2474 for (int i = 0; i < arg_count; i++) {
2475 VisitForStackValue(args->at(i));
2476 }
2477
2478 // Call the construct call builtin that handles allocation and
2479 // constructor invocation.
2480 SetSourcePosition(expr->position());
2481
2482 // Load function and argument count into a1 and a0.
2483 __ li(a0, Operand(arg_count));
2484 __ lw(a1, MemOperand(sp, arg_count * kPointerSize));
2485
2486 // Record call targets in unoptimized code, but not in the snapshot.
2487 CallFunctionFlags flags;
2488 if (!Serializer::enabled()) {
2489 flags = RECORD_CALL_TARGET;
2490 Handle<Object> uninitialized =
2491 TypeFeedbackCells::UninitializedSentinel(isolate());
2492 Handle<JSGlobalPropertyCell> cell =
2493 isolate()->factory()->NewJSGlobalPropertyCell(uninitialized);
2494 RecordTypeFeedbackCell(expr->id(), cell);
2495 __ li(a2, Operand(cell));
2496 } else {
2497 flags = NO_CALL_FUNCTION_FLAGS;
2498 }
2499
2500 CallConstructStub stub(flags);
2501 __ Call(stub.GetCode(), RelocInfo::CONSTRUCT_CALL);
2502 PrepareForBailoutForId(expr->ReturnId(), TOS_REG);
2503 context()->Plug(v0);
2504 }
2505
2506
EmitIsSmi(CallRuntime * expr)2507 void FullCodeGenerator::EmitIsSmi(CallRuntime* expr) {
2508 ZoneList<Expression*>* args = expr->arguments();
2509 ASSERT(args->length() == 1);
2510
2511 VisitForAccumulatorValue(args->at(0));
2512
2513 Label materialize_true, materialize_false;
2514 Label* if_true = NULL;
2515 Label* if_false = NULL;
2516 Label* fall_through = NULL;
2517 context()->PrepareTest(&materialize_true, &materialize_false,
2518 &if_true, &if_false, &fall_through);
2519
2520 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2521 __ And(t0, v0, Operand(kSmiTagMask));
2522 Split(eq, t0, Operand(zero_reg), if_true, if_false, fall_through);
2523
2524 context()->Plug(if_true, if_false);
2525 }
2526
2527
EmitIsNonNegativeSmi(CallRuntime * expr)2528 void FullCodeGenerator::EmitIsNonNegativeSmi(CallRuntime* expr) {
2529 ZoneList<Expression*>* args = expr->arguments();
2530 ASSERT(args->length() == 1);
2531
2532 VisitForAccumulatorValue(args->at(0));
2533
2534 Label materialize_true, materialize_false;
2535 Label* if_true = NULL;
2536 Label* if_false = NULL;
2537 Label* fall_through = NULL;
2538 context()->PrepareTest(&materialize_true, &materialize_false,
2539 &if_true, &if_false, &fall_through);
2540
2541 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2542 __ And(at, v0, Operand(kSmiTagMask | 0x80000000));
2543 Split(eq, at, Operand(zero_reg), if_true, if_false, fall_through);
2544
2545 context()->Plug(if_true, if_false);
2546 }
2547
2548
EmitIsObject(CallRuntime * expr)2549 void FullCodeGenerator::EmitIsObject(CallRuntime* expr) {
2550 ZoneList<Expression*>* args = expr->arguments();
2551 ASSERT(args->length() == 1);
2552
2553 VisitForAccumulatorValue(args->at(0));
2554
2555 Label materialize_true, materialize_false;
2556 Label* if_true = NULL;
2557 Label* if_false = NULL;
2558 Label* fall_through = NULL;
2559 context()->PrepareTest(&materialize_true, &materialize_false,
2560 &if_true, &if_false, &fall_through);
2561
2562 __ JumpIfSmi(v0, if_false);
2563 __ LoadRoot(at, Heap::kNullValueRootIndex);
2564 __ Branch(if_true, eq, v0, Operand(at));
2565 __ lw(a2, FieldMemOperand(v0, HeapObject::kMapOffset));
2566 // Undetectable objects behave like undefined when tested with typeof.
2567 __ lbu(a1, FieldMemOperand(a2, Map::kBitFieldOffset));
2568 __ And(at, a1, Operand(1 << Map::kIsUndetectable));
2569 __ Branch(if_false, ne, at, Operand(zero_reg));
2570 __ lbu(a1, FieldMemOperand(a2, Map::kInstanceTypeOffset));
2571 __ Branch(if_false, lt, a1, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
2572 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2573 Split(le, a1, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE),
2574 if_true, if_false, fall_through);
2575
2576 context()->Plug(if_true, if_false);
2577 }
2578
2579
EmitIsSpecObject(CallRuntime * expr)2580 void FullCodeGenerator::EmitIsSpecObject(CallRuntime* expr) {
2581 ZoneList<Expression*>* args = expr->arguments();
2582 ASSERT(args->length() == 1);
2583
2584 VisitForAccumulatorValue(args->at(0));
2585
2586 Label materialize_true, materialize_false;
2587 Label* if_true = NULL;
2588 Label* if_false = NULL;
2589 Label* fall_through = NULL;
2590 context()->PrepareTest(&materialize_true, &materialize_false,
2591 &if_true, &if_false, &fall_through);
2592
2593 __ JumpIfSmi(v0, if_false);
2594 __ GetObjectType(v0, a1, a1);
2595 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2596 Split(ge, a1, Operand(FIRST_SPEC_OBJECT_TYPE),
2597 if_true, if_false, fall_through);
2598
2599 context()->Plug(if_true, if_false);
2600 }
2601
2602
EmitIsUndetectableObject(CallRuntime * expr)2603 void FullCodeGenerator::EmitIsUndetectableObject(CallRuntime* expr) {
2604 ZoneList<Expression*>* args = expr->arguments();
2605 ASSERT(args->length() == 1);
2606
2607 VisitForAccumulatorValue(args->at(0));
2608
2609 Label materialize_true, materialize_false;
2610 Label* if_true = NULL;
2611 Label* if_false = NULL;
2612 Label* fall_through = NULL;
2613 context()->PrepareTest(&materialize_true, &materialize_false,
2614 &if_true, &if_false, &fall_through);
2615
2616 __ JumpIfSmi(v0, if_false);
2617 __ lw(a1, FieldMemOperand(v0, HeapObject::kMapOffset));
2618 __ lbu(a1, FieldMemOperand(a1, Map::kBitFieldOffset));
2619 __ And(at, a1, Operand(1 << Map::kIsUndetectable));
2620 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2621 Split(ne, at, Operand(zero_reg), if_true, if_false, fall_through);
2622
2623 context()->Plug(if_true, if_false);
2624 }
2625
2626
EmitIsStringWrapperSafeForDefaultValueOf(CallRuntime * expr)2627 void FullCodeGenerator::EmitIsStringWrapperSafeForDefaultValueOf(
2628 CallRuntime* expr) {
2629 ZoneList<Expression*>* args = expr->arguments();
2630 ASSERT(args->length() == 1);
2631
2632 VisitForAccumulatorValue(args->at(0));
2633
2634 Label materialize_true, materialize_false;
2635 Label* if_true = NULL;
2636 Label* if_false = NULL;
2637 Label* fall_through = NULL;
2638 context()->PrepareTest(&materialize_true, &materialize_false,
2639 &if_true, &if_false, &fall_through);
2640
2641 if (FLAG_debug_code) __ AbortIfSmi(v0);
2642
2643 __ lw(a1, FieldMemOperand(v0, HeapObject::kMapOffset));
2644 __ lbu(t0, FieldMemOperand(a1, Map::kBitField2Offset));
2645 __ And(t0, t0, 1 << Map::kStringWrapperSafeForDefaultValueOf);
2646 __ Branch(if_true, ne, t0, Operand(zero_reg));
2647
2648 // Check for fast case object. Generate false result for slow case object.
2649 __ lw(a2, FieldMemOperand(v0, JSObject::kPropertiesOffset));
2650 __ lw(a2, FieldMemOperand(a2, HeapObject::kMapOffset));
2651 __ LoadRoot(t0, Heap::kHashTableMapRootIndex);
2652 __ Branch(if_false, eq, a2, Operand(t0));
2653
2654 // Look for valueOf symbol in the descriptor array, and indicate false if
2655 // found. The type is not checked, so if it is a transition it is a false
2656 // negative.
2657 __ LoadInstanceDescriptors(a1, t0);
2658 __ lw(a3, FieldMemOperand(t0, FixedArray::kLengthOffset));
2659 // t0: descriptor array
2660 // a3: length of descriptor array
2661 // Calculate the end of the descriptor array.
2662 STATIC_ASSERT(kSmiTag == 0);
2663 STATIC_ASSERT(kSmiTagSize == 1);
2664 STATIC_ASSERT(kPointerSize == 4);
2665 __ Addu(a2, t0, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
2666 __ sll(t1, a3, kPointerSizeLog2 - kSmiTagSize);
2667 __ Addu(a2, a2, t1);
2668
2669 // Calculate location of the first key name.
2670 __ Addu(t0,
2671 t0,
2672 Operand(FixedArray::kHeaderSize - kHeapObjectTag +
2673 DescriptorArray::kFirstIndex * kPointerSize));
2674 // Loop through all the keys in the descriptor array. If one of these is the
2675 // symbol valueOf the result is false.
2676 Label entry, loop;
2677 // The use of t2 to store the valueOf symbol asumes that it is not otherwise
2678 // used in the loop below.
2679 __ LoadRoot(t2, Heap::kvalue_of_symbolRootIndex);
2680 __ jmp(&entry);
2681 __ bind(&loop);
2682 __ lw(a3, MemOperand(t0, 0));
2683 __ Branch(if_false, eq, a3, Operand(t2));
2684 __ Addu(t0, t0, Operand(kPointerSize));
2685 __ bind(&entry);
2686 __ Branch(&loop, ne, t0, Operand(a2));
2687
2688 // If a valueOf property is not found on the object check that it's
2689 // prototype is the un-modified String prototype. If not result is false.
2690 __ lw(a2, FieldMemOperand(a1, Map::kPrototypeOffset));
2691 __ JumpIfSmi(a2, if_false);
2692 __ lw(a2, FieldMemOperand(a2, HeapObject::kMapOffset));
2693 __ lw(a3, ContextOperand(cp, Context::GLOBAL_INDEX));
2694 __ lw(a3, FieldMemOperand(a3, GlobalObject::kGlobalContextOffset));
2695 __ lw(a3, ContextOperand(a3, Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX));
2696 __ Branch(if_false, ne, a2, Operand(a3));
2697
2698 // Set the bit in the map to indicate that it has been checked safe for
2699 // default valueOf and set true result.
2700 __ lbu(a2, FieldMemOperand(a1, Map::kBitField2Offset));
2701 __ Or(a2, a2, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf));
2702 __ sb(a2, FieldMemOperand(a1, Map::kBitField2Offset));
2703 __ jmp(if_true);
2704
2705 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2706 context()->Plug(if_true, if_false);
2707 }
2708
2709
EmitIsFunction(CallRuntime * expr)2710 void FullCodeGenerator::EmitIsFunction(CallRuntime* expr) {
2711 ZoneList<Expression*>* args = expr->arguments();
2712 ASSERT(args->length() == 1);
2713
2714 VisitForAccumulatorValue(args->at(0));
2715
2716 Label materialize_true, materialize_false;
2717 Label* if_true = NULL;
2718 Label* if_false = NULL;
2719 Label* fall_through = NULL;
2720 context()->PrepareTest(&materialize_true, &materialize_false,
2721 &if_true, &if_false, &fall_through);
2722
2723 __ JumpIfSmi(v0, if_false);
2724 __ GetObjectType(v0, a1, a2);
2725 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2726 __ Branch(if_true, eq, a2, Operand(JS_FUNCTION_TYPE));
2727 __ Branch(if_false);
2728
2729 context()->Plug(if_true, if_false);
2730 }
2731
2732
EmitIsArray(CallRuntime * expr)2733 void FullCodeGenerator::EmitIsArray(CallRuntime* expr) {
2734 ZoneList<Expression*>* args = expr->arguments();
2735 ASSERT(args->length() == 1);
2736
2737 VisitForAccumulatorValue(args->at(0));
2738
2739 Label materialize_true, materialize_false;
2740 Label* if_true = NULL;
2741 Label* if_false = NULL;
2742 Label* fall_through = NULL;
2743 context()->PrepareTest(&materialize_true, &materialize_false,
2744 &if_true, &if_false, &fall_through);
2745
2746 __ JumpIfSmi(v0, if_false);
2747 __ GetObjectType(v0, a1, a1);
2748 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2749 Split(eq, a1, Operand(JS_ARRAY_TYPE),
2750 if_true, if_false, fall_through);
2751
2752 context()->Plug(if_true, if_false);
2753 }
2754
2755
EmitIsRegExp(CallRuntime * expr)2756 void FullCodeGenerator::EmitIsRegExp(CallRuntime* expr) {
2757 ZoneList<Expression*>* args = expr->arguments();
2758 ASSERT(args->length() == 1);
2759
2760 VisitForAccumulatorValue(args->at(0));
2761
2762 Label materialize_true, materialize_false;
2763 Label* if_true = NULL;
2764 Label* if_false = NULL;
2765 Label* fall_through = NULL;
2766 context()->PrepareTest(&materialize_true, &materialize_false,
2767 &if_true, &if_false, &fall_through);
2768
2769 __ JumpIfSmi(v0, if_false);
2770 __ GetObjectType(v0, a1, a1);
2771 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2772 Split(eq, a1, Operand(JS_REGEXP_TYPE), if_true, if_false, fall_through);
2773
2774 context()->Plug(if_true, if_false);
2775 }
2776
2777
EmitIsConstructCall(CallRuntime * expr)2778 void FullCodeGenerator::EmitIsConstructCall(CallRuntime* expr) {
2779 ASSERT(expr->arguments()->length() == 0);
2780
2781 Label materialize_true, materialize_false;
2782 Label* if_true = NULL;
2783 Label* if_false = NULL;
2784 Label* fall_through = NULL;
2785 context()->PrepareTest(&materialize_true, &materialize_false,
2786 &if_true, &if_false, &fall_through);
2787
2788 // Get the frame pointer for the calling frame.
2789 __ lw(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
2790
2791 // Skip the arguments adaptor frame if it exists.
2792 Label check_frame_marker;
2793 __ lw(a1, MemOperand(a2, StandardFrameConstants::kContextOffset));
2794 __ Branch(&check_frame_marker, ne,
2795 a1, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
2796 __ lw(a2, MemOperand(a2, StandardFrameConstants::kCallerFPOffset));
2797
2798 // Check the marker in the calling frame.
2799 __ bind(&check_frame_marker);
2800 __ lw(a1, MemOperand(a2, StandardFrameConstants::kMarkerOffset));
2801 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2802 Split(eq, a1, Operand(Smi::FromInt(StackFrame::CONSTRUCT)),
2803 if_true, if_false, fall_through);
2804
2805 context()->Plug(if_true, if_false);
2806 }
2807
2808
EmitObjectEquals(CallRuntime * expr)2809 void FullCodeGenerator::EmitObjectEquals(CallRuntime* expr) {
2810 ZoneList<Expression*>* args = expr->arguments();
2811 ASSERT(args->length() == 2);
2812
2813 // Load the two objects into registers and perform the comparison.
2814 VisitForStackValue(args->at(0));
2815 VisitForAccumulatorValue(args->at(1));
2816
2817 Label materialize_true, materialize_false;
2818 Label* if_true = NULL;
2819 Label* if_false = NULL;
2820 Label* fall_through = NULL;
2821 context()->PrepareTest(&materialize_true, &materialize_false,
2822 &if_true, &if_false, &fall_through);
2823
2824 __ pop(a1);
2825 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2826 Split(eq, v0, Operand(a1), if_true, if_false, fall_through);
2827
2828 context()->Plug(if_true, if_false);
2829 }
2830
2831
EmitArguments(CallRuntime * expr)2832 void FullCodeGenerator::EmitArguments(CallRuntime* expr) {
2833 ZoneList<Expression*>* args = expr->arguments();
2834 ASSERT(args->length() == 1);
2835
2836 // ArgumentsAccessStub expects the key in a1 and the formal
2837 // parameter count in a0.
2838 VisitForAccumulatorValue(args->at(0));
2839 __ mov(a1, v0);
2840 __ li(a0, Operand(Smi::FromInt(info_->scope()->num_parameters())));
2841 ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT);
2842 __ CallStub(&stub);
2843 context()->Plug(v0);
2844 }
2845
2846
EmitArgumentsLength(CallRuntime * expr)2847 void FullCodeGenerator::EmitArgumentsLength(CallRuntime* expr) {
2848 ASSERT(expr->arguments()->length() == 0);
2849 Label exit;
2850 // Get the number of formal parameters.
2851 __ li(v0, Operand(Smi::FromInt(info_->scope()->num_parameters())));
2852
2853 // Check if the calling frame is an arguments adaptor frame.
2854 __ lw(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
2855 __ lw(a3, MemOperand(a2, StandardFrameConstants::kContextOffset));
2856 __ Branch(&exit, ne, a3,
2857 Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
2858
2859 // Arguments adaptor case: Read the arguments length from the
2860 // adaptor frame.
2861 __ lw(v0, MemOperand(a2, ArgumentsAdaptorFrameConstants::kLengthOffset));
2862
2863 __ bind(&exit);
2864 context()->Plug(v0);
2865 }
2866
2867
EmitClassOf(CallRuntime * expr)2868 void FullCodeGenerator::EmitClassOf(CallRuntime* expr) {
2869 ZoneList<Expression*>* args = expr->arguments();
2870 ASSERT(args->length() == 1);
2871 Label done, null, function, non_function_constructor;
2872
2873 VisitForAccumulatorValue(args->at(0));
2874
2875 // If the object is a smi, we return null.
2876 __ JumpIfSmi(v0, &null);
2877
2878 // Check that the object is a JS object but take special care of JS
2879 // functions to make sure they have 'Function' as their class.
2880 // Assume that there are only two callable types, and one of them is at
2881 // either end of the type range for JS object types. Saves extra comparisons.
2882 STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
2883 __ GetObjectType(v0, v0, a1); // Map is now in v0.
2884 __ Branch(&null, lt, a1, Operand(FIRST_SPEC_OBJECT_TYPE));
2885
2886 STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
2887 FIRST_SPEC_OBJECT_TYPE + 1);
2888 __ Branch(&function, eq, a1, Operand(FIRST_SPEC_OBJECT_TYPE));
2889
2890 STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
2891 LAST_SPEC_OBJECT_TYPE - 1);
2892 __ Branch(&function, eq, a1, Operand(LAST_SPEC_OBJECT_TYPE));
2893 // Assume that there is no larger type.
2894 STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == LAST_TYPE - 1);
2895
2896 // Check if the constructor in the map is a JS function.
2897 __ lw(v0, FieldMemOperand(v0, Map::kConstructorOffset));
2898 __ GetObjectType(v0, a1, a1);
2899 __ Branch(&non_function_constructor, ne, a1, Operand(JS_FUNCTION_TYPE));
2900
2901 // v0 now contains the constructor function. Grab the
2902 // instance class name from there.
2903 __ lw(v0, FieldMemOperand(v0, JSFunction::kSharedFunctionInfoOffset));
2904 __ lw(v0, FieldMemOperand(v0, SharedFunctionInfo::kInstanceClassNameOffset));
2905 __ Branch(&done);
2906
2907 // Functions have class 'Function'.
2908 __ bind(&function);
2909 __ LoadRoot(v0, Heap::kfunction_class_symbolRootIndex);
2910 __ jmp(&done);
2911
2912 // Objects with a non-function constructor have class 'Object'.
2913 __ bind(&non_function_constructor);
2914 __ LoadRoot(v0, Heap::kObject_symbolRootIndex);
2915 __ jmp(&done);
2916
2917 // Non-JS objects have class null.
2918 __ bind(&null);
2919 __ LoadRoot(v0, Heap::kNullValueRootIndex);
2920
2921 // All done.
2922 __ bind(&done);
2923
2924 context()->Plug(v0);
2925 }
2926
2927
EmitLog(CallRuntime * expr)2928 void FullCodeGenerator::EmitLog(CallRuntime* expr) {
2929 // Conditionally generate a log call.
2930 // Args:
2931 // 0 (literal string): The type of logging (corresponds to the flags).
2932 // This is used to determine whether or not to generate the log call.
2933 // 1 (string): Format string. Access the string at argument index 2
2934 // with '%2s' (see Logger::LogRuntime for all the formats).
2935 // 2 (array): Arguments to the format string.
2936 ZoneList<Expression*>* args = expr->arguments();
2937 ASSERT_EQ(args->length(), 3);
2938 if (CodeGenerator::ShouldGenerateLog(args->at(0))) {
2939 VisitForStackValue(args->at(1));
2940 VisitForStackValue(args->at(2));
2941 __ CallRuntime(Runtime::kLog, 2);
2942 }
2943
2944 // Finally, we're expected to leave a value on the top of the stack.
2945 __ LoadRoot(v0, Heap::kUndefinedValueRootIndex);
2946 context()->Plug(v0);
2947 }
2948
2949
EmitRandomHeapNumber(CallRuntime * expr)2950 void FullCodeGenerator::EmitRandomHeapNumber(CallRuntime* expr) {
2951 ASSERT(expr->arguments()->length() == 0);
2952 Label slow_allocate_heapnumber;
2953 Label heapnumber_allocated;
2954
2955 // Save the new heap number in callee-saved register s0, since
2956 // we call out to external C code below.
2957 __ LoadRoot(t6, Heap::kHeapNumberMapRootIndex);
2958 __ AllocateHeapNumber(s0, a1, a2, t6, &slow_allocate_heapnumber);
2959 __ jmp(&heapnumber_allocated);
2960
2961 __ bind(&slow_allocate_heapnumber);
2962
2963 // Allocate a heap number.
2964 __ CallRuntime(Runtime::kNumberAlloc, 0);
2965 __ mov(s0, v0); // Save result in s0, so it is saved thru CFunc call.
2966
2967 __ bind(&heapnumber_allocated);
2968
2969 // Convert 32 random bits in v0 to 0.(32 random bits) in a double
2970 // by computing:
2971 // ( 1.(20 0s)(32 random bits) x 2^20 ) - (1.0 x 2^20)).
2972 if (CpuFeatures::IsSupported(FPU)) {
2973 __ PrepareCallCFunction(1, a0);
2974 __ lw(a0, ContextOperand(cp, Context::GLOBAL_INDEX));
2975 __ lw(a0, FieldMemOperand(a0, GlobalObject::kGlobalContextOffset));
2976 __ CallCFunction(ExternalReference::random_uint32_function(isolate()), 1);
2977
2978 CpuFeatures::Scope scope(FPU);
2979 // 0x41300000 is the top half of 1.0 x 2^20 as a double.
2980 __ li(a1, Operand(0x41300000));
2981 // Move 0x41300000xxxxxxxx (x = random bits in v0) to FPU.
2982 __ Move(f12, v0, a1);
2983 // Move 0x4130000000000000 to FPU.
2984 __ Move(f14, zero_reg, a1);
2985 // Subtract and store the result in the heap number.
2986 __ sub_d(f0, f12, f14);
2987 __ sdc1(f0, MemOperand(s0, HeapNumber::kValueOffset - kHeapObjectTag));
2988 __ mov(v0, s0);
2989 } else {
2990 __ PrepareCallCFunction(2, a0);
2991 __ mov(a0, s0);
2992 __ lw(a1, ContextOperand(cp, Context::GLOBAL_INDEX));
2993 __ lw(a1, FieldMemOperand(a1, GlobalObject::kGlobalContextOffset));
2994 __ CallCFunction(
2995 ExternalReference::fill_heap_number_with_random_function(isolate()), 2);
2996 }
2997
2998 context()->Plug(v0);
2999 }
3000
3001
EmitSubString(CallRuntime * expr)3002 void FullCodeGenerator::EmitSubString(CallRuntime* expr) {
3003 // Load the arguments on the stack and call the stub.
3004 SubStringStub stub;
3005 ZoneList<Expression*>* args = expr->arguments();
3006 ASSERT(args->length() == 3);
3007 VisitForStackValue(args->at(0));
3008 VisitForStackValue(args->at(1));
3009 VisitForStackValue(args->at(2));
3010 __ CallStub(&stub);
3011 context()->Plug(v0);
3012 }
3013
3014
EmitRegExpExec(CallRuntime * expr)3015 void FullCodeGenerator::EmitRegExpExec(CallRuntime* expr) {
3016 // Load the arguments on the stack and call the stub.
3017 RegExpExecStub stub;
3018 ZoneList<Expression*>* args = expr->arguments();
3019 ASSERT(args->length() == 4);
3020 VisitForStackValue(args->at(0));
3021 VisitForStackValue(args->at(1));
3022 VisitForStackValue(args->at(2));
3023 VisitForStackValue(args->at(3));
3024 __ CallStub(&stub);
3025 context()->Plug(v0);
3026 }
3027
3028
EmitValueOf(CallRuntime * expr)3029 void FullCodeGenerator::EmitValueOf(CallRuntime* expr) {
3030 ZoneList<Expression*>* args = expr->arguments();
3031 ASSERT(args->length() == 1);
3032
3033 VisitForAccumulatorValue(args->at(0)); // Load the object.
3034
3035 Label done;
3036 // If the object is a smi return the object.
3037 __ JumpIfSmi(v0, &done);
3038 // If the object is not a value type, return the object.
3039 __ GetObjectType(v0, a1, a1);
3040 __ Branch(&done, ne, a1, Operand(JS_VALUE_TYPE));
3041
3042 __ lw(v0, FieldMemOperand(v0, JSValue::kValueOffset));
3043
3044 __ bind(&done);
3045 context()->Plug(v0);
3046 }
3047
3048
EmitDateField(CallRuntime * expr)3049 void FullCodeGenerator::EmitDateField(CallRuntime* expr) {
3050 ZoneList<Expression*>* args = expr->arguments();
3051 ASSERT(args->length() == 2);
3052 ASSERT_NE(NULL, args->at(1)->AsLiteral());
3053 Smi* index = Smi::cast(*(args->at(1)->AsLiteral()->handle()));
3054
3055 VisitForAccumulatorValue(args->at(0)); // Load the object.
3056
3057 Label runtime, done;
3058 Register object = v0;
3059 Register result = v0;
3060 Register scratch0 = t5;
3061 Register scratch1 = a1;
3062
3063 #ifdef DEBUG
3064 __ AbortIfSmi(object);
3065 __ GetObjectType(object, scratch1, scratch1);
3066 __ Assert(eq, "Trying to get date field from non-date.",
3067 scratch1, Operand(JS_DATE_TYPE));
3068 #endif
3069
3070 if (index->value() == 0) {
3071 __ lw(result, FieldMemOperand(object, JSDate::kValueOffset));
3072 } else {
3073 if (index->value() < JSDate::kFirstUncachedField) {
3074 ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
3075 __ li(scratch1, Operand(stamp));
3076 __ lw(scratch1, MemOperand(scratch1));
3077 __ lw(scratch0, FieldMemOperand(object, JSDate::kCacheStampOffset));
3078 __ Branch(&runtime, ne, scratch1, Operand(scratch0));
3079 __ lw(result, FieldMemOperand(object, JSDate::kValueOffset +
3080 kPointerSize * index->value()));
3081 __ jmp(&done);
3082 }
3083 __ bind(&runtime);
3084 __ PrepareCallCFunction(2, scratch1);
3085 __ li(a1, Operand(index));
3086 __ Move(a0, object);
3087 __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
3088 __ bind(&done);
3089 }
3090
3091 context()->Plug(v0);
3092 }
3093
3094
EmitMathPow(CallRuntime * expr)3095 void FullCodeGenerator::EmitMathPow(CallRuntime* expr) {
3096 // Load the arguments on the stack and call the runtime function.
3097 ZoneList<Expression*>* args = expr->arguments();
3098 ASSERT(args->length() == 2);
3099 VisitForStackValue(args->at(0));
3100 VisitForStackValue(args->at(1));
3101 if (CpuFeatures::IsSupported(FPU)) {
3102 MathPowStub stub(MathPowStub::ON_STACK);
3103 __ CallStub(&stub);
3104 } else {
3105 __ CallRuntime(Runtime::kMath_pow, 2);
3106 }
3107 context()->Plug(v0);
3108 }
3109
3110
EmitSetValueOf(CallRuntime * expr)3111 void FullCodeGenerator::EmitSetValueOf(CallRuntime* expr) {
3112 ZoneList<Expression*>* args = expr->arguments();
3113 ASSERT(args->length() == 2);
3114
3115 VisitForStackValue(args->at(0)); // Load the object.
3116 VisitForAccumulatorValue(args->at(1)); // Load the value.
3117 __ pop(a1); // v0 = value. a1 = object.
3118
3119 Label done;
3120 // If the object is a smi, return the value.
3121 __ JumpIfSmi(a1, &done);
3122
3123 // If the object is not a value type, return the value.
3124 __ GetObjectType(a1, a2, a2);
3125 __ Branch(&done, ne, a2, Operand(JS_VALUE_TYPE));
3126
3127 // Store the value.
3128 __ sw(v0, FieldMemOperand(a1, JSValue::kValueOffset));
3129 // Update the write barrier. Save the value as it will be
3130 // overwritten by the write barrier code and is needed afterward.
3131 __ mov(a2, v0);
3132 __ RecordWriteField(
3133 a1, JSValue::kValueOffset, a2, a3, kRAHasBeenSaved, kDontSaveFPRegs);
3134
3135 __ bind(&done);
3136 context()->Plug(v0);
3137 }
3138
3139
EmitNumberToString(CallRuntime * expr)3140 void FullCodeGenerator::EmitNumberToString(CallRuntime* expr) {
3141 ZoneList<Expression*>* args = expr->arguments();
3142 ASSERT_EQ(args->length(), 1);
3143
3144 // Load the argument on the stack and call the stub.
3145 VisitForStackValue(args->at(0));
3146
3147 NumberToStringStub stub;
3148 __ CallStub(&stub);
3149 context()->Plug(v0);
3150 }
3151
3152
EmitStringCharFromCode(CallRuntime * expr)3153 void FullCodeGenerator::EmitStringCharFromCode(CallRuntime* expr) {
3154 ZoneList<Expression*>* args = expr->arguments();
3155 ASSERT(args->length() == 1);
3156
3157 VisitForAccumulatorValue(args->at(0));
3158
3159 Label done;
3160 StringCharFromCodeGenerator generator(v0, a1);
3161 generator.GenerateFast(masm_);
3162 __ jmp(&done);
3163
3164 NopRuntimeCallHelper call_helper;
3165 generator.GenerateSlow(masm_, call_helper);
3166
3167 __ bind(&done);
3168 context()->Plug(a1);
3169 }
3170
3171
EmitStringCharCodeAt(CallRuntime * expr)3172 void FullCodeGenerator::EmitStringCharCodeAt(CallRuntime* expr) {
3173 ZoneList<Expression*>* args = expr->arguments();
3174 ASSERT(args->length() == 2);
3175
3176 VisitForStackValue(args->at(0));
3177 VisitForAccumulatorValue(args->at(1));
3178 __ mov(a0, result_register());
3179
3180 Register object = a1;
3181 Register index = a0;
3182 Register result = v0;
3183
3184 __ pop(object);
3185
3186 Label need_conversion;
3187 Label index_out_of_range;
3188 Label done;
3189 StringCharCodeAtGenerator generator(object,
3190 index,
3191 result,
3192 &need_conversion,
3193 &need_conversion,
3194 &index_out_of_range,
3195 STRING_INDEX_IS_NUMBER);
3196 generator.GenerateFast(masm_);
3197 __ jmp(&done);
3198
3199 __ bind(&index_out_of_range);
3200 // When the index is out of range, the spec requires us to return
3201 // NaN.
3202 __ LoadRoot(result, Heap::kNanValueRootIndex);
3203 __ jmp(&done);
3204
3205 __ bind(&need_conversion);
3206 // Load the undefined value into the result register, which will
3207 // trigger conversion.
3208 __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
3209 __ jmp(&done);
3210
3211 NopRuntimeCallHelper call_helper;
3212 generator.GenerateSlow(masm_, call_helper);
3213
3214 __ bind(&done);
3215 context()->Plug(result);
3216 }
3217
3218
EmitStringCharAt(CallRuntime * expr)3219 void FullCodeGenerator::EmitStringCharAt(CallRuntime* expr) {
3220 ZoneList<Expression*>* args = expr->arguments();
3221 ASSERT(args->length() == 2);
3222
3223 VisitForStackValue(args->at(0));
3224 VisitForAccumulatorValue(args->at(1));
3225 __ mov(a0, result_register());
3226
3227 Register object = a1;
3228 Register index = a0;
3229 Register scratch = a3;
3230 Register result = v0;
3231
3232 __ pop(object);
3233
3234 Label need_conversion;
3235 Label index_out_of_range;
3236 Label done;
3237 StringCharAtGenerator generator(object,
3238 index,
3239 scratch,
3240 result,
3241 &need_conversion,
3242 &need_conversion,
3243 &index_out_of_range,
3244 STRING_INDEX_IS_NUMBER);
3245 generator.GenerateFast(masm_);
3246 __ jmp(&done);
3247
3248 __ bind(&index_out_of_range);
3249 // When the index is out of range, the spec requires us to return
3250 // the empty string.
3251 __ LoadRoot(result, Heap::kEmptyStringRootIndex);
3252 __ jmp(&done);
3253
3254 __ bind(&need_conversion);
3255 // Move smi zero into the result register, which will trigger
3256 // conversion.
3257 __ li(result, Operand(Smi::FromInt(0)));
3258 __ jmp(&done);
3259
3260 NopRuntimeCallHelper call_helper;
3261 generator.GenerateSlow(masm_, call_helper);
3262
3263 __ bind(&done);
3264 context()->Plug(result);
3265 }
3266
3267
EmitStringAdd(CallRuntime * expr)3268 void FullCodeGenerator::EmitStringAdd(CallRuntime* expr) {
3269 ZoneList<Expression*>* args = expr->arguments();
3270 ASSERT_EQ(2, args->length());
3271 VisitForStackValue(args->at(0));
3272 VisitForStackValue(args->at(1));
3273
3274 StringAddStub stub(NO_STRING_ADD_FLAGS);
3275 __ CallStub(&stub);
3276 context()->Plug(v0);
3277 }
3278
3279
EmitStringCompare(CallRuntime * expr)3280 void FullCodeGenerator::EmitStringCompare(CallRuntime* expr) {
3281 ZoneList<Expression*>* args = expr->arguments();
3282 ASSERT_EQ(2, args->length());
3283
3284 VisitForStackValue(args->at(0));
3285 VisitForStackValue(args->at(1));
3286
3287 StringCompareStub stub;
3288 __ CallStub(&stub);
3289 context()->Plug(v0);
3290 }
3291
3292
EmitMathSin(CallRuntime * expr)3293 void FullCodeGenerator::EmitMathSin(CallRuntime* expr) {
3294 // Load the argument on the stack and call the stub.
3295 TranscendentalCacheStub stub(TranscendentalCache::SIN,
3296 TranscendentalCacheStub::TAGGED);
3297 ZoneList<Expression*>* args = expr->arguments();
3298 ASSERT(args->length() == 1);
3299 VisitForStackValue(args->at(0));
3300 __ mov(a0, result_register()); // Stub requires parameter in a0 and on tos.
3301 __ CallStub(&stub);
3302 context()->Plug(v0);
3303 }
3304
3305
EmitMathCos(CallRuntime * expr)3306 void FullCodeGenerator::EmitMathCos(CallRuntime* expr) {
3307 // Load the argument on the stack and call the stub.
3308 TranscendentalCacheStub stub(TranscendentalCache::COS,
3309 TranscendentalCacheStub::TAGGED);
3310 ZoneList<Expression*>* args = expr->arguments();
3311 ASSERT(args->length() == 1);
3312 VisitForStackValue(args->at(0));
3313 __ mov(a0, result_register()); // Stub requires parameter in a0 and on tos.
3314 __ CallStub(&stub);
3315 context()->Plug(v0);
3316 }
3317
3318
EmitMathTan(CallRuntime * expr)3319 void FullCodeGenerator::EmitMathTan(CallRuntime* expr) {
3320 // Load the argument on the stack and call the stub.
3321 TranscendentalCacheStub stub(TranscendentalCache::TAN,
3322 TranscendentalCacheStub::TAGGED);
3323 ZoneList<Expression*>* args = expr->arguments();
3324 ASSERT(args->length() == 1);
3325 VisitForStackValue(args->at(0));
3326 __ mov(a0, result_register()); // Stub requires parameter in a0 and on tos.
3327 __ CallStub(&stub);
3328 context()->Plug(v0);
3329 }
3330
3331
EmitMathLog(CallRuntime * expr)3332 void FullCodeGenerator::EmitMathLog(CallRuntime* expr) {
3333 // Load the argument on the stack and call the stub.
3334 TranscendentalCacheStub stub(TranscendentalCache::LOG,
3335 TranscendentalCacheStub::TAGGED);
3336 ZoneList<Expression*>* args = expr->arguments();
3337 ASSERT(args->length() == 1);
3338 VisitForStackValue(args->at(0));
3339 __ mov(a0, result_register()); // Stub requires parameter in a0 and on tos.
3340 __ CallStub(&stub);
3341 context()->Plug(v0);
3342 }
3343
3344
EmitMathSqrt(CallRuntime * expr)3345 void FullCodeGenerator::EmitMathSqrt(CallRuntime* expr) {
3346 // Load the argument on the stack and call the runtime function.
3347 ZoneList<Expression*>* args = expr->arguments();
3348 ASSERT(args->length() == 1);
3349 VisitForStackValue(args->at(0));
3350 __ CallRuntime(Runtime::kMath_sqrt, 1);
3351 context()->Plug(v0);
3352 }
3353
3354
EmitCallFunction(CallRuntime * expr)3355 void FullCodeGenerator::EmitCallFunction(CallRuntime* expr) {
3356 ZoneList<Expression*>* args = expr->arguments();
3357 ASSERT(args->length() >= 2);
3358
3359 int arg_count = args->length() - 2; // 2 ~ receiver and function.
3360 for (int i = 0; i < arg_count + 1; i++) {
3361 VisitForStackValue(args->at(i));
3362 }
3363 VisitForAccumulatorValue(args->last()); // Function.
3364
3365 // Check for proxy.
3366 Label proxy, done;
3367 __ GetObjectType(v0, a1, a1);
3368 __ Branch(&proxy, eq, a1, Operand(JS_FUNCTION_PROXY_TYPE));
3369
3370 // InvokeFunction requires the function in a1. Move it in there.
3371 __ mov(a1, result_register());
3372 ParameterCount count(arg_count);
3373 __ InvokeFunction(a1, count, CALL_FUNCTION,
3374 NullCallWrapper(), CALL_AS_METHOD);
3375 __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
3376 __ jmp(&done);
3377
3378 __ bind(&proxy);
3379 __ push(v0);
3380 __ CallRuntime(Runtime::kCall, args->length());
3381 __ bind(&done);
3382
3383 context()->Plug(v0);
3384 }
3385
3386
EmitRegExpConstructResult(CallRuntime * expr)3387 void FullCodeGenerator::EmitRegExpConstructResult(CallRuntime* expr) {
3388 RegExpConstructResultStub stub;
3389 ZoneList<Expression*>* args = expr->arguments();
3390 ASSERT(args->length() == 3);
3391 VisitForStackValue(args->at(0));
3392 VisitForStackValue(args->at(1));
3393 VisitForStackValue(args->at(2));
3394 __ CallStub(&stub);
3395 context()->Plug(v0);
3396 }
3397
3398
EmitGetFromCache(CallRuntime * expr)3399 void FullCodeGenerator::EmitGetFromCache(CallRuntime* expr) {
3400 ZoneList<Expression*>* args = expr->arguments();
3401 ASSERT_EQ(2, args->length());
3402
3403 ASSERT_NE(NULL, args->at(0)->AsLiteral());
3404 int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->handle()))->value();
3405
3406 Handle<FixedArray> jsfunction_result_caches(
3407 isolate()->global_context()->jsfunction_result_caches());
3408 if (jsfunction_result_caches->length() <= cache_id) {
3409 __ Abort("Attempt to use undefined cache.");
3410 __ LoadRoot(v0, Heap::kUndefinedValueRootIndex);
3411 context()->Plug(v0);
3412 return;
3413 }
3414
3415 VisitForAccumulatorValue(args->at(1));
3416
3417 Register key = v0;
3418 Register cache = a1;
3419 __ lw(cache, ContextOperand(cp, Context::GLOBAL_INDEX));
3420 __ lw(cache, FieldMemOperand(cache, GlobalObject::kGlobalContextOffset));
3421 __ lw(cache,
3422 ContextOperand(
3423 cache, Context::JSFUNCTION_RESULT_CACHES_INDEX));
3424 __ lw(cache,
3425 FieldMemOperand(cache, FixedArray::OffsetOfElementAt(cache_id)));
3426
3427
3428 Label done, not_found;
3429 STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
3430 __ lw(a2, FieldMemOperand(cache, JSFunctionResultCache::kFingerOffset));
3431 // a2 now holds finger offset as a smi.
3432 __ Addu(a3, cache, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
3433 // a3 now points to the start of fixed array elements.
3434 __ sll(at, a2, kPointerSizeLog2 - kSmiTagSize);
3435 __ addu(a3, a3, at);
3436 // a3 now points to key of indexed element of cache.
3437 __ lw(a2, MemOperand(a3));
3438 __ Branch(¬_found, ne, key, Operand(a2));
3439
3440 __ lw(v0, MemOperand(a3, kPointerSize));
3441 __ Branch(&done);
3442
3443 __ bind(¬_found);
3444 // Call runtime to perform the lookup.
3445 __ Push(cache, key);
3446 __ CallRuntime(Runtime::kGetFromCache, 2);
3447
3448 __ bind(&done);
3449 context()->Plug(v0);
3450 }
3451
3452
EmitIsRegExpEquivalent(CallRuntime * expr)3453 void FullCodeGenerator::EmitIsRegExpEquivalent(CallRuntime* expr) {
3454 ZoneList<Expression*>* args = expr->arguments();
3455 ASSERT_EQ(2, args->length());
3456
3457 Register right = v0;
3458 Register left = a1;
3459 Register tmp = a2;
3460 Register tmp2 = a3;
3461
3462 VisitForStackValue(args->at(0));
3463 VisitForAccumulatorValue(args->at(1)); // Result (right) in v0.
3464 __ pop(left);
3465
3466 Label done, fail, ok;
3467 __ Branch(&ok, eq, left, Operand(right));
3468 // Fail if either is a non-HeapObject.
3469 __ And(tmp, left, Operand(right));
3470 __ JumpIfSmi(tmp, &fail);
3471 __ lw(tmp, FieldMemOperand(left, HeapObject::kMapOffset));
3472 __ lbu(tmp2, FieldMemOperand(tmp, Map::kInstanceTypeOffset));
3473 __ Branch(&fail, ne, tmp2, Operand(JS_REGEXP_TYPE));
3474 __ lw(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
3475 __ Branch(&fail, ne, tmp, Operand(tmp2));
3476 __ lw(tmp, FieldMemOperand(left, JSRegExp::kDataOffset));
3477 __ lw(tmp2, FieldMemOperand(right, JSRegExp::kDataOffset));
3478 __ Branch(&ok, eq, tmp, Operand(tmp2));
3479 __ bind(&fail);
3480 __ LoadRoot(v0, Heap::kFalseValueRootIndex);
3481 __ jmp(&done);
3482 __ bind(&ok);
3483 __ LoadRoot(v0, Heap::kTrueValueRootIndex);
3484 __ bind(&done);
3485
3486 context()->Plug(v0);
3487 }
3488
3489
EmitHasCachedArrayIndex(CallRuntime * expr)3490 void FullCodeGenerator::EmitHasCachedArrayIndex(CallRuntime* expr) {
3491 ZoneList<Expression*>* args = expr->arguments();
3492 VisitForAccumulatorValue(args->at(0));
3493
3494 Label materialize_true, materialize_false;
3495 Label* if_true = NULL;
3496 Label* if_false = NULL;
3497 Label* fall_through = NULL;
3498 context()->PrepareTest(&materialize_true, &materialize_false,
3499 &if_true, &if_false, &fall_through);
3500
3501 __ lw(a0, FieldMemOperand(v0, String::kHashFieldOffset));
3502 __ And(a0, a0, Operand(String::kContainsCachedArrayIndexMask));
3503
3504 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3505 Split(eq, a0, Operand(zero_reg), if_true, if_false, fall_through);
3506
3507 context()->Plug(if_true, if_false);
3508 }
3509
3510
EmitGetCachedArrayIndex(CallRuntime * expr)3511 void FullCodeGenerator::EmitGetCachedArrayIndex(CallRuntime* expr) {
3512 ZoneList<Expression*>* args = expr->arguments();
3513 ASSERT(args->length() == 1);
3514 VisitForAccumulatorValue(args->at(0));
3515
3516 if (FLAG_debug_code) {
3517 __ AbortIfNotString(v0);
3518 }
3519
3520 __ lw(v0, FieldMemOperand(v0, String::kHashFieldOffset));
3521 __ IndexFromHash(v0, v0);
3522
3523 context()->Plug(v0);
3524 }
3525
3526
EmitFastAsciiArrayJoin(CallRuntime * expr)3527 void FullCodeGenerator::EmitFastAsciiArrayJoin(CallRuntime* expr) {
3528 Label bailout, done, one_char_separator, long_separator,
3529 non_trivial_array, not_size_one_array, loop,
3530 empty_separator_loop, one_char_separator_loop,
3531 one_char_separator_loop_entry, long_separator_loop;
3532 ZoneList<Expression*>* args = expr->arguments();
3533 ASSERT(args->length() == 2);
3534 VisitForStackValue(args->at(1));
3535 VisitForAccumulatorValue(args->at(0));
3536
3537 // All aliases of the same register have disjoint lifetimes.
3538 Register array = v0;
3539 Register elements = no_reg; // Will be v0.
3540 Register result = no_reg; // Will be v0.
3541 Register separator = a1;
3542 Register array_length = a2;
3543 Register result_pos = no_reg; // Will be a2.
3544 Register string_length = a3;
3545 Register string = t0;
3546 Register element = t1;
3547 Register elements_end = t2;
3548 Register scratch1 = t3;
3549 Register scratch2 = t5;
3550 Register scratch3 = t4;
3551
3552 // Separator operand is on the stack.
3553 __ pop(separator);
3554
3555 // Check that the array is a JSArray.
3556 __ JumpIfSmi(array, &bailout);
3557 __ GetObjectType(array, scratch1, scratch2);
3558 __ Branch(&bailout, ne, scratch2, Operand(JS_ARRAY_TYPE));
3559
3560 // Check that the array has fast elements.
3561 __ CheckFastElements(scratch1, scratch2, &bailout);
3562
3563 // If the array has length zero, return the empty string.
3564 __ lw(array_length, FieldMemOperand(array, JSArray::kLengthOffset));
3565 __ SmiUntag(array_length);
3566 __ Branch(&non_trivial_array, ne, array_length, Operand(zero_reg));
3567 __ LoadRoot(v0, Heap::kEmptyStringRootIndex);
3568 __ Branch(&done);
3569
3570 __ bind(&non_trivial_array);
3571
3572 // Get the FixedArray containing array's elements.
3573 elements = array;
3574 __ lw(elements, FieldMemOperand(array, JSArray::kElementsOffset));
3575 array = no_reg; // End of array's live range.
3576
3577 // Check that all array elements are sequential ASCII strings, and
3578 // accumulate the sum of their lengths, as a smi-encoded value.
3579 __ mov(string_length, zero_reg);
3580 __ Addu(element,
3581 elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
3582 __ sll(elements_end, array_length, kPointerSizeLog2);
3583 __ Addu(elements_end, element, elements_end);
3584 // Loop condition: while (element < elements_end).
3585 // Live values in registers:
3586 // elements: Fixed array of strings.
3587 // array_length: Length of the fixed array of strings (not smi)
3588 // separator: Separator string
3589 // string_length: Accumulated sum of string lengths (smi).
3590 // element: Current array element.
3591 // elements_end: Array end.
3592 if (FLAG_debug_code) {
3593 __ Assert(gt, "No empty arrays here in EmitFastAsciiArrayJoin",
3594 array_length, Operand(zero_reg));
3595 }
3596 __ bind(&loop);
3597 __ lw(string, MemOperand(element));
3598 __ Addu(element, element, kPointerSize);
3599 __ JumpIfSmi(string, &bailout);
3600 __ lw(scratch1, FieldMemOperand(string, HeapObject::kMapOffset));
3601 __ lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
3602 __ JumpIfInstanceTypeIsNotSequentialAscii(scratch1, scratch2, &bailout);
3603 __ lw(scratch1, FieldMemOperand(string, SeqAsciiString::kLengthOffset));
3604 __ AdduAndCheckForOverflow(string_length, string_length, scratch1, scratch3);
3605 __ BranchOnOverflow(&bailout, scratch3);
3606 __ Branch(&loop, lt, element, Operand(elements_end));
3607
3608 // If array_length is 1, return elements[0], a string.
3609 __ Branch(¬_size_one_array, ne, array_length, Operand(1));
3610 __ lw(v0, FieldMemOperand(elements, FixedArray::kHeaderSize));
3611 __ Branch(&done);
3612
3613 __ bind(¬_size_one_array);
3614
3615 // Live values in registers:
3616 // separator: Separator string
3617 // array_length: Length of the array.
3618 // string_length: Sum of string lengths (smi).
3619 // elements: FixedArray of strings.
3620
3621 // Check that the separator is a flat ASCII string.
3622 __ JumpIfSmi(separator, &bailout);
3623 __ lw(scratch1, FieldMemOperand(separator, HeapObject::kMapOffset));
3624 __ lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
3625 __ JumpIfInstanceTypeIsNotSequentialAscii(scratch1, scratch2, &bailout);
3626
3627 // Add (separator length times array_length) - separator length to the
3628 // string_length to get the length of the result string. array_length is not
3629 // smi but the other values are, so the result is a smi.
3630 __ lw(scratch1, FieldMemOperand(separator, SeqAsciiString::kLengthOffset));
3631 __ Subu(string_length, string_length, Operand(scratch1));
3632 __ Mult(array_length, scratch1);
3633 // Check for smi overflow. No overflow if higher 33 bits of 64-bit result are
3634 // zero.
3635 __ mfhi(scratch2);
3636 __ Branch(&bailout, ne, scratch2, Operand(zero_reg));
3637 __ mflo(scratch2);
3638 __ And(scratch3, scratch2, Operand(0x80000000));
3639 __ Branch(&bailout, ne, scratch3, Operand(zero_reg));
3640 __ AdduAndCheckForOverflow(string_length, string_length, scratch2, scratch3);
3641 __ BranchOnOverflow(&bailout, scratch3);
3642 __ SmiUntag(string_length);
3643
3644 // Get first element in the array to free up the elements register to be used
3645 // for the result.
3646 __ Addu(element,
3647 elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
3648 result = elements; // End of live range for elements.
3649 elements = no_reg;
3650 // Live values in registers:
3651 // element: First array element
3652 // separator: Separator string
3653 // string_length: Length of result string (not smi)
3654 // array_length: Length of the array.
3655 __ AllocateAsciiString(result,
3656 string_length,
3657 scratch1,
3658 scratch2,
3659 elements_end,
3660 &bailout);
3661 // Prepare for looping. Set up elements_end to end of the array. Set
3662 // result_pos to the position of the result where to write the first
3663 // character.
3664 __ sll(elements_end, array_length, kPointerSizeLog2);
3665 __ Addu(elements_end, element, elements_end);
3666 result_pos = array_length; // End of live range for array_length.
3667 array_length = no_reg;
3668 __ Addu(result_pos,
3669 result,
3670 Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
3671
3672 // Check the length of the separator.
3673 __ lw(scratch1, FieldMemOperand(separator, SeqAsciiString::kLengthOffset));
3674 __ li(at, Operand(Smi::FromInt(1)));
3675 __ Branch(&one_char_separator, eq, scratch1, Operand(at));
3676 __ Branch(&long_separator, gt, scratch1, Operand(at));
3677
3678 // Empty separator case.
3679 __ bind(&empty_separator_loop);
3680 // Live values in registers:
3681 // result_pos: the position to which we are currently copying characters.
3682 // element: Current array element.
3683 // elements_end: Array end.
3684
3685 // Copy next array element to the result.
3686 __ lw(string, MemOperand(element));
3687 __ Addu(element, element, kPointerSize);
3688 __ lw(string_length, FieldMemOperand(string, String::kLengthOffset));
3689 __ SmiUntag(string_length);
3690 __ Addu(string, string, SeqAsciiString::kHeaderSize - kHeapObjectTag);
3691 __ CopyBytes(string, result_pos, string_length, scratch1);
3692 // End while (element < elements_end).
3693 __ Branch(&empty_separator_loop, lt, element, Operand(elements_end));
3694 ASSERT(result.is(v0));
3695 __ Branch(&done);
3696
3697 // One-character separator case.
3698 __ bind(&one_char_separator);
3699 // Replace separator with its ASCII character value.
3700 __ lbu(separator, FieldMemOperand(separator, SeqAsciiString::kHeaderSize));
3701 // Jump into the loop after the code that copies the separator, so the first
3702 // element is not preceded by a separator.
3703 __ jmp(&one_char_separator_loop_entry);
3704
3705 __ bind(&one_char_separator_loop);
3706 // Live values in registers:
3707 // result_pos: the position to which we are currently copying characters.
3708 // element: Current array element.
3709 // elements_end: Array end.
3710 // separator: Single separator ASCII char (in lower byte).
3711
3712 // Copy the separator character to the result.
3713 __ sb(separator, MemOperand(result_pos));
3714 __ Addu(result_pos, result_pos, 1);
3715
3716 // Copy next array element to the result.
3717 __ bind(&one_char_separator_loop_entry);
3718 __ lw(string, MemOperand(element));
3719 __ Addu(element, element, kPointerSize);
3720 __ lw(string_length, FieldMemOperand(string, String::kLengthOffset));
3721 __ SmiUntag(string_length);
3722 __ Addu(string, string, SeqAsciiString::kHeaderSize - kHeapObjectTag);
3723 __ CopyBytes(string, result_pos, string_length, scratch1);
3724 // End while (element < elements_end).
3725 __ Branch(&one_char_separator_loop, lt, element, Operand(elements_end));
3726 ASSERT(result.is(v0));
3727 __ Branch(&done);
3728
3729 // Long separator case (separator is more than one character). Entry is at the
3730 // label long_separator below.
3731 __ bind(&long_separator_loop);
3732 // Live values in registers:
3733 // result_pos: the position to which we are currently copying characters.
3734 // element: Current array element.
3735 // elements_end: Array end.
3736 // separator: Separator string.
3737
3738 // Copy the separator to the result.
3739 __ lw(string_length, FieldMemOperand(separator, String::kLengthOffset));
3740 __ SmiUntag(string_length);
3741 __ Addu(string,
3742 separator,
3743 Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
3744 __ CopyBytes(string, result_pos, string_length, scratch1);
3745
3746 __ bind(&long_separator);
3747 __ lw(string, MemOperand(element));
3748 __ Addu(element, element, kPointerSize);
3749 __ lw(string_length, FieldMemOperand(string, String::kLengthOffset));
3750 __ SmiUntag(string_length);
3751 __ Addu(string, string, SeqAsciiString::kHeaderSize - kHeapObjectTag);
3752 __ CopyBytes(string, result_pos, string_length, scratch1);
3753 // End while (element < elements_end).
3754 __ Branch(&long_separator_loop, lt, element, Operand(elements_end));
3755 ASSERT(result.is(v0));
3756 __ Branch(&done);
3757
3758 __ bind(&bailout);
3759 __ LoadRoot(v0, Heap::kUndefinedValueRootIndex);
3760 __ bind(&done);
3761 context()->Plug(v0);
3762 }
3763
3764
VisitCallRuntime(CallRuntime * expr)3765 void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) {
3766 Handle<String> name = expr->name();
3767 if (name->length() > 0 && name->Get(0) == '_') {
3768 Comment cmnt(masm_, "[ InlineRuntimeCall");
3769 EmitInlineRuntimeCall(expr);
3770 return;
3771 }
3772
3773 Comment cmnt(masm_, "[ CallRuntime");
3774 ZoneList<Expression*>* args = expr->arguments();
3775
3776 if (expr->is_jsruntime()) {
3777 // Prepare for calling JS runtime function.
3778 __ lw(a0, GlobalObjectOperand());
3779 __ lw(a0, FieldMemOperand(a0, GlobalObject::kBuiltinsOffset));
3780 __ push(a0);
3781 }
3782
3783 // Push the arguments ("left-to-right").
3784 int arg_count = args->length();
3785 for (int i = 0; i < arg_count; i++) {
3786 VisitForStackValue(args->at(i));
3787 }
3788
3789 if (expr->is_jsruntime()) {
3790 // Call the JS runtime function.
3791 __ li(a2, Operand(expr->name()));
3792 RelocInfo::Mode mode = RelocInfo::CODE_TARGET;
3793 Handle<Code> ic =
3794 isolate()->stub_cache()->ComputeCallInitialize(arg_count, mode);
3795 CallIC(ic, mode, expr->id());
3796 // Restore context register.
3797 __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
3798 } else {
3799 // Call the C runtime function.
3800 __ CallRuntime(expr->function(), arg_count);
3801 }
3802 context()->Plug(v0);
3803 }
3804
3805
VisitUnaryOperation(UnaryOperation * expr)3806 void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) {
3807 switch (expr->op()) {
3808 case Token::DELETE: {
3809 Comment cmnt(masm_, "[ UnaryOperation (DELETE)");
3810 Property* property = expr->expression()->AsProperty();
3811 VariableProxy* proxy = expr->expression()->AsVariableProxy();
3812
3813 if (property != NULL) {
3814 VisitForStackValue(property->obj());
3815 VisitForStackValue(property->key());
3816 StrictModeFlag strict_mode_flag = (language_mode() == CLASSIC_MODE)
3817 ? kNonStrictMode : kStrictMode;
3818 __ li(a1, Operand(Smi::FromInt(strict_mode_flag)));
3819 __ push(a1);
3820 __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION);
3821 context()->Plug(v0);
3822 } else if (proxy != NULL) {
3823 Variable* var = proxy->var();
3824 // Delete of an unqualified identifier is disallowed in strict mode
3825 // but "delete this" is allowed.
3826 ASSERT(language_mode() == CLASSIC_MODE || var->is_this());
3827 if (var->IsUnallocated()) {
3828 __ lw(a2, GlobalObjectOperand());
3829 __ li(a1, Operand(var->name()));
3830 __ li(a0, Operand(Smi::FromInt(kNonStrictMode)));
3831 __ Push(a2, a1, a0);
3832 __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION);
3833 context()->Plug(v0);
3834 } else if (var->IsStackAllocated() || var->IsContextSlot()) {
3835 // Result of deleting non-global, non-dynamic variables is false.
3836 // The subexpression does not have side effects.
3837 context()->Plug(var->is_this());
3838 } else {
3839 // Non-global variable. Call the runtime to try to delete from the
3840 // context where the variable was introduced.
3841 __ push(context_register());
3842 __ li(a2, Operand(var->name()));
3843 __ push(a2);
3844 __ CallRuntime(Runtime::kDeleteContextSlot, 2);
3845 context()->Plug(v0);
3846 }
3847 } else {
3848 // Result of deleting non-property, non-variable reference is true.
3849 // The subexpression may have side effects.
3850 VisitForEffect(expr->expression());
3851 context()->Plug(true);
3852 }
3853 break;
3854 }
3855
3856 case Token::VOID: {
3857 Comment cmnt(masm_, "[ UnaryOperation (VOID)");
3858 VisitForEffect(expr->expression());
3859 context()->Plug(Heap::kUndefinedValueRootIndex);
3860 break;
3861 }
3862
3863 case Token::NOT: {
3864 Comment cmnt(masm_, "[ UnaryOperation (NOT)");
3865 if (context()->IsEffect()) {
3866 // Unary NOT has no side effects so it's only necessary to visit the
3867 // subexpression. Match the optimizing compiler by not branching.
3868 VisitForEffect(expr->expression());
3869 } else if (context()->IsTest()) {
3870 const TestContext* test = TestContext::cast(context());
3871 // The labels are swapped for the recursive call.
3872 VisitForControl(expr->expression(),
3873 test->false_label(),
3874 test->true_label(),
3875 test->fall_through());
3876 context()->Plug(test->true_label(), test->false_label());
3877 } else {
3878 // We handle value contexts explicitly rather than simply visiting
3879 // for control and plugging the control flow into the context,
3880 // because we need to prepare a pair of extra administrative AST ids
3881 // for the optimizing compiler.
3882 ASSERT(context()->IsAccumulatorValue() || context()->IsStackValue());
3883 Label materialize_true, materialize_false, done;
3884 VisitForControl(expr->expression(),
3885 &materialize_false,
3886 &materialize_true,
3887 &materialize_true);
3888 __ bind(&materialize_true);
3889 PrepareForBailoutForId(expr->MaterializeTrueId(), NO_REGISTERS);
3890 __ LoadRoot(v0, Heap::kTrueValueRootIndex);
3891 if (context()->IsStackValue()) __ push(v0);
3892 __ jmp(&done);
3893 __ bind(&materialize_false);
3894 PrepareForBailoutForId(expr->MaterializeFalseId(), NO_REGISTERS);
3895 __ LoadRoot(v0, Heap::kFalseValueRootIndex);
3896 if (context()->IsStackValue()) __ push(v0);
3897 __ bind(&done);
3898 }
3899 break;
3900 }
3901
3902 case Token::TYPEOF: {
3903 Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)");
3904 { StackValueContext context(this);
3905 VisitForTypeofValue(expr->expression());
3906 }
3907 __ CallRuntime(Runtime::kTypeof, 1);
3908 context()->Plug(v0);
3909 break;
3910 }
3911
3912 case Token::ADD: {
3913 Comment cmt(masm_, "[ UnaryOperation (ADD)");
3914 VisitForAccumulatorValue(expr->expression());
3915 Label no_conversion;
3916 __ JumpIfSmi(result_register(), &no_conversion);
3917 __ mov(a0, result_register());
3918 ToNumberStub convert_stub;
3919 __ CallStub(&convert_stub);
3920 __ bind(&no_conversion);
3921 context()->Plug(result_register());
3922 break;
3923 }
3924
3925 case Token::SUB:
3926 EmitUnaryOperation(expr, "[ UnaryOperation (SUB)");
3927 break;
3928
3929 case Token::BIT_NOT:
3930 EmitUnaryOperation(expr, "[ UnaryOperation (BIT_NOT)");
3931 break;
3932
3933 default:
3934 UNREACHABLE();
3935 }
3936 }
3937
3938
EmitUnaryOperation(UnaryOperation * expr,const char * comment)3939 void FullCodeGenerator::EmitUnaryOperation(UnaryOperation* expr,
3940 const char* comment) {
3941 // TODO(svenpanne): Allowing format strings in Comment would be nice here...
3942 Comment cmt(masm_, comment);
3943 bool can_overwrite = expr->expression()->ResultOverwriteAllowed();
3944 UnaryOverwriteMode overwrite =
3945 can_overwrite ? UNARY_OVERWRITE : UNARY_NO_OVERWRITE;
3946 UnaryOpStub stub(expr->op(), overwrite);
3947 // GenericUnaryOpStub expects the argument to be in a0.
3948 VisitForAccumulatorValue(expr->expression());
3949 SetSourcePosition(expr->position());
3950 __ mov(a0, result_register());
3951 CallIC(stub.GetCode(), RelocInfo::CODE_TARGET, expr->id());
3952 context()->Plug(v0);
3953 }
3954
3955
VisitCountOperation(CountOperation * expr)3956 void FullCodeGenerator::VisitCountOperation(CountOperation* expr) {
3957 Comment cmnt(masm_, "[ CountOperation");
3958 SetSourcePosition(expr->position());
3959
3960 // Invalid left-hand sides are rewritten to have a 'throw ReferenceError'
3961 // as the left-hand side.
3962 if (!expr->expression()->IsValidLeftHandSide()) {
3963 VisitForEffect(expr->expression());
3964 return;
3965 }
3966
3967 // Expression can only be a property, a global or a (parameter or local)
3968 // slot.
3969 enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
3970 LhsKind assign_type = VARIABLE;
3971 Property* prop = expr->expression()->AsProperty();
3972 // In case of a property we use the uninitialized expression context
3973 // of the key to detect a named property.
3974 if (prop != NULL) {
3975 assign_type =
3976 (prop->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY;
3977 }
3978
3979 // Evaluate expression and get value.
3980 if (assign_type == VARIABLE) {
3981 ASSERT(expr->expression()->AsVariableProxy()->var() != NULL);
3982 AccumulatorValueContext context(this);
3983 EmitVariableLoad(expr->expression()->AsVariableProxy());
3984 } else {
3985 // Reserve space for result of postfix operation.
3986 if (expr->is_postfix() && !context()->IsEffect()) {
3987 __ li(at, Operand(Smi::FromInt(0)));
3988 __ push(at);
3989 }
3990 if (assign_type == NAMED_PROPERTY) {
3991 // Put the object both on the stack and in the accumulator.
3992 VisitForAccumulatorValue(prop->obj());
3993 __ push(v0);
3994 EmitNamedPropertyLoad(prop);
3995 } else {
3996 VisitForStackValue(prop->obj());
3997 VisitForAccumulatorValue(prop->key());
3998 __ lw(a1, MemOperand(sp, 0));
3999 __ push(v0);
4000 EmitKeyedPropertyLoad(prop);
4001 }
4002 }
4003
4004 // We need a second deoptimization point after loading the value
4005 // in case evaluating the property load my have a side effect.
4006 if (assign_type == VARIABLE) {
4007 PrepareForBailout(expr->expression(), TOS_REG);
4008 } else {
4009 PrepareForBailoutForId(expr->CountId(), TOS_REG);
4010 }
4011
4012 // Call ToNumber only if operand is not a smi.
4013 Label no_conversion;
4014 __ JumpIfSmi(v0, &no_conversion);
4015 __ mov(a0, v0);
4016 ToNumberStub convert_stub;
4017 __ CallStub(&convert_stub);
4018 __ bind(&no_conversion);
4019
4020 // Save result for postfix expressions.
4021 if (expr->is_postfix()) {
4022 if (!context()->IsEffect()) {
4023 // Save the result on the stack. If we have a named or keyed property
4024 // we store the result under the receiver that is currently on top
4025 // of the stack.
4026 switch (assign_type) {
4027 case VARIABLE:
4028 __ push(v0);
4029 break;
4030 case NAMED_PROPERTY:
4031 __ sw(v0, MemOperand(sp, kPointerSize));
4032 break;
4033 case KEYED_PROPERTY:
4034 __ sw(v0, MemOperand(sp, 2 * kPointerSize));
4035 break;
4036 }
4037 }
4038 }
4039 __ mov(a0, result_register());
4040
4041 // Inline smi case if we are in a loop.
4042 Label stub_call, done;
4043 JumpPatchSite patch_site(masm_);
4044
4045 int count_value = expr->op() == Token::INC ? 1 : -1;
4046 __ li(a1, Operand(Smi::FromInt(count_value)));
4047
4048 if (ShouldInlineSmiCase(expr->op())) {
4049 __ AdduAndCheckForOverflow(v0, a0, a1, t0);
4050 __ BranchOnOverflow(&stub_call, t0); // Do stub on overflow.
4051
4052 // We could eliminate this smi check if we split the code at
4053 // the first smi check before calling ToNumber.
4054 patch_site.EmitJumpIfSmi(v0, &done);
4055 __ bind(&stub_call);
4056 }
4057
4058 // Record position before stub call.
4059 SetSourcePosition(expr->position());
4060
4061 BinaryOpStub stub(Token::ADD, NO_OVERWRITE);
4062 CallIC(stub.GetCode(), RelocInfo::CODE_TARGET, expr->CountId());
4063 patch_site.EmitPatchInfo();
4064 __ bind(&done);
4065
4066 // Store the value returned in v0.
4067 switch (assign_type) {
4068 case VARIABLE:
4069 if (expr->is_postfix()) {
4070 { EffectContext context(this);
4071 EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
4072 Token::ASSIGN);
4073 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4074 context.Plug(v0);
4075 }
4076 // For all contexts except EffectConstant we have the result on
4077 // top of the stack.
4078 if (!context()->IsEffect()) {
4079 context()->PlugTOS();
4080 }
4081 } else {
4082 EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
4083 Token::ASSIGN);
4084 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4085 context()->Plug(v0);
4086 }
4087 break;
4088 case NAMED_PROPERTY: {
4089 __ mov(a0, result_register()); // Value.
4090 __ li(a2, Operand(prop->key()->AsLiteral()->handle())); // Name.
4091 __ pop(a1); // Receiver.
4092 Handle<Code> ic = is_classic_mode()
4093 ? isolate()->builtins()->StoreIC_Initialize()
4094 : isolate()->builtins()->StoreIC_Initialize_Strict();
4095 CallIC(ic, RelocInfo::CODE_TARGET, expr->id());
4096 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4097 if (expr->is_postfix()) {
4098 if (!context()->IsEffect()) {
4099 context()->PlugTOS();
4100 }
4101 } else {
4102 context()->Plug(v0);
4103 }
4104 break;
4105 }
4106 case KEYED_PROPERTY: {
4107 __ mov(a0, result_register()); // Value.
4108 __ pop(a1); // Key.
4109 __ pop(a2); // Receiver.
4110 Handle<Code> ic = is_classic_mode()
4111 ? isolate()->builtins()->KeyedStoreIC_Initialize()
4112 : isolate()->builtins()->KeyedStoreIC_Initialize_Strict();
4113 CallIC(ic, RelocInfo::CODE_TARGET, expr->id());
4114 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4115 if (expr->is_postfix()) {
4116 if (!context()->IsEffect()) {
4117 context()->PlugTOS();
4118 }
4119 } else {
4120 context()->Plug(v0);
4121 }
4122 break;
4123 }
4124 }
4125 }
4126
4127
VisitForTypeofValue(Expression * expr)4128 void FullCodeGenerator::VisitForTypeofValue(Expression* expr) {
4129 ASSERT(!context()->IsEffect());
4130 ASSERT(!context()->IsTest());
4131 VariableProxy* proxy = expr->AsVariableProxy();
4132 if (proxy != NULL && proxy->var()->IsUnallocated()) {
4133 Comment cmnt(masm_, "Global variable");
4134 __ lw(a0, GlobalObjectOperand());
4135 __ li(a2, Operand(proxy->name()));
4136 Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
4137 // Use a regular load, not a contextual load, to avoid a reference
4138 // error.
4139 CallIC(ic);
4140 PrepareForBailout(expr, TOS_REG);
4141 context()->Plug(v0);
4142 } else if (proxy != NULL && proxy->var()->IsLookupSlot()) {
4143 Label done, slow;
4144
4145 // Generate code for loading from variables potentially shadowed
4146 // by eval-introduced variables.
4147 EmitDynamicLookupFastCase(proxy->var(), INSIDE_TYPEOF, &slow, &done);
4148
4149 __ bind(&slow);
4150 __ li(a0, Operand(proxy->name()));
4151 __ Push(cp, a0);
4152 __ CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2);
4153 PrepareForBailout(expr, TOS_REG);
4154 __ bind(&done);
4155
4156 context()->Plug(v0);
4157 } else {
4158 // This expression cannot throw a reference error at the top level.
4159 VisitInDuplicateContext(expr);
4160 }
4161 }
4162
EmitLiteralCompareTypeof(Expression * expr,Expression * sub_expr,Handle<String> check)4163 void FullCodeGenerator::EmitLiteralCompareTypeof(Expression* expr,
4164 Expression* sub_expr,
4165 Handle<String> check) {
4166 Label materialize_true, materialize_false;
4167 Label* if_true = NULL;
4168 Label* if_false = NULL;
4169 Label* fall_through = NULL;
4170 context()->PrepareTest(&materialize_true, &materialize_false,
4171 &if_true, &if_false, &fall_through);
4172
4173 { AccumulatorValueContext context(this);
4174 VisitForTypeofValue(sub_expr);
4175 }
4176 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
4177
4178 if (check->Equals(isolate()->heap()->number_symbol())) {
4179 __ JumpIfSmi(v0, if_true);
4180 __ lw(v0, FieldMemOperand(v0, HeapObject::kMapOffset));
4181 __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
4182 Split(eq, v0, Operand(at), if_true, if_false, fall_through);
4183 } else if (check->Equals(isolate()->heap()->string_symbol())) {
4184 __ JumpIfSmi(v0, if_false);
4185 // Check for undetectable objects => false.
4186 __ GetObjectType(v0, v0, a1);
4187 __ Branch(if_false, ge, a1, Operand(FIRST_NONSTRING_TYPE));
4188 __ lbu(a1, FieldMemOperand(v0, Map::kBitFieldOffset));
4189 __ And(a1, a1, Operand(1 << Map::kIsUndetectable));
4190 Split(eq, a1, Operand(zero_reg),
4191 if_true, if_false, fall_through);
4192 } else if (check->Equals(isolate()->heap()->boolean_symbol())) {
4193 __ LoadRoot(at, Heap::kTrueValueRootIndex);
4194 __ Branch(if_true, eq, v0, Operand(at));
4195 __ LoadRoot(at, Heap::kFalseValueRootIndex);
4196 Split(eq, v0, Operand(at), if_true, if_false, fall_through);
4197 } else if (FLAG_harmony_typeof &&
4198 check->Equals(isolate()->heap()->null_symbol())) {
4199 __ LoadRoot(at, Heap::kNullValueRootIndex);
4200 Split(eq, v0, Operand(at), if_true, if_false, fall_through);
4201 } else if (check->Equals(isolate()->heap()->undefined_symbol())) {
4202 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
4203 __ Branch(if_true, eq, v0, Operand(at));
4204 __ JumpIfSmi(v0, if_false);
4205 // Check for undetectable objects => true.
4206 __ lw(v0, FieldMemOperand(v0, HeapObject::kMapOffset));
4207 __ lbu(a1, FieldMemOperand(v0, Map::kBitFieldOffset));
4208 __ And(a1, a1, Operand(1 << Map::kIsUndetectable));
4209 Split(ne, a1, Operand(zero_reg), if_true, if_false, fall_through);
4210 } else if (check->Equals(isolate()->heap()->function_symbol())) {
4211 __ JumpIfSmi(v0, if_false);
4212 STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
4213 __ GetObjectType(v0, v0, a1);
4214 __ Branch(if_true, eq, a1, Operand(JS_FUNCTION_TYPE));
4215 Split(eq, a1, Operand(JS_FUNCTION_PROXY_TYPE),
4216 if_true, if_false, fall_through);
4217 } else if (check->Equals(isolate()->heap()->object_symbol())) {
4218 __ JumpIfSmi(v0, if_false);
4219 if (!FLAG_harmony_typeof) {
4220 __ LoadRoot(at, Heap::kNullValueRootIndex);
4221 __ Branch(if_true, eq, v0, Operand(at));
4222 }
4223 // Check for JS objects => true.
4224 __ GetObjectType(v0, v0, a1);
4225 __ Branch(if_false, lt, a1, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
4226 __ lbu(a1, FieldMemOperand(v0, Map::kInstanceTypeOffset));
4227 __ Branch(if_false, gt, a1, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
4228 // Check for undetectable objects => false.
4229 __ lbu(a1, FieldMemOperand(v0, Map::kBitFieldOffset));
4230 __ And(a1, a1, Operand(1 << Map::kIsUndetectable));
4231 Split(eq, a1, Operand(zero_reg), if_true, if_false, fall_through);
4232 } else {
4233 if (if_false != fall_through) __ jmp(if_false);
4234 }
4235 context()->Plug(if_true, if_false);
4236 }
4237
4238
VisitCompareOperation(CompareOperation * expr)4239 void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) {
4240 Comment cmnt(masm_, "[ CompareOperation");
4241 SetSourcePosition(expr->position());
4242
4243 // First we try a fast inlined version of the compare when one of
4244 // the operands is a literal.
4245 if (TryLiteralCompare(expr)) return;
4246
4247 // Always perform the comparison for its control flow. Pack the result
4248 // into the expression's context after the comparison is performed.
4249 Label materialize_true, materialize_false;
4250 Label* if_true = NULL;
4251 Label* if_false = NULL;
4252 Label* fall_through = NULL;
4253 context()->PrepareTest(&materialize_true, &materialize_false,
4254 &if_true, &if_false, &fall_through);
4255
4256 Token::Value op = expr->op();
4257 VisitForStackValue(expr->left());
4258 switch (op) {
4259 case Token::IN:
4260 VisitForStackValue(expr->right());
4261 __ InvokeBuiltin(Builtins::IN, CALL_FUNCTION);
4262 PrepareForBailoutBeforeSplit(expr, false, NULL, NULL);
4263 __ LoadRoot(t0, Heap::kTrueValueRootIndex);
4264 Split(eq, v0, Operand(t0), if_true, if_false, fall_through);
4265 break;
4266
4267 case Token::INSTANCEOF: {
4268 VisitForStackValue(expr->right());
4269 InstanceofStub stub(InstanceofStub::kNoFlags);
4270 __ CallStub(&stub);
4271 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
4272 // The stub returns 0 for true.
4273 Split(eq, v0, Operand(zero_reg), if_true, if_false, fall_through);
4274 break;
4275 }
4276
4277 default: {
4278 VisitForAccumulatorValue(expr->right());
4279 Condition cc = eq;
4280 switch (op) {
4281 case Token::EQ_STRICT:
4282 case Token::EQ:
4283 cc = eq;
4284 break;
4285 case Token::LT:
4286 cc = lt;
4287 break;
4288 case Token::GT:
4289 cc = gt;
4290 break;
4291 case Token::LTE:
4292 cc = le;
4293 break;
4294 case Token::GTE:
4295 cc = ge;
4296 break;
4297 case Token::IN:
4298 case Token::INSTANCEOF:
4299 default:
4300 UNREACHABLE();
4301 }
4302 __ mov(a0, result_register());
4303 __ pop(a1);
4304
4305 bool inline_smi_code = ShouldInlineSmiCase(op);
4306 JumpPatchSite patch_site(masm_);
4307 if (inline_smi_code) {
4308 Label slow_case;
4309 __ Or(a2, a0, Operand(a1));
4310 patch_site.EmitJumpIfNotSmi(a2, &slow_case);
4311 Split(cc, a1, Operand(a0), if_true, if_false, NULL);
4312 __ bind(&slow_case);
4313 }
4314 // Record position and call the compare IC.
4315 SetSourcePosition(expr->position());
4316 Handle<Code> ic = CompareIC::GetUninitialized(op);
4317 CallIC(ic, RelocInfo::CODE_TARGET, expr->id());
4318 patch_site.EmitPatchInfo();
4319 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
4320 Split(cc, v0, Operand(zero_reg), if_true, if_false, fall_through);
4321 }
4322 }
4323
4324 // Convert the result of the comparison into one expected for this
4325 // expression's context.
4326 context()->Plug(if_true, if_false);
4327 }
4328
4329
EmitLiteralCompareNil(CompareOperation * expr,Expression * sub_expr,NilValue nil)4330 void FullCodeGenerator::EmitLiteralCompareNil(CompareOperation* expr,
4331 Expression* sub_expr,
4332 NilValue nil) {
4333 Label materialize_true, materialize_false;
4334 Label* if_true = NULL;
4335 Label* if_false = NULL;
4336 Label* fall_through = NULL;
4337 context()->PrepareTest(&materialize_true, &materialize_false,
4338 &if_true, &if_false, &fall_through);
4339
4340 VisitForAccumulatorValue(sub_expr);
4341 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
4342 Heap::RootListIndex nil_value = nil == kNullValue ?
4343 Heap::kNullValueRootIndex :
4344 Heap::kUndefinedValueRootIndex;
4345 __ mov(a0, result_register());
4346 __ LoadRoot(a1, nil_value);
4347 if (expr->op() == Token::EQ_STRICT) {
4348 Split(eq, a0, Operand(a1), if_true, if_false, fall_through);
4349 } else {
4350 Heap::RootListIndex other_nil_value = nil == kNullValue ?
4351 Heap::kUndefinedValueRootIndex :
4352 Heap::kNullValueRootIndex;
4353 __ Branch(if_true, eq, a0, Operand(a1));
4354 __ LoadRoot(a1, other_nil_value);
4355 __ Branch(if_true, eq, a0, Operand(a1));
4356 __ JumpIfSmi(a0, if_false);
4357 // It can be an undetectable object.
4358 __ lw(a1, FieldMemOperand(a0, HeapObject::kMapOffset));
4359 __ lbu(a1, FieldMemOperand(a1, Map::kBitFieldOffset));
4360 __ And(a1, a1, Operand(1 << Map::kIsUndetectable));
4361 Split(ne, a1, Operand(zero_reg), if_true, if_false, fall_through);
4362 }
4363 context()->Plug(if_true, if_false);
4364 }
4365
4366
VisitThisFunction(ThisFunction * expr)4367 void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) {
4368 __ lw(v0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
4369 context()->Plug(v0);
4370 }
4371
4372
result_register()4373 Register FullCodeGenerator::result_register() {
4374 return v0;
4375 }
4376
4377
context_register()4378 Register FullCodeGenerator::context_register() {
4379 return cp;
4380 }
4381
4382
StoreToFrameField(int frame_offset,Register value)4383 void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) {
4384 ASSERT_EQ(POINTER_SIZE_ALIGN(frame_offset), frame_offset);
4385 __ sw(value, MemOperand(fp, frame_offset));
4386 }
4387
4388
LoadContextField(Register dst,int context_index)4389 void FullCodeGenerator::LoadContextField(Register dst, int context_index) {
4390 __ lw(dst, ContextOperand(cp, context_index));
4391 }
4392
4393
PushFunctionArgumentForContextAllocation()4394 void FullCodeGenerator::PushFunctionArgumentForContextAllocation() {
4395 Scope* declaration_scope = scope()->DeclarationScope();
4396 if (declaration_scope->is_global_scope()) {
4397 // Contexts nested in the global context have a canonical empty function
4398 // as their closure, not the anonymous closure containing the global
4399 // code. Pass a smi sentinel and let the runtime look up the empty
4400 // function.
4401 __ li(at, Operand(Smi::FromInt(0)));
4402 } else if (declaration_scope->is_eval_scope()) {
4403 // Contexts created by a call to eval have the same closure as the
4404 // context calling eval, not the anonymous closure containing the eval
4405 // code. Fetch it from the context.
4406 __ lw(at, ContextOperand(cp, Context::CLOSURE_INDEX));
4407 } else {
4408 ASSERT(declaration_scope->is_function_scope());
4409 __ lw(at, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
4410 }
4411 __ push(at);
4412 }
4413
4414
4415 // ----------------------------------------------------------------------------
4416 // Non-local control flow support.
4417
EnterFinallyBlock()4418 void FullCodeGenerator::EnterFinallyBlock() {
4419 ASSERT(!result_register().is(a1));
4420 // Store result register while executing finally block.
4421 __ push(result_register());
4422 // Cook return address in link register to stack (smi encoded Code* delta).
4423 __ Subu(a1, ra, Operand(masm_->CodeObject()));
4424 ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize);
4425 STATIC_ASSERT(0 == kSmiTag);
4426 __ Addu(a1, a1, Operand(a1)); // Convert to smi.
4427 __ push(a1);
4428 }
4429
4430
ExitFinallyBlock()4431 void FullCodeGenerator::ExitFinallyBlock() {
4432 ASSERT(!result_register().is(a1));
4433 // Restore result register from stack.
4434 __ pop(a1);
4435 // Uncook return address and return.
4436 __ pop(result_register());
4437 ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize);
4438 __ sra(a1, a1, 1); // Un-smi-tag value.
4439 __ Addu(at, a1, Operand(masm_->CodeObject()));
4440 __ Jump(at);
4441 }
4442
4443
4444 #undef __
4445
4446 #define __ ACCESS_MASM(masm())
4447
Exit(int * stack_depth,int * context_length)4448 FullCodeGenerator::NestedStatement* FullCodeGenerator::TryFinally::Exit(
4449 int* stack_depth,
4450 int* context_length) {
4451 // The macros used here must preserve the result register.
4452
4453 // Because the handler block contains the context of the finally
4454 // code, we can restore it directly from there for the finally code
4455 // rather than iteratively unwinding contexts via their previous
4456 // links.
4457 __ Drop(*stack_depth); // Down to the handler block.
4458 if (*context_length > 0) {
4459 // Restore the context to its dedicated register and the stack.
4460 __ lw(cp, MemOperand(sp, StackHandlerConstants::kContextOffset));
4461 __ sw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4462 }
4463 __ PopTryHandler();
4464 __ Call(finally_entry_);
4465
4466 *stack_depth = 0;
4467 *context_length = 0;
4468 return previous_;
4469 }
4470
4471
4472 #undef __
4473
4474 } } // namespace v8::internal
4475
4476 #endif // V8_TARGET_ARCH_MIPS
4477