1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "v8.h"
29
30 #include "mips/lithium-codegen-mips.h"
31 #include "mips/lithium-gap-resolver-mips.h"
32 #include "code-stubs.h"
33 #include "stub-cache.h"
34
35 namespace v8 {
36 namespace internal {
37
38
39 class SafepointGenerator : public CallWrapper {
40 public:
SafepointGenerator(LCodeGen * codegen,LPointerMap * pointers,Safepoint::DeoptMode mode)41 SafepointGenerator(LCodeGen* codegen,
42 LPointerMap* pointers,
43 Safepoint::DeoptMode mode)
44 : codegen_(codegen),
45 pointers_(pointers),
46 deopt_mode_(mode) { }
~SafepointGenerator()47 virtual ~SafepointGenerator() { }
48
BeforeCall(int call_size) const49 virtual void BeforeCall(int call_size) const { }
50
AfterCall() const51 virtual void AfterCall() const {
52 codegen_->RecordSafepoint(pointers_, deopt_mode_);
53 }
54
55 private:
56 LCodeGen* codegen_;
57 LPointerMap* pointers_;
58 Safepoint::DeoptMode deopt_mode_;
59 };
60
61
62 #define __ masm()->
63
GenerateCode()64 bool LCodeGen::GenerateCode() {
65 HPhase phase("Z_Code generation", chunk());
66 ASSERT(is_unused());
67 status_ = GENERATING;
68 CpuFeatures::Scope scope(FPU);
69
70 CodeStub::GenerateFPStubs();
71
72 // Open a frame scope to indicate that there is a frame on the stack. The
73 // NONE indicates that the scope shouldn't actually generate code to set up
74 // the frame (that is done in GeneratePrologue).
75 FrameScope frame_scope(masm_, StackFrame::NONE);
76
77 return GeneratePrologue() &&
78 GenerateBody() &&
79 GenerateDeferredCode() &&
80 GenerateSafepointTable();
81 }
82
83
FinishCode(Handle<Code> code)84 void LCodeGen::FinishCode(Handle<Code> code) {
85 ASSERT(is_done());
86 code->set_stack_slots(GetStackSlotCount());
87 code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
88 PopulateDeoptimizationData(code);
89 }
90
91
Abort(const char * format,...)92 void LCodeGen::Abort(const char* format, ...) {
93 if (FLAG_trace_bailout) {
94 SmartArrayPointer<char> name(
95 info()->shared_info()->DebugName()->ToCString());
96 PrintF("Aborting LCodeGen in @\"%s\": ", *name);
97 va_list arguments;
98 va_start(arguments, format);
99 OS::VPrint(format, arguments);
100 va_end(arguments);
101 PrintF("\n");
102 }
103 status_ = ABORTED;
104 }
105
106
Comment(const char * format,...)107 void LCodeGen::Comment(const char* format, ...) {
108 if (!FLAG_code_comments) return;
109 char buffer[4 * KB];
110 StringBuilder builder(buffer, ARRAY_SIZE(buffer));
111 va_list arguments;
112 va_start(arguments, format);
113 builder.AddFormattedList(format, arguments);
114 va_end(arguments);
115
116 // Copy the string before recording it in the assembler to avoid
117 // issues when the stack allocated buffer goes out of scope.
118 size_t length = builder.position();
119 Vector<char> copy = Vector<char>::New(length + 1);
120 memcpy(copy.start(), builder.Finalize(), copy.length());
121 masm()->RecordComment(copy.start());
122 }
123
124
GeneratePrologue()125 bool LCodeGen::GeneratePrologue() {
126 ASSERT(is_generating());
127
128 #ifdef DEBUG
129 if (strlen(FLAG_stop_at) > 0 &&
130 info_->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) {
131 __ stop("stop_at");
132 }
133 #endif
134
135 // a1: Callee's JS function.
136 // cp: Callee's context.
137 // fp: Caller's frame pointer.
138 // lr: Caller's pc.
139
140 // Strict mode functions and builtins need to replace the receiver
141 // with undefined when called as functions (without an explicit
142 // receiver object). r5 is zero for method calls and non-zero for
143 // function calls.
144 if (!info_->is_classic_mode() || info_->is_native()) {
145 Label ok;
146 __ Branch(&ok, eq, t1, Operand(zero_reg));
147
148 int receiver_offset = scope()->num_parameters() * kPointerSize;
149 __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
150 __ sw(a2, MemOperand(sp, receiver_offset));
151 __ bind(&ok);
152 }
153
154 __ Push(ra, fp, cp, a1);
155 __ Addu(fp, sp, Operand(2 * kPointerSize)); // Adj. FP to point to saved FP.
156
157 // Reserve space for the stack slots needed by the code.
158 int slots = GetStackSlotCount();
159 if (slots > 0) {
160 if (FLAG_debug_code) {
161 __ li(a0, Operand(slots));
162 __ li(a2, Operand(kSlotsZapValue));
163 Label loop;
164 __ bind(&loop);
165 __ push(a2);
166 __ Subu(a0, a0, 1);
167 __ Branch(&loop, ne, a0, Operand(zero_reg));
168 } else {
169 __ Subu(sp, sp, Operand(slots * kPointerSize));
170 }
171 }
172
173 // Possibly allocate a local context.
174 int heap_slots = scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
175 if (heap_slots > 0) {
176 Comment(";;; Allocate local context");
177 // Argument to NewContext is the function, which is in a1.
178 __ push(a1);
179 if (heap_slots <= FastNewContextStub::kMaximumSlots) {
180 FastNewContextStub stub(heap_slots);
181 __ CallStub(&stub);
182 } else {
183 __ CallRuntime(Runtime::kNewFunctionContext, 1);
184 }
185 RecordSafepoint(Safepoint::kNoLazyDeopt);
186 // Context is returned in both v0 and cp. It replaces the context
187 // passed to us. It's saved in the stack and kept live in cp.
188 __ sw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
189 // Copy any necessary parameters into the context.
190 int num_parameters = scope()->num_parameters();
191 for (int i = 0; i < num_parameters; i++) {
192 Variable* var = scope()->parameter(i);
193 if (var->IsContextSlot()) {
194 int parameter_offset = StandardFrameConstants::kCallerSPOffset +
195 (num_parameters - 1 - i) * kPointerSize;
196 // Load parameter from stack.
197 __ lw(a0, MemOperand(fp, parameter_offset));
198 // Store it in the context.
199 MemOperand target = ContextOperand(cp, var->index());
200 __ sw(a0, target);
201 // Update the write barrier. This clobbers a3 and a0.
202 __ RecordWriteContextSlot(
203 cp, target.offset(), a0, a3, kRAHasBeenSaved, kSaveFPRegs);
204 }
205 }
206 Comment(";;; End allocate local context");
207 }
208
209 // Trace the call.
210 if (FLAG_trace) {
211 __ CallRuntime(Runtime::kTraceEnter, 0);
212 }
213 EnsureSpaceForLazyDeopt();
214 return !is_aborted();
215 }
216
217
GenerateBody()218 bool LCodeGen::GenerateBody() {
219 ASSERT(is_generating());
220 bool emit_instructions = true;
221 for (current_instruction_ = 0;
222 !is_aborted() && current_instruction_ < instructions_->length();
223 current_instruction_++) {
224 LInstruction* instr = instructions_->at(current_instruction_);
225 if (instr->IsLabel()) {
226 LLabel* label = LLabel::cast(instr);
227 emit_instructions = !label->HasReplacement();
228 }
229
230 if (emit_instructions) {
231 Comment(";;; @%d: %s.", current_instruction_, instr->Mnemonic());
232 instr->CompileToNative(this);
233 }
234 }
235 return !is_aborted();
236 }
237
238
GenerateDeferredCode()239 bool LCodeGen::GenerateDeferredCode() {
240 ASSERT(is_generating());
241 if (deferred_.length() > 0) {
242 for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
243 LDeferredCode* code = deferred_[i];
244 __ bind(code->entry());
245 Comment(";;; Deferred code @%d: %s.",
246 code->instruction_index(),
247 code->instr()->Mnemonic());
248 code->Generate();
249 __ jmp(code->exit());
250 }
251 }
252 // Deferred code is the last part of the instruction sequence. Mark
253 // the generated code as done unless we bailed out.
254 if (!is_aborted()) status_ = DONE;
255 return !is_aborted();
256 }
257
258
GenerateDeoptJumpTable()259 bool LCodeGen::GenerateDeoptJumpTable() {
260 // TODO(plind): not clear that this will have advantage for MIPS.
261 // Skipping it for now. Raised issue #100 for this.
262 Abort("Unimplemented: %s", "GenerateDeoptJumpTable");
263 return false;
264 }
265
266
GenerateSafepointTable()267 bool LCodeGen::GenerateSafepointTable() {
268 ASSERT(is_done());
269 safepoints_.Emit(masm(), GetStackSlotCount());
270 return !is_aborted();
271 }
272
273
ToRegister(int index) const274 Register LCodeGen::ToRegister(int index) const {
275 return Register::FromAllocationIndex(index);
276 }
277
278
ToDoubleRegister(int index) const279 DoubleRegister LCodeGen::ToDoubleRegister(int index) const {
280 return DoubleRegister::FromAllocationIndex(index);
281 }
282
283
ToRegister(LOperand * op) const284 Register LCodeGen::ToRegister(LOperand* op) const {
285 ASSERT(op->IsRegister());
286 return ToRegister(op->index());
287 }
288
289
EmitLoadRegister(LOperand * op,Register scratch)290 Register LCodeGen::EmitLoadRegister(LOperand* op, Register scratch) {
291 if (op->IsRegister()) {
292 return ToRegister(op->index());
293 } else if (op->IsConstantOperand()) {
294 LConstantOperand* const_op = LConstantOperand::cast(op);
295 Handle<Object> literal = chunk_->LookupLiteral(const_op);
296 Representation r = chunk_->LookupLiteralRepresentation(const_op);
297 if (r.IsInteger32()) {
298 ASSERT(literal->IsNumber());
299 __ li(scratch, Operand(static_cast<int32_t>(literal->Number())));
300 } else if (r.IsDouble()) {
301 Abort("EmitLoadRegister: Unsupported double immediate.");
302 } else {
303 ASSERT(r.IsTagged());
304 if (literal->IsSmi()) {
305 __ li(scratch, Operand(literal));
306 } else {
307 __ LoadHeapObject(scratch, Handle<HeapObject>::cast(literal));
308 }
309 }
310 return scratch;
311 } else if (op->IsStackSlot() || op->IsArgument()) {
312 __ lw(scratch, ToMemOperand(op));
313 return scratch;
314 }
315 UNREACHABLE();
316 return scratch;
317 }
318
319
ToDoubleRegister(LOperand * op) const320 DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
321 ASSERT(op->IsDoubleRegister());
322 return ToDoubleRegister(op->index());
323 }
324
325
EmitLoadDoubleRegister(LOperand * op,FloatRegister flt_scratch,DoubleRegister dbl_scratch)326 DoubleRegister LCodeGen::EmitLoadDoubleRegister(LOperand* op,
327 FloatRegister flt_scratch,
328 DoubleRegister dbl_scratch) {
329 if (op->IsDoubleRegister()) {
330 return ToDoubleRegister(op->index());
331 } else if (op->IsConstantOperand()) {
332 LConstantOperand* const_op = LConstantOperand::cast(op);
333 Handle<Object> literal = chunk_->LookupLiteral(const_op);
334 Representation r = chunk_->LookupLiteralRepresentation(const_op);
335 if (r.IsInteger32()) {
336 ASSERT(literal->IsNumber());
337 __ li(at, Operand(static_cast<int32_t>(literal->Number())));
338 __ mtc1(at, flt_scratch);
339 __ cvt_d_w(dbl_scratch, flt_scratch);
340 return dbl_scratch;
341 } else if (r.IsDouble()) {
342 Abort("unsupported double immediate");
343 } else if (r.IsTagged()) {
344 Abort("unsupported tagged immediate");
345 }
346 } else if (op->IsStackSlot() || op->IsArgument()) {
347 MemOperand mem_op = ToMemOperand(op);
348 __ ldc1(dbl_scratch, mem_op);
349 return dbl_scratch;
350 }
351 UNREACHABLE();
352 return dbl_scratch;
353 }
354
355
ToHandle(LConstantOperand * op) const356 Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
357 Handle<Object> literal = chunk_->LookupLiteral(op);
358 ASSERT(chunk_->LookupLiteralRepresentation(op).IsTagged());
359 return literal;
360 }
361
362
IsInteger32(LConstantOperand * op) const363 bool LCodeGen::IsInteger32(LConstantOperand* op) const {
364 return chunk_->LookupLiteralRepresentation(op).IsInteger32();
365 }
366
367
ToInteger32(LConstantOperand * op) const368 int LCodeGen::ToInteger32(LConstantOperand* op) const {
369 Handle<Object> value = chunk_->LookupLiteral(op);
370 ASSERT(chunk_->LookupLiteralRepresentation(op).IsInteger32());
371 ASSERT(static_cast<double>(static_cast<int32_t>(value->Number())) ==
372 value->Number());
373 return static_cast<int32_t>(value->Number());
374 }
375
376
ToDouble(LConstantOperand * op) const377 double LCodeGen::ToDouble(LConstantOperand* op) const {
378 Handle<Object> value = chunk_->LookupLiteral(op);
379 return value->Number();
380 }
381
382
ToOperand(LOperand * op)383 Operand LCodeGen::ToOperand(LOperand* op) {
384 if (op->IsConstantOperand()) {
385 LConstantOperand* const_op = LConstantOperand::cast(op);
386 Handle<Object> literal = chunk_->LookupLiteral(const_op);
387 Representation r = chunk_->LookupLiteralRepresentation(const_op);
388 if (r.IsInteger32()) {
389 ASSERT(literal->IsNumber());
390 return Operand(static_cast<int32_t>(literal->Number()));
391 } else if (r.IsDouble()) {
392 Abort("ToOperand Unsupported double immediate.");
393 }
394 ASSERT(r.IsTagged());
395 return Operand(literal);
396 } else if (op->IsRegister()) {
397 return Operand(ToRegister(op));
398 } else if (op->IsDoubleRegister()) {
399 Abort("ToOperand IsDoubleRegister unimplemented");
400 return Operand(0);
401 }
402 // Stack slots not implemented, use ToMemOperand instead.
403 UNREACHABLE();
404 return Operand(0);
405 }
406
407
ToMemOperand(LOperand * op) const408 MemOperand LCodeGen::ToMemOperand(LOperand* op) const {
409 ASSERT(!op->IsRegister());
410 ASSERT(!op->IsDoubleRegister());
411 ASSERT(op->IsStackSlot() || op->IsDoubleStackSlot());
412 int index = op->index();
413 if (index >= 0) {
414 // Local or spill slot. Skip the frame pointer, function, and
415 // context in the fixed part of the frame.
416 return MemOperand(fp, -(index + 3) * kPointerSize);
417 } else {
418 // Incoming parameter. Skip the return address.
419 return MemOperand(fp, -(index - 1) * kPointerSize);
420 }
421 }
422
423
ToHighMemOperand(LOperand * op) const424 MemOperand LCodeGen::ToHighMemOperand(LOperand* op) const {
425 ASSERT(op->IsDoubleStackSlot());
426 int index = op->index();
427 if (index >= 0) {
428 // Local or spill slot. Skip the frame pointer, function, context,
429 // and the first word of the double in the fixed part of the frame.
430 return MemOperand(fp, -(index + 3) * kPointerSize + kPointerSize);
431 } else {
432 // Incoming parameter. Skip the return address and the first word of
433 // the double.
434 return MemOperand(fp, -(index - 1) * kPointerSize + kPointerSize);
435 }
436 }
437
438
WriteTranslation(LEnvironment * environment,Translation * translation)439 void LCodeGen::WriteTranslation(LEnvironment* environment,
440 Translation* translation) {
441 if (environment == NULL) return;
442
443 // The translation includes one command per value in the environment.
444 int translation_size = environment->values()->length();
445 // The output frame height does not include the parameters.
446 int height = translation_size - environment->parameter_count();
447
448 WriteTranslation(environment->outer(), translation);
449 int closure_id = DefineDeoptimizationLiteral(environment->closure());
450 switch (environment->frame_type()) {
451 case JS_FUNCTION:
452 translation->BeginJSFrame(environment->ast_id(), closure_id, height);
453 break;
454 case JS_CONSTRUCT:
455 translation->BeginConstructStubFrame(closure_id, translation_size);
456 break;
457 case ARGUMENTS_ADAPTOR:
458 translation->BeginArgumentsAdaptorFrame(closure_id, translation_size);
459 break;
460 default:
461 UNREACHABLE();
462 }
463 for (int i = 0; i < translation_size; ++i) {
464 LOperand* value = environment->values()->at(i);
465 // spilled_registers_ and spilled_double_registers_ are either
466 // both NULL or both set.
467 if (environment->spilled_registers() != NULL && value != NULL) {
468 if (value->IsRegister() &&
469 environment->spilled_registers()[value->index()] != NULL) {
470 translation->MarkDuplicate();
471 AddToTranslation(translation,
472 environment->spilled_registers()[value->index()],
473 environment->HasTaggedValueAt(i));
474 } else if (
475 value->IsDoubleRegister() &&
476 environment->spilled_double_registers()[value->index()] != NULL) {
477 translation->MarkDuplicate();
478 AddToTranslation(
479 translation,
480 environment->spilled_double_registers()[value->index()],
481 false);
482 }
483 }
484
485 AddToTranslation(translation, value, environment->HasTaggedValueAt(i));
486 }
487 }
488
489
AddToTranslation(Translation * translation,LOperand * op,bool is_tagged)490 void LCodeGen::AddToTranslation(Translation* translation,
491 LOperand* op,
492 bool is_tagged) {
493 if (op == NULL) {
494 // TODO(twuerthinger): Introduce marker operands to indicate that this value
495 // is not present and must be reconstructed from the deoptimizer. Currently
496 // this is only used for the arguments object.
497 translation->StoreArgumentsObject();
498 } else if (op->IsStackSlot()) {
499 if (is_tagged) {
500 translation->StoreStackSlot(op->index());
501 } else {
502 translation->StoreInt32StackSlot(op->index());
503 }
504 } else if (op->IsDoubleStackSlot()) {
505 translation->StoreDoubleStackSlot(op->index());
506 } else if (op->IsArgument()) {
507 ASSERT(is_tagged);
508 int src_index = GetStackSlotCount() + op->index();
509 translation->StoreStackSlot(src_index);
510 } else if (op->IsRegister()) {
511 Register reg = ToRegister(op);
512 if (is_tagged) {
513 translation->StoreRegister(reg);
514 } else {
515 translation->StoreInt32Register(reg);
516 }
517 } else if (op->IsDoubleRegister()) {
518 DoubleRegister reg = ToDoubleRegister(op);
519 translation->StoreDoubleRegister(reg);
520 } else if (op->IsConstantOperand()) {
521 Handle<Object> literal = chunk()->LookupLiteral(LConstantOperand::cast(op));
522 int src_index = DefineDeoptimizationLiteral(literal);
523 translation->StoreLiteral(src_index);
524 } else {
525 UNREACHABLE();
526 }
527 }
528
529
CallCode(Handle<Code> code,RelocInfo::Mode mode,LInstruction * instr)530 void LCodeGen::CallCode(Handle<Code> code,
531 RelocInfo::Mode mode,
532 LInstruction* instr) {
533 CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
534 }
535
536
CallCodeGeneric(Handle<Code> code,RelocInfo::Mode mode,LInstruction * instr,SafepointMode safepoint_mode)537 void LCodeGen::CallCodeGeneric(Handle<Code> code,
538 RelocInfo::Mode mode,
539 LInstruction* instr,
540 SafepointMode safepoint_mode) {
541 ASSERT(instr != NULL);
542 LPointerMap* pointers = instr->pointer_map();
543 RecordPosition(pointers->position());
544 __ Call(code, mode);
545 RecordSafepointWithLazyDeopt(instr, safepoint_mode);
546 }
547
548
CallRuntime(const Runtime::Function * function,int num_arguments,LInstruction * instr)549 void LCodeGen::CallRuntime(const Runtime::Function* function,
550 int num_arguments,
551 LInstruction* instr) {
552 ASSERT(instr != NULL);
553 LPointerMap* pointers = instr->pointer_map();
554 ASSERT(pointers != NULL);
555 RecordPosition(pointers->position());
556
557 __ CallRuntime(function, num_arguments);
558 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
559 }
560
561
CallRuntimeFromDeferred(Runtime::FunctionId id,int argc,LInstruction * instr)562 void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
563 int argc,
564 LInstruction* instr) {
565 __ CallRuntimeSaveDoubles(id);
566 RecordSafepointWithRegisters(
567 instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
568 }
569
570
RegisterEnvironmentForDeoptimization(LEnvironment * environment,Safepoint::DeoptMode mode)571 void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
572 Safepoint::DeoptMode mode) {
573 if (!environment->HasBeenRegistered()) {
574 // Physical stack frame layout:
575 // -x ............. -4 0 ..................................... y
576 // [incoming arguments] [spill slots] [pushed outgoing arguments]
577
578 // Layout of the environment:
579 // 0 ..................................................... size-1
580 // [parameters] [locals] [expression stack including arguments]
581
582 // Layout of the translation:
583 // 0 ........................................................ size - 1 + 4
584 // [expression stack including arguments] [locals] [4 words] [parameters]
585 // |>------------ translation_size ------------<|
586
587 int frame_count = 0;
588 int jsframe_count = 0;
589 for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
590 ++frame_count;
591 if (e->frame_type() == JS_FUNCTION) {
592 ++jsframe_count;
593 }
594 }
595 Translation translation(&translations_, frame_count, jsframe_count);
596 WriteTranslation(environment, &translation);
597 int deoptimization_index = deoptimizations_.length();
598 int pc_offset = masm()->pc_offset();
599 environment->Register(deoptimization_index,
600 translation.index(),
601 (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
602 deoptimizations_.Add(environment);
603 }
604 }
605
606
DeoptimizeIf(Condition cc,LEnvironment * environment,Register src1,const Operand & src2)607 void LCodeGen::DeoptimizeIf(Condition cc,
608 LEnvironment* environment,
609 Register src1,
610 const Operand& src2) {
611 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
612 ASSERT(environment->HasBeenRegistered());
613 int id = environment->deoptimization_index();
614 Address entry = Deoptimizer::GetDeoptimizationEntry(id, Deoptimizer::EAGER);
615 if (entry == NULL) {
616 Abort("bailout was not prepared");
617 return;
618 }
619
620 ASSERT(FLAG_deopt_every_n_times < 2); // Other values not supported on MIPS.
621
622 if (FLAG_deopt_every_n_times == 1 &&
623 info_->shared_info()->opt_count() == id) {
624 __ Jump(entry, RelocInfo::RUNTIME_ENTRY);
625 return;
626 }
627
628 if (FLAG_trap_on_deopt) {
629 Label skip;
630 if (cc != al) {
631 __ Branch(&skip, NegateCondition(cc), src1, src2);
632 }
633 __ stop("trap_on_deopt");
634 __ bind(&skip);
635 }
636
637 // TODO(plind): The Arm port is a little different here, due to their
638 // DeOpt jump table, which is not used for Mips yet.
639 __ Jump(entry, RelocInfo::RUNTIME_ENTRY, cc, src1, src2);
640 }
641
642
PopulateDeoptimizationData(Handle<Code> code)643 void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) {
644 int length = deoptimizations_.length();
645 if (length == 0) return;
646 Handle<DeoptimizationInputData> data =
647 factory()->NewDeoptimizationInputData(length, TENURED);
648
649 Handle<ByteArray> translations = translations_.CreateByteArray();
650 data->SetTranslationByteArray(*translations);
651 data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_));
652
653 Handle<FixedArray> literals =
654 factory()->NewFixedArray(deoptimization_literals_.length(), TENURED);
655 for (int i = 0; i < deoptimization_literals_.length(); i++) {
656 literals->set(i, *deoptimization_literals_[i]);
657 }
658 data->SetLiteralArray(*literals);
659
660 data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id()));
661 data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_));
662
663 // Populate the deoptimization entries.
664 for (int i = 0; i < length; i++) {
665 LEnvironment* env = deoptimizations_[i];
666 data->SetAstId(i, Smi::FromInt(env->ast_id()));
667 data->SetTranslationIndex(i, Smi::FromInt(env->translation_index()));
668 data->SetArgumentsStackHeight(i,
669 Smi::FromInt(env->arguments_stack_height()));
670 data->SetPc(i, Smi::FromInt(env->pc_offset()));
671 }
672 code->set_deoptimization_data(*data);
673 }
674
675
DefineDeoptimizationLiteral(Handle<Object> literal)676 int LCodeGen::DefineDeoptimizationLiteral(Handle<Object> literal) {
677 int result = deoptimization_literals_.length();
678 for (int i = 0; i < deoptimization_literals_.length(); ++i) {
679 if (deoptimization_literals_[i].is_identical_to(literal)) return i;
680 }
681 deoptimization_literals_.Add(literal);
682 return result;
683 }
684
685
PopulateDeoptimizationLiteralsWithInlinedFunctions()686 void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() {
687 ASSERT(deoptimization_literals_.length() == 0);
688
689 const ZoneList<Handle<JSFunction> >* inlined_closures =
690 chunk()->inlined_closures();
691
692 for (int i = 0, length = inlined_closures->length();
693 i < length;
694 i++) {
695 DefineDeoptimizationLiteral(inlined_closures->at(i));
696 }
697
698 inlined_function_count_ = deoptimization_literals_.length();
699 }
700
701
RecordSafepointWithLazyDeopt(LInstruction * instr,SafepointMode safepoint_mode)702 void LCodeGen::RecordSafepointWithLazyDeopt(
703 LInstruction* instr, SafepointMode safepoint_mode) {
704 if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
705 RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
706 } else {
707 ASSERT(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
708 RecordSafepointWithRegisters(
709 instr->pointer_map(), 0, Safepoint::kLazyDeopt);
710 }
711 }
712
713
RecordSafepoint(LPointerMap * pointers,Safepoint::Kind kind,int arguments,Safepoint::DeoptMode deopt_mode)714 void LCodeGen::RecordSafepoint(
715 LPointerMap* pointers,
716 Safepoint::Kind kind,
717 int arguments,
718 Safepoint::DeoptMode deopt_mode) {
719 ASSERT(expected_safepoint_kind_ == kind);
720
721 const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
722 Safepoint safepoint = safepoints_.DefineSafepoint(masm(),
723 kind, arguments, deopt_mode);
724 for (int i = 0; i < operands->length(); i++) {
725 LOperand* pointer = operands->at(i);
726 if (pointer->IsStackSlot()) {
727 safepoint.DefinePointerSlot(pointer->index());
728 } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
729 safepoint.DefinePointerRegister(ToRegister(pointer));
730 }
731 }
732 if (kind & Safepoint::kWithRegisters) {
733 // Register cp always contains a pointer to the context.
734 safepoint.DefinePointerRegister(cp);
735 }
736 }
737
738
RecordSafepoint(LPointerMap * pointers,Safepoint::DeoptMode deopt_mode)739 void LCodeGen::RecordSafepoint(LPointerMap* pointers,
740 Safepoint::DeoptMode deopt_mode) {
741 RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
742 }
743
744
RecordSafepoint(Safepoint::DeoptMode deopt_mode)745 void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
746 LPointerMap empty_pointers(RelocInfo::kNoPosition);
747 RecordSafepoint(&empty_pointers, deopt_mode);
748 }
749
750
RecordSafepointWithRegisters(LPointerMap * pointers,int arguments,Safepoint::DeoptMode deopt_mode)751 void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
752 int arguments,
753 Safepoint::DeoptMode deopt_mode) {
754 RecordSafepoint(
755 pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
756 }
757
758
RecordSafepointWithRegistersAndDoubles(LPointerMap * pointers,int arguments,Safepoint::DeoptMode deopt_mode)759 void LCodeGen::RecordSafepointWithRegistersAndDoubles(
760 LPointerMap* pointers,
761 int arguments,
762 Safepoint::DeoptMode deopt_mode) {
763 RecordSafepoint(
764 pointers, Safepoint::kWithRegistersAndDoubles, arguments, deopt_mode);
765 }
766
767
RecordPosition(int position)768 void LCodeGen::RecordPosition(int position) {
769 if (position == RelocInfo::kNoPosition) return;
770 masm()->positions_recorder()->RecordPosition(position);
771 }
772
773
DoLabel(LLabel * label)774 void LCodeGen::DoLabel(LLabel* label) {
775 if (label->is_loop_header()) {
776 Comment(";;; B%d - LOOP entry", label->block_id());
777 } else {
778 Comment(";;; B%d", label->block_id());
779 }
780 __ bind(label->label());
781 current_block_ = label->block_id();
782 DoGap(label);
783 }
784
785
DoParallelMove(LParallelMove * move)786 void LCodeGen::DoParallelMove(LParallelMove* move) {
787 resolver_.Resolve(move);
788 }
789
790
DoGap(LGap * gap)791 void LCodeGen::DoGap(LGap* gap) {
792 for (int i = LGap::FIRST_INNER_POSITION;
793 i <= LGap::LAST_INNER_POSITION;
794 i++) {
795 LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
796 LParallelMove* move = gap->GetParallelMove(inner_pos);
797 if (move != NULL) DoParallelMove(move);
798 }
799 }
800
801
DoInstructionGap(LInstructionGap * instr)802 void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
803 DoGap(instr);
804 }
805
806
DoParameter(LParameter * instr)807 void LCodeGen::DoParameter(LParameter* instr) {
808 // Nothing to do.
809 }
810
811
DoCallStub(LCallStub * instr)812 void LCodeGen::DoCallStub(LCallStub* instr) {
813 ASSERT(ToRegister(instr->result()).is(v0));
814 switch (instr->hydrogen()->major_key()) {
815 case CodeStub::RegExpConstructResult: {
816 RegExpConstructResultStub stub;
817 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
818 break;
819 }
820 case CodeStub::RegExpExec: {
821 RegExpExecStub stub;
822 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
823 break;
824 }
825 case CodeStub::SubString: {
826 SubStringStub stub;
827 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
828 break;
829 }
830 case CodeStub::NumberToString: {
831 NumberToStringStub stub;
832 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
833 break;
834 }
835 case CodeStub::StringAdd: {
836 StringAddStub stub(NO_STRING_ADD_FLAGS);
837 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
838 break;
839 }
840 case CodeStub::StringCompare: {
841 StringCompareStub stub;
842 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
843 break;
844 }
845 case CodeStub::TranscendentalCache: {
846 __ lw(a0, MemOperand(sp, 0));
847 TranscendentalCacheStub stub(instr->transcendental_type(),
848 TranscendentalCacheStub::TAGGED);
849 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
850 break;
851 }
852 default:
853 UNREACHABLE();
854 }
855 }
856
857
DoUnknownOSRValue(LUnknownOSRValue * instr)858 void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
859 // Nothing to do.
860 }
861
862
DoModI(LModI * instr)863 void LCodeGen::DoModI(LModI* instr) {
864 Register scratch = scratch0();
865 const Register left = ToRegister(instr->InputAt(0));
866 const Register result = ToRegister(instr->result());
867
868 Label done;
869
870 if (instr->hydrogen()->HasPowerOf2Divisor()) {
871 Register scratch = scratch0();
872 ASSERT(!left.is(scratch));
873 __ mov(scratch, left);
874 int32_t p2constant = HConstant::cast(
875 instr->hydrogen()->right())->Integer32Value();
876 ASSERT(p2constant != 0);
877 // Result always takes the sign of the dividend (left).
878 p2constant = abs(p2constant);
879
880 Label positive_dividend;
881 __ Branch(USE_DELAY_SLOT, &positive_dividend, ge, left, Operand(zero_reg));
882 __ subu(result, zero_reg, left);
883 __ And(result, result, p2constant - 1);
884 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
885 DeoptimizeIf(eq, instr->environment(), result, Operand(zero_reg));
886 }
887 __ Branch(USE_DELAY_SLOT, &done);
888 __ subu(result, zero_reg, result);
889 __ bind(&positive_dividend);
890 __ And(result, scratch, p2constant - 1);
891 } else {
892 // div runs in the background while we check for special cases.
893 Register right = EmitLoadRegister(instr->InputAt(1), scratch);
894 __ div(left, right);
895
896 // Check for x % 0.
897 if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
898 DeoptimizeIf(eq, instr->environment(), right, Operand(zero_reg));
899 }
900
901 __ Branch(USE_DELAY_SLOT, &done, ge, left, Operand(zero_reg));
902 __ mfhi(result);
903
904 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
905 DeoptimizeIf(eq, instr->environment(), result, Operand(zero_reg));
906 }
907 }
908 __ bind(&done);
909 }
910
911
DoDivI(LDivI * instr)912 void LCodeGen::DoDivI(LDivI* instr) {
913 const Register left = ToRegister(instr->InputAt(0));
914 const Register right = ToRegister(instr->InputAt(1));
915 const Register result = ToRegister(instr->result());
916
917 // On MIPS div is asynchronous - it will run in the background while we
918 // check for special cases.
919 __ div(left, right);
920
921 // Check for x / 0.
922 if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
923 DeoptimizeIf(eq, instr->environment(), right, Operand(zero_reg));
924 }
925
926 // Check for (0 / -x) that will produce negative zero.
927 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
928 Label left_not_zero;
929 __ Branch(&left_not_zero, ne, left, Operand(zero_reg));
930 DeoptimizeIf(lt, instr->environment(), right, Operand(zero_reg));
931 __ bind(&left_not_zero);
932 }
933
934 // Check for (-kMinInt / -1).
935 if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
936 Label left_not_min_int;
937 __ Branch(&left_not_min_int, ne, left, Operand(kMinInt));
938 DeoptimizeIf(eq, instr->environment(), right, Operand(-1));
939 __ bind(&left_not_min_int);
940 }
941
942 __ mfhi(result);
943 DeoptimizeIf(ne, instr->environment(), result, Operand(zero_reg));
944 __ mflo(result);
945 }
946
947
DoMulI(LMulI * instr)948 void LCodeGen::DoMulI(LMulI* instr) {
949 Register scratch = scratch0();
950 Register result = ToRegister(instr->result());
951 // Note that result may alias left.
952 Register left = ToRegister(instr->InputAt(0));
953 LOperand* right_op = instr->InputAt(1);
954
955 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
956 bool bailout_on_minus_zero =
957 instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
958
959 if (right_op->IsConstantOperand() && !can_overflow) {
960 // Use optimized code for specific constants.
961 int32_t constant = ToInteger32(LConstantOperand::cast(right_op));
962
963 if (bailout_on_minus_zero && (constant < 0)) {
964 // The case of a null constant will be handled separately.
965 // If constant is negative and left is null, the result should be -0.
966 DeoptimizeIf(eq, instr->environment(), left, Operand(zero_reg));
967 }
968
969 switch (constant) {
970 case -1:
971 __ Subu(result, zero_reg, left);
972 break;
973 case 0:
974 if (bailout_on_minus_zero) {
975 // If left is strictly negative and the constant is null, the
976 // result is -0. Deoptimize if required, otherwise return 0.
977 DeoptimizeIf(lt, instr->environment(), left, Operand(zero_reg));
978 }
979 __ mov(result, zero_reg);
980 break;
981 case 1:
982 // Nothing to do.
983 __ Move(result, left);
984 break;
985 default:
986 // Multiplying by powers of two and powers of two plus or minus
987 // one can be done faster with shifted operands.
988 // For other constants we emit standard code.
989 int32_t mask = constant >> 31;
990 uint32_t constant_abs = (constant + mask) ^ mask;
991
992 if (IsPowerOf2(constant_abs) ||
993 IsPowerOf2(constant_abs - 1) ||
994 IsPowerOf2(constant_abs + 1)) {
995 if (IsPowerOf2(constant_abs)) {
996 int32_t shift = WhichPowerOf2(constant_abs);
997 __ sll(result, left, shift);
998 } else if (IsPowerOf2(constant_abs - 1)) {
999 int32_t shift = WhichPowerOf2(constant_abs - 1);
1000 __ sll(result, left, shift);
1001 __ Addu(result, result, left);
1002 } else if (IsPowerOf2(constant_abs + 1)) {
1003 int32_t shift = WhichPowerOf2(constant_abs + 1);
1004 __ sll(result, left, shift);
1005 __ Subu(result, result, left);
1006 }
1007
1008 // Correct the sign of the result is the constant is negative.
1009 if (constant < 0) {
1010 __ Subu(result, zero_reg, result);
1011 }
1012
1013 } else {
1014 // Generate standard code.
1015 __ li(at, constant);
1016 __ Mul(result, left, at);
1017 }
1018 }
1019
1020 } else {
1021 Register right = EmitLoadRegister(right_op, scratch);
1022 if (bailout_on_minus_zero) {
1023 __ Or(ToRegister(instr->TempAt(0)), left, right);
1024 }
1025
1026 if (can_overflow) {
1027 // hi:lo = left * right.
1028 __ mult(left, right);
1029 __ mfhi(scratch);
1030 __ mflo(result);
1031 __ sra(at, result, 31);
1032 DeoptimizeIf(ne, instr->environment(), scratch, Operand(at));
1033 } else {
1034 __ Mul(result, left, right);
1035 }
1036
1037 if (bailout_on_minus_zero) {
1038 // Bail out if the result is supposed to be negative zero.
1039 Label done;
1040 __ Branch(&done, ne, result, Operand(zero_reg));
1041 DeoptimizeIf(lt,
1042 instr->environment(),
1043 ToRegister(instr->TempAt(0)),
1044 Operand(zero_reg));
1045 __ bind(&done);
1046 }
1047 }
1048 }
1049
1050
DoBitI(LBitI * instr)1051 void LCodeGen::DoBitI(LBitI* instr) {
1052 LOperand* left_op = instr->InputAt(0);
1053 LOperand* right_op = instr->InputAt(1);
1054 ASSERT(left_op->IsRegister());
1055 Register left = ToRegister(left_op);
1056 Register result = ToRegister(instr->result());
1057 Operand right(no_reg);
1058
1059 if (right_op->IsStackSlot() || right_op->IsArgument()) {
1060 right = Operand(EmitLoadRegister(right_op, at));
1061 } else {
1062 ASSERT(right_op->IsRegister() || right_op->IsConstantOperand());
1063 right = ToOperand(right_op);
1064 }
1065
1066 switch (instr->op()) {
1067 case Token::BIT_AND:
1068 __ And(result, left, right);
1069 break;
1070 case Token::BIT_OR:
1071 __ Or(result, left, right);
1072 break;
1073 case Token::BIT_XOR:
1074 __ Xor(result, left, right);
1075 break;
1076 default:
1077 UNREACHABLE();
1078 break;
1079 }
1080 }
1081
1082
DoShiftI(LShiftI * instr)1083 void LCodeGen::DoShiftI(LShiftI* instr) {
1084 // Both 'left' and 'right' are "used at start" (see LCodeGen::DoShift), so
1085 // result may alias either of them.
1086 LOperand* right_op = instr->InputAt(1);
1087 Register left = ToRegister(instr->InputAt(0));
1088 Register result = ToRegister(instr->result());
1089
1090 if (right_op->IsRegister()) {
1091 // No need to mask the right operand on MIPS, it is built into the variable
1092 // shift instructions.
1093 switch (instr->op()) {
1094 case Token::SAR:
1095 __ srav(result, left, ToRegister(right_op));
1096 break;
1097 case Token::SHR:
1098 __ srlv(result, left, ToRegister(right_op));
1099 if (instr->can_deopt()) {
1100 DeoptimizeIf(lt, instr->environment(), result, Operand(zero_reg));
1101 }
1102 break;
1103 case Token::SHL:
1104 __ sllv(result, left, ToRegister(right_op));
1105 break;
1106 default:
1107 UNREACHABLE();
1108 break;
1109 }
1110 } else {
1111 // Mask the right_op operand.
1112 int value = ToInteger32(LConstantOperand::cast(right_op));
1113 uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
1114 switch (instr->op()) {
1115 case Token::SAR:
1116 if (shift_count != 0) {
1117 __ sra(result, left, shift_count);
1118 } else {
1119 __ Move(result, left);
1120 }
1121 break;
1122 case Token::SHR:
1123 if (shift_count != 0) {
1124 __ srl(result, left, shift_count);
1125 } else {
1126 if (instr->can_deopt()) {
1127 __ And(at, left, Operand(0x80000000));
1128 DeoptimizeIf(ne, instr->environment(), at, Operand(zero_reg));
1129 }
1130 __ Move(result, left);
1131 }
1132 break;
1133 case Token::SHL:
1134 if (shift_count != 0) {
1135 __ sll(result, left, shift_count);
1136 } else {
1137 __ Move(result, left);
1138 }
1139 break;
1140 default:
1141 UNREACHABLE();
1142 break;
1143 }
1144 }
1145 }
1146
1147
DoSubI(LSubI * instr)1148 void LCodeGen::DoSubI(LSubI* instr) {
1149 LOperand* left = instr->InputAt(0);
1150 LOperand* right = instr->InputAt(1);
1151 LOperand* result = instr->result();
1152 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1153
1154 if (!can_overflow) {
1155 if (right->IsStackSlot() || right->IsArgument()) {
1156 Register right_reg = EmitLoadRegister(right, at);
1157 __ Subu(ToRegister(result), ToRegister(left), Operand(right_reg));
1158 } else {
1159 ASSERT(right->IsRegister() || right->IsConstantOperand());
1160 __ Subu(ToRegister(result), ToRegister(left), ToOperand(right));
1161 }
1162 } else { // can_overflow.
1163 Register overflow = scratch0();
1164 Register scratch = scratch1();
1165 if (right->IsStackSlot() ||
1166 right->IsArgument() ||
1167 right->IsConstantOperand()) {
1168 Register right_reg = EmitLoadRegister(right, scratch);
1169 __ SubuAndCheckForOverflow(ToRegister(result),
1170 ToRegister(left),
1171 right_reg,
1172 overflow); // Reg at also used as scratch.
1173 } else {
1174 ASSERT(right->IsRegister());
1175 // Due to overflow check macros not supporting constant operands,
1176 // handling the IsConstantOperand case was moved to prev if clause.
1177 __ SubuAndCheckForOverflow(ToRegister(result),
1178 ToRegister(left),
1179 ToRegister(right),
1180 overflow); // Reg at also used as scratch.
1181 }
1182 DeoptimizeIf(lt, instr->environment(), overflow, Operand(zero_reg));
1183 }
1184 }
1185
1186
DoConstantI(LConstantI * instr)1187 void LCodeGen::DoConstantI(LConstantI* instr) {
1188 ASSERT(instr->result()->IsRegister());
1189 __ li(ToRegister(instr->result()), Operand(instr->value()));
1190 }
1191
1192
DoConstantD(LConstantD * instr)1193 void LCodeGen::DoConstantD(LConstantD* instr) {
1194 ASSERT(instr->result()->IsDoubleRegister());
1195 DoubleRegister result = ToDoubleRegister(instr->result());
1196 double v = instr->value();
1197 __ Move(result, v);
1198 }
1199
1200
DoConstantT(LConstantT * instr)1201 void LCodeGen::DoConstantT(LConstantT* instr) {
1202 Handle<Object> value = instr->value();
1203 if (value->IsSmi()) {
1204 __ li(ToRegister(instr->result()), Operand(value));
1205 } else {
1206 __ LoadHeapObject(ToRegister(instr->result()),
1207 Handle<HeapObject>::cast(value));
1208 }
1209 }
1210
1211
DoJSArrayLength(LJSArrayLength * instr)1212 void LCodeGen::DoJSArrayLength(LJSArrayLength* instr) {
1213 Register result = ToRegister(instr->result());
1214 Register array = ToRegister(instr->InputAt(0));
1215 __ lw(result, FieldMemOperand(array, JSArray::kLengthOffset));
1216 }
1217
1218
DoFixedArrayBaseLength(LFixedArrayBaseLength * instr)1219 void LCodeGen::DoFixedArrayBaseLength(LFixedArrayBaseLength* instr) {
1220 Register result = ToRegister(instr->result());
1221 Register array = ToRegister(instr->InputAt(0));
1222 __ lw(result, FieldMemOperand(array, FixedArrayBase::kLengthOffset));
1223 }
1224
1225
DoElementsKind(LElementsKind * instr)1226 void LCodeGen::DoElementsKind(LElementsKind* instr) {
1227 Register result = ToRegister(instr->result());
1228 Register input = ToRegister(instr->InputAt(0));
1229
1230 // Load map into |result|.
1231 __ lw(result, FieldMemOperand(input, HeapObject::kMapOffset));
1232 // Load the map's "bit field 2" into |result|. We only need the first byte,
1233 // but the following bit field extraction takes care of that anyway.
1234 __ lbu(result, FieldMemOperand(result, Map::kBitField2Offset));
1235 // Retrieve elements_kind from bit field 2.
1236 __ Ext(result, result, Map::kElementsKindShift, Map::kElementsKindBitCount);
1237 }
1238
1239
DoValueOf(LValueOf * instr)1240 void LCodeGen::DoValueOf(LValueOf* instr) {
1241 Register input = ToRegister(instr->InputAt(0));
1242 Register result = ToRegister(instr->result());
1243 Register map = ToRegister(instr->TempAt(0));
1244 Label done;
1245
1246 // If the object is a smi return the object.
1247 __ Move(result, input);
1248 __ JumpIfSmi(input, &done);
1249
1250 // If the object is not a value type, return the object.
1251 __ GetObjectType(input, map, map);
1252 __ Branch(&done, ne, map, Operand(JS_VALUE_TYPE));
1253 __ lw(result, FieldMemOperand(input, JSValue::kValueOffset));
1254
1255 __ bind(&done);
1256 }
1257
1258
DoDateField(LDateField * instr)1259 void LCodeGen::DoDateField(LDateField* instr) {
1260 Register object = ToRegister(instr->InputAt(0));
1261 Register result = ToRegister(instr->result());
1262 Register scratch = ToRegister(instr->TempAt(0));
1263 Smi* index = instr->index();
1264 Label runtime, done;
1265 ASSERT(object.is(a0));
1266 ASSERT(result.is(v0));
1267 ASSERT(!scratch.is(scratch0()));
1268 ASSERT(!scratch.is(object));
1269
1270 #ifdef DEBUG
1271 __ AbortIfSmi(object);
1272 __ GetObjectType(object, scratch, scratch);
1273 __ Assert(eq, "Trying to get date field from non-date.",
1274 scratch, Operand(JS_DATE_TYPE));
1275 #endif
1276
1277 if (index->value() == 0) {
1278 __ lw(result, FieldMemOperand(object, JSDate::kValueOffset));
1279 } else {
1280 if (index->value() < JSDate::kFirstUncachedField) {
1281 ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
1282 __ li(scratch, Operand(stamp));
1283 __ lw(scratch, MemOperand(scratch));
1284 __ lw(scratch0(), FieldMemOperand(object, JSDate::kCacheStampOffset));
1285 __ Branch(&runtime, ne, scratch, Operand(scratch0()));
1286 __ lw(result, FieldMemOperand(object, JSDate::kValueOffset +
1287 kPointerSize * index->value()));
1288 __ jmp(&done);
1289 }
1290 __ bind(&runtime);
1291 __ PrepareCallCFunction(2, scratch);
1292 __ li(a1, Operand(index));
1293 __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
1294 __ bind(&done);
1295 }
1296 }
1297
1298
DoBitNotI(LBitNotI * instr)1299 void LCodeGen::DoBitNotI(LBitNotI* instr) {
1300 Register input = ToRegister(instr->InputAt(0));
1301 Register result = ToRegister(instr->result());
1302 __ Nor(result, zero_reg, Operand(input));
1303 }
1304
1305
DoThrow(LThrow * instr)1306 void LCodeGen::DoThrow(LThrow* instr) {
1307 Register input_reg = EmitLoadRegister(instr->InputAt(0), at);
1308 __ push(input_reg);
1309 CallRuntime(Runtime::kThrow, 1, instr);
1310
1311 if (FLAG_debug_code) {
1312 __ stop("Unreachable code.");
1313 }
1314 }
1315
1316
DoAddI(LAddI * instr)1317 void LCodeGen::DoAddI(LAddI* instr) {
1318 LOperand* left = instr->InputAt(0);
1319 LOperand* right = instr->InputAt(1);
1320 LOperand* result = instr->result();
1321 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1322
1323 if (!can_overflow) {
1324 if (right->IsStackSlot() || right->IsArgument()) {
1325 Register right_reg = EmitLoadRegister(right, at);
1326 __ Addu(ToRegister(result), ToRegister(left), Operand(right_reg));
1327 } else {
1328 ASSERT(right->IsRegister() || right->IsConstantOperand());
1329 __ Addu(ToRegister(result), ToRegister(left), ToOperand(right));
1330 }
1331 } else { // can_overflow.
1332 Register overflow = scratch0();
1333 Register scratch = scratch1();
1334 if (right->IsStackSlot() ||
1335 right->IsArgument() ||
1336 right->IsConstantOperand()) {
1337 Register right_reg = EmitLoadRegister(right, scratch);
1338 __ AdduAndCheckForOverflow(ToRegister(result),
1339 ToRegister(left),
1340 right_reg,
1341 overflow); // Reg at also used as scratch.
1342 } else {
1343 ASSERT(right->IsRegister());
1344 // Due to overflow check macros not supporting constant operands,
1345 // handling the IsConstantOperand case was moved to prev if clause.
1346 __ AdduAndCheckForOverflow(ToRegister(result),
1347 ToRegister(left),
1348 ToRegister(right),
1349 overflow); // Reg at also used as scratch.
1350 }
1351 DeoptimizeIf(lt, instr->environment(), overflow, Operand(zero_reg));
1352 }
1353 }
1354
1355
DoArithmeticD(LArithmeticD * instr)1356 void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
1357 DoubleRegister left = ToDoubleRegister(instr->InputAt(0));
1358 DoubleRegister right = ToDoubleRegister(instr->InputAt(1));
1359 DoubleRegister result = ToDoubleRegister(instr->result());
1360 switch (instr->op()) {
1361 case Token::ADD:
1362 __ add_d(result, left, right);
1363 break;
1364 case Token::SUB:
1365 __ sub_d(result, left, right);
1366 break;
1367 case Token::MUL:
1368 __ mul_d(result, left, right);
1369 break;
1370 case Token::DIV:
1371 __ div_d(result, left, right);
1372 break;
1373 case Token::MOD: {
1374 // Save a0-a3 on the stack.
1375 RegList saved_regs = a0.bit() | a1.bit() | a2.bit() | a3.bit();
1376 __ MultiPush(saved_regs);
1377
1378 __ PrepareCallCFunction(0, 2, scratch0());
1379 __ SetCallCDoubleArguments(left, right);
1380 __ CallCFunction(
1381 ExternalReference::double_fp_operation(Token::MOD, isolate()),
1382 0, 2);
1383 // Move the result in the double result register.
1384 __ GetCFunctionDoubleResult(result);
1385
1386 // Restore saved register.
1387 __ MultiPop(saved_regs);
1388 break;
1389 }
1390 default:
1391 UNREACHABLE();
1392 break;
1393 }
1394 }
1395
1396
DoArithmeticT(LArithmeticT * instr)1397 void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
1398 ASSERT(ToRegister(instr->InputAt(0)).is(a1));
1399 ASSERT(ToRegister(instr->InputAt(1)).is(a0));
1400 ASSERT(ToRegister(instr->result()).is(v0));
1401
1402 BinaryOpStub stub(instr->op(), NO_OVERWRITE);
1403 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
1404 // Other arch use a nop here, to signal that there is no inlined
1405 // patchable code. Mips does not need the nop, since our marker
1406 // instruction (andi zero_reg) will never be used in normal code.
1407 }
1408
1409
GetNextEmittedBlock(int block)1410 int LCodeGen::GetNextEmittedBlock(int block) {
1411 for (int i = block + 1; i < graph()->blocks()->length(); ++i) {
1412 LLabel* label = chunk_->GetLabel(i);
1413 if (!label->HasReplacement()) return i;
1414 }
1415 return -1;
1416 }
1417
1418
EmitBranch(int left_block,int right_block,Condition cc,Register src1,const Operand & src2)1419 void LCodeGen::EmitBranch(int left_block, int right_block,
1420 Condition cc, Register src1, const Operand& src2) {
1421 int next_block = GetNextEmittedBlock(current_block_);
1422 right_block = chunk_->LookupDestination(right_block);
1423 left_block = chunk_->LookupDestination(left_block);
1424 if (right_block == left_block) {
1425 EmitGoto(left_block);
1426 } else if (left_block == next_block) {
1427 __ Branch(chunk_->GetAssemblyLabel(right_block),
1428 NegateCondition(cc), src1, src2);
1429 } else if (right_block == next_block) {
1430 __ Branch(chunk_->GetAssemblyLabel(left_block), cc, src1, src2);
1431 } else {
1432 __ Branch(chunk_->GetAssemblyLabel(left_block), cc, src1, src2);
1433 __ Branch(chunk_->GetAssemblyLabel(right_block));
1434 }
1435 }
1436
1437
EmitBranchF(int left_block,int right_block,Condition cc,FPURegister src1,FPURegister src2)1438 void LCodeGen::EmitBranchF(int left_block, int right_block,
1439 Condition cc, FPURegister src1, FPURegister src2) {
1440 int next_block = GetNextEmittedBlock(current_block_);
1441 right_block = chunk_->LookupDestination(right_block);
1442 left_block = chunk_->LookupDestination(left_block);
1443 if (right_block == left_block) {
1444 EmitGoto(left_block);
1445 } else if (left_block == next_block) {
1446 __ BranchF(chunk_->GetAssemblyLabel(right_block), NULL,
1447 NegateCondition(cc), src1, src2);
1448 } else if (right_block == next_block) {
1449 __ BranchF(chunk_->GetAssemblyLabel(left_block), NULL, cc, src1, src2);
1450 } else {
1451 __ BranchF(chunk_->GetAssemblyLabel(left_block), NULL, cc, src1, src2);
1452 __ Branch(chunk_->GetAssemblyLabel(right_block));
1453 }
1454 }
1455
1456
DoBranch(LBranch * instr)1457 void LCodeGen::DoBranch(LBranch* instr) {
1458 int true_block = chunk_->LookupDestination(instr->true_block_id());
1459 int false_block = chunk_->LookupDestination(instr->false_block_id());
1460
1461 Representation r = instr->hydrogen()->value()->representation();
1462 if (r.IsInteger32()) {
1463 Register reg = ToRegister(instr->InputAt(0));
1464 EmitBranch(true_block, false_block, ne, reg, Operand(zero_reg));
1465 } else if (r.IsDouble()) {
1466 DoubleRegister reg = ToDoubleRegister(instr->InputAt(0));
1467 // Test the double value. Zero and NaN are false.
1468 EmitBranchF(true_block, false_block, ne, reg, kDoubleRegZero);
1469 } else {
1470 ASSERT(r.IsTagged());
1471 Register reg = ToRegister(instr->InputAt(0));
1472 HType type = instr->hydrogen()->value()->type();
1473 if (type.IsBoolean()) {
1474 __ LoadRoot(at, Heap::kTrueValueRootIndex);
1475 EmitBranch(true_block, false_block, eq, reg, Operand(at));
1476 } else if (type.IsSmi()) {
1477 EmitBranch(true_block, false_block, ne, reg, Operand(zero_reg));
1478 } else {
1479 Label* true_label = chunk_->GetAssemblyLabel(true_block);
1480 Label* false_label = chunk_->GetAssemblyLabel(false_block);
1481
1482 ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types();
1483 // Avoid deopts in the case where we've never executed this path before.
1484 if (expected.IsEmpty()) expected = ToBooleanStub::all_types();
1485
1486 if (expected.Contains(ToBooleanStub::UNDEFINED)) {
1487 // undefined -> false.
1488 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
1489 __ Branch(false_label, eq, reg, Operand(at));
1490 }
1491 if (expected.Contains(ToBooleanStub::BOOLEAN)) {
1492 // Boolean -> its value.
1493 __ LoadRoot(at, Heap::kTrueValueRootIndex);
1494 __ Branch(true_label, eq, reg, Operand(at));
1495 __ LoadRoot(at, Heap::kFalseValueRootIndex);
1496 __ Branch(false_label, eq, reg, Operand(at));
1497 }
1498 if (expected.Contains(ToBooleanStub::NULL_TYPE)) {
1499 // 'null' -> false.
1500 __ LoadRoot(at, Heap::kNullValueRootIndex);
1501 __ Branch(false_label, eq, reg, Operand(at));
1502 }
1503
1504 if (expected.Contains(ToBooleanStub::SMI)) {
1505 // Smis: 0 -> false, all other -> true.
1506 __ Branch(false_label, eq, reg, Operand(zero_reg));
1507 __ JumpIfSmi(reg, true_label);
1508 } else if (expected.NeedsMap()) {
1509 // If we need a map later and have a Smi -> deopt.
1510 __ And(at, reg, Operand(kSmiTagMask));
1511 DeoptimizeIf(eq, instr->environment(), at, Operand(zero_reg));
1512 }
1513
1514 const Register map = scratch0();
1515 if (expected.NeedsMap()) {
1516 __ lw(map, FieldMemOperand(reg, HeapObject::kMapOffset));
1517 if (expected.CanBeUndetectable()) {
1518 // Undetectable -> false.
1519 __ lbu(at, FieldMemOperand(map, Map::kBitFieldOffset));
1520 __ And(at, at, Operand(1 << Map::kIsUndetectable));
1521 __ Branch(false_label, ne, at, Operand(zero_reg));
1522 }
1523 }
1524
1525 if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) {
1526 // spec object -> true.
1527 __ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset));
1528 __ Branch(true_label, ge, at, Operand(FIRST_SPEC_OBJECT_TYPE));
1529 }
1530
1531 if (expected.Contains(ToBooleanStub::STRING)) {
1532 // String value -> false iff empty.
1533 Label not_string;
1534 __ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset));
1535 __ Branch(¬_string, ge , at, Operand(FIRST_NONSTRING_TYPE));
1536 __ lw(at, FieldMemOperand(reg, String::kLengthOffset));
1537 __ Branch(true_label, ne, at, Operand(zero_reg));
1538 __ Branch(false_label);
1539 __ bind(¬_string);
1540 }
1541
1542 if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) {
1543 // heap number -> false iff +0, -0, or NaN.
1544 DoubleRegister dbl_scratch = double_scratch0();
1545 Label not_heap_number;
1546 __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
1547 __ Branch(¬_heap_number, ne, map, Operand(at));
1548 __ ldc1(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
1549 __ BranchF(true_label, false_label, ne, dbl_scratch, kDoubleRegZero);
1550 // Falls through if dbl_scratch == 0.
1551 __ Branch(false_label);
1552 __ bind(¬_heap_number);
1553 }
1554
1555 // We've seen something for the first time -> deopt.
1556 DeoptimizeIf(al, instr->environment(), zero_reg, Operand(zero_reg));
1557 }
1558 }
1559 }
1560
1561
EmitGoto(int block)1562 void LCodeGen::EmitGoto(int block) {
1563 block = chunk_->LookupDestination(block);
1564 int next_block = GetNextEmittedBlock(current_block_);
1565 if (block != next_block) {
1566 __ jmp(chunk_->GetAssemblyLabel(block));
1567 }
1568 }
1569
1570
DoGoto(LGoto * instr)1571 void LCodeGen::DoGoto(LGoto* instr) {
1572 EmitGoto(instr->block_id());
1573 }
1574
1575
TokenToCondition(Token::Value op,bool is_unsigned)1576 Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
1577 Condition cond = kNoCondition;
1578 switch (op) {
1579 case Token::EQ:
1580 case Token::EQ_STRICT:
1581 cond = eq;
1582 break;
1583 case Token::LT:
1584 cond = is_unsigned ? lo : lt;
1585 break;
1586 case Token::GT:
1587 cond = is_unsigned ? hi : gt;
1588 break;
1589 case Token::LTE:
1590 cond = is_unsigned ? ls : le;
1591 break;
1592 case Token::GTE:
1593 cond = is_unsigned ? hs : ge;
1594 break;
1595 case Token::IN:
1596 case Token::INSTANCEOF:
1597 default:
1598 UNREACHABLE();
1599 }
1600 return cond;
1601 }
1602
1603
DoCmpIDAndBranch(LCmpIDAndBranch * instr)1604 void LCodeGen::DoCmpIDAndBranch(LCmpIDAndBranch* instr) {
1605 LOperand* left = instr->InputAt(0);
1606 LOperand* right = instr->InputAt(1);
1607 int false_block = chunk_->LookupDestination(instr->false_block_id());
1608 int true_block = chunk_->LookupDestination(instr->true_block_id());
1609
1610 Condition cond = TokenToCondition(instr->op(), false);
1611
1612 if (left->IsConstantOperand() && right->IsConstantOperand()) {
1613 // We can statically evaluate the comparison.
1614 double left_val = ToDouble(LConstantOperand::cast(left));
1615 double right_val = ToDouble(LConstantOperand::cast(right));
1616 int next_block =
1617 EvalComparison(instr->op(), left_val, right_val) ? true_block
1618 : false_block;
1619 EmitGoto(next_block);
1620 } else {
1621 if (instr->is_double()) {
1622 // Compare left and right as doubles and load the
1623 // resulting flags into the normal status register.
1624 FPURegister left_reg = ToDoubleRegister(left);
1625 FPURegister right_reg = ToDoubleRegister(right);
1626
1627 // If a NaN is involved, i.e. the result is unordered,
1628 // jump to false block label.
1629 __ BranchF(NULL, chunk_->GetAssemblyLabel(false_block), eq,
1630 left_reg, right_reg);
1631
1632 EmitBranchF(true_block, false_block, cond, left_reg, right_reg);
1633 } else {
1634 Register cmp_left;
1635 Operand cmp_right = Operand(0);
1636
1637 if (right->IsConstantOperand()) {
1638 cmp_left = ToRegister(left);
1639 cmp_right = Operand(ToInteger32(LConstantOperand::cast(right)));
1640 } else if (left->IsConstantOperand()) {
1641 cmp_left = ToRegister(right);
1642 cmp_right = Operand(ToInteger32(LConstantOperand::cast(left)));
1643 // We transposed the operands. Reverse the condition.
1644 cond = ReverseCondition(cond);
1645 } else {
1646 cmp_left = ToRegister(left);
1647 cmp_right = Operand(ToRegister(right));
1648 }
1649
1650 EmitBranch(true_block, false_block, cond, cmp_left, cmp_right);
1651 }
1652 }
1653 }
1654
1655
DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch * instr)1656 void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
1657 Register left = ToRegister(instr->InputAt(0));
1658 Register right = ToRegister(instr->InputAt(1));
1659 int false_block = chunk_->LookupDestination(instr->false_block_id());
1660 int true_block = chunk_->LookupDestination(instr->true_block_id());
1661
1662 EmitBranch(true_block, false_block, eq, left, Operand(right));
1663 }
1664
1665
DoCmpConstantEqAndBranch(LCmpConstantEqAndBranch * instr)1666 void LCodeGen::DoCmpConstantEqAndBranch(LCmpConstantEqAndBranch* instr) {
1667 Register left = ToRegister(instr->InputAt(0));
1668 int true_block = chunk_->LookupDestination(instr->true_block_id());
1669 int false_block = chunk_->LookupDestination(instr->false_block_id());
1670
1671 EmitBranch(true_block, false_block, eq, left,
1672 Operand(instr->hydrogen()->right()));
1673 }
1674
1675
1676
DoIsNilAndBranch(LIsNilAndBranch * instr)1677 void LCodeGen::DoIsNilAndBranch(LIsNilAndBranch* instr) {
1678 Register scratch = scratch0();
1679 Register reg = ToRegister(instr->InputAt(0));
1680 int false_block = chunk_->LookupDestination(instr->false_block_id());
1681
1682 // If the expression is known to be untagged or a smi, then it's definitely
1683 // not null, and it can't be a an undetectable object.
1684 if (instr->hydrogen()->representation().IsSpecialization() ||
1685 instr->hydrogen()->type().IsSmi()) {
1686 EmitGoto(false_block);
1687 return;
1688 }
1689
1690 int true_block = chunk_->LookupDestination(instr->true_block_id());
1691
1692 Heap::RootListIndex nil_value = instr->nil() == kNullValue ?
1693 Heap::kNullValueRootIndex :
1694 Heap::kUndefinedValueRootIndex;
1695 __ LoadRoot(at, nil_value);
1696 if (instr->kind() == kStrictEquality) {
1697 EmitBranch(true_block, false_block, eq, reg, Operand(at));
1698 } else {
1699 Heap::RootListIndex other_nil_value = instr->nil() == kNullValue ?
1700 Heap::kUndefinedValueRootIndex :
1701 Heap::kNullValueRootIndex;
1702 Label* true_label = chunk_->GetAssemblyLabel(true_block);
1703 Label* false_label = chunk_->GetAssemblyLabel(false_block);
1704 __ Branch(USE_DELAY_SLOT, true_label, eq, reg, Operand(at));
1705 __ LoadRoot(at, other_nil_value); // In the delay slot.
1706 __ Branch(USE_DELAY_SLOT, true_label, eq, reg, Operand(at));
1707 __ JumpIfSmi(reg, false_label); // In the delay slot.
1708 // Check for undetectable objects by looking in the bit field in
1709 // the map. The object has already been smi checked.
1710 __ lw(scratch, FieldMemOperand(reg, HeapObject::kMapOffset));
1711 __ lbu(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
1712 __ And(scratch, scratch, 1 << Map::kIsUndetectable);
1713 EmitBranch(true_block, false_block, ne, scratch, Operand(zero_reg));
1714 }
1715 }
1716
1717
EmitIsObject(Register input,Register temp1,Register temp2,Label * is_not_object,Label * is_object)1718 Condition LCodeGen::EmitIsObject(Register input,
1719 Register temp1,
1720 Register temp2,
1721 Label* is_not_object,
1722 Label* is_object) {
1723 __ JumpIfSmi(input, is_not_object);
1724
1725 __ LoadRoot(temp2, Heap::kNullValueRootIndex);
1726 __ Branch(is_object, eq, input, Operand(temp2));
1727
1728 // Load map.
1729 __ lw(temp1, FieldMemOperand(input, HeapObject::kMapOffset));
1730 // Undetectable objects behave like undefined.
1731 __ lbu(temp2, FieldMemOperand(temp1, Map::kBitFieldOffset));
1732 __ And(temp2, temp2, Operand(1 << Map::kIsUndetectable));
1733 __ Branch(is_not_object, ne, temp2, Operand(zero_reg));
1734
1735 // Load instance type and check that it is in object type range.
1736 __ lbu(temp2, FieldMemOperand(temp1, Map::kInstanceTypeOffset));
1737 __ Branch(is_not_object,
1738 lt, temp2, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
1739
1740 return le;
1741 }
1742
1743
DoIsObjectAndBranch(LIsObjectAndBranch * instr)1744 void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) {
1745 Register reg = ToRegister(instr->InputAt(0));
1746 Register temp1 = ToRegister(instr->TempAt(0));
1747 Register temp2 = scratch0();
1748
1749 int true_block = chunk_->LookupDestination(instr->true_block_id());
1750 int false_block = chunk_->LookupDestination(instr->false_block_id());
1751 Label* true_label = chunk_->GetAssemblyLabel(true_block);
1752 Label* false_label = chunk_->GetAssemblyLabel(false_block);
1753
1754 Condition true_cond =
1755 EmitIsObject(reg, temp1, temp2, false_label, true_label);
1756
1757 EmitBranch(true_block, false_block, true_cond, temp2,
1758 Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
1759 }
1760
1761
EmitIsString(Register input,Register temp1,Label * is_not_string)1762 Condition LCodeGen::EmitIsString(Register input,
1763 Register temp1,
1764 Label* is_not_string) {
1765 __ JumpIfSmi(input, is_not_string);
1766 __ GetObjectType(input, temp1, temp1);
1767
1768 return lt;
1769 }
1770
1771
DoIsStringAndBranch(LIsStringAndBranch * instr)1772 void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
1773 Register reg = ToRegister(instr->InputAt(0));
1774 Register temp1 = ToRegister(instr->TempAt(0));
1775
1776 int true_block = chunk_->LookupDestination(instr->true_block_id());
1777 int false_block = chunk_->LookupDestination(instr->false_block_id());
1778 Label* false_label = chunk_->GetAssemblyLabel(false_block);
1779
1780 Condition true_cond =
1781 EmitIsString(reg, temp1, false_label);
1782
1783 EmitBranch(true_block, false_block, true_cond, temp1,
1784 Operand(FIRST_NONSTRING_TYPE));
1785 }
1786
1787
DoIsSmiAndBranch(LIsSmiAndBranch * instr)1788 void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
1789 int true_block = chunk_->LookupDestination(instr->true_block_id());
1790 int false_block = chunk_->LookupDestination(instr->false_block_id());
1791
1792 Register input_reg = EmitLoadRegister(instr->InputAt(0), at);
1793 __ And(at, input_reg, kSmiTagMask);
1794 EmitBranch(true_block, false_block, eq, at, Operand(zero_reg));
1795 }
1796
1797
DoIsUndetectableAndBranch(LIsUndetectableAndBranch * instr)1798 void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
1799 Register input = ToRegister(instr->InputAt(0));
1800 Register temp = ToRegister(instr->TempAt(0));
1801
1802 int true_block = chunk_->LookupDestination(instr->true_block_id());
1803 int false_block = chunk_->LookupDestination(instr->false_block_id());
1804
1805 __ JumpIfSmi(input, chunk_->GetAssemblyLabel(false_block));
1806 __ lw(temp, FieldMemOperand(input, HeapObject::kMapOffset));
1807 __ lbu(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
1808 __ And(at, temp, Operand(1 << Map::kIsUndetectable));
1809 EmitBranch(true_block, false_block, ne, at, Operand(zero_reg));
1810 }
1811
1812
ComputeCompareCondition(Token::Value op)1813 static Condition ComputeCompareCondition(Token::Value op) {
1814 switch (op) {
1815 case Token::EQ_STRICT:
1816 case Token::EQ:
1817 return eq;
1818 case Token::LT:
1819 return lt;
1820 case Token::GT:
1821 return gt;
1822 case Token::LTE:
1823 return le;
1824 case Token::GTE:
1825 return ge;
1826 default:
1827 UNREACHABLE();
1828 return kNoCondition;
1829 }
1830 }
1831
1832
DoStringCompareAndBranch(LStringCompareAndBranch * instr)1833 void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
1834 Token::Value op = instr->op();
1835 int true_block = chunk_->LookupDestination(instr->true_block_id());
1836 int false_block = chunk_->LookupDestination(instr->false_block_id());
1837
1838 Handle<Code> ic = CompareIC::GetUninitialized(op);
1839 CallCode(ic, RelocInfo::CODE_TARGET, instr);
1840
1841 Condition condition = ComputeCompareCondition(op);
1842
1843 EmitBranch(true_block, false_block, condition, v0, Operand(zero_reg));
1844 }
1845
1846
TestType(HHasInstanceTypeAndBranch * instr)1847 static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
1848 InstanceType from = instr->from();
1849 InstanceType to = instr->to();
1850 if (from == FIRST_TYPE) return to;
1851 ASSERT(from == to || to == LAST_TYPE);
1852 return from;
1853 }
1854
1855
BranchCondition(HHasInstanceTypeAndBranch * instr)1856 static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
1857 InstanceType from = instr->from();
1858 InstanceType to = instr->to();
1859 if (from == to) return eq;
1860 if (to == LAST_TYPE) return hs;
1861 if (from == FIRST_TYPE) return ls;
1862 UNREACHABLE();
1863 return eq;
1864 }
1865
1866
DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch * instr)1867 void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
1868 Register scratch = scratch0();
1869 Register input = ToRegister(instr->InputAt(0));
1870
1871 int true_block = chunk_->LookupDestination(instr->true_block_id());
1872 int false_block = chunk_->LookupDestination(instr->false_block_id());
1873
1874 Label* false_label = chunk_->GetAssemblyLabel(false_block);
1875
1876 __ JumpIfSmi(input, false_label);
1877
1878 __ GetObjectType(input, scratch, scratch);
1879 EmitBranch(true_block,
1880 false_block,
1881 BranchCondition(instr->hydrogen()),
1882 scratch,
1883 Operand(TestType(instr->hydrogen())));
1884 }
1885
1886
DoGetCachedArrayIndex(LGetCachedArrayIndex * instr)1887 void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
1888 Register input = ToRegister(instr->InputAt(0));
1889 Register result = ToRegister(instr->result());
1890
1891 if (FLAG_debug_code) {
1892 __ AbortIfNotString(input);
1893 }
1894
1895 __ lw(result, FieldMemOperand(input, String::kHashFieldOffset));
1896 __ IndexFromHash(result, result);
1897 }
1898
1899
DoHasCachedArrayIndexAndBranch(LHasCachedArrayIndexAndBranch * instr)1900 void LCodeGen::DoHasCachedArrayIndexAndBranch(
1901 LHasCachedArrayIndexAndBranch* instr) {
1902 Register input = ToRegister(instr->InputAt(0));
1903 Register scratch = scratch0();
1904
1905 int true_block = chunk_->LookupDestination(instr->true_block_id());
1906 int false_block = chunk_->LookupDestination(instr->false_block_id());
1907
1908 __ lw(scratch,
1909 FieldMemOperand(input, String::kHashFieldOffset));
1910 __ And(at, scratch, Operand(String::kContainsCachedArrayIndexMask));
1911 EmitBranch(true_block, false_block, eq, at, Operand(zero_reg));
1912 }
1913
1914
1915 // Branches to a label or falls through with the answer in flags. Trashes
1916 // the temp registers, but not the input.
EmitClassOfTest(Label * is_true,Label * is_false,Handle<String> class_name,Register input,Register temp,Register temp2)1917 void LCodeGen::EmitClassOfTest(Label* is_true,
1918 Label* is_false,
1919 Handle<String>class_name,
1920 Register input,
1921 Register temp,
1922 Register temp2) {
1923 ASSERT(!input.is(temp));
1924 ASSERT(!input.is(temp2));
1925 ASSERT(!temp.is(temp2));
1926
1927 __ JumpIfSmi(input, is_false);
1928
1929 if (class_name->IsEqualTo(CStrVector("Function"))) {
1930 // Assuming the following assertions, we can use the same compares to test
1931 // for both being a function type and being in the object type range.
1932 STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
1933 STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
1934 FIRST_SPEC_OBJECT_TYPE + 1);
1935 STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
1936 LAST_SPEC_OBJECT_TYPE - 1);
1937 STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
1938
1939 __ GetObjectType(input, temp, temp2);
1940 __ Branch(is_false, lt, temp2, Operand(FIRST_SPEC_OBJECT_TYPE));
1941 __ Branch(is_true, eq, temp2, Operand(FIRST_SPEC_OBJECT_TYPE));
1942 __ Branch(is_true, eq, temp2, Operand(LAST_SPEC_OBJECT_TYPE));
1943 } else {
1944 // Faster code path to avoid two compares: subtract lower bound from the
1945 // actual type and do a signed compare with the width of the type range.
1946 __ GetObjectType(input, temp, temp2);
1947 __ Subu(temp2, temp2, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
1948 __ Branch(is_false, gt, temp2, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE -
1949 FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
1950 }
1951
1952 // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range.
1953 // Check if the constructor in the map is a function.
1954 __ lw(temp, FieldMemOperand(temp, Map::kConstructorOffset));
1955
1956 // Objects with a non-function constructor have class 'Object'.
1957 __ GetObjectType(temp, temp2, temp2);
1958 if (class_name->IsEqualTo(CStrVector("Object"))) {
1959 __ Branch(is_true, ne, temp2, Operand(JS_FUNCTION_TYPE));
1960 } else {
1961 __ Branch(is_false, ne, temp2, Operand(JS_FUNCTION_TYPE));
1962 }
1963
1964 // temp now contains the constructor function. Grab the
1965 // instance class name from there.
1966 __ lw(temp, FieldMemOperand(temp, JSFunction::kSharedFunctionInfoOffset));
1967 __ lw(temp, FieldMemOperand(temp,
1968 SharedFunctionInfo::kInstanceClassNameOffset));
1969 // The class name we are testing against is a symbol because it's a literal.
1970 // The name in the constructor is a symbol because of the way the context is
1971 // booted. This routine isn't expected to work for random API-created
1972 // classes and it doesn't have to because you can't access it with natives
1973 // syntax. Since both sides are symbols it is sufficient to use an identity
1974 // comparison.
1975
1976 // End with the address of this class_name instance in temp register.
1977 // On MIPS, the caller must do the comparison with Handle<String>class_name.
1978 }
1979
1980
DoClassOfTestAndBranch(LClassOfTestAndBranch * instr)1981 void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
1982 Register input = ToRegister(instr->InputAt(0));
1983 Register temp = scratch0();
1984 Register temp2 = ToRegister(instr->TempAt(0));
1985 Handle<String> class_name = instr->hydrogen()->class_name();
1986
1987 int true_block = chunk_->LookupDestination(instr->true_block_id());
1988 int false_block = chunk_->LookupDestination(instr->false_block_id());
1989
1990 Label* true_label = chunk_->GetAssemblyLabel(true_block);
1991 Label* false_label = chunk_->GetAssemblyLabel(false_block);
1992
1993 EmitClassOfTest(true_label, false_label, class_name, input, temp, temp2);
1994
1995 EmitBranch(true_block, false_block, eq, temp, Operand(class_name));
1996 }
1997
1998
DoCmpMapAndBranch(LCmpMapAndBranch * instr)1999 void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
2000 Register reg = ToRegister(instr->InputAt(0));
2001 Register temp = ToRegister(instr->TempAt(0));
2002 int true_block = instr->true_block_id();
2003 int false_block = instr->false_block_id();
2004
2005 __ lw(temp, FieldMemOperand(reg, HeapObject::kMapOffset));
2006 EmitBranch(true_block, false_block, eq, temp, Operand(instr->map()));
2007 }
2008
2009
DoInstanceOf(LInstanceOf * instr)2010 void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
2011 Label true_label, done;
2012 ASSERT(ToRegister(instr->InputAt(0)).is(a0)); // Object is in a0.
2013 ASSERT(ToRegister(instr->InputAt(1)).is(a1)); // Function is in a1.
2014 Register result = ToRegister(instr->result());
2015 ASSERT(result.is(v0));
2016
2017 InstanceofStub stub(InstanceofStub::kArgsInRegisters);
2018 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
2019
2020 __ Branch(&true_label, eq, result, Operand(zero_reg));
2021 __ li(result, Operand(factory()->false_value()));
2022 __ Branch(&done);
2023 __ bind(&true_label);
2024 __ li(result, Operand(factory()->true_value()));
2025 __ bind(&done);
2026 }
2027
2028
DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal * instr)2029 void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) {
2030 class DeferredInstanceOfKnownGlobal: public LDeferredCode {
2031 public:
2032 DeferredInstanceOfKnownGlobal(LCodeGen* codegen,
2033 LInstanceOfKnownGlobal* instr)
2034 : LDeferredCode(codegen), instr_(instr) { }
2035 virtual void Generate() {
2036 codegen()->DoDeferredInstanceOfKnownGlobal(instr_, &map_check_);
2037 }
2038 virtual LInstruction* instr() { return instr_; }
2039 Label* map_check() { return &map_check_; }
2040
2041 private:
2042 LInstanceOfKnownGlobal* instr_;
2043 Label map_check_;
2044 };
2045
2046 DeferredInstanceOfKnownGlobal* deferred;
2047 deferred = new DeferredInstanceOfKnownGlobal(this, instr);
2048
2049 Label done, false_result;
2050 Register object = ToRegister(instr->InputAt(0));
2051 Register temp = ToRegister(instr->TempAt(0));
2052 Register result = ToRegister(instr->result());
2053
2054 ASSERT(object.is(a0));
2055 ASSERT(result.is(v0));
2056
2057 // A Smi is not instance of anything.
2058 __ JumpIfSmi(object, &false_result);
2059
2060 // This is the inlined call site instanceof cache. The two occurences of the
2061 // hole value will be patched to the last map/result pair generated by the
2062 // instanceof stub.
2063 Label cache_miss;
2064 Register map = temp;
2065 __ lw(map, FieldMemOperand(object, HeapObject::kMapOffset));
2066
2067 Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
2068 __ bind(deferred->map_check()); // Label for calculating code patching.
2069 // We use Factory::the_hole_value() on purpose instead of loading from the
2070 // root array to force relocation to be able to later patch with
2071 // the cached map.
2072 Handle<JSGlobalPropertyCell> cell =
2073 factory()->NewJSGlobalPropertyCell(factory()->the_hole_value());
2074 __ li(at, Operand(Handle<Object>(cell)));
2075 __ lw(at, FieldMemOperand(at, JSGlobalPropertyCell::kValueOffset));
2076 __ Branch(&cache_miss, ne, map, Operand(at));
2077 // We use Factory::the_hole_value() on purpose instead of loading from the
2078 // root array to force relocation to be able to later patch
2079 // with true or false.
2080 __ li(result, Operand(factory()->the_hole_value()), CONSTANT_SIZE);
2081 __ Branch(&done);
2082
2083 // The inlined call site cache did not match. Check null and string before
2084 // calling the deferred code.
2085 __ bind(&cache_miss);
2086 // Null is not instance of anything.
2087 __ LoadRoot(temp, Heap::kNullValueRootIndex);
2088 __ Branch(&false_result, eq, object, Operand(temp));
2089
2090 // String values is not instance of anything.
2091 Condition cc = __ IsObjectStringType(object, temp, temp);
2092 __ Branch(&false_result, cc, temp, Operand(zero_reg));
2093
2094 // Go to the deferred code.
2095 __ Branch(deferred->entry());
2096
2097 __ bind(&false_result);
2098 __ LoadRoot(result, Heap::kFalseValueRootIndex);
2099
2100 // Here result has either true or false. Deferred code also produces true or
2101 // false object.
2102 __ bind(deferred->exit());
2103 __ bind(&done);
2104 }
2105
2106
DoDeferredInstanceOfKnownGlobal(LInstanceOfKnownGlobal * instr,Label * map_check)2107 void LCodeGen::DoDeferredInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr,
2108 Label* map_check) {
2109 Register result = ToRegister(instr->result());
2110 ASSERT(result.is(v0));
2111
2112 InstanceofStub::Flags flags = InstanceofStub::kNoFlags;
2113 flags = static_cast<InstanceofStub::Flags>(
2114 flags | InstanceofStub::kArgsInRegisters);
2115 flags = static_cast<InstanceofStub::Flags>(
2116 flags | InstanceofStub::kCallSiteInlineCheck);
2117 flags = static_cast<InstanceofStub::Flags>(
2118 flags | InstanceofStub::kReturnTrueFalseObject);
2119 InstanceofStub stub(flags);
2120
2121 PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
2122
2123 // Get the temp register reserved by the instruction. This needs to be t0 as
2124 // its slot of the pushing of safepoint registers is used to communicate the
2125 // offset to the location of the map check.
2126 Register temp = ToRegister(instr->TempAt(0));
2127 ASSERT(temp.is(t0));
2128 __ LoadHeapObject(InstanceofStub::right(), instr->function());
2129 static const int kAdditionalDelta = 7;
2130 int delta = masm_->InstructionsGeneratedSince(map_check) + kAdditionalDelta;
2131 Label before_push_delta;
2132 __ bind(&before_push_delta);
2133 {
2134 Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
2135 __ li(temp, Operand(delta * kPointerSize), CONSTANT_SIZE);
2136 __ StoreToSafepointRegisterSlot(temp, temp);
2137 }
2138 CallCodeGeneric(stub.GetCode(),
2139 RelocInfo::CODE_TARGET,
2140 instr,
2141 RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
2142 ASSERT(instr->HasDeoptimizationEnvironment());
2143 LEnvironment* env = instr->deoptimization_environment();
2144 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
2145 // Put the result value into the result register slot and
2146 // restore all registers.
2147 __ StoreToSafepointRegisterSlot(result, result);
2148 }
2149
2150
DoCmpT(LCmpT * instr)2151 void LCodeGen::DoCmpT(LCmpT* instr) {
2152 Token::Value op = instr->op();
2153
2154 Handle<Code> ic = CompareIC::GetUninitialized(op);
2155 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2156 // On MIPS there is no need for a "no inlined smi code" marker (nop).
2157
2158 Condition condition = ComputeCompareCondition(op);
2159 // A minor optimization that relies on LoadRoot always emitting one
2160 // instruction.
2161 Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm());
2162 Label done;
2163 __ Branch(USE_DELAY_SLOT, &done, condition, v0, Operand(zero_reg));
2164 __ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex);
2165 __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex);
2166 ASSERT_EQ(3, masm()->InstructionsGeneratedSince(&done));
2167 __ bind(&done);
2168 }
2169
2170
DoReturn(LReturn * instr)2171 void LCodeGen::DoReturn(LReturn* instr) {
2172 if (FLAG_trace) {
2173 // Push the return value on the stack as the parameter.
2174 // Runtime::TraceExit returns its parameter in v0.
2175 __ push(v0);
2176 __ CallRuntime(Runtime::kTraceExit, 1);
2177 }
2178 int32_t sp_delta = (GetParameterCount() + 1) * kPointerSize;
2179 __ mov(sp, fp);
2180 __ Pop(ra, fp);
2181 __ Addu(sp, sp, Operand(sp_delta));
2182 __ Jump(ra);
2183 }
2184
2185
DoLoadGlobalCell(LLoadGlobalCell * instr)2186 void LCodeGen::DoLoadGlobalCell(LLoadGlobalCell* instr) {
2187 Register result = ToRegister(instr->result());
2188 __ li(at, Operand(Handle<Object>(instr->hydrogen()->cell())));
2189 __ lw(result, FieldMemOperand(at, JSGlobalPropertyCell::kValueOffset));
2190 if (instr->hydrogen()->RequiresHoleCheck()) {
2191 __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
2192 DeoptimizeIf(eq, instr->environment(), result, Operand(at));
2193 }
2194 }
2195
2196
DoLoadGlobalGeneric(LLoadGlobalGeneric * instr)2197 void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
2198 ASSERT(ToRegister(instr->global_object()).is(a0));
2199 ASSERT(ToRegister(instr->result()).is(v0));
2200
2201 __ li(a2, Operand(instr->name()));
2202 RelocInfo::Mode mode = instr->for_typeof() ? RelocInfo::CODE_TARGET
2203 : RelocInfo::CODE_TARGET_CONTEXT;
2204 Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
2205 CallCode(ic, mode, instr);
2206 }
2207
2208
DoStoreGlobalCell(LStoreGlobalCell * instr)2209 void LCodeGen::DoStoreGlobalCell(LStoreGlobalCell* instr) {
2210 Register value = ToRegister(instr->value());
2211 Register cell = scratch0();
2212
2213 // Load the cell.
2214 __ li(cell, Operand(instr->hydrogen()->cell()));
2215
2216 // If the cell we are storing to contains the hole it could have
2217 // been deleted from the property dictionary. In that case, we need
2218 // to update the property details in the property dictionary to mark
2219 // it as no longer deleted.
2220 if (instr->hydrogen()->RequiresHoleCheck()) {
2221 // We use a temp to check the payload.
2222 Register payload = ToRegister(instr->TempAt(0));
2223 __ lw(payload, FieldMemOperand(cell, JSGlobalPropertyCell::kValueOffset));
2224 __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
2225 DeoptimizeIf(eq, instr->environment(), payload, Operand(at));
2226 }
2227
2228 // Store the value.
2229 __ sw(value, FieldMemOperand(cell, JSGlobalPropertyCell::kValueOffset));
2230 // Cells are always rescanned, so no write barrier here.
2231 }
2232
2233
DoStoreGlobalGeneric(LStoreGlobalGeneric * instr)2234 void LCodeGen::DoStoreGlobalGeneric(LStoreGlobalGeneric* instr) {
2235 ASSERT(ToRegister(instr->global_object()).is(a1));
2236 ASSERT(ToRegister(instr->value()).is(a0));
2237
2238 __ li(a2, Operand(instr->name()));
2239 Handle<Code> ic = (instr->strict_mode_flag() == kStrictMode)
2240 ? isolate()->builtins()->StoreIC_Initialize_Strict()
2241 : isolate()->builtins()->StoreIC_Initialize();
2242 CallCode(ic, RelocInfo::CODE_TARGET_CONTEXT, instr);
2243 }
2244
2245
DoLoadContextSlot(LLoadContextSlot * instr)2246 void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
2247 Register context = ToRegister(instr->context());
2248 Register result = ToRegister(instr->result());
2249
2250 __ lw(result, ContextOperand(context, instr->slot_index()));
2251 if (instr->hydrogen()->RequiresHoleCheck()) {
2252 __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
2253
2254 if (instr->hydrogen()->DeoptimizesOnHole()) {
2255 DeoptimizeIf(eq, instr->environment(), result, Operand(at));
2256 } else {
2257 Label is_not_hole;
2258 __ Branch(&is_not_hole, ne, result, Operand(at));
2259 __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
2260 __ bind(&is_not_hole);
2261 }
2262 }
2263 }
2264
2265
DoStoreContextSlot(LStoreContextSlot * instr)2266 void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
2267 Register context = ToRegister(instr->context());
2268 Register value = ToRegister(instr->value());
2269 Register scratch = scratch0();
2270 MemOperand target = ContextOperand(context, instr->slot_index());
2271
2272 Label skip_assignment;
2273
2274 if (instr->hydrogen()->RequiresHoleCheck()) {
2275 __ lw(scratch, target);
2276 __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
2277
2278 if (instr->hydrogen()->DeoptimizesOnHole()) {
2279 DeoptimizeIf(eq, instr->environment(), scratch, Operand(at));
2280 } else {
2281 __ Branch(&skip_assignment, ne, scratch, Operand(at));
2282 }
2283 }
2284
2285 __ sw(value, target);
2286 if (instr->hydrogen()->NeedsWriteBarrier()) {
2287 HType type = instr->hydrogen()->value()->type();
2288 SmiCheck check_needed =
2289 type.IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
2290 __ RecordWriteContextSlot(context,
2291 target.offset(),
2292 value,
2293 scratch0(),
2294 kRAHasBeenSaved,
2295 kSaveFPRegs,
2296 EMIT_REMEMBERED_SET,
2297 check_needed);
2298 }
2299
2300 __ bind(&skip_assignment);
2301 }
2302
2303
DoLoadNamedField(LLoadNamedField * instr)2304 void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
2305 Register object = ToRegister(instr->InputAt(0));
2306 Register result = ToRegister(instr->result());
2307 if (instr->hydrogen()->is_in_object()) {
2308 __ lw(result, FieldMemOperand(object, instr->hydrogen()->offset()));
2309 } else {
2310 __ lw(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
2311 __ lw(result, FieldMemOperand(result, instr->hydrogen()->offset()));
2312 }
2313 }
2314
2315
EmitLoadFieldOrConstantFunction(Register result,Register object,Handle<Map> type,Handle<String> name)2316 void LCodeGen::EmitLoadFieldOrConstantFunction(Register result,
2317 Register object,
2318 Handle<Map> type,
2319 Handle<String> name) {
2320 LookupResult lookup(isolate());
2321 type->LookupInDescriptors(NULL, *name, &lookup);
2322 ASSERT(lookup.IsFound() &&
2323 (lookup.type() == FIELD || lookup.type() == CONSTANT_FUNCTION));
2324 if (lookup.type() == FIELD) {
2325 int index = lookup.GetLocalFieldIndexFromMap(*type);
2326 int offset = index * kPointerSize;
2327 if (index < 0) {
2328 // Negative property indices are in-object properties, indexed
2329 // from the end of the fixed part of the object.
2330 __ lw(result, FieldMemOperand(object, offset + type->instance_size()));
2331 } else {
2332 // Non-negative property indices are in the properties array.
2333 __ lw(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
2334 __ lw(result, FieldMemOperand(result, offset + FixedArray::kHeaderSize));
2335 }
2336 } else {
2337 Handle<JSFunction> function(lookup.GetConstantFunctionFromMap(*type));
2338 __ LoadHeapObject(result, function);
2339 }
2340 }
2341
2342
DoLoadNamedFieldPolymorphic(LLoadNamedFieldPolymorphic * instr)2343 void LCodeGen::DoLoadNamedFieldPolymorphic(LLoadNamedFieldPolymorphic* instr) {
2344 Register object = ToRegister(instr->object());
2345 Register result = ToRegister(instr->result());
2346 Register scratch = scratch0();
2347 int map_count = instr->hydrogen()->types()->length();
2348 Handle<String> name = instr->hydrogen()->name();
2349 if (map_count == 0) {
2350 ASSERT(instr->hydrogen()->need_generic());
2351 __ li(a2, Operand(name));
2352 Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
2353 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2354 } else {
2355 Label done;
2356 __ lw(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
2357 for (int i = 0; i < map_count - 1; ++i) {
2358 Handle<Map> map = instr->hydrogen()->types()->at(i);
2359 Label next;
2360 __ Branch(&next, ne, scratch, Operand(map));
2361 EmitLoadFieldOrConstantFunction(result, object, map, name);
2362 __ Branch(&done);
2363 __ bind(&next);
2364 }
2365 Handle<Map> map = instr->hydrogen()->types()->last();
2366 if (instr->hydrogen()->need_generic()) {
2367 Label generic;
2368 __ Branch(&generic, ne, scratch, Operand(map));
2369 EmitLoadFieldOrConstantFunction(result, object, map, name);
2370 __ Branch(&done);
2371 __ bind(&generic);
2372 __ li(a2, Operand(name));
2373 Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
2374 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2375 } else {
2376 DeoptimizeIf(ne, instr->environment(), scratch, Operand(map));
2377 EmitLoadFieldOrConstantFunction(result, object, map, name);
2378 }
2379 __ bind(&done);
2380 }
2381 }
2382
2383
DoLoadNamedGeneric(LLoadNamedGeneric * instr)2384 void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
2385 ASSERT(ToRegister(instr->object()).is(a0));
2386 ASSERT(ToRegister(instr->result()).is(v0));
2387
2388 // Name is always in a2.
2389 __ li(a2, Operand(instr->name()));
2390 Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
2391 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2392 }
2393
2394
DoLoadFunctionPrototype(LLoadFunctionPrototype * instr)2395 void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
2396 Register scratch = scratch0();
2397 Register function = ToRegister(instr->function());
2398 Register result = ToRegister(instr->result());
2399
2400 // Check that the function really is a function. Load map into the
2401 // result register.
2402 __ GetObjectType(function, result, scratch);
2403 DeoptimizeIf(ne, instr->environment(), scratch, Operand(JS_FUNCTION_TYPE));
2404
2405 // Make sure that the function has an instance prototype.
2406 Label non_instance;
2407 __ lbu(scratch, FieldMemOperand(result, Map::kBitFieldOffset));
2408 __ And(scratch, scratch, Operand(1 << Map::kHasNonInstancePrototype));
2409 __ Branch(&non_instance, ne, scratch, Operand(zero_reg));
2410
2411 // Get the prototype or initial map from the function.
2412 __ lw(result,
2413 FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
2414
2415 // Check that the function has a prototype or an initial map.
2416 __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
2417 DeoptimizeIf(eq, instr->environment(), result, Operand(at));
2418
2419 // If the function does not have an initial map, we're done.
2420 Label done;
2421 __ GetObjectType(result, scratch, scratch);
2422 __ Branch(&done, ne, scratch, Operand(MAP_TYPE));
2423
2424 // Get the prototype from the initial map.
2425 __ lw(result, FieldMemOperand(result, Map::kPrototypeOffset));
2426 __ Branch(&done);
2427
2428 // Non-instance prototype: Fetch prototype from constructor field
2429 // in initial map.
2430 __ bind(&non_instance);
2431 __ lw(result, FieldMemOperand(result, Map::kConstructorOffset));
2432
2433 // All done.
2434 __ bind(&done);
2435 }
2436
2437
DoLoadElements(LLoadElements * instr)2438 void LCodeGen::DoLoadElements(LLoadElements* instr) {
2439 Register result = ToRegister(instr->result());
2440 Register input = ToRegister(instr->InputAt(0));
2441 Register scratch = scratch0();
2442
2443 __ lw(result, FieldMemOperand(input, JSObject::kElementsOffset));
2444 if (FLAG_debug_code) {
2445 Label done, fail;
2446 __ lw(scratch, FieldMemOperand(result, HeapObject::kMapOffset));
2447 __ LoadRoot(at, Heap::kFixedArrayMapRootIndex);
2448 __ Branch(USE_DELAY_SLOT, &done, eq, scratch, Operand(at));
2449 __ LoadRoot(at, Heap::kFixedCOWArrayMapRootIndex); // In the delay slot.
2450 __ Branch(&done, eq, scratch, Operand(at));
2451 // |scratch| still contains |input|'s map.
2452 __ lbu(scratch, FieldMemOperand(scratch, Map::kBitField2Offset));
2453 __ Ext(scratch, scratch, Map::kElementsKindShift,
2454 Map::kElementsKindBitCount);
2455 __ Branch(&done, eq, scratch,
2456 Operand(FAST_ELEMENTS));
2457 __ Branch(&fail, lt, scratch,
2458 Operand(FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND));
2459 __ Branch(&done, le, scratch,
2460 Operand(LAST_EXTERNAL_ARRAY_ELEMENTS_KIND));
2461 __ bind(&fail);
2462 __ Abort("Check for fast or external elements failed.");
2463 __ bind(&done);
2464 }
2465 }
2466
2467
DoLoadExternalArrayPointer(LLoadExternalArrayPointer * instr)2468 void LCodeGen::DoLoadExternalArrayPointer(
2469 LLoadExternalArrayPointer* instr) {
2470 Register to_reg = ToRegister(instr->result());
2471 Register from_reg = ToRegister(instr->InputAt(0));
2472 __ lw(to_reg, FieldMemOperand(from_reg,
2473 ExternalArray::kExternalPointerOffset));
2474 }
2475
2476
DoAccessArgumentsAt(LAccessArgumentsAt * instr)2477 void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
2478 Register arguments = ToRegister(instr->arguments());
2479 Register length = ToRegister(instr->length());
2480 Register index = ToRegister(instr->index());
2481 Register result = ToRegister(instr->result());
2482
2483 // Bailout index is not a valid argument index. Use unsigned check to get
2484 // negative check for free.
2485
2486 // TODO(plind): Shoud be optimized to do the sub before the DeoptimizeIf(),
2487 // as they do in Arm. It will save us an instruction.
2488 DeoptimizeIf(ls, instr->environment(), length, Operand(index));
2489
2490 // There are two words between the frame pointer and the last argument.
2491 // Subtracting from length accounts for one of them, add one more.
2492 __ subu(length, length, index);
2493 __ Addu(length, length, Operand(1));
2494 __ sll(length, length, kPointerSizeLog2);
2495 __ Addu(at, arguments, Operand(length));
2496 __ lw(result, MemOperand(at, 0));
2497 }
2498
2499
DoLoadKeyedFastElement(LLoadKeyedFastElement * instr)2500 void LCodeGen::DoLoadKeyedFastElement(LLoadKeyedFastElement* instr) {
2501 Register elements = ToRegister(instr->elements());
2502 Register key = EmitLoadRegister(instr->key(), scratch0());
2503 Register result = ToRegister(instr->result());
2504 Register scratch = scratch0();
2505
2506 // Load the result.
2507 __ sll(scratch, key, kPointerSizeLog2); // Key indexes words.
2508 __ addu(scratch, elements, scratch);
2509 __ lw(result, FieldMemOperand(scratch, FixedArray::kHeaderSize));
2510
2511 // Check for the hole value.
2512 if (instr->hydrogen()->RequiresHoleCheck()) {
2513 __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
2514 DeoptimizeIf(eq, instr->environment(), result, Operand(scratch));
2515 }
2516 }
2517
2518
DoLoadKeyedFastDoubleElement(LLoadKeyedFastDoubleElement * instr)2519 void LCodeGen::DoLoadKeyedFastDoubleElement(
2520 LLoadKeyedFastDoubleElement* instr) {
2521 Register elements = ToRegister(instr->elements());
2522 bool key_is_constant = instr->key()->IsConstantOperand();
2523 Register key = no_reg;
2524 DoubleRegister result = ToDoubleRegister(instr->result());
2525 Register scratch = scratch0();
2526
2527 int shift_size =
2528 ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
2529 int constant_key = 0;
2530 if (key_is_constant) {
2531 constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
2532 if (constant_key & 0xF0000000) {
2533 Abort("array index constant value too big.");
2534 }
2535 } else {
2536 key = ToRegister(instr->key());
2537 }
2538
2539 if (key_is_constant) {
2540 __ Addu(elements, elements, Operand(constant_key * (1 << shift_size) +
2541 FixedDoubleArray::kHeaderSize - kHeapObjectTag));
2542 } else {
2543 __ sll(scratch, key, shift_size);
2544 __ Addu(elements, elements, Operand(scratch));
2545 __ Addu(elements, elements,
2546 Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag));
2547 }
2548
2549 __ lw(scratch, MemOperand(elements, sizeof(kHoleNanLower32)));
2550 DeoptimizeIf(eq, instr->environment(), scratch, Operand(kHoleNanUpper32));
2551
2552 __ ldc1(result, MemOperand(elements));
2553 }
2554
2555
DoLoadKeyedSpecializedArrayElement(LLoadKeyedSpecializedArrayElement * instr)2556 void LCodeGen::DoLoadKeyedSpecializedArrayElement(
2557 LLoadKeyedSpecializedArrayElement* instr) {
2558 Register external_pointer = ToRegister(instr->external_pointer());
2559 Register key = no_reg;
2560 ElementsKind elements_kind = instr->elements_kind();
2561 bool key_is_constant = instr->key()->IsConstantOperand();
2562 int constant_key = 0;
2563 if (key_is_constant) {
2564 constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
2565 if (constant_key & 0xF0000000) {
2566 Abort("array index constant value too big.");
2567 }
2568 } else {
2569 key = ToRegister(instr->key());
2570 }
2571 int shift_size = ElementsKindToShiftSize(elements_kind);
2572
2573 if (elements_kind == EXTERNAL_FLOAT_ELEMENTS ||
2574 elements_kind == EXTERNAL_DOUBLE_ELEMENTS) {
2575 FPURegister result = ToDoubleRegister(instr->result());
2576 if (key_is_constant) {
2577 __ Addu(scratch0(), external_pointer, constant_key * (1 << shift_size));
2578 } else {
2579 __ sll(scratch0(), key, shift_size);
2580 __ Addu(scratch0(), scratch0(), external_pointer);
2581 }
2582
2583 if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) {
2584 __ lwc1(result, MemOperand(scratch0()));
2585 __ cvt_d_s(result, result);
2586 } else { // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS
2587 __ ldc1(result, MemOperand(scratch0()));
2588 }
2589 } else {
2590 Register result = ToRegister(instr->result());
2591 Register scratch = scratch0();
2592 MemOperand mem_operand(zero_reg);
2593 if (key_is_constant) {
2594 mem_operand = MemOperand(external_pointer,
2595 constant_key * (1 << shift_size));
2596 } else {
2597 __ sll(scratch, key, shift_size);
2598 __ Addu(scratch, scratch, external_pointer);
2599 mem_operand = MemOperand(scratch);
2600 }
2601 switch (elements_kind) {
2602 case EXTERNAL_BYTE_ELEMENTS:
2603 __ lb(result, mem_operand);
2604 break;
2605 case EXTERNAL_PIXEL_ELEMENTS:
2606 case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
2607 __ lbu(result, mem_operand);
2608 break;
2609 case EXTERNAL_SHORT_ELEMENTS:
2610 __ lh(result, mem_operand);
2611 break;
2612 case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
2613 __ lhu(result, mem_operand);
2614 break;
2615 case EXTERNAL_INT_ELEMENTS:
2616 __ lw(result, mem_operand);
2617 break;
2618 case EXTERNAL_UNSIGNED_INT_ELEMENTS:
2619 __ lw(result, mem_operand);
2620 // TODO(danno): we could be more clever here, perhaps having a special
2621 // version of the stub that detects if the overflow case actually
2622 // happens, and generate code that returns a double rather than int.
2623 DeoptimizeIf(Ugreater_equal, instr->environment(),
2624 result, Operand(0x80000000));
2625 break;
2626 case EXTERNAL_FLOAT_ELEMENTS:
2627 case EXTERNAL_DOUBLE_ELEMENTS:
2628 case FAST_DOUBLE_ELEMENTS:
2629 case FAST_ELEMENTS:
2630 case FAST_SMI_ONLY_ELEMENTS:
2631 case DICTIONARY_ELEMENTS:
2632 case NON_STRICT_ARGUMENTS_ELEMENTS:
2633 UNREACHABLE();
2634 break;
2635 }
2636 }
2637 }
2638
2639
DoLoadKeyedGeneric(LLoadKeyedGeneric * instr)2640 void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
2641 ASSERT(ToRegister(instr->object()).is(a1));
2642 ASSERT(ToRegister(instr->key()).is(a0));
2643
2644 Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize();
2645 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2646 }
2647
2648
DoArgumentsElements(LArgumentsElements * instr)2649 void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
2650 Register scratch = scratch0();
2651 Register temp = scratch1();
2652 Register result = ToRegister(instr->result());
2653
2654 // Check if the calling frame is an arguments adaptor frame.
2655 Label done, adapted;
2656 __ lw(scratch, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
2657 __ lw(result, MemOperand(scratch, StandardFrameConstants::kContextOffset));
2658 __ Xor(temp, result, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
2659
2660 // Result is the frame pointer for the frame if not adapted and for the real
2661 // frame below the adaptor frame if adapted.
2662 __ Movn(result, fp, temp); // Move only if temp is not equal to zero (ne).
2663 __ Movz(result, scratch, temp); // Move only if temp is equal to zero (eq).
2664 }
2665
2666
DoArgumentsLength(LArgumentsLength * instr)2667 void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
2668 Register elem = ToRegister(instr->InputAt(0));
2669 Register result = ToRegister(instr->result());
2670
2671 Label done;
2672
2673 // If no arguments adaptor frame the number of arguments is fixed.
2674 __ Addu(result, zero_reg, Operand(scope()->num_parameters()));
2675 __ Branch(&done, eq, fp, Operand(elem));
2676
2677 // Arguments adaptor frame present. Get argument length from there.
2678 __ lw(result, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
2679 __ lw(result,
2680 MemOperand(result, ArgumentsAdaptorFrameConstants::kLengthOffset));
2681 __ SmiUntag(result);
2682
2683 // Argument length is in result register.
2684 __ bind(&done);
2685 }
2686
2687
DoWrapReceiver(LWrapReceiver * instr)2688 void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
2689 Register receiver = ToRegister(instr->receiver());
2690 Register function = ToRegister(instr->function());
2691 Register scratch = scratch0();
2692
2693 // If the receiver is null or undefined, we have to pass the global
2694 // object as a receiver to normal functions. Values have to be
2695 // passed unchanged to builtins and strict-mode functions.
2696 Label global_object, receiver_ok;
2697
2698 // Do not transform the receiver to object for strict mode
2699 // functions.
2700 __ lw(scratch,
2701 FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
2702 __ lw(scratch,
2703 FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset));
2704
2705 // Do not transform the receiver to object for builtins.
2706 int32_t strict_mode_function_mask =
2707 1 << (SharedFunctionInfo::kStrictModeFunction + kSmiTagSize);
2708 int32_t native_mask = 1 << (SharedFunctionInfo::kNative + kSmiTagSize);
2709 __ And(scratch, scratch, Operand(strict_mode_function_mask | native_mask));
2710 __ Branch(&receiver_ok, ne, scratch, Operand(zero_reg));
2711
2712 // Normal function. Replace undefined or null with global receiver.
2713 __ LoadRoot(scratch, Heap::kNullValueRootIndex);
2714 __ Branch(&global_object, eq, receiver, Operand(scratch));
2715 __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
2716 __ Branch(&global_object, eq, receiver, Operand(scratch));
2717
2718 // Deoptimize if the receiver is not a JS object.
2719 __ And(scratch, receiver, Operand(kSmiTagMask));
2720 DeoptimizeIf(eq, instr->environment(), scratch, Operand(zero_reg));
2721
2722 __ GetObjectType(receiver, scratch, scratch);
2723 DeoptimizeIf(lt, instr->environment(),
2724 scratch, Operand(FIRST_SPEC_OBJECT_TYPE));
2725 __ Branch(&receiver_ok);
2726
2727 __ bind(&global_object);
2728 __ lw(receiver, GlobalObjectOperand());
2729 __ lw(receiver,
2730 FieldMemOperand(receiver, JSGlobalObject::kGlobalReceiverOffset));
2731 __ bind(&receiver_ok);
2732 }
2733
DoApplyArguments(LApplyArguments * instr)2734 void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
2735 Register receiver = ToRegister(instr->receiver());
2736 Register function = ToRegister(instr->function());
2737 Register length = ToRegister(instr->length());
2738 Register elements = ToRegister(instr->elements());
2739 Register scratch = scratch0();
2740 ASSERT(receiver.is(a0)); // Used for parameter count.
2741 ASSERT(function.is(a1)); // Required by InvokeFunction.
2742 ASSERT(ToRegister(instr->result()).is(v0));
2743
2744 // Copy the arguments to this function possibly from the
2745 // adaptor frame below it.
2746 const uint32_t kArgumentsLimit = 1 * KB;
2747 DeoptimizeIf(hi, instr->environment(), length, Operand(kArgumentsLimit));
2748
2749 // Push the receiver and use the register to keep the original
2750 // number of arguments.
2751 __ push(receiver);
2752 __ Move(receiver, length);
2753 // The arguments are at a one pointer size offset from elements.
2754 __ Addu(elements, elements, Operand(1 * kPointerSize));
2755
2756 // Loop through the arguments pushing them onto the execution
2757 // stack.
2758 Label invoke, loop;
2759 // length is a small non-negative integer, due to the test above.
2760 __ Branch(USE_DELAY_SLOT, &invoke, eq, length, Operand(zero_reg));
2761 __ sll(scratch, length, 2);
2762 __ bind(&loop);
2763 __ Addu(scratch, elements, scratch);
2764 __ lw(scratch, MemOperand(scratch));
2765 __ push(scratch);
2766 __ Subu(length, length, Operand(1));
2767 __ Branch(USE_DELAY_SLOT, &loop, ne, length, Operand(zero_reg));
2768 __ sll(scratch, length, 2);
2769
2770 __ bind(&invoke);
2771 ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment());
2772 LPointerMap* pointers = instr->pointer_map();
2773 RecordPosition(pointers->position());
2774 SafepointGenerator safepoint_generator(
2775 this, pointers, Safepoint::kLazyDeopt);
2776 // The number of arguments is stored in receiver which is a0, as expected
2777 // by InvokeFunction.
2778 ParameterCount actual(receiver);
2779 __ InvokeFunction(function, actual, CALL_FUNCTION,
2780 safepoint_generator, CALL_AS_METHOD);
2781 __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2782 }
2783
2784
DoPushArgument(LPushArgument * instr)2785 void LCodeGen::DoPushArgument(LPushArgument* instr) {
2786 LOperand* argument = instr->InputAt(0);
2787 if (argument->IsDoubleRegister() || argument->IsDoubleStackSlot()) {
2788 Abort("DoPushArgument not implemented for double type.");
2789 } else {
2790 Register argument_reg = EmitLoadRegister(argument, at);
2791 __ push(argument_reg);
2792 }
2793 }
2794
2795
DoThisFunction(LThisFunction * instr)2796 void LCodeGen::DoThisFunction(LThisFunction* instr) {
2797 Register result = ToRegister(instr->result());
2798 __ LoadHeapObject(result, instr->hydrogen()->closure());
2799 }
2800
2801
DoContext(LContext * instr)2802 void LCodeGen::DoContext(LContext* instr) {
2803 Register result = ToRegister(instr->result());
2804 __ mov(result, cp);
2805 }
2806
2807
DoOuterContext(LOuterContext * instr)2808 void LCodeGen::DoOuterContext(LOuterContext* instr) {
2809 Register context = ToRegister(instr->context());
2810 Register result = ToRegister(instr->result());
2811 __ lw(result,
2812 MemOperand(context, Context::SlotOffset(Context::PREVIOUS_INDEX)));
2813 }
2814
2815
DoDeclareGlobals(LDeclareGlobals * instr)2816 void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
2817 __ LoadHeapObject(scratch0(), instr->hydrogen()->pairs());
2818 __ li(scratch1(), Operand(Smi::FromInt(instr->hydrogen()->flags())));
2819 // The context is the first argument.
2820 __ Push(cp, scratch0(), scratch1());
2821 CallRuntime(Runtime::kDeclareGlobals, 3, instr);
2822 }
2823
2824
DoGlobalObject(LGlobalObject * instr)2825 void LCodeGen::DoGlobalObject(LGlobalObject* instr) {
2826 Register result = ToRegister(instr->result());
2827 __ lw(result, ContextOperand(cp, Context::GLOBAL_INDEX));
2828 }
2829
2830
DoGlobalReceiver(LGlobalReceiver * instr)2831 void LCodeGen::DoGlobalReceiver(LGlobalReceiver* instr) {
2832 Register global = ToRegister(instr->global());
2833 Register result = ToRegister(instr->result());
2834 __ lw(result, FieldMemOperand(global, GlobalObject::kGlobalReceiverOffset));
2835 }
2836
2837
CallKnownFunction(Handle<JSFunction> function,int arity,LInstruction * instr,CallKind call_kind)2838 void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
2839 int arity,
2840 LInstruction* instr,
2841 CallKind call_kind) {
2842 bool can_invoke_directly = !function->NeedsArgumentsAdaption() ||
2843 function->shared()->formal_parameter_count() == arity;
2844
2845 LPointerMap* pointers = instr->pointer_map();
2846 RecordPosition(pointers->position());
2847
2848 if (can_invoke_directly) {
2849 __ LoadHeapObject(a1, function);
2850 // Change context if needed.
2851 bool change_context =
2852 (info()->closure()->context() != function->context()) ||
2853 scope()->contains_with() ||
2854 (scope()->num_heap_slots() > 0);
2855 if (change_context) {
2856 __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
2857 }
2858
2859 // Set r0 to arguments count if adaption is not needed. Assumes that r0
2860 // is available to write to at this point.
2861 if (!function->NeedsArgumentsAdaption()) {
2862 __ li(a0, Operand(arity));
2863 }
2864
2865 // Invoke function.
2866 __ SetCallKind(t1, call_kind);
2867 __ lw(at, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
2868 __ Call(at);
2869
2870 // Set up deoptimization.
2871 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
2872 } else {
2873 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
2874 ParameterCount count(arity);
2875 __ InvokeFunction(function, count, CALL_FUNCTION, generator, call_kind);
2876 }
2877
2878 // Restore context.
2879 __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2880 }
2881
2882
DoCallConstantFunction(LCallConstantFunction * instr)2883 void LCodeGen::DoCallConstantFunction(LCallConstantFunction* instr) {
2884 ASSERT(ToRegister(instr->result()).is(v0));
2885 __ mov(a0, v0);
2886 CallKnownFunction(instr->function(), instr->arity(), instr, CALL_AS_METHOD);
2887 }
2888
2889
DoDeferredMathAbsTaggedHeapNumber(LUnaryMathOperation * instr)2890 void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LUnaryMathOperation* instr) {
2891 Register input = ToRegister(instr->InputAt(0));
2892 Register result = ToRegister(instr->result());
2893 Register scratch = scratch0();
2894
2895 // Deoptimize if not a heap number.
2896 __ lw(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
2897 __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
2898 DeoptimizeIf(ne, instr->environment(), scratch, Operand(at));
2899
2900 Label done;
2901 Register exponent = scratch0();
2902 scratch = no_reg;
2903 __ lw(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
2904 // Check the sign of the argument. If the argument is positive, just
2905 // return it.
2906 __ Move(result, input);
2907 __ And(at, exponent, Operand(HeapNumber::kSignMask));
2908 __ Branch(&done, eq, at, Operand(zero_reg));
2909
2910 // Input is negative. Reverse its sign.
2911 // Preserve the value of all registers.
2912 {
2913 PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
2914
2915 // Registers were saved at the safepoint, so we can use
2916 // many scratch registers.
2917 Register tmp1 = input.is(a1) ? a0 : a1;
2918 Register tmp2 = input.is(a2) ? a0 : a2;
2919 Register tmp3 = input.is(a3) ? a0 : a3;
2920 Register tmp4 = input.is(t0) ? a0 : t0;
2921
2922 // exponent: floating point exponent value.
2923
2924 Label allocated, slow;
2925 __ LoadRoot(tmp4, Heap::kHeapNumberMapRootIndex);
2926 __ AllocateHeapNumber(tmp1, tmp2, tmp3, tmp4, &slow);
2927 __ Branch(&allocated);
2928
2929 // Slow case: Call the runtime system to do the number allocation.
2930 __ bind(&slow);
2931
2932 CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr);
2933 // Set the pointer to the new heap number in tmp.
2934 if (!tmp1.is(v0))
2935 __ mov(tmp1, v0);
2936 // Restore input_reg after call to runtime.
2937 __ LoadFromSafepointRegisterSlot(input, input);
2938 __ lw(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
2939
2940 __ bind(&allocated);
2941 // exponent: floating point exponent value.
2942 // tmp1: allocated heap number.
2943 __ And(exponent, exponent, Operand(~HeapNumber::kSignMask));
2944 __ sw(exponent, FieldMemOperand(tmp1, HeapNumber::kExponentOffset));
2945 __ lw(tmp2, FieldMemOperand(input, HeapNumber::kMantissaOffset));
2946 __ sw(tmp2, FieldMemOperand(tmp1, HeapNumber::kMantissaOffset));
2947
2948 __ StoreToSafepointRegisterSlot(tmp1, result);
2949 }
2950
2951 __ bind(&done);
2952 }
2953
2954
EmitIntegerMathAbs(LUnaryMathOperation * instr)2955 void LCodeGen::EmitIntegerMathAbs(LUnaryMathOperation* instr) {
2956 Register input = ToRegister(instr->InputAt(0));
2957 Register result = ToRegister(instr->result());
2958 Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
2959 Label done;
2960 __ Branch(USE_DELAY_SLOT, &done, ge, input, Operand(zero_reg));
2961 __ mov(result, input);
2962 ASSERT_EQ(2, masm()->InstructionsGeneratedSince(&done));
2963 __ subu(result, zero_reg, input);
2964 // Overflow if result is still negative, i.e. 0x80000000.
2965 DeoptimizeIf(lt, instr->environment(), result, Operand(zero_reg));
2966 __ bind(&done);
2967 }
2968
2969
DoMathAbs(LUnaryMathOperation * instr)2970 void LCodeGen::DoMathAbs(LUnaryMathOperation* instr) {
2971 // Class for deferred case.
2972 class DeferredMathAbsTaggedHeapNumber: public LDeferredCode {
2973 public:
2974 DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen,
2975 LUnaryMathOperation* instr)
2976 : LDeferredCode(codegen), instr_(instr) { }
2977 virtual void Generate() {
2978 codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
2979 }
2980 virtual LInstruction* instr() { return instr_; }
2981 private:
2982 LUnaryMathOperation* instr_;
2983 };
2984
2985 Representation r = instr->hydrogen()->value()->representation();
2986 if (r.IsDouble()) {
2987 FPURegister input = ToDoubleRegister(instr->InputAt(0));
2988 FPURegister result = ToDoubleRegister(instr->result());
2989 __ abs_d(result, input);
2990 } else if (r.IsInteger32()) {
2991 EmitIntegerMathAbs(instr);
2992 } else {
2993 // Representation is tagged.
2994 DeferredMathAbsTaggedHeapNumber* deferred =
2995 new DeferredMathAbsTaggedHeapNumber(this, instr);
2996 Register input = ToRegister(instr->InputAt(0));
2997 // Smi check.
2998 __ JumpIfNotSmi(input, deferred->entry());
2999 // If smi, handle it directly.
3000 EmitIntegerMathAbs(instr);
3001 __ bind(deferred->exit());
3002 }
3003 }
3004
3005
DoMathFloor(LUnaryMathOperation * instr)3006 void LCodeGen::DoMathFloor(LUnaryMathOperation* instr) {
3007 DoubleRegister input = ToDoubleRegister(instr->InputAt(0));
3008 Register result = ToRegister(instr->result());
3009 FPURegister single_scratch = double_scratch0().low();
3010 Register scratch1 = scratch0();
3011 Register except_flag = ToRegister(instr->TempAt(0));
3012
3013 __ EmitFPUTruncate(kRoundToMinusInf,
3014 single_scratch,
3015 input,
3016 scratch1,
3017 except_flag);
3018
3019 // Deopt if the operation did not succeed.
3020 DeoptimizeIf(ne, instr->environment(), except_flag, Operand(zero_reg));
3021
3022 // Load the result.
3023 __ mfc1(result, single_scratch);
3024
3025 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3026 // Test for -0.
3027 Label done;
3028 __ Branch(&done, ne, result, Operand(zero_reg));
3029 __ mfc1(scratch1, input.high());
3030 __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
3031 DeoptimizeIf(ne, instr->environment(), scratch1, Operand(zero_reg));
3032 __ bind(&done);
3033 }
3034 }
3035
3036
DoMathRound(LUnaryMathOperation * instr)3037 void LCodeGen::DoMathRound(LUnaryMathOperation* instr) {
3038 DoubleRegister input = ToDoubleRegister(instr->InputAt(0));
3039 Register result = ToRegister(instr->result());
3040 Register scratch = scratch0();
3041 Label done, check_sign_on_zero;
3042
3043 // Extract exponent bits.
3044 __ mfc1(result, input.high());
3045 __ Ext(scratch,
3046 result,
3047 HeapNumber::kExponentShift,
3048 HeapNumber::kExponentBits);
3049
3050 // If the number is in ]-0.5, +0.5[, the result is +/- 0.
3051 Label skip1;
3052 __ Branch(&skip1, gt, scratch, Operand(HeapNumber::kExponentBias - 2));
3053 __ mov(result, zero_reg);
3054 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3055 __ Branch(&check_sign_on_zero);
3056 } else {
3057 __ Branch(&done);
3058 }
3059 __ bind(&skip1);
3060
3061 // The following conversion will not work with numbers
3062 // outside of ]-2^32, 2^32[.
3063 DeoptimizeIf(ge, instr->environment(), scratch,
3064 Operand(HeapNumber::kExponentBias + 32));
3065
3066 // Save the original sign for later comparison.
3067 __ And(scratch, result, Operand(HeapNumber::kSignMask));
3068
3069 __ Move(double_scratch0(), 0.5);
3070 __ add_d(double_scratch0(), input, double_scratch0());
3071
3072 // Check sign of the result: if the sign changed, the input
3073 // value was in ]0.5, 0[ and the result should be -0.
3074 __ mfc1(result, double_scratch0().high());
3075 __ Xor(result, result, Operand(scratch));
3076 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3077 // ARM uses 'mi' here, which is 'lt'
3078 DeoptimizeIf(lt, instr->environment(), result,
3079 Operand(zero_reg));
3080 } else {
3081 Label skip2;
3082 // ARM uses 'mi' here, which is 'lt'
3083 // Negating it results in 'ge'
3084 __ Branch(&skip2, ge, result, Operand(zero_reg));
3085 __ mov(result, zero_reg);
3086 __ Branch(&done);
3087 __ bind(&skip2);
3088 }
3089
3090 Register except_flag = scratch;
3091
3092 __ EmitFPUTruncate(kRoundToMinusInf,
3093 double_scratch0().low(),
3094 double_scratch0(),
3095 result,
3096 except_flag);
3097
3098 DeoptimizeIf(ne, instr->environment(), except_flag, Operand(zero_reg));
3099
3100 __ mfc1(result, double_scratch0().low());
3101
3102 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3103 // Test for -0.
3104 __ Branch(&done, ne, result, Operand(zero_reg));
3105 __ bind(&check_sign_on_zero);
3106 __ mfc1(scratch, input.high());
3107 __ And(scratch, scratch, Operand(HeapNumber::kSignMask));
3108 DeoptimizeIf(ne, instr->environment(), scratch, Operand(zero_reg));
3109 }
3110 __ bind(&done);
3111 }
3112
3113
DoMathSqrt(LUnaryMathOperation * instr)3114 void LCodeGen::DoMathSqrt(LUnaryMathOperation* instr) {
3115 DoubleRegister input = ToDoubleRegister(instr->InputAt(0));
3116 DoubleRegister result = ToDoubleRegister(instr->result());
3117 __ sqrt_d(result, input);
3118 }
3119
3120
DoMathPowHalf(LUnaryMathOperation * instr)3121 void LCodeGen::DoMathPowHalf(LUnaryMathOperation* instr) {
3122 DoubleRegister input = ToDoubleRegister(instr->InputAt(0));
3123 DoubleRegister result = ToDoubleRegister(instr->result());
3124 DoubleRegister temp = ToDoubleRegister(instr->TempAt(0));
3125
3126 ASSERT(!input.is(result));
3127
3128 // Note that according to ECMA-262 15.8.2.13:
3129 // Math.pow(-Infinity, 0.5) == Infinity
3130 // Math.sqrt(-Infinity) == NaN
3131 Label done;
3132 __ Move(temp, -V8_INFINITY);
3133 __ BranchF(USE_DELAY_SLOT, &done, NULL, eq, temp, input);
3134 // Set up Infinity in the delay slot.
3135 // result is overwritten if the branch is not taken.
3136 __ neg_d(result, temp);
3137
3138 // Add +0 to convert -0 to +0.
3139 __ add_d(result, input, kDoubleRegZero);
3140 __ sqrt_d(result, result);
3141 __ bind(&done);
3142 }
3143
3144
DoPower(LPower * instr)3145 void LCodeGen::DoPower(LPower* instr) {
3146 Representation exponent_type = instr->hydrogen()->right()->representation();
3147 // Having marked this as a call, we can use any registers.
3148 // Just make sure that the input/output registers are the expected ones.
3149 ASSERT(!instr->InputAt(1)->IsDoubleRegister() ||
3150 ToDoubleRegister(instr->InputAt(1)).is(f4));
3151 ASSERT(!instr->InputAt(1)->IsRegister() ||
3152 ToRegister(instr->InputAt(1)).is(a2));
3153 ASSERT(ToDoubleRegister(instr->InputAt(0)).is(f2));
3154 ASSERT(ToDoubleRegister(instr->result()).is(f0));
3155
3156 if (exponent_type.IsTagged()) {
3157 Label no_deopt;
3158 __ JumpIfSmi(a2, &no_deopt);
3159 __ lw(t3, FieldMemOperand(a2, HeapObject::kMapOffset));
3160 DeoptimizeIf(ne, instr->environment(), t3, Operand(at));
3161 __ bind(&no_deopt);
3162 MathPowStub stub(MathPowStub::TAGGED);
3163 __ CallStub(&stub);
3164 } else if (exponent_type.IsInteger32()) {
3165 MathPowStub stub(MathPowStub::INTEGER);
3166 __ CallStub(&stub);
3167 } else {
3168 ASSERT(exponent_type.IsDouble());
3169 MathPowStub stub(MathPowStub::DOUBLE);
3170 __ CallStub(&stub);
3171 }
3172 }
3173
3174
DoRandom(LRandom * instr)3175 void LCodeGen::DoRandom(LRandom* instr) {
3176 class DeferredDoRandom: public LDeferredCode {
3177 public:
3178 DeferredDoRandom(LCodeGen* codegen, LRandom* instr)
3179 : LDeferredCode(codegen), instr_(instr) { }
3180 virtual void Generate() { codegen()->DoDeferredRandom(instr_); }
3181 virtual LInstruction* instr() { return instr_; }
3182 private:
3183 LRandom* instr_;
3184 };
3185
3186 DeferredDoRandom* deferred = new DeferredDoRandom(this, instr);
3187 // Having marked this instruction as a call we can use any
3188 // registers.
3189 ASSERT(ToDoubleRegister(instr->result()).is(f0));
3190 ASSERT(ToRegister(instr->InputAt(0)).is(a0));
3191
3192 static const int kSeedSize = sizeof(uint32_t);
3193 STATIC_ASSERT(kPointerSize == kSeedSize);
3194
3195 __ lw(a0, FieldMemOperand(a0, GlobalObject::kGlobalContextOffset));
3196 static const int kRandomSeedOffset =
3197 FixedArray::kHeaderSize + Context::RANDOM_SEED_INDEX * kPointerSize;
3198 __ lw(a2, FieldMemOperand(a0, kRandomSeedOffset));
3199 // a2: FixedArray of the global context's random seeds
3200
3201 // Load state[0].
3202 __ lw(a1, FieldMemOperand(a2, ByteArray::kHeaderSize));
3203 __ Branch(deferred->entry(), eq, a1, Operand(zero_reg));
3204 // Load state[1].
3205 __ lw(a0, FieldMemOperand(a2, ByteArray::kHeaderSize + kSeedSize));
3206 // a1: state[0].
3207 // a0: state[1].
3208
3209 // state[0] = 18273 * (state[0] & 0xFFFF) + (state[0] >> 16)
3210 __ And(a3, a1, Operand(0xFFFF));
3211 __ li(t0, Operand(18273));
3212 __ Mul(a3, a3, t0);
3213 __ srl(a1, a1, 16);
3214 __ Addu(a1, a3, a1);
3215 // Save state[0].
3216 __ sw(a1, FieldMemOperand(a2, ByteArray::kHeaderSize));
3217
3218 // state[1] = 36969 * (state[1] & 0xFFFF) + (state[1] >> 16)
3219 __ And(a3, a0, Operand(0xFFFF));
3220 __ li(t0, Operand(36969));
3221 __ Mul(a3, a3, t0);
3222 __ srl(a0, a0, 16),
3223 __ Addu(a0, a3, a0);
3224 // Save state[1].
3225 __ sw(a0, FieldMemOperand(a2, ByteArray::kHeaderSize + kSeedSize));
3226
3227 // Random bit pattern = (state[0] << 14) + (state[1] & 0x3FFFF)
3228 __ And(a0, a0, Operand(0x3FFFF));
3229 __ sll(a1, a1, 14);
3230 __ Addu(v0, a0, a1);
3231
3232 __ bind(deferred->exit());
3233
3234 // 0x41300000 is the top half of 1.0 x 2^20 as a double.
3235 __ li(a2, Operand(0x41300000));
3236 // Move 0x41300000xxxxxxxx (x = random bits in v0) to FPU.
3237 __ Move(f12, v0, a2);
3238 // Move 0x4130000000000000 to FPU.
3239 __ Move(f14, zero_reg, a2);
3240 // Subtract to get the result.
3241 __ sub_d(f0, f12, f14);
3242 }
3243
DoDeferredRandom(LRandom * instr)3244 void LCodeGen::DoDeferredRandom(LRandom* instr) {
3245 __ PrepareCallCFunction(1, scratch0());
3246 __ CallCFunction(ExternalReference::random_uint32_function(isolate()), 1);
3247 // Return value is in v0.
3248 }
3249
3250
DoMathLog(LUnaryMathOperation * instr)3251 void LCodeGen::DoMathLog(LUnaryMathOperation* instr) {
3252 ASSERT(ToDoubleRegister(instr->result()).is(f4));
3253 TranscendentalCacheStub stub(TranscendentalCache::LOG,
3254 TranscendentalCacheStub::UNTAGGED);
3255 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3256 }
3257
3258
DoMathTan(LUnaryMathOperation * instr)3259 void LCodeGen::DoMathTan(LUnaryMathOperation* instr) {
3260 ASSERT(ToDoubleRegister(instr->result()).is(f4));
3261 TranscendentalCacheStub stub(TranscendentalCache::TAN,
3262 TranscendentalCacheStub::UNTAGGED);
3263 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3264 }
3265
3266
DoMathCos(LUnaryMathOperation * instr)3267 void LCodeGen::DoMathCos(LUnaryMathOperation* instr) {
3268 ASSERT(ToDoubleRegister(instr->result()).is(f4));
3269 TranscendentalCacheStub stub(TranscendentalCache::COS,
3270 TranscendentalCacheStub::UNTAGGED);
3271 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3272 }
3273
3274
DoMathSin(LUnaryMathOperation * instr)3275 void LCodeGen::DoMathSin(LUnaryMathOperation* instr) {
3276 ASSERT(ToDoubleRegister(instr->result()).is(f4));
3277 TranscendentalCacheStub stub(TranscendentalCache::SIN,
3278 TranscendentalCacheStub::UNTAGGED);
3279 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3280 }
3281
3282
DoUnaryMathOperation(LUnaryMathOperation * instr)3283 void LCodeGen::DoUnaryMathOperation(LUnaryMathOperation* instr) {
3284 switch (instr->op()) {
3285 case kMathAbs:
3286 DoMathAbs(instr);
3287 break;
3288 case kMathFloor:
3289 DoMathFloor(instr);
3290 break;
3291 case kMathRound:
3292 DoMathRound(instr);
3293 break;
3294 case kMathSqrt:
3295 DoMathSqrt(instr);
3296 break;
3297 case kMathPowHalf:
3298 DoMathPowHalf(instr);
3299 break;
3300 case kMathCos:
3301 DoMathCos(instr);
3302 break;
3303 case kMathSin:
3304 DoMathSin(instr);
3305 break;
3306 case kMathTan:
3307 DoMathTan(instr);
3308 break;
3309 case kMathLog:
3310 DoMathLog(instr);
3311 break;
3312 default:
3313 Abort("Unimplemented type of LUnaryMathOperation.");
3314 UNREACHABLE();
3315 }
3316 }
3317
3318
DoInvokeFunction(LInvokeFunction * instr)3319 void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
3320 ASSERT(ToRegister(instr->function()).is(a1));
3321 ASSERT(instr->HasPointerMap());
3322 ASSERT(instr->HasDeoptimizationEnvironment());
3323 LPointerMap* pointers = instr->pointer_map();
3324 RecordPosition(pointers->position());
3325 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3326 ParameterCount count(instr->arity());
3327 __ InvokeFunction(a1, count, CALL_FUNCTION, generator, CALL_AS_METHOD);
3328 __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
3329 }
3330
3331
DoCallKeyed(LCallKeyed * instr)3332 void LCodeGen::DoCallKeyed(LCallKeyed* instr) {
3333 ASSERT(ToRegister(instr->result()).is(v0));
3334
3335 int arity = instr->arity();
3336 Handle<Code> ic =
3337 isolate()->stub_cache()->ComputeKeyedCallInitialize(arity);
3338 CallCode(ic, RelocInfo::CODE_TARGET, instr);
3339 __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
3340 }
3341
3342
DoCallNamed(LCallNamed * instr)3343 void LCodeGen::DoCallNamed(LCallNamed* instr) {
3344 ASSERT(ToRegister(instr->result()).is(v0));
3345
3346 int arity = instr->arity();
3347 RelocInfo::Mode mode = RelocInfo::CODE_TARGET;
3348 Handle<Code> ic =
3349 isolate()->stub_cache()->ComputeCallInitialize(arity, mode);
3350 __ li(a2, Operand(instr->name()));
3351 CallCode(ic, mode, instr);
3352 // Restore context register.
3353 __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
3354 }
3355
3356
DoCallFunction(LCallFunction * instr)3357 void LCodeGen::DoCallFunction(LCallFunction* instr) {
3358 ASSERT(ToRegister(instr->function()).is(a1));
3359 ASSERT(ToRegister(instr->result()).is(v0));
3360
3361 int arity = instr->arity();
3362 CallFunctionStub stub(arity, NO_CALL_FUNCTION_FLAGS);
3363 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3364 __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
3365 }
3366
3367
DoCallGlobal(LCallGlobal * instr)3368 void LCodeGen::DoCallGlobal(LCallGlobal* instr) {
3369 ASSERT(ToRegister(instr->result()).is(v0));
3370
3371 int arity = instr->arity();
3372 RelocInfo::Mode mode = RelocInfo::CODE_TARGET_CONTEXT;
3373 Handle<Code> ic =
3374 isolate()->stub_cache()->ComputeCallInitialize(arity, mode);
3375 __ li(a2, Operand(instr->name()));
3376 CallCode(ic, mode, instr);
3377 __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
3378 }
3379
3380
DoCallKnownGlobal(LCallKnownGlobal * instr)3381 void LCodeGen::DoCallKnownGlobal(LCallKnownGlobal* instr) {
3382 ASSERT(ToRegister(instr->result()).is(v0));
3383 CallKnownFunction(instr->target(), instr->arity(), instr, CALL_AS_FUNCTION);
3384 }
3385
3386
DoCallNew(LCallNew * instr)3387 void LCodeGen::DoCallNew(LCallNew* instr) {
3388 ASSERT(ToRegister(instr->InputAt(0)).is(a1));
3389 ASSERT(ToRegister(instr->result()).is(v0));
3390
3391 CallConstructStub stub(NO_CALL_FUNCTION_FLAGS);
3392 __ li(a0, Operand(instr->arity()));
3393 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
3394 }
3395
3396
DoCallRuntime(LCallRuntime * instr)3397 void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
3398 CallRuntime(instr->function(), instr->arity(), instr);
3399 }
3400
3401
DoStoreNamedField(LStoreNamedField * instr)3402 void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
3403 Register object = ToRegister(instr->object());
3404 Register value = ToRegister(instr->value());
3405 Register scratch = scratch0();
3406 int offset = instr->offset();
3407
3408 ASSERT(!object.is(value));
3409
3410 if (!instr->transition().is_null()) {
3411 __ li(scratch, Operand(instr->transition()));
3412 __ sw(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
3413 }
3414
3415 // Do the store.
3416 HType type = instr->hydrogen()->value()->type();
3417 SmiCheck check_needed =
3418 type.IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
3419 if (instr->is_in_object()) {
3420 __ sw(value, FieldMemOperand(object, offset));
3421 if (instr->hydrogen()->NeedsWriteBarrier()) {
3422 // Update the write barrier for the object for in-object properties.
3423 __ RecordWriteField(object,
3424 offset,
3425 value,
3426 scratch,
3427 kRAHasBeenSaved,
3428 kSaveFPRegs,
3429 EMIT_REMEMBERED_SET,
3430 check_needed);
3431 }
3432 } else {
3433 __ lw(scratch, FieldMemOperand(object, JSObject::kPropertiesOffset));
3434 __ sw(value, FieldMemOperand(scratch, offset));
3435 if (instr->hydrogen()->NeedsWriteBarrier()) {
3436 // Update the write barrier for the properties array.
3437 // object is used as a scratch register.
3438 __ RecordWriteField(scratch,
3439 offset,
3440 value,
3441 object,
3442 kRAHasBeenSaved,
3443 kSaveFPRegs,
3444 EMIT_REMEMBERED_SET,
3445 check_needed);
3446 }
3447 }
3448 }
3449
3450
DoStoreNamedGeneric(LStoreNamedGeneric * instr)3451 void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
3452 ASSERT(ToRegister(instr->object()).is(a1));
3453 ASSERT(ToRegister(instr->value()).is(a0));
3454
3455 // Name is always in a2.
3456 __ li(a2, Operand(instr->name()));
3457 Handle<Code> ic = (instr->strict_mode_flag() == kStrictMode)
3458 ? isolate()->builtins()->StoreIC_Initialize_Strict()
3459 : isolate()->builtins()->StoreIC_Initialize();
3460 CallCode(ic, RelocInfo::CODE_TARGET, instr);
3461 }
3462
3463
DoBoundsCheck(LBoundsCheck * instr)3464 void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
3465 DeoptimizeIf(hs,
3466 instr->environment(),
3467 ToRegister(instr->index()),
3468 Operand(ToRegister(instr->length())));
3469 }
3470
3471
DoStoreKeyedFastElement(LStoreKeyedFastElement * instr)3472 void LCodeGen::DoStoreKeyedFastElement(LStoreKeyedFastElement* instr) {
3473 Register value = ToRegister(instr->value());
3474 Register elements = ToRegister(instr->object());
3475 Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) : no_reg;
3476 Register scratch = scratch0();
3477
3478 // Do the store.
3479 if (instr->key()->IsConstantOperand()) {
3480 ASSERT(!instr->hydrogen()->NeedsWriteBarrier());
3481 LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
3482 int offset =
3483 ToInteger32(const_operand) * kPointerSize + FixedArray::kHeaderSize;
3484 __ sw(value, FieldMemOperand(elements, offset));
3485 } else {
3486 __ sll(scratch, key, kPointerSizeLog2);
3487 __ addu(scratch, elements, scratch);
3488 __ sw(value, FieldMemOperand(scratch, FixedArray::kHeaderSize));
3489 }
3490
3491 if (instr->hydrogen()->NeedsWriteBarrier()) {
3492 HType type = instr->hydrogen()->value()->type();
3493 SmiCheck check_needed =
3494 type.IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
3495 // Compute address of modified element and store it into key register.
3496 __ Addu(key, scratch, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
3497 __ RecordWrite(elements,
3498 key,
3499 value,
3500 kRAHasBeenSaved,
3501 kSaveFPRegs,
3502 EMIT_REMEMBERED_SET,
3503 check_needed);
3504 }
3505 }
3506
3507
DoStoreKeyedFastDoubleElement(LStoreKeyedFastDoubleElement * instr)3508 void LCodeGen::DoStoreKeyedFastDoubleElement(
3509 LStoreKeyedFastDoubleElement* instr) {
3510 DoubleRegister value = ToDoubleRegister(instr->value());
3511 Register elements = ToRegister(instr->elements());
3512 Register key = no_reg;
3513 Register scratch = scratch0();
3514 bool key_is_constant = instr->key()->IsConstantOperand();
3515 int constant_key = 0;
3516 Label not_nan;
3517
3518 // Calculate the effective address of the slot in the array to store the
3519 // double value.
3520 if (key_is_constant) {
3521 constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
3522 if (constant_key & 0xF0000000) {
3523 Abort("array index constant value too big.");
3524 }
3525 } else {
3526 key = ToRegister(instr->key());
3527 }
3528 int shift_size = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
3529 if (key_is_constant) {
3530 __ Addu(scratch, elements, Operand(constant_key * (1 << shift_size) +
3531 FixedDoubleArray::kHeaderSize - kHeapObjectTag));
3532 } else {
3533 __ sll(scratch, key, shift_size);
3534 __ Addu(scratch, elements, Operand(scratch));
3535 __ Addu(scratch, scratch,
3536 Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag));
3537 }
3538
3539 Label is_nan;
3540 // Check for NaN. All NaNs must be canonicalized.
3541 __ BranchF(NULL, &is_nan, eq, value, value);
3542 __ Branch(¬_nan);
3543
3544 // Only load canonical NaN if the comparison above set the overflow.
3545 __ bind(&is_nan);
3546 __ Move(value, FixedDoubleArray::canonical_not_the_hole_nan_as_double());
3547
3548 __ bind(¬_nan);
3549 __ sdc1(value, MemOperand(scratch));
3550 }
3551
3552
DoStoreKeyedSpecializedArrayElement(LStoreKeyedSpecializedArrayElement * instr)3553 void LCodeGen::DoStoreKeyedSpecializedArrayElement(
3554 LStoreKeyedSpecializedArrayElement* instr) {
3555
3556 Register external_pointer = ToRegister(instr->external_pointer());
3557 Register key = no_reg;
3558 ElementsKind elements_kind = instr->elements_kind();
3559 bool key_is_constant = instr->key()->IsConstantOperand();
3560 int constant_key = 0;
3561 if (key_is_constant) {
3562 constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
3563 if (constant_key & 0xF0000000) {
3564 Abort("array index constant value too big.");
3565 }
3566 } else {
3567 key = ToRegister(instr->key());
3568 }
3569 int shift_size = ElementsKindToShiftSize(elements_kind);
3570
3571 if (elements_kind == EXTERNAL_FLOAT_ELEMENTS ||
3572 elements_kind == EXTERNAL_DOUBLE_ELEMENTS) {
3573 FPURegister value(ToDoubleRegister(instr->value()));
3574 if (key_is_constant) {
3575 __ Addu(scratch0(), external_pointer, constant_key * (1 << shift_size));
3576 } else {
3577 __ sll(scratch0(), key, shift_size);
3578 __ Addu(scratch0(), scratch0(), external_pointer);
3579 }
3580
3581 if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) {
3582 __ cvt_s_d(double_scratch0(), value);
3583 __ swc1(double_scratch0(), MemOperand(scratch0()));
3584 } else { // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS
3585 __ sdc1(value, MemOperand(scratch0()));
3586 }
3587 } else {
3588 Register value(ToRegister(instr->value()));
3589 MemOperand mem_operand(zero_reg);
3590 Register scratch = scratch0();
3591 if (key_is_constant) {
3592 mem_operand = MemOperand(external_pointer,
3593 constant_key * (1 << shift_size));
3594 } else {
3595 __ sll(scratch, key, shift_size);
3596 __ Addu(scratch, scratch, external_pointer);
3597 mem_operand = MemOperand(scratch);
3598 }
3599 switch (elements_kind) {
3600 case EXTERNAL_PIXEL_ELEMENTS:
3601 case EXTERNAL_BYTE_ELEMENTS:
3602 case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
3603 __ sb(value, mem_operand);
3604 break;
3605 case EXTERNAL_SHORT_ELEMENTS:
3606 case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
3607 __ sh(value, mem_operand);
3608 break;
3609 case EXTERNAL_INT_ELEMENTS:
3610 case EXTERNAL_UNSIGNED_INT_ELEMENTS:
3611 __ sw(value, mem_operand);
3612 break;
3613 case EXTERNAL_FLOAT_ELEMENTS:
3614 case EXTERNAL_DOUBLE_ELEMENTS:
3615 case FAST_DOUBLE_ELEMENTS:
3616 case FAST_ELEMENTS:
3617 case FAST_SMI_ONLY_ELEMENTS:
3618 case DICTIONARY_ELEMENTS:
3619 case NON_STRICT_ARGUMENTS_ELEMENTS:
3620 UNREACHABLE();
3621 break;
3622 }
3623 }
3624 }
3625
DoStoreKeyedGeneric(LStoreKeyedGeneric * instr)3626 void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
3627 ASSERT(ToRegister(instr->object()).is(a2));
3628 ASSERT(ToRegister(instr->key()).is(a1));
3629 ASSERT(ToRegister(instr->value()).is(a0));
3630
3631 Handle<Code> ic = (instr->strict_mode_flag() == kStrictMode)
3632 ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict()
3633 : isolate()->builtins()->KeyedStoreIC_Initialize();
3634 CallCode(ic, RelocInfo::CODE_TARGET, instr);
3635 }
3636
3637
DoTransitionElementsKind(LTransitionElementsKind * instr)3638 void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
3639 Register object_reg = ToRegister(instr->object());
3640 Register new_map_reg = ToRegister(instr->new_map_reg());
3641 Register scratch = scratch0();
3642
3643 Handle<Map> from_map = instr->original_map();
3644 Handle<Map> to_map = instr->transitioned_map();
3645 ElementsKind from_kind = from_map->elements_kind();
3646 ElementsKind to_kind = to_map->elements_kind();
3647
3648 __ mov(ToRegister(instr->result()), object_reg);
3649
3650 Label not_applicable;
3651 __ lw(scratch, FieldMemOperand(object_reg, HeapObject::kMapOffset));
3652 __ Branch(¬_applicable, ne, scratch, Operand(from_map));
3653
3654 __ li(new_map_reg, Operand(to_map));
3655 if (from_kind == FAST_SMI_ONLY_ELEMENTS && to_kind == FAST_ELEMENTS) {
3656 __ sw(new_map_reg, FieldMemOperand(object_reg, HeapObject::kMapOffset));
3657 // Write barrier.
3658 __ RecordWriteField(object_reg, HeapObject::kMapOffset, new_map_reg,
3659 scratch, kRAHasBeenSaved, kDontSaveFPRegs);
3660 } else if (from_kind == FAST_SMI_ONLY_ELEMENTS &&
3661 to_kind == FAST_DOUBLE_ELEMENTS) {
3662 Register fixed_object_reg = ToRegister(instr->temp_reg());
3663 ASSERT(fixed_object_reg.is(a2));
3664 ASSERT(new_map_reg.is(a3));
3665 __ mov(fixed_object_reg, object_reg);
3666 CallCode(isolate()->builtins()->TransitionElementsSmiToDouble(),
3667 RelocInfo::CODE_TARGET, instr);
3668 } else if (from_kind == FAST_DOUBLE_ELEMENTS && to_kind == FAST_ELEMENTS) {
3669 Register fixed_object_reg = ToRegister(instr->temp_reg());
3670 ASSERT(fixed_object_reg.is(a2));
3671 ASSERT(new_map_reg.is(a3));
3672 __ mov(fixed_object_reg, object_reg);
3673 CallCode(isolate()->builtins()->TransitionElementsDoubleToObject(),
3674 RelocInfo::CODE_TARGET, instr);
3675 } else {
3676 UNREACHABLE();
3677 }
3678 __ bind(¬_applicable);
3679 }
3680
3681
DoStringAdd(LStringAdd * instr)3682 void LCodeGen::DoStringAdd(LStringAdd* instr) {
3683 __ push(ToRegister(instr->left()));
3684 __ push(ToRegister(instr->right()));
3685 StringAddStub stub(NO_STRING_CHECK_IN_STUB);
3686 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3687 }
3688
3689
DoStringCharCodeAt(LStringCharCodeAt * instr)3690 void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
3691 class DeferredStringCharCodeAt: public LDeferredCode {
3692 public:
3693 DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
3694 : LDeferredCode(codegen), instr_(instr) { }
3695 virtual void Generate() { codegen()->DoDeferredStringCharCodeAt(instr_); }
3696 virtual LInstruction* instr() { return instr_; }
3697 private:
3698 LStringCharCodeAt* instr_;
3699 };
3700
3701 DeferredStringCharCodeAt* deferred =
3702 new DeferredStringCharCodeAt(this, instr);
3703 StringCharLoadGenerator::Generate(masm(),
3704 ToRegister(instr->string()),
3705 ToRegister(instr->index()),
3706 ToRegister(instr->result()),
3707 deferred->entry());
3708 __ bind(deferred->exit());
3709 }
3710
3711
DoDeferredStringCharCodeAt(LStringCharCodeAt * instr)3712 void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
3713 Register string = ToRegister(instr->string());
3714 Register result = ToRegister(instr->result());
3715 Register scratch = scratch0();
3716
3717 // TODO(3095996): Get rid of this. For now, we need to make the
3718 // result register contain a valid pointer because it is already
3719 // contained in the register pointer map.
3720 __ mov(result, zero_reg);
3721
3722 PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
3723 __ push(string);
3724 // Push the index as a smi. This is safe because of the checks in
3725 // DoStringCharCodeAt above.
3726 if (instr->index()->IsConstantOperand()) {
3727 int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
3728 __ Addu(scratch, zero_reg, Operand(Smi::FromInt(const_index)));
3729 __ push(scratch);
3730 } else {
3731 Register index = ToRegister(instr->index());
3732 __ SmiTag(index);
3733 __ push(index);
3734 }
3735 CallRuntimeFromDeferred(Runtime::kStringCharCodeAt, 2, instr);
3736 if (FLAG_debug_code) {
3737 __ AbortIfNotSmi(v0);
3738 }
3739 __ SmiUntag(v0);
3740 __ StoreToSafepointRegisterSlot(v0, result);
3741 }
3742
3743
DoStringCharFromCode(LStringCharFromCode * instr)3744 void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
3745 class DeferredStringCharFromCode: public LDeferredCode {
3746 public:
3747 DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
3748 : LDeferredCode(codegen), instr_(instr) { }
3749 virtual void Generate() { codegen()->DoDeferredStringCharFromCode(instr_); }
3750 virtual LInstruction* instr() { return instr_; }
3751 private:
3752 LStringCharFromCode* instr_;
3753 };
3754
3755 DeferredStringCharFromCode* deferred =
3756 new DeferredStringCharFromCode(this, instr);
3757
3758 ASSERT(instr->hydrogen()->value()->representation().IsInteger32());
3759 Register char_code = ToRegister(instr->char_code());
3760 Register result = ToRegister(instr->result());
3761 Register scratch = scratch0();
3762 ASSERT(!char_code.is(result));
3763
3764 __ Branch(deferred->entry(), hi,
3765 char_code, Operand(String::kMaxAsciiCharCode));
3766 __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
3767 __ sll(scratch, char_code, kPointerSizeLog2);
3768 __ Addu(result, result, scratch);
3769 __ lw(result, FieldMemOperand(result, FixedArray::kHeaderSize));
3770 __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
3771 __ Branch(deferred->entry(), eq, result, Operand(scratch));
3772 __ bind(deferred->exit());
3773 }
3774
3775
DoDeferredStringCharFromCode(LStringCharFromCode * instr)3776 void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
3777 Register char_code = ToRegister(instr->char_code());
3778 Register result = ToRegister(instr->result());
3779
3780 // TODO(3095996): Get rid of this. For now, we need to make the
3781 // result register contain a valid pointer because it is already
3782 // contained in the register pointer map.
3783 __ mov(result, zero_reg);
3784
3785 PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
3786 __ SmiTag(char_code);
3787 __ push(char_code);
3788 CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr);
3789 __ StoreToSafepointRegisterSlot(v0, result);
3790 }
3791
3792
DoStringLength(LStringLength * instr)3793 void LCodeGen::DoStringLength(LStringLength* instr) {
3794 Register string = ToRegister(instr->InputAt(0));
3795 Register result = ToRegister(instr->result());
3796 __ lw(result, FieldMemOperand(string, String::kLengthOffset));
3797 }
3798
3799
DoInteger32ToDouble(LInteger32ToDouble * instr)3800 void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
3801 LOperand* input = instr->InputAt(0);
3802 ASSERT(input->IsRegister() || input->IsStackSlot());
3803 LOperand* output = instr->result();
3804 ASSERT(output->IsDoubleRegister());
3805 FPURegister single_scratch = double_scratch0().low();
3806 if (input->IsStackSlot()) {
3807 Register scratch = scratch0();
3808 __ lw(scratch, ToMemOperand(input));
3809 __ mtc1(scratch, single_scratch);
3810 } else {
3811 __ mtc1(ToRegister(input), single_scratch);
3812 }
3813 __ cvt_d_w(ToDoubleRegister(output), single_scratch);
3814 }
3815
3816
DoNumberTagI(LNumberTagI * instr)3817 void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
3818 class DeferredNumberTagI: public LDeferredCode {
3819 public:
3820 DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr)
3821 : LDeferredCode(codegen), instr_(instr) { }
3822 virtual void Generate() { codegen()->DoDeferredNumberTagI(instr_); }
3823 virtual LInstruction* instr() { return instr_; }
3824 private:
3825 LNumberTagI* instr_;
3826 };
3827
3828 Register src = ToRegister(instr->InputAt(0));
3829 Register dst = ToRegister(instr->result());
3830 Register overflow = scratch0();
3831
3832 DeferredNumberTagI* deferred = new DeferredNumberTagI(this, instr);
3833 __ SmiTagCheckOverflow(dst, src, overflow);
3834 __ BranchOnOverflow(deferred->entry(), overflow);
3835 __ bind(deferred->exit());
3836 }
3837
3838
DoDeferredNumberTagI(LNumberTagI * instr)3839 void LCodeGen::DoDeferredNumberTagI(LNumberTagI* instr) {
3840 Label slow;
3841 Register src = ToRegister(instr->InputAt(0));
3842 Register dst = ToRegister(instr->result());
3843 FPURegister dbl_scratch = double_scratch0();
3844
3845 // Preserve the value of all registers.
3846 PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
3847
3848 // There was overflow, so bits 30 and 31 of the original integer
3849 // disagree. Try to allocate a heap number in new space and store
3850 // the value in there. If that fails, call the runtime system.
3851 Label done;
3852 if (dst.is(src)) {
3853 __ SmiUntag(src, dst);
3854 __ Xor(src, src, Operand(0x80000000));
3855 }
3856 __ mtc1(src, dbl_scratch);
3857 __ cvt_d_w(dbl_scratch, dbl_scratch);
3858 if (FLAG_inline_new) {
3859 __ LoadRoot(t2, Heap::kHeapNumberMapRootIndex);
3860 __ AllocateHeapNumber(t1, a3, t0, t2, &slow);
3861 __ Move(dst, t1);
3862 __ Branch(&done);
3863 }
3864
3865 // Slow case: Call the runtime system to do the number allocation.
3866 __ bind(&slow);
3867
3868 // TODO(3095996): Put a valid pointer value in the stack slot where the result
3869 // register is stored, as this register is in the pointer map, but contains an
3870 // integer value.
3871 __ StoreToSafepointRegisterSlot(zero_reg, dst);
3872 CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr);
3873 __ Move(dst, v0);
3874
3875 // Done. Put the value in dbl_scratch into the value of the allocated heap
3876 // number.
3877 __ bind(&done);
3878 __ sdc1(dbl_scratch, FieldMemOperand(dst, HeapNumber::kValueOffset));
3879 __ StoreToSafepointRegisterSlot(dst, dst);
3880 }
3881
3882
DoNumberTagD(LNumberTagD * instr)3883 void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
3884 class DeferredNumberTagD: public LDeferredCode {
3885 public:
3886 DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
3887 : LDeferredCode(codegen), instr_(instr) { }
3888 virtual void Generate() { codegen()->DoDeferredNumberTagD(instr_); }
3889 virtual LInstruction* instr() { return instr_; }
3890 private:
3891 LNumberTagD* instr_;
3892 };
3893
3894 DoubleRegister input_reg = ToDoubleRegister(instr->InputAt(0));
3895 Register scratch = scratch0();
3896 Register reg = ToRegister(instr->result());
3897 Register temp1 = ToRegister(instr->TempAt(0));
3898 Register temp2 = ToRegister(instr->TempAt(1));
3899
3900 DeferredNumberTagD* deferred = new DeferredNumberTagD(this, instr);
3901 if (FLAG_inline_new) {
3902 __ LoadRoot(scratch, Heap::kHeapNumberMapRootIndex);
3903 __ AllocateHeapNumber(reg, temp1, temp2, scratch, deferred->entry());
3904 } else {
3905 __ Branch(deferred->entry());
3906 }
3907 __ bind(deferred->exit());
3908 __ sdc1(input_reg, FieldMemOperand(reg, HeapNumber::kValueOffset));
3909 }
3910
3911
DoDeferredNumberTagD(LNumberTagD * instr)3912 void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
3913 // TODO(3095996): Get rid of this. For now, we need to make the
3914 // result register contain a valid pointer because it is already
3915 // contained in the register pointer map.
3916 Register reg = ToRegister(instr->result());
3917 __ mov(reg, zero_reg);
3918
3919 PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
3920 CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr);
3921 __ StoreToSafepointRegisterSlot(v0, reg);
3922 }
3923
3924
DoSmiTag(LSmiTag * instr)3925 void LCodeGen::DoSmiTag(LSmiTag* instr) {
3926 ASSERT(!instr->hydrogen_value()->CheckFlag(HValue::kCanOverflow));
3927 __ SmiTag(ToRegister(instr->result()), ToRegister(instr->InputAt(0)));
3928 }
3929
3930
DoSmiUntag(LSmiUntag * instr)3931 void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
3932 Register scratch = scratch0();
3933 Register input = ToRegister(instr->InputAt(0));
3934 Register result = ToRegister(instr->result());
3935 if (instr->needs_check()) {
3936 STATIC_ASSERT(kHeapObjectTag == 1);
3937 // If the input is a HeapObject, value of scratch won't be zero.
3938 __ And(scratch, input, Operand(kHeapObjectTag));
3939 __ SmiUntag(result, input);
3940 DeoptimizeIf(ne, instr->environment(), scratch, Operand(zero_reg));
3941 } else {
3942 __ SmiUntag(result, input);
3943 }
3944 }
3945
3946
EmitNumberUntagD(Register input_reg,DoubleRegister result_reg,bool deoptimize_on_undefined,bool deoptimize_on_minus_zero,LEnvironment * env)3947 void LCodeGen::EmitNumberUntagD(Register input_reg,
3948 DoubleRegister result_reg,
3949 bool deoptimize_on_undefined,
3950 bool deoptimize_on_minus_zero,
3951 LEnvironment* env) {
3952 Register scratch = scratch0();
3953
3954 Label load_smi, heap_number, done;
3955
3956 // Smi check.
3957 __ UntagAndJumpIfSmi(scratch, input_reg, &load_smi);
3958
3959 // Heap number map check.
3960 __ lw(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
3961 __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
3962 if (deoptimize_on_undefined) {
3963 DeoptimizeIf(ne, env, scratch, Operand(at));
3964 } else {
3965 Label heap_number;
3966 __ Branch(&heap_number, eq, scratch, Operand(at));
3967
3968 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
3969 DeoptimizeIf(ne, env, input_reg, Operand(at));
3970
3971 // Convert undefined to NaN.
3972 __ LoadRoot(at, Heap::kNanValueRootIndex);
3973 __ ldc1(result_reg, FieldMemOperand(at, HeapNumber::kValueOffset));
3974 __ Branch(&done);
3975
3976 __ bind(&heap_number);
3977 }
3978 // Heap number to double register conversion.
3979 __ ldc1(result_reg, FieldMemOperand(input_reg, HeapNumber::kValueOffset));
3980 if (deoptimize_on_minus_zero) {
3981 __ mfc1(at, result_reg.low());
3982 __ Branch(&done, ne, at, Operand(zero_reg));
3983 __ mfc1(scratch, result_reg.high());
3984 DeoptimizeIf(eq, env, scratch, Operand(HeapNumber::kSignMask));
3985 }
3986 __ Branch(&done);
3987
3988 // Smi to double register conversion
3989 __ bind(&load_smi);
3990 // scratch: untagged value of input_reg
3991 __ mtc1(scratch, result_reg);
3992 __ cvt_d_w(result_reg, result_reg);
3993 __ bind(&done);
3994 }
3995
3996
DoDeferredTaggedToI(LTaggedToI * instr)3997 void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) {
3998 Register input_reg = ToRegister(instr->InputAt(0));
3999 Register scratch1 = scratch0();
4000 Register scratch2 = ToRegister(instr->TempAt(0));
4001 DoubleRegister double_scratch = double_scratch0();
4002 FPURegister single_scratch = double_scratch.low();
4003
4004 ASSERT(!scratch1.is(input_reg) && !scratch1.is(scratch2));
4005 ASSERT(!scratch2.is(input_reg) && !scratch2.is(scratch1));
4006
4007 Label done;
4008
4009 // The input is a tagged HeapObject.
4010 // Heap number map check.
4011 __ lw(scratch1, FieldMemOperand(input_reg, HeapObject::kMapOffset));
4012 __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
4013 // This 'at' value and scratch1 map value are used for tests in both clauses
4014 // of the if.
4015
4016 if (instr->truncating()) {
4017 Register scratch3 = ToRegister(instr->TempAt(1));
4018 DoubleRegister double_scratch2 = ToDoubleRegister(instr->TempAt(2));
4019 ASSERT(!scratch3.is(input_reg) &&
4020 !scratch3.is(scratch1) &&
4021 !scratch3.is(scratch2));
4022 // Performs a truncating conversion of a floating point number as used by
4023 // the JS bitwise operations.
4024 Label heap_number;
4025 __ Branch(&heap_number, eq, scratch1, Operand(at)); // HeapNumber map?
4026 // Check for undefined. Undefined is converted to zero for truncating
4027 // conversions.
4028 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
4029 DeoptimizeIf(ne, instr->environment(), input_reg, Operand(at));
4030 ASSERT(ToRegister(instr->result()).is(input_reg));
4031 __ mov(input_reg, zero_reg);
4032 __ Branch(&done);
4033
4034 __ bind(&heap_number);
4035 __ ldc1(double_scratch2,
4036 FieldMemOperand(input_reg, HeapNumber::kValueOffset));
4037 __ EmitECMATruncate(input_reg,
4038 double_scratch2,
4039 single_scratch,
4040 scratch1,
4041 scratch2,
4042 scratch3);
4043 } else {
4044 // Deoptimize if we don't have a heap number.
4045 DeoptimizeIf(ne, instr->environment(), scratch1, Operand(at));
4046
4047 // Load the double value.
4048 __ ldc1(double_scratch,
4049 FieldMemOperand(input_reg, HeapNumber::kValueOffset));
4050
4051 Register except_flag = scratch2;
4052 __ EmitFPUTruncate(kRoundToZero,
4053 single_scratch,
4054 double_scratch,
4055 scratch1,
4056 except_flag,
4057 kCheckForInexactConversion);
4058
4059 // Deopt if the operation did not succeed.
4060 DeoptimizeIf(ne, instr->environment(), except_flag, Operand(zero_reg));
4061
4062 // Load the result.
4063 __ mfc1(input_reg, single_scratch);
4064
4065 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
4066 __ Branch(&done, ne, input_reg, Operand(zero_reg));
4067
4068 __ mfc1(scratch1, double_scratch.high());
4069 __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
4070 DeoptimizeIf(ne, instr->environment(), scratch1, Operand(zero_reg));
4071 }
4072 }
4073 __ bind(&done);
4074 }
4075
4076
DoTaggedToI(LTaggedToI * instr)4077 void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
4078 class DeferredTaggedToI: public LDeferredCode {
4079 public:
4080 DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
4081 : LDeferredCode(codegen), instr_(instr) { }
4082 virtual void Generate() { codegen()->DoDeferredTaggedToI(instr_); }
4083 virtual LInstruction* instr() { return instr_; }
4084 private:
4085 LTaggedToI* instr_;
4086 };
4087
4088 LOperand* input = instr->InputAt(0);
4089 ASSERT(input->IsRegister());
4090 ASSERT(input->Equals(instr->result()));
4091
4092 Register input_reg = ToRegister(input);
4093
4094 DeferredTaggedToI* deferred = new DeferredTaggedToI(this, instr);
4095
4096 // Let the deferred code handle the HeapObject case.
4097 __ JumpIfNotSmi(input_reg, deferred->entry());
4098
4099 // Smi to int32 conversion.
4100 __ SmiUntag(input_reg);
4101 __ bind(deferred->exit());
4102 }
4103
4104
DoNumberUntagD(LNumberUntagD * instr)4105 void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
4106 LOperand* input = instr->InputAt(0);
4107 ASSERT(input->IsRegister());
4108 LOperand* result = instr->result();
4109 ASSERT(result->IsDoubleRegister());
4110
4111 Register input_reg = ToRegister(input);
4112 DoubleRegister result_reg = ToDoubleRegister(result);
4113
4114 EmitNumberUntagD(input_reg, result_reg,
4115 instr->hydrogen()->deoptimize_on_undefined(),
4116 instr->hydrogen()->deoptimize_on_minus_zero(),
4117 instr->environment());
4118 }
4119
4120
DoDoubleToI(LDoubleToI * instr)4121 void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
4122 Register result_reg = ToRegister(instr->result());
4123 Register scratch1 = scratch0();
4124 Register scratch2 = ToRegister(instr->TempAt(0));
4125 DoubleRegister double_input = ToDoubleRegister(instr->InputAt(0));
4126 FPURegister single_scratch = double_scratch0().low();
4127
4128 if (instr->truncating()) {
4129 Register scratch3 = ToRegister(instr->TempAt(1));
4130 __ EmitECMATruncate(result_reg,
4131 double_input,
4132 single_scratch,
4133 scratch1,
4134 scratch2,
4135 scratch3);
4136 } else {
4137 Register except_flag = scratch2;
4138
4139 __ EmitFPUTruncate(kRoundToMinusInf,
4140 single_scratch,
4141 double_input,
4142 scratch1,
4143 except_flag,
4144 kCheckForInexactConversion);
4145
4146 // Deopt if the operation did not succeed (except_flag != 0).
4147 DeoptimizeIf(ne, instr->environment(), except_flag, Operand(zero_reg));
4148
4149 // Load the result.
4150 __ mfc1(result_reg, single_scratch);
4151 }
4152 }
4153
4154
DoCheckSmi(LCheckSmi * instr)4155 void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
4156 LOperand* input = instr->InputAt(0);
4157 __ And(at, ToRegister(input), Operand(kSmiTagMask));
4158 DeoptimizeIf(ne, instr->environment(), at, Operand(zero_reg));
4159 }
4160
4161
DoCheckNonSmi(LCheckNonSmi * instr)4162 void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
4163 LOperand* input = instr->InputAt(0);
4164 __ And(at, ToRegister(input), Operand(kSmiTagMask));
4165 DeoptimizeIf(eq, instr->environment(), at, Operand(zero_reg));
4166 }
4167
4168
DoCheckInstanceType(LCheckInstanceType * instr)4169 void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
4170 Register input = ToRegister(instr->InputAt(0));
4171 Register scratch = scratch0();
4172
4173 __ GetObjectType(input, scratch, scratch);
4174
4175 if (instr->hydrogen()->is_interval_check()) {
4176 InstanceType first;
4177 InstanceType last;
4178 instr->hydrogen()->GetCheckInterval(&first, &last);
4179
4180 // If there is only one type in the interval check for equality.
4181 if (first == last) {
4182 DeoptimizeIf(ne, instr->environment(), scratch, Operand(first));
4183 } else {
4184 DeoptimizeIf(lo, instr->environment(), scratch, Operand(first));
4185 // Omit check for the last type.
4186 if (last != LAST_TYPE) {
4187 DeoptimizeIf(hi, instr->environment(), scratch, Operand(last));
4188 }
4189 }
4190 } else {
4191 uint8_t mask;
4192 uint8_t tag;
4193 instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
4194
4195 if (IsPowerOf2(mask)) {
4196 ASSERT(tag == 0 || IsPowerOf2(tag));
4197 __ And(at, scratch, mask);
4198 DeoptimizeIf(tag == 0 ? ne : eq, instr->environment(),
4199 at, Operand(zero_reg));
4200 } else {
4201 __ And(scratch, scratch, Operand(mask));
4202 DeoptimizeIf(ne, instr->environment(), scratch, Operand(tag));
4203 }
4204 }
4205 }
4206
4207
DoCheckFunction(LCheckFunction * instr)4208 void LCodeGen::DoCheckFunction(LCheckFunction* instr) {
4209 Register reg = ToRegister(instr->value());
4210 Handle<JSFunction> target = instr->hydrogen()->target();
4211 if (isolate()->heap()->InNewSpace(*target)) {
4212 Register reg = ToRegister(instr->value());
4213 Handle<JSGlobalPropertyCell> cell =
4214 isolate()->factory()->NewJSGlobalPropertyCell(target);
4215 __ li(at, Operand(Handle<Object>(cell)));
4216 __ lw(at, FieldMemOperand(at, JSGlobalPropertyCell::kValueOffset));
4217 DeoptimizeIf(ne, instr->environment(), reg,
4218 Operand(at));
4219 } else {
4220 DeoptimizeIf(ne, instr->environment(), reg,
4221 Operand(target));
4222 }
4223 }
4224
4225
DoCheckMapCommon(Register reg,Register scratch,Handle<Map> map,CompareMapMode mode,LEnvironment * env)4226 void LCodeGen::DoCheckMapCommon(Register reg,
4227 Register scratch,
4228 Handle<Map> map,
4229 CompareMapMode mode,
4230 LEnvironment* env) {
4231 Label success;
4232 __ CompareMapAndBranch(reg, scratch, map, &success, eq, &success, mode);
4233 DeoptimizeIf(al, env);
4234 __ bind(&success);
4235 }
4236
4237
DoCheckMap(LCheckMap * instr)4238 void LCodeGen::DoCheckMap(LCheckMap* instr) {
4239 Register scratch = scratch0();
4240 LOperand* input = instr->InputAt(0);
4241 ASSERT(input->IsRegister());
4242 Register reg = ToRegister(input);
4243 Handle<Map> map = instr->hydrogen()->map();
4244 DoCheckMapCommon(reg, scratch, map, instr->hydrogen()->mode(),
4245 instr->environment());
4246 }
4247
4248
DoClampDToUint8(LClampDToUint8 * instr)4249 void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
4250 DoubleRegister value_reg = ToDoubleRegister(instr->unclamped());
4251 Register result_reg = ToRegister(instr->result());
4252 DoubleRegister temp_reg = ToDoubleRegister(instr->TempAt(0));
4253 __ ClampDoubleToUint8(result_reg, value_reg, temp_reg);
4254 }
4255
4256
DoClampIToUint8(LClampIToUint8 * instr)4257 void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
4258 Register unclamped_reg = ToRegister(instr->unclamped());
4259 Register result_reg = ToRegister(instr->result());
4260 __ ClampUint8(result_reg, unclamped_reg);
4261 }
4262
4263
DoClampTToUint8(LClampTToUint8 * instr)4264 void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
4265 Register scratch = scratch0();
4266 Register input_reg = ToRegister(instr->unclamped());
4267 Register result_reg = ToRegister(instr->result());
4268 DoubleRegister temp_reg = ToDoubleRegister(instr->TempAt(0));
4269 Label is_smi, done, heap_number;
4270
4271 // Both smi and heap number cases are handled.
4272 __ UntagAndJumpIfSmi(scratch, input_reg, &is_smi);
4273
4274 // Check for heap number
4275 __ lw(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
4276 __ Branch(&heap_number, eq, scratch, Operand(factory()->heap_number_map()));
4277
4278 // Check for undefined. Undefined is converted to zero for clamping
4279 // conversions.
4280 DeoptimizeIf(ne, instr->environment(), input_reg,
4281 Operand(factory()->undefined_value()));
4282 __ mov(result_reg, zero_reg);
4283 __ jmp(&done);
4284
4285 // Heap number
4286 __ bind(&heap_number);
4287 __ ldc1(double_scratch0(), FieldMemOperand(input_reg,
4288 HeapNumber::kValueOffset));
4289 __ ClampDoubleToUint8(result_reg, double_scratch0(), temp_reg);
4290 __ jmp(&done);
4291
4292 __ bind(&is_smi);
4293 __ ClampUint8(result_reg, scratch);
4294
4295 __ bind(&done);
4296 }
4297
4298
DoCheckPrototypeMaps(LCheckPrototypeMaps * instr)4299 void LCodeGen::DoCheckPrototypeMaps(LCheckPrototypeMaps* instr) {
4300 Register temp1 = ToRegister(instr->TempAt(0));
4301 Register temp2 = ToRegister(instr->TempAt(1));
4302
4303 Handle<JSObject> holder = instr->holder();
4304 Handle<JSObject> current_prototype = instr->prototype();
4305
4306 // Load prototype object.
4307 __ LoadHeapObject(temp1, current_prototype);
4308
4309 // Check prototype maps up to the holder.
4310 while (!current_prototype.is_identical_to(holder)) {
4311 DoCheckMapCommon(temp1, temp2,
4312 Handle<Map>(current_prototype->map()),
4313 ALLOW_ELEMENT_TRANSITION_MAPS, instr->environment());
4314 current_prototype =
4315 Handle<JSObject>(JSObject::cast(current_prototype->GetPrototype()));
4316 // Load next prototype object.
4317 __ LoadHeapObject(temp1, current_prototype);
4318 }
4319
4320 // Check the holder map.
4321 DoCheckMapCommon(temp1, temp2,
4322 Handle<Map>(current_prototype->map()),
4323 ALLOW_ELEMENT_TRANSITION_MAPS, instr->environment());
4324 }
4325
4326
DoAllocateObject(LAllocateObject * instr)4327 void LCodeGen::DoAllocateObject(LAllocateObject* instr) {
4328 class DeferredAllocateObject: public LDeferredCode {
4329 public:
4330 DeferredAllocateObject(LCodeGen* codegen, LAllocateObject* instr)
4331 : LDeferredCode(codegen), instr_(instr) { }
4332 virtual void Generate() { codegen()->DoDeferredAllocateObject(instr_); }
4333 virtual LInstruction* instr() { return instr_; }
4334 private:
4335 LAllocateObject* instr_;
4336 };
4337
4338 DeferredAllocateObject* deferred = new DeferredAllocateObject(this, instr);
4339
4340 Register result = ToRegister(instr->result());
4341 Register scratch = ToRegister(instr->TempAt(0));
4342 Register scratch2 = ToRegister(instr->TempAt(1));
4343 Handle<JSFunction> constructor = instr->hydrogen()->constructor();
4344 Handle<Map> initial_map(constructor->initial_map());
4345 int instance_size = initial_map->instance_size();
4346 ASSERT(initial_map->pre_allocated_property_fields() +
4347 initial_map->unused_property_fields() -
4348 initial_map->inobject_properties() == 0);
4349
4350 // Allocate memory for the object. The initial map might change when
4351 // the constructor's prototype changes, but instance size and property
4352 // counts remain unchanged (if slack tracking finished).
4353 ASSERT(!constructor->shared()->IsInobjectSlackTrackingInProgress());
4354 __ AllocateInNewSpace(instance_size,
4355 result,
4356 scratch,
4357 scratch2,
4358 deferred->entry(),
4359 TAG_OBJECT);
4360
4361 // Load the initial map.
4362 Register map = scratch;
4363 __ LoadHeapObject(map, constructor);
4364 __ lw(map, FieldMemOperand(map, JSFunction::kPrototypeOrInitialMapOffset));
4365
4366 // Initialize map and fields of the newly allocated object.
4367 ASSERT(initial_map->instance_type() == JS_OBJECT_TYPE);
4368 __ sw(map, FieldMemOperand(result, JSObject::kMapOffset));
4369 __ LoadRoot(scratch, Heap::kEmptyFixedArrayRootIndex);
4370 __ sw(scratch, FieldMemOperand(result, JSObject::kElementsOffset));
4371 __ sw(scratch, FieldMemOperand(result, JSObject::kPropertiesOffset));
4372 if (initial_map->inobject_properties() != 0) {
4373 __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
4374 for (int i = 0; i < initial_map->inobject_properties(); i++) {
4375 int property_offset = JSObject::kHeaderSize + i * kPointerSize;
4376 __ sw(scratch, FieldMemOperand(result, property_offset));
4377 }
4378 }
4379
4380 __ bind(deferred->exit());
4381 }
4382
4383
DoDeferredAllocateObject(LAllocateObject * instr)4384 void LCodeGen::DoDeferredAllocateObject(LAllocateObject* instr) {
4385 Register result = ToRegister(instr->result());
4386 Handle<JSFunction> constructor = instr->hydrogen()->constructor();
4387
4388 // TODO(3095996): Get rid of this. For now, we need to make the
4389 // result register contain a valid pointer because it is already
4390 // contained in the register pointer map.
4391 __ mov(result, zero_reg);
4392
4393 PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
4394 __ LoadHeapObject(a0, constructor);
4395 __ push(a0);
4396 CallRuntimeFromDeferred(Runtime::kNewObject, 1, instr);
4397 __ StoreToSafepointRegisterSlot(v0, result);
4398 }
4399
4400
DoArrayLiteral(LArrayLiteral * instr)4401 void LCodeGen::DoArrayLiteral(LArrayLiteral* instr) {
4402 Heap* heap = isolate()->heap();
4403 ElementsKind boilerplate_elements_kind =
4404 instr->hydrogen()->boilerplate_elements_kind();
4405
4406 // Deopt if the array literal boilerplate ElementsKind is of a type different
4407 // than the expected one. The check isn't necessary if the boilerplate has
4408 // already been converted to FAST_ELEMENTS.
4409 if (boilerplate_elements_kind != FAST_ELEMENTS) {
4410 __ LoadHeapObject(a1, instr->hydrogen()->boilerplate_object());
4411 // Load map into a2.
4412 __ lw(a2, FieldMemOperand(a1, HeapObject::kMapOffset));
4413 // Load the map's "bit field 2".
4414 __ lbu(a2, FieldMemOperand(a2, Map::kBitField2Offset));
4415 // Retrieve elements_kind from bit field 2.
4416 __ Ext(a2, a2, Map::kElementsKindShift, Map::kElementsKindBitCount);
4417 DeoptimizeIf(ne,
4418 instr->environment(),
4419 a2,
4420 Operand(boilerplate_elements_kind));
4421 }
4422 __ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
4423 __ lw(a3, FieldMemOperand(a3, JSFunction::kLiteralsOffset));
4424 __ li(a2, Operand(Smi::FromInt(instr->hydrogen()->literal_index())));
4425 // Boilerplate already exists, constant elements are never accessed.
4426 // Pass an empty fixed array.
4427 __ li(a1, Operand(Handle<FixedArray>(heap->empty_fixed_array())));
4428 __ Push(a3, a2, a1);
4429
4430 // Pick the right runtime function or stub to call.
4431 int length = instr->hydrogen()->length();
4432 if (instr->hydrogen()->IsCopyOnWrite()) {
4433 ASSERT(instr->hydrogen()->depth() == 1);
4434 FastCloneShallowArrayStub::Mode mode =
4435 FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS;
4436 FastCloneShallowArrayStub stub(mode, length);
4437 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
4438 } else if (instr->hydrogen()->depth() > 1) {
4439 CallRuntime(Runtime::kCreateArrayLiteral, 3, instr);
4440 } else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) {
4441 CallRuntime(Runtime::kCreateArrayLiteralShallow, 3, instr);
4442 } else {
4443 FastCloneShallowArrayStub::Mode mode =
4444 boilerplate_elements_kind == FAST_DOUBLE_ELEMENTS
4445 ? FastCloneShallowArrayStub::CLONE_DOUBLE_ELEMENTS
4446 : FastCloneShallowArrayStub::CLONE_ELEMENTS;
4447 FastCloneShallowArrayStub stub(mode, length);
4448 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
4449 }
4450 }
4451
4452
EmitDeepCopy(Handle<JSObject> object,Register result,Register source,int * offset)4453 void LCodeGen::EmitDeepCopy(Handle<JSObject> object,
4454 Register result,
4455 Register source,
4456 int* offset) {
4457 ASSERT(!source.is(a2));
4458 ASSERT(!result.is(a2));
4459
4460 // Only elements backing stores for non-COW arrays need to be copied.
4461 Handle<FixedArrayBase> elements(object->elements());
4462 bool has_elements = elements->length() > 0 &&
4463 elements->map() != isolate()->heap()->fixed_cow_array_map();
4464
4465 // Increase the offset so that subsequent objects end up right after
4466 // this object and its backing store.
4467 int object_offset = *offset;
4468 int object_size = object->map()->instance_size();
4469 int elements_offset = *offset + object_size;
4470 int elements_size = has_elements ? elements->Size() : 0;
4471 *offset += object_size + elements_size;
4472
4473 // Copy object header.
4474 ASSERT(object->properties()->length() == 0);
4475 int inobject_properties = object->map()->inobject_properties();
4476 int header_size = object_size - inobject_properties * kPointerSize;
4477 for (int i = 0; i < header_size; i += kPointerSize) {
4478 if (has_elements && i == JSObject::kElementsOffset) {
4479 __ Addu(a2, result, Operand(elements_offset));
4480 } else {
4481 __ lw(a2, FieldMemOperand(source, i));
4482 }
4483 __ sw(a2, FieldMemOperand(result, object_offset + i));
4484 }
4485
4486 // Copy in-object properties.
4487 for (int i = 0; i < inobject_properties; i++) {
4488 int total_offset = object_offset + object->GetInObjectPropertyOffset(i);
4489 Handle<Object> value = Handle<Object>(object->InObjectPropertyAt(i));
4490 if (value->IsJSObject()) {
4491 Handle<JSObject> value_object = Handle<JSObject>::cast(value);
4492 __ Addu(a2, result, Operand(*offset));
4493 __ sw(a2, FieldMemOperand(result, total_offset));
4494 __ LoadHeapObject(source, value_object);
4495 EmitDeepCopy(value_object, result, source, offset);
4496 } else if (value->IsHeapObject()) {
4497 __ LoadHeapObject(a2, Handle<HeapObject>::cast(value));
4498 __ sw(a2, FieldMemOperand(result, total_offset));
4499 } else {
4500 __ li(a2, Operand(value));
4501 __ sw(a2, FieldMemOperand(result, total_offset));
4502 }
4503 }
4504
4505
4506 if (has_elements) {
4507 // Copy elements backing store header.
4508 __ LoadHeapObject(source, elements);
4509 for (int i = 0; i < FixedArray::kHeaderSize; i += kPointerSize) {
4510 __ lw(a2, FieldMemOperand(source, i));
4511 __ sw(a2, FieldMemOperand(result, elements_offset + i));
4512 }
4513
4514 // Copy elements backing store content.
4515 int elements_length = has_elements ? elements->length() : 0;
4516 if (elements->IsFixedDoubleArray()) {
4517 Handle<FixedDoubleArray> double_array =
4518 Handle<FixedDoubleArray>::cast(elements);
4519 for (int i = 0; i < elements_length; i++) {
4520 int64_t value = double_array->get_representation(i);
4521 // We only support little endian mode...
4522 int32_t value_low = value & 0xFFFFFFFF;
4523 int32_t value_high = value >> 32;
4524 int total_offset =
4525 elements_offset + FixedDoubleArray::OffsetOfElementAt(i);
4526 __ li(a2, Operand(value_low));
4527 __ sw(a2, FieldMemOperand(result, total_offset));
4528 __ li(a2, Operand(value_high));
4529 __ sw(a2, FieldMemOperand(result, total_offset + 4));
4530 }
4531 } else if (elements->IsFixedArray()) {
4532 for (int i = 0; i < elements_length; i++) {
4533 int total_offset = elements_offset + FixedArray::OffsetOfElementAt(i);
4534 Handle<Object> value = JSObject::GetElement(object, i);
4535 if (value->IsJSObject()) {
4536 Handle<JSObject> value_object = Handle<JSObject>::cast(value);
4537 __ Addu(a2, result, Operand(*offset));
4538 __ sw(a2, FieldMemOperand(result, total_offset));
4539 __ LoadHeapObject(source, value_object);
4540 EmitDeepCopy(value_object, result, source, offset);
4541 } else if (value->IsHeapObject()) {
4542 __ LoadHeapObject(a2, Handle<HeapObject>::cast(value));
4543 __ sw(a2, FieldMemOperand(result, total_offset));
4544 } else {
4545 __ li(a2, Operand(value));
4546 __ sw(a2, FieldMemOperand(result, total_offset));
4547 }
4548 }
4549 } else {
4550 UNREACHABLE();
4551 }
4552 }
4553 }
4554
4555
DoFastLiteral(LFastLiteral * instr)4556 void LCodeGen::DoFastLiteral(LFastLiteral* instr) {
4557 int size = instr->hydrogen()->total_size();
4558
4559 // Allocate all objects that are part of the literal in one big
4560 // allocation. This avoids multiple limit checks.
4561 Label allocated, runtime_allocate;
4562 __ AllocateInNewSpace(size, v0, a2, a3, &runtime_allocate, TAG_OBJECT);
4563 __ jmp(&allocated);
4564
4565 __ bind(&runtime_allocate);
4566 __ li(a0, Operand(Smi::FromInt(size)));
4567 __ push(a0);
4568 CallRuntime(Runtime::kAllocateInNewSpace, 1, instr);
4569
4570 __ bind(&allocated);
4571 int offset = 0;
4572 __ LoadHeapObject(a1, instr->hydrogen()->boilerplate());
4573 EmitDeepCopy(instr->hydrogen()->boilerplate(), v0, a1, &offset);
4574 ASSERT_EQ(size, offset);
4575 }
4576
4577
DoObjectLiteral(LObjectLiteral * instr)4578 void LCodeGen::DoObjectLiteral(LObjectLiteral* instr) {
4579 ASSERT(ToRegister(instr->result()).is(v0));
4580 Handle<FixedArray> literals(instr->environment()->closure()->literals());
4581 Handle<FixedArray> constant_properties =
4582 instr->hydrogen()->constant_properties();
4583
4584 // Set up the parameters to the stub/runtime call.
4585 __ LoadHeapObject(t0, literals);
4586 __ li(a3, Operand(Smi::FromInt(instr->hydrogen()->literal_index())));
4587 __ li(a2, Operand(constant_properties));
4588 int flags = instr->hydrogen()->fast_elements()
4589 ? ObjectLiteral::kFastElements
4590 : ObjectLiteral::kNoFlags;
4591 __ li(a1, Operand(Smi::FromInt(flags)));
4592 __ Push(t0, a3, a2, a1);
4593
4594 // Pick the right runtime function or stub to call.
4595 int properties_count = constant_properties->length() / 2;
4596 if (instr->hydrogen()->depth() > 1) {
4597 CallRuntime(Runtime::kCreateObjectLiteral, 4, instr);
4598 } else if (flags != ObjectLiteral::kFastElements ||
4599 properties_count > FastCloneShallowObjectStub::kMaximumClonedProperties) {
4600 CallRuntime(Runtime::kCreateObjectLiteralShallow, 4, instr);
4601 } else {
4602 FastCloneShallowObjectStub stub(properties_count);
4603 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
4604 }
4605 }
4606
4607
DoToFastProperties(LToFastProperties * instr)4608 void LCodeGen::DoToFastProperties(LToFastProperties* instr) {
4609 ASSERT(ToRegister(instr->InputAt(0)).is(a0));
4610 ASSERT(ToRegister(instr->result()).is(v0));
4611 __ push(a0);
4612 CallRuntime(Runtime::kToFastProperties, 1, instr);
4613 }
4614
4615
DoRegExpLiteral(LRegExpLiteral * instr)4616 void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) {
4617 Label materialized;
4618 // Registers will be used as follows:
4619 // a3 = JS function.
4620 // t3 = literals array.
4621 // a1 = regexp literal.
4622 // a0 = regexp literal clone.
4623 // a2 and t0-t2 are used as temporaries.
4624 __ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
4625 __ lw(t3, FieldMemOperand(a3, JSFunction::kLiteralsOffset));
4626 int literal_offset = FixedArray::kHeaderSize +
4627 instr->hydrogen()->literal_index() * kPointerSize;
4628 __ lw(a1, FieldMemOperand(t3, literal_offset));
4629 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
4630 __ Branch(&materialized, ne, a1, Operand(at));
4631
4632 // Create regexp literal using runtime function
4633 // Result will be in v0.
4634 __ li(t2, Operand(Smi::FromInt(instr->hydrogen()->literal_index())));
4635 __ li(t1, Operand(instr->hydrogen()->pattern()));
4636 __ li(t0, Operand(instr->hydrogen()->flags()));
4637 __ Push(t3, t2, t1, t0);
4638 CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr);
4639 __ mov(a1, v0);
4640
4641 __ bind(&materialized);
4642 int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
4643 Label allocated, runtime_allocate;
4644
4645 __ AllocateInNewSpace(size, v0, a2, a3, &runtime_allocate, TAG_OBJECT);
4646 __ jmp(&allocated);
4647
4648 __ bind(&runtime_allocate);
4649 __ li(a0, Operand(Smi::FromInt(size)));
4650 __ Push(a1, a0);
4651 CallRuntime(Runtime::kAllocateInNewSpace, 1, instr);
4652 __ pop(a1);
4653
4654 __ bind(&allocated);
4655 // Copy the content into the newly allocated memory.
4656 // (Unroll copy loop once for better throughput).
4657 for (int i = 0; i < size - kPointerSize; i += 2 * kPointerSize) {
4658 __ lw(a3, FieldMemOperand(a1, i));
4659 __ lw(a2, FieldMemOperand(a1, i + kPointerSize));
4660 __ sw(a3, FieldMemOperand(v0, i));
4661 __ sw(a2, FieldMemOperand(v0, i + kPointerSize));
4662 }
4663 if ((size % (2 * kPointerSize)) != 0) {
4664 __ lw(a3, FieldMemOperand(a1, size - kPointerSize));
4665 __ sw(a3, FieldMemOperand(v0, size - kPointerSize));
4666 }
4667 }
4668
4669
DoFunctionLiteral(LFunctionLiteral * instr)4670 void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) {
4671 // Use the fast case closure allocation code that allocates in new
4672 // space for nested functions that don't need literals cloning.
4673 Handle<SharedFunctionInfo> shared_info = instr->shared_info();
4674 bool pretenure = instr->hydrogen()->pretenure();
4675 if (!pretenure && shared_info->num_literals() == 0) {
4676 FastNewClosureStub stub(shared_info->language_mode());
4677 __ li(a1, Operand(shared_info));
4678 __ push(a1);
4679 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
4680 } else {
4681 __ li(a2, Operand(shared_info));
4682 __ li(a1, Operand(pretenure
4683 ? factory()->true_value()
4684 : factory()->false_value()));
4685 __ Push(cp, a2, a1);
4686 CallRuntime(Runtime::kNewClosure, 3, instr);
4687 }
4688 }
4689
4690
DoTypeof(LTypeof * instr)4691 void LCodeGen::DoTypeof(LTypeof* instr) {
4692 ASSERT(ToRegister(instr->result()).is(v0));
4693 Register input = ToRegister(instr->InputAt(0));
4694 __ push(input);
4695 CallRuntime(Runtime::kTypeof, 1, instr);
4696 }
4697
4698
DoTypeofIsAndBranch(LTypeofIsAndBranch * instr)4699 void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
4700 Register input = ToRegister(instr->InputAt(0));
4701 int true_block = chunk_->LookupDestination(instr->true_block_id());
4702 int false_block = chunk_->LookupDestination(instr->false_block_id());
4703 Label* true_label = chunk_->GetAssemblyLabel(true_block);
4704 Label* false_label = chunk_->GetAssemblyLabel(false_block);
4705
4706 Register cmp1 = no_reg;
4707 Operand cmp2 = Operand(no_reg);
4708
4709 Condition final_branch_condition = EmitTypeofIs(true_label,
4710 false_label,
4711 input,
4712 instr->type_literal(),
4713 cmp1,
4714 cmp2);
4715
4716 ASSERT(cmp1.is_valid());
4717 ASSERT(!cmp2.is_reg() || cmp2.rm().is_valid());
4718
4719 if (final_branch_condition != kNoCondition) {
4720 EmitBranch(true_block, false_block, final_branch_condition, cmp1, cmp2);
4721 }
4722 }
4723
4724
EmitTypeofIs(Label * true_label,Label * false_label,Register input,Handle<String> type_name,Register & cmp1,Operand & cmp2)4725 Condition LCodeGen::EmitTypeofIs(Label* true_label,
4726 Label* false_label,
4727 Register input,
4728 Handle<String> type_name,
4729 Register& cmp1,
4730 Operand& cmp2) {
4731 // This function utilizes the delay slot heavily. This is used to load
4732 // values that are always usable without depending on the type of the input
4733 // register.
4734 Condition final_branch_condition = kNoCondition;
4735 Register scratch = scratch0();
4736 if (type_name->Equals(heap()->number_symbol())) {
4737 __ JumpIfSmi(input, true_label);
4738 __ lw(input, FieldMemOperand(input, HeapObject::kMapOffset));
4739 __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
4740 cmp1 = input;
4741 cmp2 = Operand(at);
4742 final_branch_condition = eq;
4743
4744 } else if (type_name->Equals(heap()->string_symbol())) {
4745 __ JumpIfSmi(input, false_label);
4746 __ GetObjectType(input, input, scratch);
4747 __ Branch(USE_DELAY_SLOT, false_label,
4748 ge, scratch, Operand(FIRST_NONSTRING_TYPE));
4749 // input is an object so we can load the BitFieldOffset even if we take the
4750 // other branch.
4751 __ lbu(at, FieldMemOperand(input, Map::kBitFieldOffset));
4752 __ And(at, at, 1 << Map::kIsUndetectable);
4753 cmp1 = at;
4754 cmp2 = Operand(zero_reg);
4755 final_branch_condition = eq;
4756
4757 } else if (type_name->Equals(heap()->boolean_symbol())) {
4758 __ LoadRoot(at, Heap::kTrueValueRootIndex);
4759 __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input));
4760 __ LoadRoot(at, Heap::kFalseValueRootIndex);
4761 cmp1 = at;
4762 cmp2 = Operand(input);
4763 final_branch_condition = eq;
4764
4765 } else if (FLAG_harmony_typeof && type_name->Equals(heap()->null_symbol())) {
4766 __ LoadRoot(at, Heap::kNullValueRootIndex);
4767 cmp1 = at;
4768 cmp2 = Operand(input);
4769 final_branch_condition = eq;
4770
4771 } else if (type_name->Equals(heap()->undefined_symbol())) {
4772 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
4773 __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input));
4774 // The first instruction of JumpIfSmi is an And - it is safe in the delay
4775 // slot.
4776 __ JumpIfSmi(input, false_label);
4777 // Check for undetectable objects => true.
4778 __ lw(input, FieldMemOperand(input, HeapObject::kMapOffset));
4779 __ lbu(at, FieldMemOperand(input, Map::kBitFieldOffset));
4780 __ And(at, at, 1 << Map::kIsUndetectable);
4781 cmp1 = at;
4782 cmp2 = Operand(zero_reg);
4783 final_branch_condition = ne;
4784
4785 } else if (type_name->Equals(heap()->function_symbol())) {
4786 STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
4787 __ JumpIfSmi(input, false_label);
4788 __ GetObjectType(input, scratch, input);
4789 __ Branch(true_label, eq, input, Operand(JS_FUNCTION_TYPE));
4790 cmp1 = input;
4791 cmp2 = Operand(JS_FUNCTION_PROXY_TYPE);
4792 final_branch_condition = eq;
4793
4794 } else if (type_name->Equals(heap()->object_symbol())) {
4795 __ JumpIfSmi(input, false_label);
4796 if (!FLAG_harmony_typeof) {
4797 __ LoadRoot(at, Heap::kNullValueRootIndex);
4798 __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input));
4799 }
4800 // input is an object, it is safe to use GetObjectType in the delay slot.
4801 __ GetObjectType(input, input, scratch);
4802 __ Branch(USE_DELAY_SLOT, false_label,
4803 lt, scratch, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
4804 // Still an object, so the InstanceType can be loaded.
4805 __ lbu(scratch, FieldMemOperand(input, Map::kInstanceTypeOffset));
4806 __ Branch(USE_DELAY_SLOT, false_label,
4807 gt, scratch, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
4808 // Still an object, so the BitField can be loaded.
4809 // Check for undetectable objects => false.
4810 __ lbu(at, FieldMemOperand(input, Map::kBitFieldOffset));
4811 __ And(at, at, 1 << Map::kIsUndetectable);
4812 cmp1 = at;
4813 cmp2 = Operand(zero_reg);
4814 final_branch_condition = eq;
4815
4816 } else {
4817 cmp1 = at;
4818 cmp2 = Operand(zero_reg); // Set to valid regs, to avoid caller assertion.
4819 __ Branch(false_label);
4820 }
4821
4822 return final_branch_condition;
4823 }
4824
4825
DoIsConstructCallAndBranch(LIsConstructCallAndBranch * instr)4826 void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) {
4827 Register temp1 = ToRegister(instr->TempAt(0));
4828 int true_block = chunk_->LookupDestination(instr->true_block_id());
4829 int false_block = chunk_->LookupDestination(instr->false_block_id());
4830
4831 EmitIsConstructCall(temp1, scratch0());
4832
4833 EmitBranch(true_block, false_block, eq, temp1,
4834 Operand(Smi::FromInt(StackFrame::CONSTRUCT)));
4835 }
4836
4837
EmitIsConstructCall(Register temp1,Register temp2)4838 void LCodeGen::EmitIsConstructCall(Register temp1, Register temp2) {
4839 ASSERT(!temp1.is(temp2));
4840 // Get the frame pointer for the calling frame.
4841 __ lw(temp1, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
4842
4843 // Skip the arguments adaptor frame if it exists.
4844 Label check_frame_marker;
4845 __ lw(temp2, MemOperand(temp1, StandardFrameConstants::kContextOffset));
4846 __ Branch(&check_frame_marker, ne, temp2,
4847 Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
4848 __ lw(temp1, MemOperand(temp1, StandardFrameConstants::kCallerFPOffset));
4849
4850 // Check the marker in the calling frame.
4851 __ bind(&check_frame_marker);
4852 __ lw(temp1, MemOperand(temp1, StandardFrameConstants::kMarkerOffset));
4853 }
4854
4855
EnsureSpaceForLazyDeopt()4856 void LCodeGen::EnsureSpaceForLazyDeopt() {
4857 // Ensure that we have enough space after the previous lazy-bailout
4858 // instruction for patching the code here.
4859 int current_pc = masm()->pc_offset();
4860 int patch_size = Deoptimizer::patch_size();
4861 if (current_pc < last_lazy_deopt_pc_ + patch_size) {
4862 int padding_size = last_lazy_deopt_pc_ + patch_size - current_pc;
4863 ASSERT_EQ(0, padding_size % Assembler::kInstrSize);
4864 while (padding_size > 0) {
4865 __ nop();
4866 padding_size -= Assembler::kInstrSize;
4867 }
4868 }
4869 last_lazy_deopt_pc_ = masm()->pc_offset();
4870 }
4871
4872
DoLazyBailout(LLazyBailout * instr)4873 void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
4874 EnsureSpaceForLazyDeopt();
4875 ASSERT(instr->HasEnvironment());
4876 LEnvironment* env = instr->environment();
4877 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
4878 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
4879 }
4880
4881
DoDeoptimize(LDeoptimize * instr)4882 void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
4883 DeoptimizeIf(al, instr->environment(), zero_reg, Operand(zero_reg));
4884 }
4885
4886
DoDeleteProperty(LDeleteProperty * instr)4887 void LCodeGen::DoDeleteProperty(LDeleteProperty* instr) {
4888 Register object = ToRegister(instr->object());
4889 Register key = ToRegister(instr->key());
4890 Register strict = scratch0();
4891 __ li(strict, Operand(Smi::FromInt(strict_mode_flag())));
4892 __ Push(object, key, strict);
4893 ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment());
4894 LPointerMap* pointers = instr->pointer_map();
4895 RecordPosition(pointers->position());
4896 SafepointGenerator safepoint_generator(
4897 this, pointers, Safepoint::kLazyDeopt);
4898 __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, safepoint_generator);
4899 }
4900
4901
DoIn(LIn * instr)4902 void LCodeGen::DoIn(LIn* instr) {
4903 Register obj = ToRegister(instr->object());
4904 Register key = ToRegister(instr->key());
4905 __ Push(key, obj);
4906 ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment());
4907 LPointerMap* pointers = instr->pointer_map();
4908 RecordPosition(pointers->position());
4909 SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt);
4910 __ InvokeBuiltin(Builtins::IN, CALL_FUNCTION, safepoint_generator);
4911 }
4912
4913
DoDeferredStackCheck(LStackCheck * instr)4914 void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
4915 PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
4916 __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
4917 RecordSafepointWithLazyDeopt(
4918 instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
4919 ASSERT(instr->HasEnvironment());
4920 LEnvironment* env = instr->environment();
4921 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
4922 }
4923
4924
DoStackCheck(LStackCheck * instr)4925 void LCodeGen::DoStackCheck(LStackCheck* instr) {
4926 class DeferredStackCheck: public LDeferredCode {
4927 public:
4928 DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
4929 : LDeferredCode(codegen), instr_(instr) { }
4930 virtual void Generate() { codegen()->DoDeferredStackCheck(instr_); }
4931 virtual LInstruction* instr() { return instr_; }
4932 private:
4933 LStackCheck* instr_;
4934 };
4935
4936 ASSERT(instr->HasEnvironment());
4937 LEnvironment* env = instr->environment();
4938 // There is no LLazyBailout instruction for stack-checks. We have to
4939 // prepare for lazy deoptimization explicitly here.
4940 if (instr->hydrogen()->is_function_entry()) {
4941 // Perform stack overflow check.
4942 Label done;
4943 __ LoadRoot(at, Heap::kStackLimitRootIndex);
4944 __ Branch(&done, hs, sp, Operand(at));
4945 StackCheckStub stub;
4946 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
4947 EnsureSpaceForLazyDeopt();
4948 __ bind(&done);
4949 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
4950 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
4951 } else {
4952 ASSERT(instr->hydrogen()->is_backwards_branch());
4953 // Perform stack overflow check if this goto needs it before jumping.
4954 DeferredStackCheck* deferred_stack_check =
4955 new DeferredStackCheck(this, instr);
4956 __ LoadRoot(at, Heap::kStackLimitRootIndex);
4957 __ Branch(deferred_stack_check->entry(), lo, sp, Operand(at));
4958 EnsureSpaceForLazyDeopt();
4959 __ bind(instr->done_label());
4960 deferred_stack_check->SetExit(instr->done_label());
4961 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
4962 // Don't record a deoptimization index for the safepoint here.
4963 // This will be done explicitly when emitting call and the safepoint in
4964 // the deferred code.
4965 }
4966 }
4967
4968
DoOsrEntry(LOsrEntry * instr)4969 void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
4970 // This is a pseudo-instruction that ensures that the environment here is
4971 // properly registered for deoptimization and records the assembler's PC
4972 // offset.
4973 LEnvironment* environment = instr->environment();
4974 environment->SetSpilledRegisters(instr->SpilledRegisterArray(),
4975 instr->SpilledDoubleRegisterArray());
4976
4977 // If the environment were already registered, we would have no way of
4978 // backpatching it with the spill slot operands.
4979 ASSERT(!environment->HasBeenRegistered());
4980 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
4981 ASSERT(osr_pc_offset_ == -1);
4982 osr_pc_offset_ = masm()->pc_offset();
4983 }
4984
4985
DoForInPrepareMap(LForInPrepareMap * instr)4986 void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
4987 Register result = ToRegister(instr->result());
4988 Register object = ToRegister(instr->object());
4989 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
4990 DeoptimizeIf(eq, instr->environment(), object, Operand(at));
4991
4992 Register null_value = t1;
4993 __ LoadRoot(null_value, Heap::kNullValueRootIndex);
4994 DeoptimizeIf(eq, instr->environment(), object, Operand(null_value));
4995
4996 __ And(at, object, kSmiTagMask);
4997 DeoptimizeIf(eq, instr->environment(), at, Operand(zero_reg));
4998
4999 STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
5000 __ GetObjectType(object, a1, a1);
5001 DeoptimizeIf(le, instr->environment(), a1, Operand(LAST_JS_PROXY_TYPE));
5002
5003 Label use_cache, call_runtime;
5004 ASSERT(object.is(a0));
5005 __ CheckEnumCache(null_value, &call_runtime);
5006
5007 __ lw(result, FieldMemOperand(object, HeapObject::kMapOffset));
5008 __ Branch(&use_cache);
5009
5010 // Get the set of properties to enumerate.
5011 __ bind(&call_runtime);
5012 __ push(object);
5013 CallRuntime(Runtime::kGetPropertyNamesFast, 1, instr);
5014
5015 __ lw(a1, FieldMemOperand(v0, HeapObject::kMapOffset));
5016 ASSERT(result.is(v0));
5017 __ LoadRoot(at, Heap::kMetaMapRootIndex);
5018 DeoptimizeIf(ne, instr->environment(), a1, Operand(at));
5019 __ bind(&use_cache);
5020 }
5021
5022
DoForInCacheArray(LForInCacheArray * instr)5023 void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
5024 Register map = ToRegister(instr->map());
5025 Register result = ToRegister(instr->result());
5026 __ LoadInstanceDescriptors(map, result);
5027 __ lw(result,
5028 FieldMemOperand(result, DescriptorArray::kEnumerationIndexOffset));
5029 __ lw(result,
5030 FieldMemOperand(result, FixedArray::SizeFor(instr->idx())));
5031 DeoptimizeIf(eq, instr->environment(), result, Operand(zero_reg));
5032 }
5033
5034
DoCheckMapValue(LCheckMapValue * instr)5035 void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
5036 Register object = ToRegister(instr->value());
5037 Register map = ToRegister(instr->map());
5038 __ lw(scratch0(), FieldMemOperand(object, HeapObject::kMapOffset));
5039 DeoptimizeIf(ne, instr->environment(), map, Operand(scratch0()));
5040 }
5041
5042
DoLoadFieldByIndex(LLoadFieldByIndex * instr)5043 void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
5044 Register object = ToRegister(instr->object());
5045 Register index = ToRegister(instr->index());
5046 Register result = ToRegister(instr->result());
5047 Register scratch = scratch0();
5048
5049 Label out_of_object, done;
5050 __ Branch(USE_DELAY_SLOT, &out_of_object, lt, index, Operand(zero_reg));
5051 __ sll(scratch, index, kPointerSizeLog2 - kSmiTagSize); // In delay slot.
5052
5053 STATIC_ASSERT(kPointerSizeLog2 > kSmiTagSize);
5054 __ Addu(scratch, object, scratch);
5055 __ lw(result, FieldMemOperand(scratch, JSObject::kHeaderSize));
5056
5057 __ Branch(&done);
5058
5059 __ bind(&out_of_object);
5060 __ lw(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
5061 // Index is equal to negated out of object property index plus 1.
5062 __ Subu(scratch, result, scratch);
5063 __ lw(result, FieldMemOperand(scratch,
5064 FixedArray::kHeaderSize - kPointerSize));
5065 __ bind(&done);
5066 }
5067
5068
5069 #undef __
5070
5071 } } // namespace v8::internal
5072