• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #include "v8.h"
29 
30 #include "mips/lithium-codegen-mips.h"
31 #include "mips/lithium-gap-resolver-mips.h"
32 #include "code-stubs.h"
33 #include "stub-cache.h"
34 
35 namespace v8 {
36 namespace internal {
37 
38 
39 class SafepointGenerator : public CallWrapper {
40  public:
SafepointGenerator(LCodeGen * codegen,LPointerMap * pointers,Safepoint::DeoptMode mode)41   SafepointGenerator(LCodeGen* codegen,
42                      LPointerMap* pointers,
43                      Safepoint::DeoptMode mode)
44       : codegen_(codegen),
45         pointers_(pointers),
46         deopt_mode_(mode) { }
~SafepointGenerator()47   virtual ~SafepointGenerator() { }
48 
BeforeCall(int call_size) const49   virtual void BeforeCall(int call_size) const { }
50 
AfterCall() const51   virtual void AfterCall() const {
52     codegen_->RecordSafepoint(pointers_, deopt_mode_);
53   }
54 
55  private:
56   LCodeGen* codegen_;
57   LPointerMap* pointers_;
58   Safepoint::DeoptMode deopt_mode_;
59 };
60 
61 
62 #define __ masm()->
63 
GenerateCode()64 bool LCodeGen::GenerateCode() {
65   HPhase phase("Z_Code generation", chunk());
66   ASSERT(is_unused());
67   status_ = GENERATING;
68   CpuFeatures::Scope scope(FPU);
69 
70   CodeStub::GenerateFPStubs();
71 
72   // Open a frame scope to indicate that there is a frame on the stack.  The
73   // NONE indicates that the scope shouldn't actually generate code to set up
74   // the frame (that is done in GeneratePrologue).
75   FrameScope frame_scope(masm_, StackFrame::NONE);
76 
77   return GeneratePrologue() &&
78       GenerateBody() &&
79       GenerateDeferredCode() &&
80       GenerateSafepointTable();
81 }
82 
83 
FinishCode(Handle<Code> code)84 void LCodeGen::FinishCode(Handle<Code> code) {
85   ASSERT(is_done());
86   code->set_stack_slots(GetStackSlotCount());
87   code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
88   PopulateDeoptimizationData(code);
89 }
90 
91 
Abort(const char * format,...)92 void LCodeGen::Abort(const char* format, ...) {
93   if (FLAG_trace_bailout) {
94     SmartArrayPointer<char> name(
95         info()->shared_info()->DebugName()->ToCString());
96     PrintF("Aborting LCodeGen in @\"%s\": ", *name);
97     va_list arguments;
98     va_start(arguments, format);
99     OS::VPrint(format, arguments);
100     va_end(arguments);
101     PrintF("\n");
102   }
103   status_ = ABORTED;
104 }
105 
106 
Comment(const char * format,...)107 void LCodeGen::Comment(const char* format, ...) {
108   if (!FLAG_code_comments) return;
109   char buffer[4 * KB];
110   StringBuilder builder(buffer, ARRAY_SIZE(buffer));
111   va_list arguments;
112   va_start(arguments, format);
113   builder.AddFormattedList(format, arguments);
114   va_end(arguments);
115 
116   // Copy the string before recording it in the assembler to avoid
117   // issues when the stack allocated buffer goes out of scope.
118   size_t length = builder.position();
119   Vector<char> copy = Vector<char>::New(length + 1);
120   memcpy(copy.start(), builder.Finalize(), copy.length());
121   masm()->RecordComment(copy.start());
122 }
123 
124 
GeneratePrologue()125 bool LCodeGen::GeneratePrologue() {
126   ASSERT(is_generating());
127 
128 #ifdef DEBUG
129   if (strlen(FLAG_stop_at) > 0 &&
130       info_->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) {
131     __ stop("stop_at");
132   }
133 #endif
134 
135   // a1: Callee's JS function.
136   // cp: Callee's context.
137   // fp: Caller's frame pointer.
138   // lr: Caller's pc.
139 
140   // Strict mode functions and builtins need to replace the receiver
141   // with undefined when called as functions (without an explicit
142   // receiver object). r5 is zero for method calls and non-zero for
143   // function calls.
144   if (!info_->is_classic_mode() || info_->is_native()) {
145     Label ok;
146     __ Branch(&ok, eq, t1, Operand(zero_reg));
147 
148     int receiver_offset = scope()->num_parameters() * kPointerSize;
149     __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
150     __ sw(a2, MemOperand(sp, receiver_offset));
151     __ bind(&ok);
152   }
153 
154   __ Push(ra, fp, cp, a1);
155   __ Addu(fp, sp, Operand(2 * kPointerSize));  // Adj. FP to point to saved FP.
156 
157   // Reserve space for the stack slots needed by the code.
158   int slots = GetStackSlotCount();
159   if (slots > 0) {
160     if (FLAG_debug_code) {
161       __ li(a0, Operand(slots));
162       __ li(a2, Operand(kSlotsZapValue));
163       Label loop;
164       __ bind(&loop);
165       __ push(a2);
166       __ Subu(a0, a0, 1);
167       __ Branch(&loop, ne, a0, Operand(zero_reg));
168     } else {
169       __ Subu(sp, sp, Operand(slots * kPointerSize));
170     }
171   }
172 
173   // Possibly allocate a local context.
174   int heap_slots = scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
175   if (heap_slots > 0) {
176     Comment(";;; Allocate local context");
177     // Argument to NewContext is the function, which is in a1.
178     __ push(a1);
179     if (heap_slots <= FastNewContextStub::kMaximumSlots) {
180       FastNewContextStub stub(heap_slots);
181       __ CallStub(&stub);
182     } else {
183       __ CallRuntime(Runtime::kNewFunctionContext, 1);
184     }
185     RecordSafepoint(Safepoint::kNoLazyDeopt);
186     // Context is returned in both v0 and cp.  It replaces the context
187     // passed to us.  It's saved in the stack and kept live in cp.
188     __ sw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
189     // Copy any necessary parameters into the context.
190     int num_parameters = scope()->num_parameters();
191     for (int i = 0; i < num_parameters; i++) {
192       Variable* var = scope()->parameter(i);
193       if (var->IsContextSlot()) {
194         int parameter_offset = StandardFrameConstants::kCallerSPOffset +
195             (num_parameters - 1 - i) * kPointerSize;
196         // Load parameter from stack.
197         __ lw(a0, MemOperand(fp, parameter_offset));
198         // Store it in the context.
199         MemOperand target = ContextOperand(cp, var->index());
200         __ sw(a0, target);
201         // Update the write barrier. This clobbers a3 and a0.
202         __ RecordWriteContextSlot(
203             cp, target.offset(), a0, a3, kRAHasBeenSaved, kSaveFPRegs);
204       }
205     }
206     Comment(";;; End allocate local context");
207   }
208 
209   // Trace the call.
210   if (FLAG_trace) {
211     __ CallRuntime(Runtime::kTraceEnter, 0);
212   }
213   EnsureSpaceForLazyDeopt();
214   return !is_aborted();
215 }
216 
217 
GenerateBody()218 bool LCodeGen::GenerateBody() {
219   ASSERT(is_generating());
220   bool emit_instructions = true;
221   for (current_instruction_ = 0;
222        !is_aborted() && current_instruction_ < instructions_->length();
223        current_instruction_++) {
224     LInstruction* instr = instructions_->at(current_instruction_);
225     if (instr->IsLabel()) {
226       LLabel* label = LLabel::cast(instr);
227       emit_instructions = !label->HasReplacement();
228     }
229 
230     if (emit_instructions) {
231       Comment(";;; @%d: %s.", current_instruction_, instr->Mnemonic());
232       instr->CompileToNative(this);
233     }
234   }
235   return !is_aborted();
236 }
237 
238 
GenerateDeferredCode()239 bool LCodeGen::GenerateDeferredCode() {
240   ASSERT(is_generating());
241   if (deferred_.length() > 0) {
242     for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
243       LDeferredCode* code = deferred_[i];
244       __ bind(code->entry());
245       Comment(";;; Deferred code @%d: %s.",
246               code->instruction_index(),
247               code->instr()->Mnemonic());
248       code->Generate();
249       __ jmp(code->exit());
250     }
251   }
252   // Deferred code is the last part of the instruction sequence. Mark
253   // the generated code as done unless we bailed out.
254   if (!is_aborted()) status_ = DONE;
255   return !is_aborted();
256 }
257 
258 
GenerateDeoptJumpTable()259 bool LCodeGen::GenerateDeoptJumpTable() {
260   // TODO(plind): not clear that this will have advantage for MIPS.
261   // Skipping it for now. Raised issue #100 for this.
262   Abort("Unimplemented: %s", "GenerateDeoptJumpTable");
263   return false;
264 }
265 
266 
GenerateSafepointTable()267 bool LCodeGen::GenerateSafepointTable() {
268   ASSERT(is_done());
269   safepoints_.Emit(masm(), GetStackSlotCount());
270   return !is_aborted();
271 }
272 
273 
ToRegister(int index) const274 Register LCodeGen::ToRegister(int index) const {
275   return Register::FromAllocationIndex(index);
276 }
277 
278 
ToDoubleRegister(int index) const279 DoubleRegister LCodeGen::ToDoubleRegister(int index) const {
280   return DoubleRegister::FromAllocationIndex(index);
281 }
282 
283 
ToRegister(LOperand * op) const284 Register LCodeGen::ToRegister(LOperand* op) const {
285   ASSERT(op->IsRegister());
286   return ToRegister(op->index());
287 }
288 
289 
EmitLoadRegister(LOperand * op,Register scratch)290 Register LCodeGen::EmitLoadRegister(LOperand* op, Register scratch) {
291   if (op->IsRegister()) {
292     return ToRegister(op->index());
293   } else if (op->IsConstantOperand()) {
294     LConstantOperand* const_op = LConstantOperand::cast(op);
295     Handle<Object> literal = chunk_->LookupLiteral(const_op);
296     Representation r = chunk_->LookupLiteralRepresentation(const_op);
297     if (r.IsInteger32()) {
298       ASSERT(literal->IsNumber());
299       __ li(scratch, Operand(static_cast<int32_t>(literal->Number())));
300     } else if (r.IsDouble()) {
301       Abort("EmitLoadRegister: Unsupported double immediate.");
302     } else {
303       ASSERT(r.IsTagged());
304       if (literal->IsSmi()) {
305         __ li(scratch, Operand(literal));
306       } else {
307        __ LoadHeapObject(scratch, Handle<HeapObject>::cast(literal));
308       }
309     }
310     return scratch;
311   } else if (op->IsStackSlot() || op->IsArgument()) {
312     __ lw(scratch, ToMemOperand(op));
313     return scratch;
314   }
315   UNREACHABLE();
316   return scratch;
317 }
318 
319 
ToDoubleRegister(LOperand * op) const320 DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
321   ASSERT(op->IsDoubleRegister());
322   return ToDoubleRegister(op->index());
323 }
324 
325 
EmitLoadDoubleRegister(LOperand * op,FloatRegister flt_scratch,DoubleRegister dbl_scratch)326 DoubleRegister LCodeGen::EmitLoadDoubleRegister(LOperand* op,
327                                                 FloatRegister flt_scratch,
328                                                 DoubleRegister dbl_scratch) {
329   if (op->IsDoubleRegister()) {
330     return ToDoubleRegister(op->index());
331   } else if (op->IsConstantOperand()) {
332     LConstantOperand* const_op = LConstantOperand::cast(op);
333     Handle<Object> literal = chunk_->LookupLiteral(const_op);
334     Representation r = chunk_->LookupLiteralRepresentation(const_op);
335     if (r.IsInteger32()) {
336       ASSERT(literal->IsNumber());
337       __ li(at, Operand(static_cast<int32_t>(literal->Number())));
338       __ mtc1(at, flt_scratch);
339       __ cvt_d_w(dbl_scratch, flt_scratch);
340       return dbl_scratch;
341     } else if (r.IsDouble()) {
342       Abort("unsupported double immediate");
343     } else if (r.IsTagged()) {
344       Abort("unsupported tagged immediate");
345     }
346   } else if (op->IsStackSlot() || op->IsArgument()) {
347     MemOperand mem_op = ToMemOperand(op);
348     __ ldc1(dbl_scratch, mem_op);
349     return dbl_scratch;
350   }
351   UNREACHABLE();
352   return dbl_scratch;
353 }
354 
355 
ToHandle(LConstantOperand * op) const356 Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
357   Handle<Object> literal = chunk_->LookupLiteral(op);
358   ASSERT(chunk_->LookupLiteralRepresentation(op).IsTagged());
359   return literal;
360 }
361 
362 
IsInteger32(LConstantOperand * op) const363 bool LCodeGen::IsInteger32(LConstantOperand* op) const {
364   return chunk_->LookupLiteralRepresentation(op).IsInteger32();
365 }
366 
367 
ToInteger32(LConstantOperand * op) const368 int LCodeGen::ToInteger32(LConstantOperand* op) const {
369   Handle<Object> value = chunk_->LookupLiteral(op);
370   ASSERT(chunk_->LookupLiteralRepresentation(op).IsInteger32());
371   ASSERT(static_cast<double>(static_cast<int32_t>(value->Number())) ==
372       value->Number());
373   return static_cast<int32_t>(value->Number());
374 }
375 
376 
ToDouble(LConstantOperand * op) const377 double LCodeGen::ToDouble(LConstantOperand* op) const {
378   Handle<Object> value = chunk_->LookupLiteral(op);
379   return value->Number();
380 }
381 
382 
ToOperand(LOperand * op)383 Operand LCodeGen::ToOperand(LOperand* op) {
384   if (op->IsConstantOperand()) {
385     LConstantOperand* const_op = LConstantOperand::cast(op);
386     Handle<Object> literal = chunk_->LookupLiteral(const_op);
387     Representation r = chunk_->LookupLiteralRepresentation(const_op);
388     if (r.IsInteger32()) {
389       ASSERT(literal->IsNumber());
390       return Operand(static_cast<int32_t>(literal->Number()));
391     } else if (r.IsDouble()) {
392       Abort("ToOperand Unsupported double immediate.");
393     }
394     ASSERT(r.IsTagged());
395     return Operand(literal);
396   } else if (op->IsRegister()) {
397     return Operand(ToRegister(op));
398   } else if (op->IsDoubleRegister()) {
399     Abort("ToOperand IsDoubleRegister unimplemented");
400     return Operand(0);
401   }
402   // Stack slots not implemented, use ToMemOperand instead.
403   UNREACHABLE();
404   return Operand(0);
405 }
406 
407 
ToMemOperand(LOperand * op) const408 MemOperand LCodeGen::ToMemOperand(LOperand* op) const {
409   ASSERT(!op->IsRegister());
410   ASSERT(!op->IsDoubleRegister());
411   ASSERT(op->IsStackSlot() || op->IsDoubleStackSlot());
412   int index = op->index();
413   if (index >= 0) {
414     // Local or spill slot. Skip the frame pointer, function, and
415     // context in the fixed part of the frame.
416     return MemOperand(fp, -(index + 3) * kPointerSize);
417   } else {
418     // Incoming parameter. Skip the return address.
419     return MemOperand(fp, -(index - 1) * kPointerSize);
420   }
421 }
422 
423 
ToHighMemOperand(LOperand * op) const424 MemOperand LCodeGen::ToHighMemOperand(LOperand* op) const {
425   ASSERT(op->IsDoubleStackSlot());
426   int index = op->index();
427   if (index >= 0) {
428     // Local or spill slot. Skip the frame pointer, function, context,
429     // and the first word of the double in the fixed part of the frame.
430     return MemOperand(fp, -(index + 3) * kPointerSize + kPointerSize);
431   } else {
432     // Incoming parameter. Skip the return address and the first word of
433     // the double.
434     return MemOperand(fp, -(index - 1) * kPointerSize + kPointerSize);
435   }
436 }
437 
438 
WriteTranslation(LEnvironment * environment,Translation * translation)439 void LCodeGen::WriteTranslation(LEnvironment* environment,
440                                 Translation* translation) {
441   if (environment == NULL) return;
442 
443   // The translation includes one command per value in the environment.
444   int translation_size = environment->values()->length();
445   // The output frame height does not include the parameters.
446   int height = translation_size - environment->parameter_count();
447 
448   WriteTranslation(environment->outer(), translation);
449   int closure_id = DefineDeoptimizationLiteral(environment->closure());
450   switch (environment->frame_type()) {
451     case JS_FUNCTION:
452       translation->BeginJSFrame(environment->ast_id(), closure_id, height);
453       break;
454     case JS_CONSTRUCT:
455       translation->BeginConstructStubFrame(closure_id, translation_size);
456       break;
457     case ARGUMENTS_ADAPTOR:
458       translation->BeginArgumentsAdaptorFrame(closure_id, translation_size);
459       break;
460     default:
461       UNREACHABLE();
462   }
463   for (int i = 0; i < translation_size; ++i) {
464     LOperand* value = environment->values()->at(i);
465     // spilled_registers_ and spilled_double_registers_ are either
466     // both NULL or both set.
467     if (environment->spilled_registers() != NULL && value != NULL) {
468       if (value->IsRegister() &&
469           environment->spilled_registers()[value->index()] != NULL) {
470         translation->MarkDuplicate();
471         AddToTranslation(translation,
472                          environment->spilled_registers()[value->index()],
473                          environment->HasTaggedValueAt(i));
474       } else if (
475           value->IsDoubleRegister() &&
476           environment->spilled_double_registers()[value->index()] != NULL) {
477         translation->MarkDuplicate();
478         AddToTranslation(
479             translation,
480             environment->spilled_double_registers()[value->index()],
481             false);
482       }
483     }
484 
485     AddToTranslation(translation, value, environment->HasTaggedValueAt(i));
486   }
487 }
488 
489 
AddToTranslation(Translation * translation,LOperand * op,bool is_tagged)490 void LCodeGen::AddToTranslation(Translation* translation,
491                                 LOperand* op,
492                                 bool is_tagged) {
493   if (op == NULL) {
494     // TODO(twuerthinger): Introduce marker operands to indicate that this value
495     // is not present and must be reconstructed from the deoptimizer. Currently
496     // this is only used for the arguments object.
497     translation->StoreArgumentsObject();
498   } else if (op->IsStackSlot()) {
499     if (is_tagged) {
500       translation->StoreStackSlot(op->index());
501     } else {
502       translation->StoreInt32StackSlot(op->index());
503     }
504   } else if (op->IsDoubleStackSlot()) {
505     translation->StoreDoubleStackSlot(op->index());
506   } else if (op->IsArgument()) {
507     ASSERT(is_tagged);
508     int src_index = GetStackSlotCount() + op->index();
509     translation->StoreStackSlot(src_index);
510   } else if (op->IsRegister()) {
511     Register reg = ToRegister(op);
512     if (is_tagged) {
513       translation->StoreRegister(reg);
514     } else {
515       translation->StoreInt32Register(reg);
516     }
517   } else if (op->IsDoubleRegister()) {
518     DoubleRegister reg = ToDoubleRegister(op);
519     translation->StoreDoubleRegister(reg);
520   } else if (op->IsConstantOperand()) {
521     Handle<Object> literal = chunk()->LookupLiteral(LConstantOperand::cast(op));
522     int src_index = DefineDeoptimizationLiteral(literal);
523     translation->StoreLiteral(src_index);
524   } else {
525     UNREACHABLE();
526   }
527 }
528 
529 
CallCode(Handle<Code> code,RelocInfo::Mode mode,LInstruction * instr)530 void LCodeGen::CallCode(Handle<Code> code,
531                         RelocInfo::Mode mode,
532                         LInstruction* instr) {
533   CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
534 }
535 
536 
CallCodeGeneric(Handle<Code> code,RelocInfo::Mode mode,LInstruction * instr,SafepointMode safepoint_mode)537 void LCodeGen::CallCodeGeneric(Handle<Code> code,
538                                RelocInfo::Mode mode,
539                                LInstruction* instr,
540                                SafepointMode safepoint_mode) {
541   ASSERT(instr != NULL);
542   LPointerMap* pointers = instr->pointer_map();
543   RecordPosition(pointers->position());
544   __ Call(code, mode);
545   RecordSafepointWithLazyDeopt(instr, safepoint_mode);
546 }
547 
548 
CallRuntime(const Runtime::Function * function,int num_arguments,LInstruction * instr)549 void LCodeGen::CallRuntime(const Runtime::Function* function,
550                            int num_arguments,
551                            LInstruction* instr) {
552   ASSERT(instr != NULL);
553   LPointerMap* pointers = instr->pointer_map();
554   ASSERT(pointers != NULL);
555   RecordPosition(pointers->position());
556 
557   __ CallRuntime(function, num_arguments);
558   RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
559 }
560 
561 
CallRuntimeFromDeferred(Runtime::FunctionId id,int argc,LInstruction * instr)562 void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
563                                        int argc,
564                                        LInstruction* instr) {
565   __ CallRuntimeSaveDoubles(id);
566   RecordSafepointWithRegisters(
567       instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
568 }
569 
570 
RegisterEnvironmentForDeoptimization(LEnvironment * environment,Safepoint::DeoptMode mode)571 void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
572                                                     Safepoint::DeoptMode mode) {
573   if (!environment->HasBeenRegistered()) {
574     // Physical stack frame layout:
575     // -x ............. -4  0 ..................................... y
576     // [incoming arguments] [spill slots] [pushed outgoing arguments]
577 
578     // Layout of the environment:
579     // 0 ..................................................... size-1
580     // [parameters] [locals] [expression stack including arguments]
581 
582     // Layout of the translation:
583     // 0 ........................................................ size - 1 + 4
584     // [expression stack including arguments] [locals] [4 words] [parameters]
585     // |>------------  translation_size ------------<|
586 
587     int frame_count = 0;
588     int jsframe_count = 0;
589     for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
590       ++frame_count;
591       if (e->frame_type() == JS_FUNCTION) {
592         ++jsframe_count;
593       }
594     }
595     Translation translation(&translations_, frame_count, jsframe_count);
596     WriteTranslation(environment, &translation);
597     int deoptimization_index = deoptimizations_.length();
598     int pc_offset = masm()->pc_offset();
599     environment->Register(deoptimization_index,
600                           translation.index(),
601                           (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
602     deoptimizations_.Add(environment);
603   }
604 }
605 
606 
DeoptimizeIf(Condition cc,LEnvironment * environment,Register src1,const Operand & src2)607 void LCodeGen::DeoptimizeIf(Condition cc,
608                             LEnvironment* environment,
609                             Register src1,
610                             const Operand& src2) {
611   RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
612   ASSERT(environment->HasBeenRegistered());
613   int id = environment->deoptimization_index();
614   Address entry = Deoptimizer::GetDeoptimizationEntry(id, Deoptimizer::EAGER);
615   if (entry == NULL) {
616     Abort("bailout was not prepared");
617     return;
618   }
619 
620   ASSERT(FLAG_deopt_every_n_times < 2);  // Other values not supported on MIPS.
621 
622   if (FLAG_deopt_every_n_times == 1 &&
623       info_->shared_info()->opt_count() == id) {
624     __ Jump(entry, RelocInfo::RUNTIME_ENTRY);
625     return;
626   }
627 
628   if (FLAG_trap_on_deopt) {
629     Label skip;
630     if (cc != al) {
631       __ Branch(&skip, NegateCondition(cc), src1, src2);
632     }
633     __ stop("trap_on_deopt");
634     __ bind(&skip);
635   }
636 
637   // TODO(plind): The Arm port is a little different here, due to their
638   // DeOpt jump table, which is not used for Mips yet.
639   __ Jump(entry, RelocInfo::RUNTIME_ENTRY, cc, src1, src2);
640 }
641 
642 
PopulateDeoptimizationData(Handle<Code> code)643 void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) {
644   int length = deoptimizations_.length();
645   if (length == 0) return;
646   Handle<DeoptimizationInputData> data =
647       factory()->NewDeoptimizationInputData(length, TENURED);
648 
649   Handle<ByteArray> translations = translations_.CreateByteArray();
650   data->SetTranslationByteArray(*translations);
651   data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_));
652 
653   Handle<FixedArray> literals =
654       factory()->NewFixedArray(deoptimization_literals_.length(), TENURED);
655   for (int i = 0; i < deoptimization_literals_.length(); i++) {
656     literals->set(i, *deoptimization_literals_[i]);
657   }
658   data->SetLiteralArray(*literals);
659 
660   data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id()));
661   data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_));
662 
663   // Populate the deoptimization entries.
664   for (int i = 0; i < length; i++) {
665     LEnvironment* env = deoptimizations_[i];
666     data->SetAstId(i, Smi::FromInt(env->ast_id()));
667     data->SetTranslationIndex(i, Smi::FromInt(env->translation_index()));
668     data->SetArgumentsStackHeight(i,
669                                   Smi::FromInt(env->arguments_stack_height()));
670     data->SetPc(i, Smi::FromInt(env->pc_offset()));
671   }
672   code->set_deoptimization_data(*data);
673 }
674 
675 
DefineDeoptimizationLiteral(Handle<Object> literal)676 int LCodeGen::DefineDeoptimizationLiteral(Handle<Object> literal) {
677   int result = deoptimization_literals_.length();
678   for (int i = 0; i < deoptimization_literals_.length(); ++i) {
679     if (deoptimization_literals_[i].is_identical_to(literal)) return i;
680   }
681   deoptimization_literals_.Add(literal);
682   return result;
683 }
684 
685 
PopulateDeoptimizationLiteralsWithInlinedFunctions()686 void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() {
687   ASSERT(deoptimization_literals_.length() == 0);
688 
689   const ZoneList<Handle<JSFunction> >* inlined_closures =
690       chunk()->inlined_closures();
691 
692   for (int i = 0, length = inlined_closures->length();
693        i < length;
694        i++) {
695     DefineDeoptimizationLiteral(inlined_closures->at(i));
696   }
697 
698   inlined_function_count_ = deoptimization_literals_.length();
699 }
700 
701 
RecordSafepointWithLazyDeopt(LInstruction * instr,SafepointMode safepoint_mode)702 void LCodeGen::RecordSafepointWithLazyDeopt(
703     LInstruction* instr, SafepointMode safepoint_mode) {
704   if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
705     RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
706   } else {
707     ASSERT(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
708     RecordSafepointWithRegisters(
709         instr->pointer_map(), 0, Safepoint::kLazyDeopt);
710   }
711 }
712 
713 
RecordSafepoint(LPointerMap * pointers,Safepoint::Kind kind,int arguments,Safepoint::DeoptMode deopt_mode)714 void LCodeGen::RecordSafepoint(
715     LPointerMap* pointers,
716     Safepoint::Kind kind,
717     int arguments,
718     Safepoint::DeoptMode deopt_mode) {
719   ASSERT(expected_safepoint_kind_ == kind);
720 
721   const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
722   Safepoint safepoint = safepoints_.DefineSafepoint(masm(),
723       kind, arguments, deopt_mode);
724   for (int i = 0; i < operands->length(); i++) {
725     LOperand* pointer = operands->at(i);
726     if (pointer->IsStackSlot()) {
727       safepoint.DefinePointerSlot(pointer->index());
728     } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
729       safepoint.DefinePointerRegister(ToRegister(pointer));
730     }
731   }
732   if (kind & Safepoint::kWithRegisters) {
733     // Register cp always contains a pointer to the context.
734     safepoint.DefinePointerRegister(cp);
735   }
736 }
737 
738 
RecordSafepoint(LPointerMap * pointers,Safepoint::DeoptMode deopt_mode)739 void LCodeGen::RecordSafepoint(LPointerMap* pointers,
740                                Safepoint::DeoptMode deopt_mode) {
741   RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
742 }
743 
744 
RecordSafepoint(Safepoint::DeoptMode deopt_mode)745 void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
746   LPointerMap empty_pointers(RelocInfo::kNoPosition);
747   RecordSafepoint(&empty_pointers, deopt_mode);
748 }
749 
750 
RecordSafepointWithRegisters(LPointerMap * pointers,int arguments,Safepoint::DeoptMode deopt_mode)751 void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
752                                             int arguments,
753                                             Safepoint::DeoptMode deopt_mode) {
754   RecordSafepoint(
755       pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
756 }
757 
758 
RecordSafepointWithRegistersAndDoubles(LPointerMap * pointers,int arguments,Safepoint::DeoptMode deopt_mode)759 void LCodeGen::RecordSafepointWithRegistersAndDoubles(
760     LPointerMap* pointers,
761     int arguments,
762     Safepoint::DeoptMode deopt_mode) {
763   RecordSafepoint(
764       pointers, Safepoint::kWithRegistersAndDoubles, arguments, deopt_mode);
765 }
766 
767 
RecordPosition(int position)768 void LCodeGen::RecordPosition(int position) {
769   if (position == RelocInfo::kNoPosition) return;
770   masm()->positions_recorder()->RecordPosition(position);
771 }
772 
773 
DoLabel(LLabel * label)774 void LCodeGen::DoLabel(LLabel* label) {
775   if (label->is_loop_header()) {
776     Comment(";;; B%d - LOOP entry", label->block_id());
777   } else {
778     Comment(";;; B%d", label->block_id());
779   }
780   __ bind(label->label());
781   current_block_ = label->block_id();
782   DoGap(label);
783 }
784 
785 
DoParallelMove(LParallelMove * move)786 void LCodeGen::DoParallelMove(LParallelMove* move) {
787   resolver_.Resolve(move);
788 }
789 
790 
DoGap(LGap * gap)791 void LCodeGen::DoGap(LGap* gap) {
792   for (int i = LGap::FIRST_INNER_POSITION;
793        i <= LGap::LAST_INNER_POSITION;
794        i++) {
795     LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
796     LParallelMove* move = gap->GetParallelMove(inner_pos);
797     if (move != NULL) DoParallelMove(move);
798   }
799 }
800 
801 
DoInstructionGap(LInstructionGap * instr)802 void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
803   DoGap(instr);
804 }
805 
806 
DoParameter(LParameter * instr)807 void LCodeGen::DoParameter(LParameter* instr) {
808   // Nothing to do.
809 }
810 
811 
DoCallStub(LCallStub * instr)812 void LCodeGen::DoCallStub(LCallStub* instr) {
813   ASSERT(ToRegister(instr->result()).is(v0));
814   switch (instr->hydrogen()->major_key()) {
815     case CodeStub::RegExpConstructResult: {
816       RegExpConstructResultStub stub;
817       CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
818       break;
819     }
820     case CodeStub::RegExpExec: {
821       RegExpExecStub stub;
822       CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
823       break;
824     }
825     case CodeStub::SubString: {
826       SubStringStub stub;
827       CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
828       break;
829     }
830     case CodeStub::NumberToString: {
831       NumberToStringStub stub;
832       CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
833       break;
834     }
835     case CodeStub::StringAdd: {
836       StringAddStub stub(NO_STRING_ADD_FLAGS);
837       CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
838       break;
839     }
840     case CodeStub::StringCompare: {
841       StringCompareStub stub;
842       CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
843       break;
844     }
845     case CodeStub::TranscendentalCache: {
846       __ lw(a0, MemOperand(sp, 0));
847       TranscendentalCacheStub stub(instr->transcendental_type(),
848                                    TranscendentalCacheStub::TAGGED);
849       CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
850       break;
851     }
852     default:
853       UNREACHABLE();
854   }
855 }
856 
857 
DoUnknownOSRValue(LUnknownOSRValue * instr)858 void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
859   // Nothing to do.
860 }
861 
862 
DoModI(LModI * instr)863 void LCodeGen::DoModI(LModI* instr) {
864   Register scratch = scratch0();
865   const Register left = ToRegister(instr->InputAt(0));
866   const Register result = ToRegister(instr->result());
867 
868   Label done;
869 
870   if (instr->hydrogen()->HasPowerOf2Divisor()) {
871     Register scratch = scratch0();
872     ASSERT(!left.is(scratch));
873     __ mov(scratch, left);
874     int32_t p2constant = HConstant::cast(
875         instr->hydrogen()->right())->Integer32Value();
876     ASSERT(p2constant != 0);
877     // Result always takes the sign of the dividend (left).
878     p2constant = abs(p2constant);
879 
880     Label positive_dividend;
881     __ Branch(USE_DELAY_SLOT, &positive_dividend, ge, left, Operand(zero_reg));
882     __ subu(result, zero_reg, left);
883     __ And(result, result, p2constant - 1);
884     if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
885       DeoptimizeIf(eq, instr->environment(), result, Operand(zero_reg));
886     }
887     __ Branch(USE_DELAY_SLOT, &done);
888     __ subu(result, zero_reg, result);
889     __ bind(&positive_dividend);
890     __ And(result, scratch, p2constant - 1);
891   } else {
892     // div runs in the background while we check for special cases.
893     Register right = EmitLoadRegister(instr->InputAt(1), scratch);
894     __ div(left, right);
895 
896     // Check for x % 0.
897     if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
898       DeoptimizeIf(eq, instr->environment(), right, Operand(zero_reg));
899     }
900 
901     __ Branch(USE_DELAY_SLOT, &done, ge, left, Operand(zero_reg));
902     __ mfhi(result);
903 
904     if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
905       DeoptimizeIf(eq, instr->environment(), result, Operand(zero_reg));
906     }
907   }
908   __ bind(&done);
909 }
910 
911 
DoDivI(LDivI * instr)912 void LCodeGen::DoDivI(LDivI* instr) {
913   const Register left = ToRegister(instr->InputAt(0));
914   const Register right = ToRegister(instr->InputAt(1));
915   const Register result = ToRegister(instr->result());
916 
917   // On MIPS div is asynchronous - it will run in the background while we
918   // check for special cases.
919   __ div(left, right);
920 
921   // Check for x / 0.
922   if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
923     DeoptimizeIf(eq, instr->environment(), right, Operand(zero_reg));
924   }
925 
926   // Check for (0 / -x) that will produce negative zero.
927   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
928     Label left_not_zero;
929     __ Branch(&left_not_zero, ne, left, Operand(zero_reg));
930     DeoptimizeIf(lt, instr->environment(), right, Operand(zero_reg));
931     __ bind(&left_not_zero);
932   }
933 
934   // Check for (-kMinInt / -1).
935   if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
936     Label left_not_min_int;
937     __ Branch(&left_not_min_int, ne, left, Operand(kMinInt));
938     DeoptimizeIf(eq, instr->environment(), right, Operand(-1));
939     __ bind(&left_not_min_int);
940   }
941 
942   __ mfhi(result);
943   DeoptimizeIf(ne, instr->environment(), result, Operand(zero_reg));
944   __ mflo(result);
945 }
946 
947 
DoMulI(LMulI * instr)948 void LCodeGen::DoMulI(LMulI* instr) {
949   Register scratch = scratch0();
950   Register result = ToRegister(instr->result());
951   // Note that result may alias left.
952   Register left = ToRegister(instr->InputAt(0));
953   LOperand* right_op = instr->InputAt(1);
954 
955   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
956   bool bailout_on_minus_zero =
957     instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
958 
959   if (right_op->IsConstantOperand() && !can_overflow) {
960     // Use optimized code for specific constants.
961     int32_t constant = ToInteger32(LConstantOperand::cast(right_op));
962 
963     if (bailout_on_minus_zero && (constant < 0)) {
964       // The case of a null constant will be handled separately.
965       // If constant is negative and left is null, the result should be -0.
966       DeoptimizeIf(eq, instr->environment(), left, Operand(zero_reg));
967     }
968 
969     switch (constant) {
970       case -1:
971         __ Subu(result, zero_reg, left);
972         break;
973       case 0:
974         if (bailout_on_minus_zero) {
975           // If left is strictly negative and the constant is null, the
976           // result is -0. Deoptimize if required, otherwise return 0.
977           DeoptimizeIf(lt, instr->environment(), left, Operand(zero_reg));
978         }
979         __ mov(result, zero_reg);
980         break;
981       case 1:
982         // Nothing to do.
983         __ Move(result, left);
984         break;
985       default:
986         // Multiplying by powers of two and powers of two plus or minus
987         // one can be done faster with shifted operands.
988         // For other constants we emit standard code.
989         int32_t mask = constant >> 31;
990         uint32_t constant_abs = (constant + mask) ^ mask;
991 
992         if (IsPowerOf2(constant_abs) ||
993             IsPowerOf2(constant_abs - 1) ||
994             IsPowerOf2(constant_abs + 1)) {
995           if (IsPowerOf2(constant_abs)) {
996             int32_t shift = WhichPowerOf2(constant_abs);
997             __ sll(result, left, shift);
998           } else if (IsPowerOf2(constant_abs - 1)) {
999             int32_t shift = WhichPowerOf2(constant_abs - 1);
1000             __ sll(result, left, shift);
1001             __ Addu(result, result, left);
1002           } else if (IsPowerOf2(constant_abs + 1)) {
1003             int32_t shift = WhichPowerOf2(constant_abs + 1);
1004             __ sll(result, left, shift);
1005             __ Subu(result, result, left);
1006           }
1007 
1008           // Correct the sign of the result is the constant is negative.
1009           if (constant < 0)  {
1010             __ Subu(result, zero_reg, result);
1011           }
1012 
1013         } else {
1014           // Generate standard code.
1015           __ li(at, constant);
1016           __ Mul(result, left, at);
1017         }
1018     }
1019 
1020   } else {
1021     Register right = EmitLoadRegister(right_op, scratch);
1022     if (bailout_on_minus_zero) {
1023       __ Or(ToRegister(instr->TempAt(0)), left, right);
1024     }
1025 
1026     if (can_overflow) {
1027       // hi:lo = left * right.
1028       __ mult(left, right);
1029       __ mfhi(scratch);
1030       __ mflo(result);
1031       __ sra(at, result, 31);
1032       DeoptimizeIf(ne, instr->environment(), scratch, Operand(at));
1033     } else {
1034       __ Mul(result, left, right);
1035     }
1036 
1037     if (bailout_on_minus_zero) {
1038       // Bail out if the result is supposed to be negative zero.
1039       Label done;
1040       __ Branch(&done, ne, result, Operand(zero_reg));
1041       DeoptimizeIf(lt,
1042                    instr->environment(),
1043                    ToRegister(instr->TempAt(0)),
1044                    Operand(zero_reg));
1045       __ bind(&done);
1046     }
1047   }
1048 }
1049 
1050 
DoBitI(LBitI * instr)1051 void LCodeGen::DoBitI(LBitI* instr) {
1052   LOperand* left_op = instr->InputAt(0);
1053   LOperand* right_op = instr->InputAt(1);
1054   ASSERT(left_op->IsRegister());
1055   Register left = ToRegister(left_op);
1056   Register result = ToRegister(instr->result());
1057   Operand right(no_reg);
1058 
1059   if (right_op->IsStackSlot() || right_op->IsArgument()) {
1060     right = Operand(EmitLoadRegister(right_op, at));
1061   } else {
1062     ASSERT(right_op->IsRegister() || right_op->IsConstantOperand());
1063     right = ToOperand(right_op);
1064   }
1065 
1066   switch (instr->op()) {
1067     case Token::BIT_AND:
1068       __ And(result, left, right);
1069       break;
1070     case Token::BIT_OR:
1071       __ Or(result, left, right);
1072       break;
1073     case Token::BIT_XOR:
1074       __ Xor(result, left, right);
1075       break;
1076     default:
1077       UNREACHABLE();
1078       break;
1079   }
1080 }
1081 
1082 
DoShiftI(LShiftI * instr)1083 void LCodeGen::DoShiftI(LShiftI* instr) {
1084   // Both 'left' and 'right' are "used at start" (see LCodeGen::DoShift), so
1085   // result may alias either of them.
1086   LOperand* right_op = instr->InputAt(1);
1087   Register left = ToRegister(instr->InputAt(0));
1088   Register result = ToRegister(instr->result());
1089 
1090   if (right_op->IsRegister()) {
1091     // No need to mask the right operand on MIPS, it is built into the variable
1092     // shift instructions.
1093     switch (instr->op()) {
1094       case Token::SAR:
1095         __ srav(result, left, ToRegister(right_op));
1096         break;
1097       case Token::SHR:
1098         __ srlv(result, left, ToRegister(right_op));
1099         if (instr->can_deopt()) {
1100           DeoptimizeIf(lt, instr->environment(), result, Operand(zero_reg));
1101         }
1102         break;
1103       case Token::SHL:
1104         __ sllv(result, left, ToRegister(right_op));
1105         break;
1106       default:
1107         UNREACHABLE();
1108         break;
1109     }
1110   } else {
1111     // Mask the right_op operand.
1112     int value = ToInteger32(LConstantOperand::cast(right_op));
1113     uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
1114     switch (instr->op()) {
1115       case Token::SAR:
1116         if (shift_count != 0) {
1117           __ sra(result, left, shift_count);
1118         } else {
1119           __ Move(result, left);
1120         }
1121         break;
1122       case Token::SHR:
1123         if (shift_count != 0) {
1124           __ srl(result, left, shift_count);
1125         } else {
1126           if (instr->can_deopt()) {
1127             __ And(at, left, Operand(0x80000000));
1128             DeoptimizeIf(ne, instr->environment(), at, Operand(zero_reg));
1129           }
1130           __ Move(result, left);
1131         }
1132         break;
1133       case Token::SHL:
1134         if (shift_count != 0) {
1135           __ sll(result, left, shift_count);
1136         } else {
1137           __ Move(result, left);
1138         }
1139         break;
1140       default:
1141         UNREACHABLE();
1142         break;
1143     }
1144   }
1145 }
1146 
1147 
DoSubI(LSubI * instr)1148 void LCodeGen::DoSubI(LSubI* instr) {
1149   LOperand* left = instr->InputAt(0);
1150   LOperand* right = instr->InputAt(1);
1151   LOperand* result = instr->result();
1152   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1153 
1154   if (!can_overflow) {
1155     if (right->IsStackSlot() || right->IsArgument()) {
1156       Register right_reg = EmitLoadRegister(right, at);
1157       __ Subu(ToRegister(result), ToRegister(left), Operand(right_reg));
1158     } else {
1159       ASSERT(right->IsRegister() || right->IsConstantOperand());
1160       __ Subu(ToRegister(result), ToRegister(left), ToOperand(right));
1161     }
1162   } else {  // can_overflow.
1163     Register overflow = scratch0();
1164     Register scratch = scratch1();
1165     if (right->IsStackSlot() ||
1166         right->IsArgument() ||
1167         right->IsConstantOperand()) {
1168       Register right_reg = EmitLoadRegister(right, scratch);
1169       __ SubuAndCheckForOverflow(ToRegister(result),
1170                                  ToRegister(left),
1171                                  right_reg,
1172                                  overflow);  // Reg at also used as scratch.
1173     } else {
1174       ASSERT(right->IsRegister());
1175       // Due to overflow check macros not supporting constant operands,
1176       // handling the IsConstantOperand case was moved to prev if clause.
1177       __ SubuAndCheckForOverflow(ToRegister(result),
1178                                  ToRegister(left),
1179                                  ToRegister(right),
1180                                  overflow);  // Reg at also used as scratch.
1181     }
1182     DeoptimizeIf(lt, instr->environment(), overflow, Operand(zero_reg));
1183   }
1184 }
1185 
1186 
DoConstantI(LConstantI * instr)1187 void LCodeGen::DoConstantI(LConstantI* instr) {
1188   ASSERT(instr->result()->IsRegister());
1189   __ li(ToRegister(instr->result()), Operand(instr->value()));
1190 }
1191 
1192 
DoConstantD(LConstantD * instr)1193 void LCodeGen::DoConstantD(LConstantD* instr) {
1194   ASSERT(instr->result()->IsDoubleRegister());
1195   DoubleRegister result = ToDoubleRegister(instr->result());
1196   double v = instr->value();
1197   __ Move(result, v);
1198 }
1199 
1200 
DoConstantT(LConstantT * instr)1201 void LCodeGen::DoConstantT(LConstantT* instr) {
1202   Handle<Object> value = instr->value();
1203   if (value->IsSmi()) {
1204     __ li(ToRegister(instr->result()), Operand(value));
1205   } else {
1206     __ LoadHeapObject(ToRegister(instr->result()),
1207                       Handle<HeapObject>::cast(value));
1208   }
1209 }
1210 
1211 
DoJSArrayLength(LJSArrayLength * instr)1212 void LCodeGen::DoJSArrayLength(LJSArrayLength* instr) {
1213   Register result = ToRegister(instr->result());
1214   Register array = ToRegister(instr->InputAt(0));
1215   __ lw(result, FieldMemOperand(array, JSArray::kLengthOffset));
1216 }
1217 
1218 
DoFixedArrayBaseLength(LFixedArrayBaseLength * instr)1219 void LCodeGen::DoFixedArrayBaseLength(LFixedArrayBaseLength* instr) {
1220   Register result = ToRegister(instr->result());
1221   Register array = ToRegister(instr->InputAt(0));
1222   __ lw(result, FieldMemOperand(array, FixedArrayBase::kLengthOffset));
1223 }
1224 
1225 
DoElementsKind(LElementsKind * instr)1226 void LCodeGen::DoElementsKind(LElementsKind* instr) {
1227   Register result = ToRegister(instr->result());
1228   Register input = ToRegister(instr->InputAt(0));
1229 
1230   // Load map into |result|.
1231   __ lw(result, FieldMemOperand(input, HeapObject::kMapOffset));
1232   // Load the map's "bit field 2" into |result|. We only need the first byte,
1233   // but the following bit field extraction takes care of that anyway.
1234   __ lbu(result, FieldMemOperand(result, Map::kBitField2Offset));
1235   // Retrieve elements_kind from bit field 2.
1236   __ Ext(result, result, Map::kElementsKindShift, Map::kElementsKindBitCount);
1237 }
1238 
1239 
DoValueOf(LValueOf * instr)1240 void LCodeGen::DoValueOf(LValueOf* instr) {
1241   Register input = ToRegister(instr->InputAt(0));
1242   Register result = ToRegister(instr->result());
1243   Register map = ToRegister(instr->TempAt(0));
1244   Label done;
1245 
1246   // If the object is a smi return the object.
1247   __ Move(result, input);
1248   __ JumpIfSmi(input, &done);
1249 
1250   // If the object is not a value type, return the object.
1251   __ GetObjectType(input, map, map);
1252   __ Branch(&done, ne, map, Operand(JS_VALUE_TYPE));
1253   __ lw(result, FieldMemOperand(input, JSValue::kValueOffset));
1254 
1255   __ bind(&done);
1256 }
1257 
1258 
DoDateField(LDateField * instr)1259 void LCodeGen::DoDateField(LDateField* instr) {
1260   Register object = ToRegister(instr->InputAt(0));
1261   Register result = ToRegister(instr->result());
1262   Register scratch = ToRegister(instr->TempAt(0));
1263   Smi* index = instr->index();
1264   Label runtime, done;
1265   ASSERT(object.is(a0));
1266   ASSERT(result.is(v0));
1267   ASSERT(!scratch.is(scratch0()));
1268   ASSERT(!scratch.is(object));
1269 
1270 #ifdef DEBUG
1271   __ AbortIfSmi(object);
1272   __ GetObjectType(object, scratch, scratch);
1273   __ Assert(eq, "Trying to get date field from non-date.",
1274       scratch, Operand(JS_DATE_TYPE));
1275 #endif
1276 
1277   if (index->value() == 0) {
1278     __ lw(result, FieldMemOperand(object, JSDate::kValueOffset));
1279   } else {
1280     if (index->value() < JSDate::kFirstUncachedField) {
1281       ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
1282       __ li(scratch, Operand(stamp));
1283       __ lw(scratch, MemOperand(scratch));
1284       __ lw(scratch0(), FieldMemOperand(object, JSDate::kCacheStampOffset));
1285       __ Branch(&runtime, ne, scratch, Operand(scratch0()));
1286       __ lw(result, FieldMemOperand(object, JSDate::kValueOffset +
1287                                             kPointerSize * index->value()));
1288       __ jmp(&done);
1289     }
1290     __ bind(&runtime);
1291     __ PrepareCallCFunction(2, scratch);
1292     __ li(a1, Operand(index));
1293     __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
1294     __ bind(&done);
1295   }
1296 }
1297 
1298 
DoBitNotI(LBitNotI * instr)1299 void LCodeGen::DoBitNotI(LBitNotI* instr) {
1300   Register input = ToRegister(instr->InputAt(0));
1301   Register result = ToRegister(instr->result());
1302   __ Nor(result, zero_reg, Operand(input));
1303 }
1304 
1305 
DoThrow(LThrow * instr)1306 void LCodeGen::DoThrow(LThrow* instr) {
1307   Register input_reg = EmitLoadRegister(instr->InputAt(0), at);
1308   __ push(input_reg);
1309   CallRuntime(Runtime::kThrow, 1, instr);
1310 
1311   if (FLAG_debug_code) {
1312     __ stop("Unreachable code.");
1313   }
1314 }
1315 
1316 
DoAddI(LAddI * instr)1317 void LCodeGen::DoAddI(LAddI* instr) {
1318   LOperand* left = instr->InputAt(0);
1319   LOperand* right = instr->InputAt(1);
1320   LOperand* result = instr->result();
1321   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1322 
1323   if (!can_overflow) {
1324     if (right->IsStackSlot() || right->IsArgument()) {
1325       Register right_reg = EmitLoadRegister(right, at);
1326       __ Addu(ToRegister(result), ToRegister(left), Operand(right_reg));
1327     } else {
1328       ASSERT(right->IsRegister() || right->IsConstantOperand());
1329       __ Addu(ToRegister(result), ToRegister(left), ToOperand(right));
1330     }
1331   } else {  // can_overflow.
1332     Register overflow = scratch0();
1333     Register scratch = scratch1();
1334     if (right->IsStackSlot() ||
1335         right->IsArgument() ||
1336         right->IsConstantOperand()) {
1337       Register right_reg = EmitLoadRegister(right, scratch);
1338       __ AdduAndCheckForOverflow(ToRegister(result),
1339                                  ToRegister(left),
1340                                  right_reg,
1341                                  overflow);  // Reg at also used as scratch.
1342     } else {
1343       ASSERT(right->IsRegister());
1344       // Due to overflow check macros not supporting constant operands,
1345       // handling the IsConstantOperand case was moved to prev if clause.
1346       __ AdduAndCheckForOverflow(ToRegister(result),
1347                                  ToRegister(left),
1348                                  ToRegister(right),
1349                                  overflow);  // Reg at also used as scratch.
1350     }
1351     DeoptimizeIf(lt, instr->environment(), overflow, Operand(zero_reg));
1352   }
1353 }
1354 
1355 
DoArithmeticD(LArithmeticD * instr)1356 void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
1357   DoubleRegister left = ToDoubleRegister(instr->InputAt(0));
1358   DoubleRegister right = ToDoubleRegister(instr->InputAt(1));
1359   DoubleRegister result = ToDoubleRegister(instr->result());
1360   switch (instr->op()) {
1361     case Token::ADD:
1362       __ add_d(result, left, right);
1363       break;
1364     case Token::SUB:
1365       __ sub_d(result, left, right);
1366       break;
1367     case Token::MUL:
1368       __ mul_d(result, left, right);
1369       break;
1370     case Token::DIV:
1371       __ div_d(result, left, right);
1372       break;
1373     case Token::MOD: {
1374       // Save a0-a3 on the stack.
1375       RegList saved_regs = a0.bit() | a1.bit() | a2.bit() | a3.bit();
1376       __ MultiPush(saved_regs);
1377 
1378       __ PrepareCallCFunction(0, 2, scratch0());
1379       __ SetCallCDoubleArguments(left, right);
1380       __ CallCFunction(
1381           ExternalReference::double_fp_operation(Token::MOD, isolate()),
1382           0, 2);
1383       // Move the result in the double result register.
1384       __ GetCFunctionDoubleResult(result);
1385 
1386       // Restore saved register.
1387       __ MultiPop(saved_regs);
1388       break;
1389     }
1390     default:
1391       UNREACHABLE();
1392       break;
1393   }
1394 }
1395 
1396 
DoArithmeticT(LArithmeticT * instr)1397 void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
1398   ASSERT(ToRegister(instr->InputAt(0)).is(a1));
1399   ASSERT(ToRegister(instr->InputAt(1)).is(a0));
1400   ASSERT(ToRegister(instr->result()).is(v0));
1401 
1402   BinaryOpStub stub(instr->op(), NO_OVERWRITE);
1403   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
1404   // Other arch use a nop here, to signal that there is no inlined
1405   // patchable code. Mips does not need the nop, since our marker
1406   // instruction (andi zero_reg) will never be used in normal code.
1407 }
1408 
1409 
GetNextEmittedBlock(int block)1410 int LCodeGen::GetNextEmittedBlock(int block) {
1411   for (int i = block + 1; i < graph()->blocks()->length(); ++i) {
1412     LLabel* label = chunk_->GetLabel(i);
1413     if (!label->HasReplacement()) return i;
1414   }
1415   return -1;
1416 }
1417 
1418 
EmitBranch(int left_block,int right_block,Condition cc,Register src1,const Operand & src2)1419 void LCodeGen::EmitBranch(int left_block, int right_block,
1420                           Condition cc, Register src1, const Operand& src2) {
1421   int next_block = GetNextEmittedBlock(current_block_);
1422   right_block = chunk_->LookupDestination(right_block);
1423   left_block = chunk_->LookupDestination(left_block);
1424   if (right_block == left_block) {
1425     EmitGoto(left_block);
1426   } else if (left_block == next_block) {
1427     __ Branch(chunk_->GetAssemblyLabel(right_block),
1428               NegateCondition(cc), src1, src2);
1429   } else if (right_block == next_block) {
1430     __ Branch(chunk_->GetAssemblyLabel(left_block), cc, src1, src2);
1431   } else {
1432     __ Branch(chunk_->GetAssemblyLabel(left_block), cc, src1, src2);
1433     __ Branch(chunk_->GetAssemblyLabel(right_block));
1434   }
1435 }
1436 
1437 
EmitBranchF(int left_block,int right_block,Condition cc,FPURegister src1,FPURegister src2)1438 void LCodeGen::EmitBranchF(int left_block, int right_block,
1439                            Condition cc, FPURegister src1, FPURegister src2) {
1440   int next_block = GetNextEmittedBlock(current_block_);
1441   right_block = chunk_->LookupDestination(right_block);
1442   left_block = chunk_->LookupDestination(left_block);
1443   if (right_block == left_block) {
1444     EmitGoto(left_block);
1445   } else if (left_block == next_block) {
1446     __ BranchF(chunk_->GetAssemblyLabel(right_block), NULL,
1447                NegateCondition(cc), src1, src2);
1448   } else if (right_block == next_block) {
1449     __ BranchF(chunk_->GetAssemblyLabel(left_block), NULL, cc, src1, src2);
1450   } else {
1451     __ BranchF(chunk_->GetAssemblyLabel(left_block), NULL, cc, src1, src2);
1452     __ Branch(chunk_->GetAssemblyLabel(right_block));
1453   }
1454 }
1455 
1456 
DoBranch(LBranch * instr)1457 void LCodeGen::DoBranch(LBranch* instr) {
1458   int true_block = chunk_->LookupDestination(instr->true_block_id());
1459   int false_block = chunk_->LookupDestination(instr->false_block_id());
1460 
1461   Representation r = instr->hydrogen()->value()->representation();
1462   if (r.IsInteger32()) {
1463     Register reg = ToRegister(instr->InputAt(0));
1464     EmitBranch(true_block, false_block, ne, reg, Operand(zero_reg));
1465   } else if (r.IsDouble()) {
1466     DoubleRegister reg = ToDoubleRegister(instr->InputAt(0));
1467     // Test the double value. Zero and NaN are false.
1468     EmitBranchF(true_block, false_block, ne, reg, kDoubleRegZero);
1469   } else {
1470     ASSERT(r.IsTagged());
1471     Register reg = ToRegister(instr->InputAt(0));
1472     HType type = instr->hydrogen()->value()->type();
1473     if (type.IsBoolean()) {
1474       __ LoadRoot(at, Heap::kTrueValueRootIndex);
1475       EmitBranch(true_block, false_block, eq, reg, Operand(at));
1476     } else if (type.IsSmi()) {
1477       EmitBranch(true_block, false_block, ne, reg, Operand(zero_reg));
1478     } else {
1479       Label* true_label = chunk_->GetAssemblyLabel(true_block);
1480       Label* false_label = chunk_->GetAssemblyLabel(false_block);
1481 
1482       ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types();
1483       // Avoid deopts in the case where we've never executed this path before.
1484       if (expected.IsEmpty()) expected = ToBooleanStub::all_types();
1485 
1486       if (expected.Contains(ToBooleanStub::UNDEFINED)) {
1487         // undefined -> false.
1488         __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
1489         __ Branch(false_label, eq, reg, Operand(at));
1490       }
1491       if (expected.Contains(ToBooleanStub::BOOLEAN)) {
1492         // Boolean -> its value.
1493         __ LoadRoot(at, Heap::kTrueValueRootIndex);
1494         __ Branch(true_label, eq, reg, Operand(at));
1495         __ LoadRoot(at, Heap::kFalseValueRootIndex);
1496         __ Branch(false_label, eq, reg, Operand(at));
1497       }
1498       if (expected.Contains(ToBooleanStub::NULL_TYPE)) {
1499         // 'null' -> false.
1500         __ LoadRoot(at, Heap::kNullValueRootIndex);
1501         __ Branch(false_label, eq, reg, Operand(at));
1502       }
1503 
1504       if (expected.Contains(ToBooleanStub::SMI)) {
1505         // Smis: 0 -> false, all other -> true.
1506         __ Branch(false_label, eq, reg, Operand(zero_reg));
1507         __ JumpIfSmi(reg, true_label);
1508       } else if (expected.NeedsMap()) {
1509         // If we need a map later and have a Smi -> deopt.
1510         __ And(at, reg, Operand(kSmiTagMask));
1511         DeoptimizeIf(eq, instr->environment(), at, Operand(zero_reg));
1512       }
1513 
1514       const Register map = scratch0();
1515       if (expected.NeedsMap()) {
1516         __ lw(map, FieldMemOperand(reg, HeapObject::kMapOffset));
1517         if (expected.CanBeUndetectable()) {
1518           // Undetectable -> false.
1519           __ lbu(at, FieldMemOperand(map, Map::kBitFieldOffset));
1520           __ And(at, at, Operand(1 << Map::kIsUndetectable));
1521           __ Branch(false_label, ne, at, Operand(zero_reg));
1522         }
1523       }
1524 
1525       if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) {
1526         // spec object -> true.
1527         __ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset));
1528         __ Branch(true_label, ge, at, Operand(FIRST_SPEC_OBJECT_TYPE));
1529       }
1530 
1531       if (expected.Contains(ToBooleanStub::STRING)) {
1532         // String value -> false iff empty.
1533         Label not_string;
1534         __ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset));
1535         __ Branch(&not_string, ge , at, Operand(FIRST_NONSTRING_TYPE));
1536         __ lw(at, FieldMemOperand(reg, String::kLengthOffset));
1537         __ Branch(true_label, ne, at, Operand(zero_reg));
1538         __ Branch(false_label);
1539         __ bind(&not_string);
1540       }
1541 
1542       if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) {
1543         // heap number -> false iff +0, -0, or NaN.
1544         DoubleRegister dbl_scratch = double_scratch0();
1545         Label not_heap_number;
1546         __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
1547         __ Branch(&not_heap_number, ne, map, Operand(at));
1548         __ ldc1(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
1549         __ BranchF(true_label, false_label, ne, dbl_scratch, kDoubleRegZero);
1550         // Falls through if dbl_scratch == 0.
1551         __ Branch(false_label);
1552         __ bind(&not_heap_number);
1553       }
1554 
1555       // We've seen something for the first time -> deopt.
1556       DeoptimizeIf(al, instr->environment(), zero_reg, Operand(zero_reg));
1557     }
1558   }
1559 }
1560 
1561 
EmitGoto(int block)1562 void LCodeGen::EmitGoto(int block) {
1563   block = chunk_->LookupDestination(block);
1564   int next_block = GetNextEmittedBlock(current_block_);
1565   if (block != next_block) {
1566     __ jmp(chunk_->GetAssemblyLabel(block));
1567   }
1568 }
1569 
1570 
DoGoto(LGoto * instr)1571 void LCodeGen::DoGoto(LGoto* instr) {
1572   EmitGoto(instr->block_id());
1573 }
1574 
1575 
TokenToCondition(Token::Value op,bool is_unsigned)1576 Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
1577   Condition cond = kNoCondition;
1578   switch (op) {
1579     case Token::EQ:
1580     case Token::EQ_STRICT:
1581       cond = eq;
1582       break;
1583     case Token::LT:
1584       cond = is_unsigned ? lo : lt;
1585       break;
1586     case Token::GT:
1587       cond = is_unsigned ? hi : gt;
1588       break;
1589     case Token::LTE:
1590       cond = is_unsigned ? ls : le;
1591       break;
1592     case Token::GTE:
1593       cond = is_unsigned ? hs : ge;
1594       break;
1595     case Token::IN:
1596     case Token::INSTANCEOF:
1597     default:
1598       UNREACHABLE();
1599   }
1600   return cond;
1601 }
1602 
1603 
DoCmpIDAndBranch(LCmpIDAndBranch * instr)1604 void LCodeGen::DoCmpIDAndBranch(LCmpIDAndBranch* instr) {
1605   LOperand* left = instr->InputAt(0);
1606   LOperand* right = instr->InputAt(1);
1607   int false_block = chunk_->LookupDestination(instr->false_block_id());
1608   int true_block = chunk_->LookupDestination(instr->true_block_id());
1609 
1610   Condition cond = TokenToCondition(instr->op(), false);
1611 
1612   if (left->IsConstantOperand() && right->IsConstantOperand()) {
1613     // We can statically evaluate the comparison.
1614     double left_val = ToDouble(LConstantOperand::cast(left));
1615     double right_val = ToDouble(LConstantOperand::cast(right));
1616     int next_block =
1617       EvalComparison(instr->op(), left_val, right_val) ? true_block
1618                                                        : false_block;
1619     EmitGoto(next_block);
1620   } else {
1621     if (instr->is_double()) {
1622       // Compare left and right as doubles and load the
1623       // resulting flags into the normal status register.
1624       FPURegister left_reg = ToDoubleRegister(left);
1625       FPURegister right_reg = ToDoubleRegister(right);
1626 
1627       // If a NaN is involved, i.e. the result is unordered,
1628       // jump to false block label.
1629       __ BranchF(NULL, chunk_->GetAssemblyLabel(false_block), eq,
1630                  left_reg, right_reg);
1631 
1632       EmitBranchF(true_block, false_block, cond, left_reg, right_reg);
1633     } else {
1634       Register cmp_left;
1635       Operand cmp_right = Operand(0);
1636 
1637       if (right->IsConstantOperand()) {
1638         cmp_left = ToRegister(left);
1639         cmp_right = Operand(ToInteger32(LConstantOperand::cast(right)));
1640       } else if (left->IsConstantOperand()) {
1641         cmp_left = ToRegister(right);
1642         cmp_right = Operand(ToInteger32(LConstantOperand::cast(left)));
1643         // We transposed the operands. Reverse the condition.
1644         cond = ReverseCondition(cond);
1645       } else {
1646         cmp_left = ToRegister(left);
1647         cmp_right = Operand(ToRegister(right));
1648       }
1649 
1650       EmitBranch(true_block, false_block, cond, cmp_left, cmp_right);
1651     }
1652   }
1653 }
1654 
1655 
DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch * instr)1656 void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
1657   Register left = ToRegister(instr->InputAt(0));
1658   Register right = ToRegister(instr->InputAt(1));
1659   int false_block = chunk_->LookupDestination(instr->false_block_id());
1660   int true_block = chunk_->LookupDestination(instr->true_block_id());
1661 
1662   EmitBranch(true_block, false_block, eq, left, Operand(right));
1663 }
1664 
1665 
DoCmpConstantEqAndBranch(LCmpConstantEqAndBranch * instr)1666 void LCodeGen::DoCmpConstantEqAndBranch(LCmpConstantEqAndBranch* instr) {
1667   Register left = ToRegister(instr->InputAt(0));
1668   int true_block = chunk_->LookupDestination(instr->true_block_id());
1669   int false_block = chunk_->LookupDestination(instr->false_block_id());
1670 
1671   EmitBranch(true_block, false_block, eq, left,
1672              Operand(instr->hydrogen()->right()));
1673 }
1674 
1675 
1676 
DoIsNilAndBranch(LIsNilAndBranch * instr)1677 void LCodeGen::DoIsNilAndBranch(LIsNilAndBranch* instr) {
1678   Register scratch = scratch0();
1679   Register reg = ToRegister(instr->InputAt(0));
1680   int false_block = chunk_->LookupDestination(instr->false_block_id());
1681 
1682   // If the expression is known to be untagged or a smi, then it's definitely
1683   // not null, and it can't be a an undetectable object.
1684   if (instr->hydrogen()->representation().IsSpecialization() ||
1685       instr->hydrogen()->type().IsSmi()) {
1686     EmitGoto(false_block);
1687     return;
1688   }
1689 
1690   int true_block = chunk_->LookupDestination(instr->true_block_id());
1691 
1692   Heap::RootListIndex nil_value = instr->nil() == kNullValue ?
1693       Heap::kNullValueRootIndex :
1694       Heap::kUndefinedValueRootIndex;
1695   __ LoadRoot(at, nil_value);
1696   if (instr->kind() == kStrictEquality) {
1697     EmitBranch(true_block, false_block, eq, reg, Operand(at));
1698   } else {
1699     Heap::RootListIndex other_nil_value = instr->nil() == kNullValue ?
1700         Heap::kUndefinedValueRootIndex :
1701         Heap::kNullValueRootIndex;
1702     Label* true_label = chunk_->GetAssemblyLabel(true_block);
1703     Label* false_label = chunk_->GetAssemblyLabel(false_block);
1704     __ Branch(USE_DELAY_SLOT, true_label, eq, reg, Operand(at));
1705     __ LoadRoot(at, other_nil_value);  // In the delay slot.
1706     __ Branch(USE_DELAY_SLOT, true_label, eq, reg, Operand(at));
1707     __ JumpIfSmi(reg, false_label);  // In the delay slot.
1708     // Check for undetectable objects by looking in the bit field in
1709     // the map. The object has already been smi checked.
1710     __ lw(scratch, FieldMemOperand(reg, HeapObject::kMapOffset));
1711     __ lbu(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
1712     __ And(scratch, scratch, 1 << Map::kIsUndetectable);
1713     EmitBranch(true_block, false_block, ne, scratch, Operand(zero_reg));
1714   }
1715 }
1716 
1717 
EmitIsObject(Register input,Register temp1,Register temp2,Label * is_not_object,Label * is_object)1718 Condition LCodeGen::EmitIsObject(Register input,
1719                                  Register temp1,
1720                                  Register temp2,
1721                                  Label* is_not_object,
1722                                  Label* is_object) {
1723   __ JumpIfSmi(input, is_not_object);
1724 
1725   __ LoadRoot(temp2, Heap::kNullValueRootIndex);
1726   __ Branch(is_object, eq, input, Operand(temp2));
1727 
1728   // Load map.
1729   __ lw(temp1, FieldMemOperand(input, HeapObject::kMapOffset));
1730   // Undetectable objects behave like undefined.
1731   __ lbu(temp2, FieldMemOperand(temp1, Map::kBitFieldOffset));
1732   __ And(temp2, temp2, Operand(1 << Map::kIsUndetectable));
1733   __ Branch(is_not_object, ne, temp2, Operand(zero_reg));
1734 
1735   // Load instance type and check that it is in object type range.
1736   __ lbu(temp2, FieldMemOperand(temp1, Map::kInstanceTypeOffset));
1737   __ Branch(is_not_object,
1738             lt, temp2, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
1739 
1740   return le;
1741 }
1742 
1743 
DoIsObjectAndBranch(LIsObjectAndBranch * instr)1744 void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) {
1745   Register reg = ToRegister(instr->InputAt(0));
1746   Register temp1 = ToRegister(instr->TempAt(0));
1747   Register temp2 = scratch0();
1748 
1749   int true_block = chunk_->LookupDestination(instr->true_block_id());
1750   int false_block = chunk_->LookupDestination(instr->false_block_id());
1751   Label* true_label = chunk_->GetAssemblyLabel(true_block);
1752   Label* false_label = chunk_->GetAssemblyLabel(false_block);
1753 
1754   Condition true_cond =
1755       EmitIsObject(reg, temp1, temp2, false_label, true_label);
1756 
1757   EmitBranch(true_block, false_block, true_cond, temp2,
1758              Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
1759 }
1760 
1761 
EmitIsString(Register input,Register temp1,Label * is_not_string)1762 Condition LCodeGen::EmitIsString(Register input,
1763                                  Register temp1,
1764                                  Label* is_not_string) {
1765   __ JumpIfSmi(input, is_not_string);
1766   __ GetObjectType(input, temp1, temp1);
1767 
1768   return lt;
1769 }
1770 
1771 
DoIsStringAndBranch(LIsStringAndBranch * instr)1772 void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
1773   Register reg = ToRegister(instr->InputAt(0));
1774   Register temp1 = ToRegister(instr->TempAt(0));
1775 
1776   int true_block = chunk_->LookupDestination(instr->true_block_id());
1777   int false_block = chunk_->LookupDestination(instr->false_block_id());
1778   Label* false_label = chunk_->GetAssemblyLabel(false_block);
1779 
1780   Condition true_cond =
1781       EmitIsString(reg, temp1, false_label);
1782 
1783   EmitBranch(true_block, false_block, true_cond, temp1,
1784              Operand(FIRST_NONSTRING_TYPE));
1785 }
1786 
1787 
DoIsSmiAndBranch(LIsSmiAndBranch * instr)1788 void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
1789   int true_block = chunk_->LookupDestination(instr->true_block_id());
1790   int false_block = chunk_->LookupDestination(instr->false_block_id());
1791 
1792   Register input_reg = EmitLoadRegister(instr->InputAt(0), at);
1793   __ And(at, input_reg, kSmiTagMask);
1794   EmitBranch(true_block, false_block, eq, at, Operand(zero_reg));
1795 }
1796 
1797 
DoIsUndetectableAndBranch(LIsUndetectableAndBranch * instr)1798 void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
1799   Register input = ToRegister(instr->InputAt(0));
1800   Register temp = ToRegister(instr->TempAt(0));
1801 
1802   int true_block = chunk_->LookupDestination(instr->true_block_id());
1803   int false_block = chunk_->LookupDestination(instr->false_block_id());
1804 
1805   __ JumpIfSmi(input, chunk_->GetAssemblyLabel(false_block));
1806   __ lw(temp, FieldMemOperand(input, HeapObject::kMapOffset));
1807   __ lbu(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
1808   __ And(at, temp, Operand(1 << Map::kIsUndetectable));
1809   EmitBranch(true_block, false_block, ne, at, Operand(zero_reg));
1810 }
1811 
1812 
ComputeCompareCondition(Token::Value op)1813 static Condition ComputeCompareCondition(Token::Value op) {
1814   switch (op) {
1815     case Token::EQ_STRICT:
1816     case Token::EQ:
1817       return eq;
1818     case Token::LT:
1819       return lt;
1820     case Token::GT:
1821       return gt;
1822     case Token::LTE:
1823       return le;
1824     case Token::GTE:
1825       return ge;
1826     default:
1827       UNREACHABLE();
1828       return kNoCondition;
1829   }
1830 }
1831 
1832 
DoStringCompareAndBranch(LStringCompareAndBranch * instr)1833 void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
1834   Token::Value op = instr->op();
1835   int true_block = chunk_->LookupDestination(instr->true_block_id());
1836   int false_block = chunk_->LookupDestination(instr->false_block_id());
1837 
1838   Handle<Code> ic = CompareIC::GetUninitialized(op);
1839   CallCode(ic, RelocInfo::CODE_TARGET, instr);
1840 
1841   Condition condition = ComputeCompareCondition(op);
1842 
1843   EmitBranch(true_block, false_block, condition, v0, Operand(zero_reg));
1844 }
1845 
1846 
TestType(HHasInstanceTypeAndBranch * instr)1847 static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
1848   InstanceType from = instr->from();
1849   InstanceType to = instr->to();
1850   if (from == FIRST_TYPE) return to;
1851   ASSERT(from == to || to == LAST_TYPE);
1852   return from;
1853 }
1854 
1855 
BranchCondition(HHasInstanceTypeAndBranch * instr)1856 static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
1857   InstanceType from = instr->from();
1858   InstanceType to = instr->to();
1859   if (from == to) return eq;
1860   if (to == LAST_TYPE) return hs;
1861   if (from == FIRST_TYPE) return ls;
1862   UNREACHABLE();
1863   return eq;
1864 }
1865 
1866 
DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch * instr)1867 void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
1868   Register scratch = scratch0();
1869   Register input = ToRegister(instr->InputAt(0));
1870 
1871   int true_block = chunk_->LookupDestination(instr->true_block_id());
1872   int false_block = chunk_->LookupDestination(instr->false_block_id());
1873 
1874   Label* false_label = chunk_->GetAssemblyLabel(false_block);
1875 
1876   __ JumpIfSmi(input, false_label);
1877 
1878   __ GetObjectType(input, scratch, scratch);
1879   EmitBranch(true_block,
1880              false_block,
1881              BranchCondition(instr->hydrogen()),
1882              scratch,
1883              Operand(TestType(instr->hydrogen())));
1884 }
1885 
1886 
DoGetCachedArrayIndex(LGetCachedArrayIndex * instr)1887 void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
1888   Register input = ToRegister(instr->InputAt(0));
1889   Register result = ToRegister(instr->result());
1890 
1891   if (FLAG_debug_code) {
1892     __ AbortIfNotString(input);
1893   }
1894 
1895   __ lw(result, FieldMemOperand(input, String::kHashFieldOffset));
1896   __ IndexFromHash(result, result);
1897 }
1898 
1899 
DoHasCachedArrayIndexAndBranch(LHasCachedArrayIndexAndBranch * instr)1900 void LCodeGen::DoHasCachedArrayIndexAndBranch(
1901     LHasCachedArrayIndexAndBranch* instr) {
1902   Register input = ToRegister(instr->InputAt(0));
1903   Register scratch = scratch0();
1904 
1905   int true_block = chunk_->LookupDestination(instr->true_block_id());
1906   int false_block = chunk_->LookupDestination(instr->false_block_id());
1907 
1908   __ lw(scratch,
1909          FieldMemOperand(input, String::kHashFieldOffset));
1910   __ And(at, scratch, Operand(String::kContainsCachedArrayIndexMask));
1911   EmitBranch(true_block, false_block, eq, at, Operand(zero_reg));
1912 }
1913 
1914 
1915 // Branches to a label or falls through with the answer in flags.  Trashes
1916 // the temp registers, but not the input.
EmitClassOfTest(Label * is_true,Label * is_false,Handle<String> class_name,Register input,Register temp,Register temp2)1917 void LCodeGen::EmitClassOfTest(Label* is_true,
1918                                Label* is_false,
1919                                Handle<String>class_name,
1920                                Register input,
1921                                Register temp,
1922                                Register temp2) {
1923   ASSERT(!input.is(temp));
1924   ASSERT(!input.is(temp2));
1925   ASSERT(!temp.is(temp2));
1926 
1927   __ JumpIfSmi(input, is_false);
1928 
1929   if (class_name->IsEqualTo(CStrVector("Function"))) {
1930     // Assuming the following assertions, we can use the same compares to test
1931     // for both being a function type and being in the object type range.
1932     STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
1933     STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
1934                   FIRST_SPEC_OBJECT_TYPE + 1);
1935     STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
1936                   LAST_SPEC_OBJECT_TYPE - 1);
1937     STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
1938 
1939     __ GetObjectType(input, temp, temp2);
1940     __ Branch(is_false, lt, temp2, Operand(FIRST_SPEC_OBJECT_TYPE));
1941     __ Branch(is_true, eq, temp2, Operand(FIRST_SPEC_OBJECT_TYPE));
1942     __ Branch(is_true, eq, temp2, Operand(LAST_SPEC_OBJECT_TYPE));
1943   } else {
1944     // Faster code path to avoid two compares: subtract lower bound from the
1945     // actual type and do a signed compare with the width of the type range.
1946     __ GetObjectType(input, temp, temp2);
1947     __ Subu(temp2, temp2, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
1948     __ Branch(is_false, gt, temp2, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE -
1949                                            FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
1950   }
1951 
1952   // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range.
1953   // Check if the constructor in the map is a function.
1954   __ lw(temp, FieldMemOperand(temp, Map::kConstructorOffset));
1955 
1956   // Objects with a non-function constructor have class 'Object'.
1957   __ GetObjectType(temp, temp2, temp2);
1958   if (class_name->IsEqualTo(CStrVector("Object"))) {
1959     __ Branch(is_true, ne, temp2, Operand(JS_FUNCTION_TYPE));
1960   } else {
1961     __ Branch(is_false, ne, temp2, Operand(JS_FUNCTION_TYPE));
1962   }
1963 
1964   // temp now contains the constructor function. Grab the
1965   // instance class name from there.
1966   __ lw(temp, FieldMemOperand(temp, JSFunction::kSharedFunctionInfoOffset));
1967   __ lw(temp, FieldMemOperand(temp,
1968                                SharedFunctionInfo::kInstanceClassNameOffset));
1969   // The class name we are testing against is a symbol because it's a literal.
1970   // The name in the constructor is a symbol because of the way the context is
1971   // booted.  This routine isn't expected to work for random API-created
1972   // classes and it doesn't have to because you can't access it with natives
1973   // syntax.  Since both sides are symbols it is sufficient to use an identity
1974   // comparison.
1975 
1976   // End with the address of this class_name instance in temp register.
1977   // On MIPS, the caller must do the comparison with Handle<String>class_name.
1978 }
1979 
1980 
DoClassOfTestAndBranch(LClassOfTestAndBranch * instr)1981 void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
1982   Register input = ToRegister(instr->InputAt(0));
1983   Register temp = scratch0();
1984   Register temp2 = ToRegister(instr->TempAt(0));
1985   Handle<String> class_name = instr->hydrogen()->class_name();
1986 
1987   int true_block = chunk_->LookupDestination(instr->true_block_id());
1988   int false_block = chunk_->LookupDestination(instr->false_block_id());
1989 
1990   Label* true_label = chunk_->GetAssemblyLabel(true_block);
1991   Label* false_label = chunk_->GetAssemblyLabel(false_block);
1992 
1993   EmitClassOfTest(true_label, false_label, class_name, input, temp, temp2);
1994 
1995   EmitBranch(true_block, false_block, eq, temp, Operand(class_name));
1996 }
1997 
1998 
DoCmpMapAndBranch(LCmpMapAndBranch * instr)1999 void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
2000   Register reg = ToRegister(instr->InputAt(0));
2001   Register temp = ToRegister(instr->TempAt(0));
2002   int true_block = instr->true_block_id();
2003   int false_block = instr->false_block_id();
2004 
2005   __ lw(temp, FieldMemOperand(reg, HeapObject::kMapOffset));
2006   EmitBranch(true_block, false_block, eq, temp, Operand(instr->map()));
2007 }
2008 
2009 
DoInstanceOf(LInstanceOf * instr)2010 void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
2011   Label true_label, done;
2012   ASSERT(ToRegister(instr->InputAt(0)).is(a0));  // Object is in a0.
2013   ASSERT(ToRegister(instr->InputAt(1)).is(a1));  // Function is in a1.
2014   Register result = ToRegister(instr->result());
2015   ASSERT(result.is(v0));
2016 
2017   InstanceofStub stub(InstanceofStub::kArgsInRegisters);
2018   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
2019 
2020   __ Branch(&true_label, eq, result, Operand(zero_reg));
2021   __ li(result, Operand(factory()->false_value()));
2022   __ Branch(&done);
2023   __ bind(&true_label);
2024   __ li(result, Operand(factory()->true_value()));
2025   __ bind(&done);
2026 }
2027 
2028 
DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal * instr)2029 void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) {
2030   class DeferredInstanceOfKnownGlobal: public LDeferredCode {
2031    public:
2032     DeferredInstanceOfKnownGlobal(LCodeGen* codegen,
2033                                   LInstanceOfKnownGlobal* instr)
2034         : LDeferredCode(codegen), instr_(instr) { }
2035     virtual void Generate() {
2036       codegen()->DoDeferredInstanceOfKnownGlobal(instr_, &map_check_);
2037     }
2038     virtual LInstruction* instr() { return instr_; }
2039     Label* map_check() { return &map_check_; }
2040 
2041    private:
2042     LInstanceOfKnownGlobal* instr_;
2043     Label map_check_;
2044   };
2045 
2046   DeferredInstanceOfKnownGlobal* deferred;
2047   deferred = new DeferredInstanceOfKnownGlobal(this, instr);
2048 
2049   Label done, false_result;
2050   Register object = ToRegister(instr->InputAt(0));
2051   Register temp = ToRegister(instr->TempAt(0));
2052   Register result = ToRegister(instr->result());
2053 
2054   ASSERT(object.is(a0));
2055   ASSERT(result.is(v0));
2056 
2057   // A Smi is not instance of anything.
2058   __ JumpIfSmi(object, &false_result);
2059 
2060   // This is the inlined call site instanceof cache. The two occurences of the
2061   // hole value will be patched to the last map/result pair generated by the
2062   // instanceof stub.
2063   Label cache_miss;
2064   Register map = temp;
2065   __ lw(map, FieldMemOperand(object, HeapObject::kMapOffset));
2066 
2067   Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
2068   __ bind(deferred->map_check());  // Label for calculating code patching.
2069   // We use Factory::the_hole_value() on purpose instead of loading from the
2070   // root array to force relocation to be able to later patch with
2071   // the cached map.
2072   Handle<JSGlobalPropertyCell> cell =
2073       factory()->NewJSGlobalPropertyCell(factory()->the_hole_value());
2074   __ li(at, Operand(Handle<Object>(cell)));
2075   __ lw(at, FieldMemOperand(at, JSGlobalPropertyCell::kValueOffset));
2076   __ Branch(&cache_miss, ne, map, Operand(at));
2077   // We use Factory::the_hole_value() on purpose instead of loading from the
2078   // root array to force relocation to be able to later patch
2079   // with true or false.
2080   __ li(result, Operand(factory()->the_hole_value()), CONSTANT_SIZE);
2081   __ Branch(&done);
2082 
2083   // The inlined call site cache did not match. Check null and string before
2084   // calling the deferred code.
2085   __ bind(&cache_miss);
2086   // Null is not instance of anything.
2087   __ LoadRoot(temp, Heap::kNullValueRootIndex);
2088   __ Branch(&false_result, eq, object, Operand(temp));
2089 
2090   // String values is not instance of anything.
2091   Condition cc = __ IsObjectStringType(object, temp, temp);
2092   __ Branch(&false_result, cc, temp, Operand(zero_reg));
2093 
2094   // Go to the deferred code.
2095   __ Branch(deferred->entry());
2096 
2097   __ bind(&false_result);
2098   __ LoadRoot(result, Heap::kFalseValueRootIndex);
2099 
2100   // Here result has either true or false. Deferred code also produces true or
2101   // false object.
2102   __ bind(deferred->exit());
2103   __ bind(&done);
2104 }
2105 
2106 
DoDeferredInstanceOfKnownGlobal(LInstanceOfKnownGlobal * instr,Label * map_check)2107 void LCodeGen::DoDeferredInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr,
2108                                                Label* map_check) {
2109   Register result = ToRegister(instr->result());
2110   ASSERT(result.is(v0));
2111 
2112   InstanceofStub::Flags flags = InstanceofStub::kNoFlags;
2113   flags = static_cast<InstanceofStub::Flags>(
2114       flags | InstanceofStub::kArgsInRegisters);
2115   flags = static_cast<InstanceofStub::Flags>(
2116       flags | InstanceofStub::kCallSiteInlineCheck);
2117   flags = static_cast<InstanceofStub::Flags>(
2118       flags | InstanceofStub::kReturnTrueFalseObject);
2119   InstanceofStub stub(flags);
2120 
2121   PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
2122 
2123   // Get the temp register reserved by the instruction. This needs to be t0 as
2124   // its slot of the pushing of safepoint registers is used to communicate the
2125   // offset to the location of the map check.
2126   Register temp = ToRegister(instr->TempAt(0));
2127   ASSERT(temp.is(t0));
2128   __ LoadHeapObject(InstanceofStub::right(), instr->function());
2129   static const int kAdditionalDelta = 7;
2130   int delta = masm_->InstructionsGeneratedSince(map_check) + kAdditionalDelta;
2131   Label before_push_delta;
2132   __ bind(&before_push_delta);
2133   {
2134     Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
2135     __ li(temp, Operand(delta * kPointerSize), CONSTANT_SIZE);
2136     __ StoreToSafepointRegisterSlot(temp, temp);
2137   }
2138   CallCodeGeneric(stub.GetCode(),
2139                   RelocInfo::CODE_TARGET,
2140                   instr,
2141                   RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
2142   ASSERT(instr->HasDeoptimizationEnvironment());
2143   LEnvironment* env = instr->deoptimization_environment();
2144   safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
2145   // Put the result value into the result register slot and
2146   // restore all registers.
2147   __ StoreToSafepointRegisterSlot(result, result);
2148 }
2149 
2150 
DoCmpT(LCmpT * instr)2151 void LCodeGen::DoCmpT(LCmpT* instr) {
2152   Token::Value op = instr->op();
2153 
2154   Handle<Code> ic = CompareIC::GetUninitialized(op);
2155   CallCode(ic, RelocInfo::CODE_TARGET, instr);
2156   // On MIPS there is no need for a "no inlined smi code" marker (nop).
2157 
2158   Condition condition = ComputeCompareCondition(op);
2159   // A minor optimization that relies on LoadRoot always emitting one
2160   // instruction.
2161   Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm());
2162   Label done;
2163   __ Branch(USE_DELAY_SLOT, &done, condition, v0, Operand(zero_reg));
2164   __ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex);
2165   __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex);
2166   ASSERT_EQ(3, masm()->InstructionsGeneratedSince(&done));
2167   __ bind(&done);
2168 }
2169 
2170 
DoReturn(LReturn * instr)2171 void LCodeGen::DoReturn(LReturn* instr) {
2172   if (FLAG_trace) {
2173     // Push the return value on the stack as the parameter.
2174     // Runtime::TraceExit returns its parameter in v0.
2175     __ push(v0);
2176     __ CallRuntime(Runtime::kTraceExit, 1);
2177   }
2178   int32_t sp_delta = (GetParameterCount() + 1) * kPointerSize;
2179   __ mov(sp, fp);
2180   __ Pop(ra, fp);
2181   __ Addu(sp, sp, Operand(sp_delta));
2182   __ Jump(ra);
2183 }
2184 
2185 
DoLoadGlobalCell(LLoadGlobalCell * instr)2186 void LCodeGen::DoLoadGlobalCell(LLoadGlobalCell* instr) {
2187   Register result = ToRegister(instr->result());
2188   __ li(at, Operand(Handle<Object>(instr->hydrogen()->cell())));
2189   __ lw(result, FieldMemOperand(at, JSGlobalPropertyCell::kValueOffset));
2190   if (instr->hydrogen()->RequiresHoleCheck()) {
2191     __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
2192     DeoptimizeIf(eq, instr->environment(), result, Operand(at));
2193   }
2194 }
2195 
2196 
DoLoadGlobalGeneric(LLoadGlobalGeneric * instr)2197 void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
2198   ASSERT(ToRegister(instr->global_object()).is(a0));
2199   ASSERT(ToRegister(instr->result()).is(v0));
2200 
2201   __ li(a2, Operand(instr->name()));
2202   RelocInfo::Mode mode = instr->for_typeof() ? RelocInfo::CODE_TARGET
2203                                              : RelocInfo::CODE_TARGET_CONTEXT;
2204   Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
2205   CallCode(ic, mode, instr);
2206 }
2207 
2208 
DoStoreGlobalCell(LStoreGlobalCell * instr)2209 void LCodeGen::DoStoreGlobalCell(LStoreGlobalCell* instr) {
2210   Register value = ToRegister(instr->value());
2211   Register cell = scratch0();
2212 
2213   // Load the cell.
2214   __ li(cell, Operand(instr->hydrogen()->cell()));
2215 
2216   // If the cell we are storing to contains the hole it could have
2217   // been deleted from the property dictionary. In that case, we need
2218   // to update the property details in the property dictionary to mark
2219   // it as no longer deleted.
2220   if (instr->hydrogen()->RequiresHoleCheck()) {
2221     // We use a temp to check the payload.
2222     Register payload = ToRegister(instr->TempAt(0));
2223     __ lw(payload, FieldMemOperand(cell, JSGlobalPropertyCell::kValueOffset));
2224     __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
2225     DeoptimizeIf(eq, instr->environment(), payload, Operand(at));
2226   }
2227 
2228   // Store the value.
2229   __ sw(value, FieldMemOperand(cell, JSGlobalPropertyCell::kValueOffset));
2230   // Cells are always rescanned, so no write barrier here.
2231 }
2232 
2233 
DoStoreGlobalGeneric(LStoreGlobalGeneric * instr)2234 void LCodeGen::DoStoreGlobalGeneric(LStoreGlobalGeneric* instr) {
2235   ASSERT(ToRegister(instr->global_object()).is(a1));
2236   ASSERT(ToRegister(instr->value()).is(a0));
2237 
2238   __ li(a2, Operand(instr->name()));
2239   Handle<Code> ic = (instr->strict_mode_flag() == kStrictMode)
2240       ? isolate()->builtins()->StoreIC_Initialize_Strict()
2241       : isolate()->builtins()->StoreIC_Initialize();
2242   CallCode(ic, RelocInfo::CODE_TARGET_CONTEXT, instr);
2243 }
2244 
2245 
DoLoadContextSlot(LLoadContextSlot * instr)2246 void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
2247   Register context = ToRegister(instr->context());
2248   Register result = ToRegister(instr->result());
2249 
2250   __ lw(result, ContextOperand(context, instr->slot_index()));
2251   if (instr->hydrogen()->RequiresHoleCheck()) {
2252     __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
2253 
2254     if (instr->hydrogen()->DeoptimizesOnHole()) {
2255       DeoptimizeIf(eq, instr->environment(), result, Operand(at));
2256     } else {
2257       Label is_not_hole;
2258       __ Branch(&is_not_hole, ne, result, Operand(at));
2259       __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
2260       __ bind(&is_not_hole);
2261     }
2262   }
2263 }
2264 
2265 
DoStoreContextSlot(LStoreContextSlot * instr)2266 void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
2267   Register context = ToRegister(instr->context());
2268   Register value = ToRegister(instr->value());
2269   Register scratch = scratch0();
2270   MemOperand target = ContextOperand(context, instr->slot_index());
2271 
2272   Label skip_assignment;
2273 
2274   if (instr->hydrogen()->RequiresHoleCheck()) {
2275     __ lw(scratch, target);
2276     __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
2277 
2278     if (instr->hydrogen()->DeoptimizesOnHole()) {
2279       DeoptimizeIf(eq, instr->environment(), scratch, Operand(at));
2280     } else {
2281       __ Branch(&skip_assignment, ne, scratch, Operand(at));
2282     }
2283   }
2284 
2285   __ sw(value, target);
2286   if (instr->hydrogen()->NeedsWriteBarrier()) {
2287     HType type = instr->hydrogen()->value()->type();
2288     SmiCheck check_needed =
2289         type.IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
2290     __ RecordWriteContextSlot(context,
2291                               target.offset(),
2292                               value,
2293                               scratch0(),
2294                               kRAHasBeenSaved,
2295                               kSaveFPRegs,
2296                               EMIT_REMEMBERED_SET,
2297                               check_needed);
2298   }
2299 
2300   __ bind(&skip_assignment);
2301 }
2302 
2303 
DoLoadNamedField(LLoadNamedField * instr)2304 void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
2305   Register object = ToRegister(instr->InputAt(0));
2306   Register result = ToRegister(instr->result());
2307   if (instr->hydrogen()->is_in_object()) {
2308     __ lw(result, FieldMemOperand(object, instr->hydrogen()->offset()));
2309   } else {
2310     __ lw(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
2311     __ lw(result, FieldMemOperand(result, instr->hydrogen()->offset()));
2312   }
2313 }
2314 
2315 
EmitLoadFieldOrConstantFunction(Register result,Register object,Handle<Map> type,Handle<String> name)2316 void LCodeGen::EmitLoadFieldOrConstantFunction(Register result,
2317                                                Register object,
2318                                                Handle<Map> type,
2319                                                Handle<String> name) {
2320   LookupResult lookup(isolate());
2321   type->LookupInDescriptors(NULL, *name, &lookup);
2322   ASSERT(lookup.IsFound() &&
2323          (lookup.type() == FIELD || lookup.type() == CONSTANT_FUNCTION));
2324   if (lookup.type() == FIELD) {
2325     int index = lookup.GetLocalFieldIndexFromMap(*type);
2326     int offset = index * kPointerSize;
2327     if (index < 0) {
2328       // Negative property indices are in-object properties, indexed
2329       // from the end of the fixed part of the object.
2330       __ lw(result, FieldMemOperand(object, offset + type->instance_size()));
2331     } else {
2332       // Non-negative property indices are in the properties array.
2333       __ lw(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
2334       __ lw(result, FieldMemOperand(result, offset + FixedArray::kHeaderSize));
2335     }
2336   } else {
2337     Handle<JSFunction> function(lookup.GetConstantFunctionFromMap(*type));
2338     __ LoadHeapObject(result, function);
2339   }
2340 }
2341 
2342 
DoLoadNamedFieldPolymorphic(LLoadNamedFieldPolymorphic * instr)2343 void LCodeGen::DoLoadNamedFieldPolymorphic(LLoadNamedFieldPolymorphic* instr) {
2344   Register object = ToRegister(instr->object());
2345   Register result = ToRegister(instr->result());
2346   Register scratch = scratch0();
2347   int map_count = instr->hydrogen()->types()->length();
2348   Handle<String> name = instr->hydrogen()->name();
2349   if (map_count == 0) {
2350     ASSERT(instr->hydrogen()->need_generic());
2351     __ li(a2, Operand(name));
2352     Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
2353     CallCode(ic, RelocInfo::CODE_TARGET, instr);
2354   } else {
2355     Label done;
2356     __ lw(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
2357     for (int i = 0; i < map_count - 1; ++i) {
2358       Handle<Map> map = instr->hydrogen()->types()->at(i);
2359       Label next;
2360       __ Branch(&next, ne, scratch, Operand(map));
2361       EmitLoadFieldOrConstantFunction(result, object, map, name);
2362       __ Branch(&done);
2363       __ bind(&next);
2364     }
2365     Handle<Map> map = instr->hydrogen()->types()->last();
2366     if (instr->hydrogen()->need_generic()) {
2367       Label generic;
2368       __ Branch(&generic, ne, scratch, Operand(map));
2369       EmitLoadFieldOrConstantFunction(result, object, map, name);
2370       __ Branch(&done);
2371       __ bind(&generic);
2372       __ li(a2, Operand(name));
2373       Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
2374       CallCode(ic, RelocInfo::CODE_TARGET, instr);
2375     } else {
2376       DeoptimizeIf(ne, instr->environment(), scratch, Operand(map));
2377       EmitLoadFieldOrConstantFunction(result, object, map, name);
2378     }
2379     __ bind(&done);
2380   }
2381 }
2382 
2383 
DoLoadNamedGeneric(LLoadNamedGeneric * instr)2384 void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
2385   ASSERT(ToRegister(instr->object()).is(a0));
2386   ASSERT(ToRegister(instr->result()).is(v0));
2387 
2388   // Name is always in a2.
2389   __ li(a2, Operand(instr->name()));
2390   Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
2391   CallCode(ic, RelocInfo::CODE_TARGET, instr);
2392 }
2393 
2394 
DoLoadFunctionPrototype(LLoadFunctionPrototype * instr)2395 void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
2396   Register scratch = scratch0();
2397   Register function = ToRegister(instr->function());
2398   Register result = ToRegister(instr->result());
2399 
2400   // Check that the function really is a function. Load map into the
2401   // result register.
2402   __ GetObjectType(function, result, scratch);
2403   DeoptimizeIf(ne, instr->environment(), scratch, Operand(JS_FUNCTION_TYPE));
2404 
2405   // Make sure that the function has an instance prototype.
2406   Label non_instance;
2407   __ lbu(scratch, FieldMemOperand(result, Map::kBitFieldOffset));
2408   __ And(scratch, scratch, Operand(1 << Map::kHasNonInstancePrototype));
2409   __ Branch(&non_instance, ne, scratch, Operand(zero_reg));
2410 
2411   // Get the prototype or initial map from the function.
2412   __ lw(result,
2413          FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
2414 
2415   // Check that the function has a prototype or an initial map.
2416   __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
2417   DeoptimizeIf(eq, instr->environment(), result, Operand(at));
2418 
2419   // If the function does not have an initial map, we're done.
2420   Label done;
2421   __ GetObjectType(result, scratch, scratch);
2422   __ Branch(&done, ne, scratch, Operand(MAP_TYPE));
2423 
2424   // Get the prototype from the initial map.
2425   __ lw(result, FieldMemOperand(result, Map::kPrototypeOffset));
2426   __ Branch(&done);
2427 
2428   // Non-instance prototype: Fetch prototype from constructor field
2429   // in initial map.
2430   __ bind(&non_instance);
2431   __ lw(result, FieldMemOperand(result, Map::kConstructorOffset));
2432 
2433   // All done.
2434   __ bind(&done);
2435 }
2436 
2437 
DoLoadElements(LLoadElements * instr)2438 void LCodeGen::DoLoadElements(LLoadElements* instr) {
2439   Register result = ToRegister(instr->result());
2440   Register input = ToRegister(instr->InputAt(0));
2441   Register scratch = scratch0();
2442 
2443   __ lw(result, FieldMemOperand(input, JSObject::kElementsOffset));
2444   if (FLAG_debug_code) {
2445     Label done, fail;
2446     __ lw(scratch, FieldMemOperand(result, HeapObject::kMapOffset));
2447     __ LoadRoot(at, Heap::kFixedArrayMapRootIndex);
2448     __ Branch(USE_DELAY_SLOT, &done, eq, scratch, Operand(at));
2449     __ LoadRoot(at, Heap::kFixedCOWArrayMapRootIndex);  // In the delay slot.
2450     __ Branch(&done, eq, scratch, Operand(at));
2451     // |scratch| still contains |input|'s map.
2452     __ lbu(scratch, FieldMemOperand(scratch, Map::kBitField2Offset));
2453     __ Ext(scratch, scratch, Map::kElementsKindShift,
2454            Map::kElementsKindBitCount);
2455     __ Branch(&done, eq, scratch,
2456               Operand(FAST_ELEMENTS));
2457     __ Branch(&fail, lt, scratch,
2458               Operand(FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND));
2459     __ Branch(&done, le, scratch,
2460               Operand(LAST_EXTERNAL_ARRAY_ELEMENTS_KIND));
2461     __ bind(&fail);
2462     __ Abort("Check for fast or external elements failed.");
2463     __ bind(&done);
2464   }
2465 }
2466 
2467 
DoLoadExternalArrayPointer(LLoadExternalArrayPointer * instr)2468 void LCodeGen::DoLoadExternalArrayPointer(
2469     LLoadExternalArrayPointer* instr) {
2470   Register to_reg = ToRegister(instr->result());
2471   Register from_reg  = ToRegister(instr->InputAt(0));
2472   __ lw(to_reg, FieldMemOperand(from_reg,
2473                                 ExternalArray::kExternalPointerOffset));
2474 }
2475 
2476 
DoAccessArgumentsAt(LAccessArgumentsAt * instr)2477 void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
2478   Register arguments = ToRegister(instr->arguments());
2479   Register length = ToRegister(instr->length());
2480   Register index = ToRegister(instr->index());
2481   Register result = ToRegister(instr->result());
2482 
2483   // Bailout index is not a valid argument index. Use unsigned check to get
2484   // negative check for free.
2485 
2486   // TODO(plind): Shoud be optimized to do the sub before the DeoptimizeIf(),
2487   // as they do in Arm. It will save us an instruction.
2488   DeoptimizeIf(ls, instr->environment(), length, Operand(index));
2489 
2490   // There are two words between the frame pointer and the last argument.
2491   // Subtracting from length accounts for one of them, add one more.
2492   __ subu(length, length, index);
2493   __ Addu(length, length, Operand(1));
2494   __ sll(length, length, kPointerSizeLog2);
2495   __ Addu(at, arguments, Operand(length));
2496   __ lw(result, MemOperand(at, 0));
2497 }
2498 
2499 
DoLoadKeyedFastElement(LLoadKeyedFastElement * instr)2500 void LCodeGen::DoLoadKeyedFastElement(LLoadKeyedFastElement* instr) {
2501   Register elements = ToRegister(instr->elements());
2502   Register key = EmitLoadRegister(instr->key(), scratch0());
2503   Register result = ToRegister(instr->result());
2504   Register scratch = scratch0();
2505 
2506   // Load the result.
2507   __ sll(scratch, key, kPointerSizeLog2);  // Key indexes words.
2508   __ addu(scratch, elements, scratch);
2509   __ lw(result, FieldMemOperand(scratch, FixedArray::kHeaderSize));
2510 
2511   // Check for the hole value.
2512   if (instr->hydrogen()->RequiresHoleCheck()) {
2513     __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
2514     DeoptimizeIf(eq, instr->environment(), result, Operand(scratch));
2515   }
2516 }
2517 
2518 
DoLoadKeyedFastDoubleElement(LLoadKeyedFastDoubleElement * instr)2519 void LCodeGen::DoLoadKeyedFastDoubleElement(
2520     LLoadKeyedFastDoubleElement* instr) {
2521   Register elements = ToRegister(instr->elements());
2522   bool key_is_constant = instr->key()->IsConstantOperand();
2523   Register key = no_reg;
2524   DoubleRegister result = ToDoubleRegister(instr->result());
2525   Register scratch = scratch0();
2526 
2527   int shift_size =
2528       ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
2529   int constant_key = 0;
2530   if (key_is_constant) {
2531     constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
2532     if (constant_key & 0xF0000000) {
2533       Abort("array index constant value too big.");
2534     }
2535   } else {
2536     key = ToRegister(instr->key());
2537   }
2538 
2539   if (key_is_constant) {
2540     __ Addu(elements, elements, Operand(constant_key * (1 << shift_size) +
2541             FixedDoubleArray::kHeaderSize - kHeapObjectTag));
2542   } else {
2543     __ sll(scratch, key, shift_size);
2544     __ Addu(elements, elements, Operand(scratch));
2545     __ Addu(elements, elements,
2546             Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag));
2547   }
2548 
2549   __ lw(scratch, MemOperand(elements, sizeof(kHoleNanLower32)));
2550   DeoptimizeIf(eq, instr->environment(), scratch, Operand(kHoleNanUpper32));
2551 
2552   __ ldc1(result, MemOperand(elements));
2553 }
2554 
2555 
DoLoadKeyedSpecializedArrayElement(LLoadKeyedSpecializedArrayElement * instr)2556 void LCodeGen::DoLoadKeyedSpecializedArrayElement(
2557     LLoadKeyedSpecializedArrayElement* instr) {
2558   Register external_pointer = ToRegister(instr->external_pointer());
2559   Register key = no_reg;
2560   ElementsKind elements_kind = instr->elements_kind();
2561   bool key_is_constant = instr->key()->IsConstantOperand();
2562   int constant_key = 0;
2563   if (key_is_constant) {
2564     constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
2565     if (constant_key & 0xF0000000) {
2566       Abort("array index constant value too big.");
2567     }
2568   } else {
2569     key = ToRegister(instr->key());
2570   }
2571   int shift_size = ElementsKindToShiftSize(elements_kind);
2572 
2573   if (elements_kind == EXTERNAL_FLOAT_ELEMENTS ||
2574       elements_kind == EXTERNAL_DOUBLE_ELEMENTS) {
2575     FPURegister result = ToDoubleRegister(instr->result());
2576     if (key_is_constant) {
2577       __ Addu(scratch0(), external_pointer, constant_key * (1 << shift_size));
2578     } else {
2579       __ sll(scratch0(), key, shift_size);
2580       __ Addu(scratch0(), scratch0(), external_pointer);
2581     }
2582 
2583     if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) {
2584       __ lwc1(result, MemOperand(scratch0()));
2585       __ cvt_d_s(result, result);
2586     } else  {  // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS
2587       __ ldc1(result, MemOperand(scratch0()));
2588     }
2589   } else {
2590     Register result = ToRegister(instr->result());
2591     Register scratch = scratch0();
2592     MemOperand mem_operand(zero_reg);
2593     if (key_is_constant) {
2594       mem_operand = MemOperand(external_pointer,
2595                                constant_key * (1 << shift_size));
2596     } else {
2597       __ sll(scratch, key, shift_size);
2598       __ Addu(scratch, scratch, external_pointer);
2599       mem_operand = MemOperand(scratch);
2600     }
2601     switch (elements_kind) {
2602       case EXTERNAL_BYTE_ELEMENTS:
2603         __ lb(result, mem_operand);
2604         break;
2605       case EXTERNAL_PIXEL_ELEMENTS:
2606       case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
2607         __ lbu(result, mem_operand);
2608         break;
2609       case EXTERNAL_SHORT_ELEMENTS:
2610         __ lh(result, mem_operand);
2611         break;
2612       case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
2613         __ lhu(result, mem_operand);
2614         break;
2615       case EXTERNAL_INT_ELEMENTS:
2616         __ lw(result, mem_operand);
2617         break;
2618       case EXTERNAL_UNSIGNED_INT_ELEMENTS:
2619         __ lw(result, mem_operand);
2620         // TODO(danno): we could be more clever here, perhaps having a special
2621         // version of the stub that detects if the overflow case actually
2622         // happens, and generate code that returns a double rather than int.
2623         DeoptimizeIf(Ugreater_equal, instr->environment(),
2624             result, Operand(0x80000000));
2625         break;
2626       case EXTERNAL_FLOAT_ELEMENTS:
2627       case EXTERNAL_DOUBLE_ELEMENTS:
2628       case FAST_DOUBLE_ELEMENTS:
2629       case FAST_ELEMENTS:
2630       case FAST_SMI_ONLY_ELEMENTS:
2631       case DICTIONARY_ELEMENTS:
2632       case NON_STRICT_ARGUMENTS_ELEMENTS:
2633         UNREACHABLE();
2634         break;
2635     }
2636   }
2637 }
2638 
2639 
DoLoadKeyedGeneric(LLoadKeyedGeneric * instr)2640 void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
2641   ASSERT(ToRegister(instr->object()).is(a1));
2642   ASSERT(ToRegister(instr->key()).is(a0));
2643 
2644   Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize();
2645   CallCode(ic, RelocInfo::CODE_TARGET, instr);
2646 }
2647 
2648 
DoArgumentsElements(LArgumentsElements * instr)2649 void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
2650   Register scratch = scratch0();
2651   Register temp = scratch1();
2652   Register result = ToRegister(instr->result());
2653 
2654   // Check if the calling frame is an arguments adaptor frame.
2655   Label done, adapted;
2656   __ lw(scratch, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
2657   __ lw(result, MemOperand(scratch, StandardFrameConstants::kContextOffset));
2658   __ Xor(temp, result, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
2659 
2660   // Result is the frame pointer for the frame if not adapted and for the real
2661   // frame below the adaptor frame if adapted.
2662   __ Movn(result, fp, temp);  // Move only if temp is not equal to zero (ne).
2663   __ Movz(result, scratch, temp);  // Move only if temp is equal to zero (eq).
2664 }
2665 
2666 
DoArgumentsLength(LArgumentsLength * instr)2667 void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
2668   Register elem = ToRegister(instr->InputAt(0));
2669   Register result = ToRegister(instr->result());
2670 
2671   Label done;
2672 
2673   // If no arguments adaptor frame the number of arguments is fixed.
2674   __ Addu(result, zero_reg, Operand(scope()->num_parameters()));
2675   __ Branch(&done, eq, fp, Operand(elem));
2676 
2677   // Arguments adaptor frame present. Get argument length from there.
2678   __ lw(result, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
2679   __ lw(result,
2680         MemOperand(result, ArgumentsAdaptorFrameConstants::kLengthOffset));
2681   __ SmiUntag(result);
2682 
2683   // Argument length is in result register.
2684   __ bind(&done);
2685 }
2686 
2687 
DoWrapReceiver(LWrapReceiver * instr)2688 void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
2689   Register receiver = ToRegister(instr->receiver());
2690   Register function = ToRegister(instr->function());
2691   Register scratch = scratch0();
2692 
2693   // If the receiver is null or undefined, we have to pass the global
2694   // object as a receiver to normal functions. Values have to be
2695   // passed unchanged to builtins and strict-mode functions.
2696   Label global_object, receiver_ok;
2697 
2698   // Do not transform the receiver to object for strict mode
2699   // functions.
2700   __ lw(scratch,
2701          FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
2702   __ lw(scratch,
2703          FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset));
2704 
2705   // Do not transform the receiver to object for builtins.
2706   int32_t strict_mode_function_mask =
2707                   1 <<  (SharedFunctionInfo::kStrictModeFunction + kSmiTagSize);
2708   int32_t native_mask = 1 << (SharedFunctionInfo::kNative + kSmiTagSize);
2709   __ And(scratch, scratch, Operand(strict_mode_function_mask | native_mask));
2710   __ Branch(&receiver_ok, ne, scratch, Operand(zero_reg));
2711 
2712   // Normal function. Replace undefined or null with global receiver.
2713   __ LoadRoot(scratch, Heap::kNullValueRootIndex);
2714   __ Branch(&global_object, eq, receiver, Operand(scratch));
2715   __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
2716   __ Branch(&global_object, eq, receiver, Operand(scratch));
2717 
2718   // Deoptimize if the receiver is not a JS object.
2719   __ And(scratch, receiver, Operand(kSmiTagMask));
2720   DeoptimizeIf(eq, instr->environment(), scratch, Operand(zero_reg));
2721 
2722   __ GetObjectType(receiver, scratch, scratch);
2723   DeoptimizeIf(lt, instr->environment(),
2724                scratch, Operand(FIRST_SPEC_OBJECT_TYPE));
2725   __ Branch(&receiver_ok);
2726 
2727   __ bind(&global_object);
2728   __ lw(receiver, GlobalObjectOperand());
2729   __ lw(receiver,
2730          FieldMemOperand(receiver, JSGlobalObject::kGlobalReceiverOffset));
2731   __ bind(&receiver_ok);
2732 }
2733 
DoApplyArguments(LApplyArguments * instr)2734 void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
2735   Register receiver = ToRegister(instr->receiver());
2736   Register function = ToRegister(instr->function());
2737   Register length = ToRegister(instr->length());
2738   Register elements = ToRegister(instr->elements());
2739   Register scratch = scratch0();
2740   ASSERT(receiver.is(a0));  // Used for parameter count.
2741   ASSERT(function.is(a1));  // Required by InvokeFunction.
2742   ASSERT(ToRegister(instr->result()).is(v0));
2743 
2744   // Copy the arguments to this function possibly from the
2745   // adaptor frame below it.
2746   const uint32_t kArgumentsLimit = 1 * KB;
2747   DeoptimizeIf(hi, instr->environment(), length, Operand(kArgumentsLimit));
2748 
2749   // Push the receiver and use the register to keep the original
2750   // number of arguments.
2751   __ push(receiver);
2752   __ Move(receiver, length);
2753   // The arguments are at a one pointer size offset from elements.
2754   __ Addu(elements, elements, Operand(1 * kPointerSize));
2755 
2756   // Loop through the arguments pushing them onto the execution
2757   // stack.
2758   Label invoke, loop;
2759   // length is a small non-negative integer, due to the test above.
2760   __ Branch(USE_DELAY_SLOT, &invoke, eq, length, Operand(zero_reg));
2761   __ sll(scratch, length, 2);
2762   __ bind(&loop);
2763   __ Addu(scratch, elements, scratch);
2764   __ lw(scratch, MemOperand(scratch));
2765   __ push(scratch);
2766   __ Subu(length, length, Operand(1));
2767   __ Branch(USE_DELAY_SLOT, &loop, ne, length, Operand(zero_reg));
2768   __ sll(scratch, length, 2);
2769 
2770   __ bind(&invoke);
2771   ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment());
2772   LPointerMap* pointers = instr->pointer_map();
2773   RecordPosition(pointers->position());
2774   SafepointGenerator safepoint_generator(
2775       this, pointers, Safepoint::kLazyDeopt);
2776   // The number of arguments is stored in receiver which is a0, as expected
2777   // by InvokeFunction.
2778   ParameterCount actual(receiver);
2779   __ InvokeFunction(function, actual, CALL_FUNCTION,
2780                     safepoint_generator, CALL_AS_METHOD);
2781   __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2782 }
2783 
2784 
DoPushArgument(LPushArgument * instr)2785 void LCodeGen::DoPushArgument(LPushArgument* instr) {
2786   LOperand* argument = instr->InputAt(0);
2787   if (argument->IsDoubleRegister() || argument->IsDoubleStackSlot()) {
2788     Abort("DoPushArgument not implemented for double type.");
2789   } else {
2790     Register argument_reg = EmitLoadRegister(argument, at);
2791     __ push(argument_reg);
2792   }
2793 }
2794 
2795 
DoThisFunction(LThisFunction * instr)2796 void LCodeGen::DoThisFunction(LThisFunction* instr) {
2797   Register result = ToRegister(instr->result());
2798   __ LoadHeapObject(result, instr->hydrogen()->closure());
2799 }
2800 
2801 
DoContext(LContext * instr)2802 void LCodeGen::DoContext(LContext* instr) {
2803   Register result = ToRegister(instr->result());
2804   __ mov(result, cp);
2805 }
2806 
2807 
DoOuterContext(LOuterContext * instr)2808 void LCodeGen::DoOuterContext(LOuterContext* instr) {
2809   Register context = ToRegister(instr->context());
2810   Register result = ToRegister(instr->result());
2811   __ lw(result,
2812         MemOperand(context, Context::SlotOffset(Context::PREVIOUS_INDEX)));
2813 }
2814 
2815 
DoDeclareGlobals(LDeclareGlobals * instr)2816 void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
2817   __ LoadHeapObject(scratch0(), instr->hydrogen()->pairs());
2818   __ li(scratch1(), Operand(Smi::FromInt(instr->hydrogen()->flags())));
2819   // The context is the first argument.
2820   __ Push(cp, scratch0(), scratch1());
2821   CallRuntime(Runtime::kDeclareGlobals, 3, instr);
2822 }
2823 
2824 
DoGlobalObject(LGlobalObject * instr)2825 void LCodeGen::DoGlobalObject(LGlobalObject* instr) {
2826   Register result = ToRegister(instr->result());
2827   __ lw(result, ContextOperand(cp, Context::GLOBAL_INDEX));
2828 }
2829 
2830 
DoGlobalReceiver(LGlobalReceiver * instr)2831 void LCodeGen::DoGlobalReceiver(LGlobalReceiver* instr) {
2832   Register global = ToRegister(instr->global());
2833   Register result = ToRegister(instr->result());
2834   __ lw(result, FieldMemOperand(global, GlobalObject::kGlobalReceiverOffset));
2835 }
2836 
2837 
CallKnownFunction(Handle<JSFunction> function,int arity,LInstruction * instr,CallKind call_kind)2838 void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
2839                                  int arity,
2840                                  LInstruction* instr,
2841                                  CallKind call_kind) {
2842   bool can_invoke_directly = !function->NeedsArgumentsAdaption() ||
2843       function->shared()->formal_parameter_count() == arity;
2844 
2845   LPointerMap* pointers = instr->pointer_map();
2846   RecordPosition(pointers->position());
2847 
2848   if (can_invoke_directly) {
2849     __ LoadHeapObject(a1, function);
2850     // Change context if needed.
2851     bool change_context =
2852         (info()->closure()->context() != function->context()) ||
2853         scope()->contains_with() ||
2854         (scope()->num_heap_slots() > 0);
2855     if (change_context) {
2856       __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
2857     }
2858 
2859     // Set r0 to arguments count if adaption is not needed. Assumes that r0
2860     // is available to write to at this point.
2861     if (!function->NeedsArgumentsAdaption()) {
2862       __ li(a0, Operand(arity));
2863     }
2864 
2865     // Invoke function.
2866     __ SetCallKind(t1, call_kind);
2867     __ lw(at, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
2868     __ Call(at);
2869 
2870     // Set up deoptimization.
2871     RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
2872   } else {
2873     SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
2874     ParameterCount count(arity);
2875     __ InvokeFunction(function, count, CALL_FUNCTION, generator, call_kind);
2876   }
2877 
2878   // Restore context.
2879   __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2880 }
2881 
2882 
DoCallConstantFunction(LCallConstantFunction * instr)2883 void LCodeGen::DoCallConstantFunction(LCallConstantFunction* instr) {
2884   ASSERT(ToRegister(instr->result()).is(v0));
2885   __ mov(a0, v0);
2886   CallKnownFunction(instr->function(), instr->arity(), instr, CALL_AS_METHOD);
2887 }
2888 
2889 
DoDeferredMathAbsTaggedHeapNumber(LUnaryMathOperation * instr)2890 void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LUnaryMathOperation* instr) {
2891   Register input = ToRegister(instr->InputAt(0));
2892   Register result = ToRegister(instr->result());
2893   Register scratch = scratch0();
2894 
2895   // Deoptimize if not a heap number.
2896   __ lw(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
2897   __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
2898   DeoptimizeIf(ne, instr->environment(), scratch, Operand(at));
2899 
2900   Label done;
2901   Register exponent = scratch0();
2902   scratch = no_reg;
2903   __ lw(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
2904   // Check the sign of the argument. If the argument is positive, just
2905   // return it.
2906   __ Move(result, input);
2907   __ And(at, exponent, Operand(HeapNumber::kSignMask));
2908   __ Branch(&done, eq, at, Operand(zero_reg));
2909 
2910   // Input is negative. Reverse its sign.
2911   // Preserve the value of all registers.
2912   {
2913     PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
2914 
2915     // Registers were saved at the safepoint, so we can use
2916     // many scratch registers.
2917     Register tmp1 = input.is(a1) ? a0 : a1;
2918     Register tmp2 = input.is(a2) ? a0 : a2;
2919     Register tmp3 = input.is(a3) ? a0 : a3;
2920     Register tmp4 = input.is(t0) ? a0 : t0;
2921 
2922     // exponent: floating point exponent value.
2923 
2924     Label allocated, slow;
2925     __ LoadRoot(tmp4, Heap::kHeapNumberMapRootIndex);
2926     __ AllocateHeapNumber(tmp1, tmp2, tmp3, tmp4, &slow);
2927     __ Branch(&allocated);
2928 
2929     // Slow case: Call the runtime system to do the number allocation.
2930     __ bind(&slow);
2931 
2932     CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr);
2933     // Set the pointer to the new heap number in tmp.
2934     if (!tmp1.is(v0))
2935       __ mov(tmp1, v0);
2936     // Restore input_reg after call to runtime.
2937     __ LoadFromSafepointRegisterSlot(input, input);
2938     __ lw(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
2939 
2940     __ bind(&allocated);
2941     // exponent: floating point exponent value.
2942     // tmp1: allocated heap number.
2943     __ And(exponent, exponent, Operand(~HeapNumber::kSignMask));
2944     __ sw(exponent, FieldMemOperand(tmp1, HeapNumber::kExponentOffset));
2945     __ lw(tmp2, FieldMemOperand(input, HeapNumber::kMantissaOffset));
2946     __ sw(tmp2, FieldMemOperand(tmp1, HeapNumber::kMantissaOffset));
2947 
2948     __ StoreToSafepointRegisterSlot(tmp1, result);
2949   }
2950 
2951   __ bind(&done);
2952 }
2953 
2954 
EmitIntegerMathAbs(LUnaryMathOperation * instr)2955 void LCodeGen::EmitIntegerMathAbs(LUnaryMathOperation* instr) {
2956   Register input = ToRegister(instr->InputAt(0));
2957   Register result = ToRegister(instr->result());
2958   Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
2959   Label done;
2960   __ Branch(USE_DELAY_SLOT, &done, ge, input, Operand(zero_reg));
2961   __ mov(result, input);
2962   ASSERT_EQ(2, masm()->InstructionsGeneratedSince(&done));
2963   __ subu(result, zero_reg, input);
2964   // Overflow if result is still negative, i.e. 0x80000000.
2965   DeoptimizeIf(lt, instr->environment(), result, Operand(zero_reg));
2966   __ bind(&done);
2967 }
2968 
2969 
DoMathAbs(LUnaryMathOperation * instr)2970 void LCodeGen::DoMathAbs(LUnaryMathOperation* instr) {
2971   // Class for deferred case.
2972   class DeferredMathAbsTaggedHeapNumber: public LDeferredCode {
2973    public:
2974     DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen,
2975                                     LUnaryMathOperation* instr)
2976         : LDeferredCode(codegen), instr_(instr) { }
2977     virtual void Generate() {
2978       codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
2979     }
2980     virtual LInstruction* instr() { return instr_; }
2981    private:
2982     LUnaryMathOperation* instr_;
2983   };
2984 
2985   Representation r = instr->hydrogen()->value()->representation();
2986   if (r.IsDouble()) {
2987     FPURegister input = ToDoubleRegister(instr->InputAt(0));
2988     FPURegister result = ToDoubleRegister(instr->result());
2989     __ abs_d(result, input);
2990   } else if (r.IsInteger32()) {
2991     EmitIntegerMathAbs(instr);
2992   } else {
2993     // Representation is tagged.
2994     DeferredMathAbsTaggedHeapNumber* deferred =
2995         new DeferredMathAbsTaggedHeapNumber(this, instr);
2996     Register input = ToRegister(instr->InputAt(0));
2997     // Smi check.
2998     __ JumpIfNotSmi(input, deferred->entry());
2999     // If smi, handle it directly.
3000     EmitIntegerMathAbs(instr);
3001     __ bind(deferred->exit());
3002   }
3003 }
3004 
3005 
DoMathFloor(LUnaryMathOperation * instr)3006 void LCodeGen::DoMathFloor(LUnaryMathOperation* instr) {
3007   DoubleRegister input = ToDoubleRegister(instr->InputAt(0));
3008   Register result = ToRegister(instr->result());
3009   FPURegister single_scratch = double_scratch0().low();
3010   Register scratch1 = scratch0();
3011   Register except_flag = ToRegister(instr->TempAt(0));
3012 
3013   __ EmitFPUTruncate(kRoundToMinusInf,
3014                      single_scratch,
3015                      input,
3016                      scratch1,
3017                      except_flag);
3018 
3019   // Deopt if the operation did not succeed.
3020   DeoptimizeIf(ne, instr->environment(), except_flag, Operand(zero_reg));
3021 
3022   // Load the result.
3023   __ mfc1(result, single_scratch);
3024 
3025   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3026     // Test for -0.
3027     Label done;
3028     __ Branch(&done, ne, result, Operand(zero_reg));
3029     __ mfc1(scratch1, input.high());
3030     __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
3031     DeoptimizeIf(ne, instr->environment(), scratch1, Operand(zero_reg));
3032     __ bind(&done);
3033   }
3034 }
3035 
3036 
DoMathRound(LUnaryMathOperation * instr)3037 void LCodeGen::DoMathRound(LUnaryMathOperation* instr) {
3038   DoubleRegister input = ToDoubleRegister(instr->InputAt(0));
3039   Register result = ToRegister(instr->result());
3040   Register scratch = scratch0();
3041   Label done, check_sign_on_zero;
3042 
3043   // Extract exponent bits.
3044   __ mfc1(result, input.high());
3045   __ Ext(scratch,
3046          result,
3047          HeapNumber::kExponentShift,
3048          HeapNumber::kExponentBits);
3049 
3050   // If the number is in ]-0.5, +0.5[, the result is +/- 0.
3051   Label skip1;
3052   __ Branch(&skip1, gt, scratch, Operand(HeapNumber::kExponentBias - 2));
3053   __ mov(result, zero_reg);
3054   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3055     __ Branch(&check_sign_on_zero);
3056   } else {
3057     __ Branch(&done);
3058   }
3059   __ bind(&skip1);
3060 
3061   // The following conversion will not work with numbers
3062   // outside of ]-2^32, 2^32[.
3063   DeoptimizeIf(ge, instr->environment(), scratch,
3064                Operand(HeapNumber::kExponentBias + 32));
3065 
3066   // Save the original sign for later comparison.
3067   __ And(scratch, result, Operand(HeapNumber::kSignMask));
3068 
3069   __ Move(double_scratch0(), 0.5);
3070   __ add_d(double_scratch0(), input, double_scratch0());
3071 
3072   // Check sign of the result: if the sign changed, the input
3073   // value was in ]0.5, 0[ and the result should be -0.
3074   __ mfc1(result, double_scratch0().high());
3075   __ Xor(result, result, Operand(scratch));
3076   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3077     // ARM uses 'mi' here, which is 'lt'
3078     DeoptimizeIf(lt, instr->environment(), result,
3079                  Operand(zero_reg));
3080   } else {
3081     Label skip2;
3082     // ARM uses 'mi' here, which is 'lt'
3083     // Negating it results in 'ge'
3084     __ Branch(&skip2, ge, result, Operand(zero_reg));
3085     __ mov(result, zero_reg);
3086     __ Branch(&done);
3087     __ bind(&skip2);
3088   }
3089 
3090   Register except_flag = scratch;
3091 
3092   __ EmitFPUTruncate(kRoundToMinusInf,
3093                      double_scratch0().low(),
3094                      double_scratch0(),
3095                      result,
3096                      except_flag);
3097 
3098   DeoptimizeIf(ne, instr->environment(), except_flag, Operand(zero_reg));
3099 
3100   __ mfc1(result, double_scratch0().low());
3101 
3102   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3103     // Test for -0.
3104     __ Branch(&done, ne, result, Operand(zero_reg));
3105     __ bind(&check_sign_on_zero);
3106     __ mfc1(scratch, input.high());
3107     __ And(scratch, scratch, Operand(HeapNumber::kSignMask));
3108     DeoptimizeIf(ne, instr->environment(), scratch, Operand(zero_reg));
3109   }
3110   __ bind(&done);
3111 }
3112 
3113 
DoMathSqrt(LUnaryMathOperation * instr)3114 void LCodeGen::DoMathSqrt(LUnaryMathOperation* instr) {
3115   DoubleRegister input = ToDoubleRegister(instr->InputAt(0));
3116   DoubleRegister result = ToDoubleRegister(instr->result());
3117   __ sqrt_d(result, input);
3118 }
3119 
3120 
DoMathPowHalf(LUnaryMathOperation * instr)3121 void LCodeGen::DoMathPowHalf(LUnaryMathOperation* instr) {
3122   DoubleRegister input = ToDoubleRegister(instr->InputAt(0));
3123   DoubleRegister result = ToDoubleRegister(instr->result());
3124   DoubleRegister temp = ToDoubleRegister(instr->TempAt(0));
3125 
3126   ASSERT(!input.is(result));
3127 
3128   // Note that according to ECMA-262 15.8.2.13:
3129   // Math.pow(-Infinity, 0.5) == Infinity
3130   // Math.sqrt(-Infinity) == NaN
3131   Label done;
3132   __ Move(temp, -V8_INFINITY);
3133   __ BranchF(USE_DELAY_SLOT, &done, NULL, eq, temp, input);
3134   // Set up Infinity in the delay slot.
3135   // result is overwritten if the branch is not taken.
3136   __ neg_d(result, temp);
3137 
3138   // Add +0 to convert -0 to +0.
3139   __ add_d(result, input, kDoubleRegZero);
3140   __ sqrt_d(result, result);
3141   __ bind(&done);
3142 }
3143 
3144 
DoPower(LPower * instr)3145 void LCodeGen::DoPower(LPower* instr) {
3146   Representation exponent_type = instr->hydrogen()->right()->representation();
3147   // Having marked this as a call, we can use any registers.
3148   // Just make sure that the input/output registers are the expected ones.
3149   ASSERT(!instr->InputAt(1)->IsDoubleRegister() ||
3150          ToDoubleRegister(instr->InputAt(1)).is(f4));
3151   ASSERT(!instr->InputAt(1)->IsRegister() ||
3152          ToRegister(instr->InputAt(1)).is(a2));
3153   ASSERT(ToDoubleRegister(instr->InputAt(0)).is(f2));
3154   ASSERT(ToDoubleRegister(instr->result()).is(f0));
3155 
3156   if (exponent_type.IsTagged()) {
3157     Label no_deopt;
3158     __ JumpIfSmi(a2, &no_deopt);
3159     __ lw(t3, FieldMemOperand(a2, HeapObject::kMapOffset));
3160     DeoptimizeIf(ne, instr->environment(), t3, Operand(at));
3161     __ bind(&no_deopt);
3162     MathPowStub stub(MathPowStub::TAGGED);
3163     __ CallStub(&stub);
3164   } else if (exponent_type.IsInteger32()) {
3165     MathPowStub stub(MathPowStub::INTEGER);
3166     __ CallStub(&stub);
3167   } else {
3168     ASSERT(exponent_type.IsDouble());
3169     MathPowStub stub(MathPowStub::DOUBLE);
3170     __ CallStub(&stub);
3171   }
3172 }
3173 
3174 
DoRandom(LRandom * instr)3175 void LCodeGen::DoRandom(LRandom* instr) {
3176   class DeferredDoRandom: public LDeferredCode {
3177    public:
3178     DeferredDoRandom(LCodeGen* codegen, LRandom* instr)
3179         : LDeferredCode(codegen), instr_(instr) { }
3180     virtual void Generate() { codegen()->DoDeferredRandom(instr_); }
3181     virtual LInstruction* instr() { return instr_; }
3182    private:
3183     LRandom* instr_;
3184   };
3185 
3186   DeferredDoRandom* deferred = new DeferredDoRandom(this, instr);
3187   // Having marked this instruction as a call we can use any
3188   // registers.
3189   ASSERT(ToDoubleRegister(instr->result()).is(f0));
3190   ASSERT(ToRegister(instr->InputAt(0)).is(a0));
3191 
3192   static const int kSeedSize = sizeof(uint32_t);
3193   STATIC_ASSERT(kPointerSize == kSeedSize);
3194 
3195   __ lw(a0, FieldMemOperand(a0, GlobalObject::kGlobalContextOffset));
3196   static const int kRandomSeedOffset =
3197       FixedArray::kHeaderSize + Context::RANDOM_SEED_INDEX * kPointerSize;
3198   __ lw(a2, FieldMemOperand(a0, kRandomSeedOffset));
3199   // a2: FixedArray of the global context's random seeds
3200 
3201   // Load state[0].
3202   __ lw(a1, FieldMemOperand(a2, ByteArray::kHeaderSize));
3203   __ Branch(deferred->entry(), eq, a1, Operand(zero_reg));
3204   // Load state[1].
3205   __ lw(a0, FieldMemOperand(a2, ByteArray::kHeaderSize + kSeedSize));
3206   // a1: state[0].
3207   // a0: state[1].
3208 
3209   // state[0] = 18273 * (state[0] & 0xFFFF) + (state[0] >> 16)
3210   __ And(a3, a1, Operand(0xFFFF));
3211   __ li(t0, Operand(18273));
3212   __ Mul(a3, a3, t0);
3213   __ srl(a1, a1, 16);
3214   __ Addu(a1, a3, a1);
3215   // Save state[0].
3216   __ sw(a1, FieldMemOperand(a2, ByteArray::kHeaderSize));
3217 
3218   // state[1] = 36969 * (state[1] & 0xFFFF) + (state[1] >> 16)
3219   __ And(a3, a0, Operand(0xFFFF));
3220   __ li(t0, Operand(36969));
3221   __ Mul(a3, a3, t0);
3222   __ srl(a0, a0, 16),
3223   __ Addu(a0, a3, a0);
3224   // Save state[1].
3225   __ sw(a0, FieldMemOperand(a2, ByteArray::kHeaderSize + kSeedSize));
3226 
3227   // Random bit pattern = (state[0] << 14) + (state[1] & 0x3FFFF)
3228   __ And(a0, a0, Operand(0x3FFFF));
3229   __ sll(a1, a1, 14);
3230   __ Addu(v0, a0, a1);
3231 
3232   __ bind(deferred->exit());
3233 
3234   // 0x41300000 is the top half of 1.0 x 2^20 as a double.
3235   __ li(a2, Operand(0x41300000));
3236   // Move 0x41300000xxxxxxxx (x = random bits in v0) to FPU.
3237   __ Move(f12, v0, a2);
3238   // Move 0x4130000000000000 to FPU.
3239   __ Move(f14, zero_reg, a2);
3240   // Subtract to get the result.
3241   __ sub_d(f0, f12, f14);
3242 }
3243 
DoDeferredRandom(LRandom * instr)3244 void LCodeGen::DoDeferredRandom(LRandom* instr) {
3245   __ PrepareCallCFunction(1, scratch0());
3246   __ CallCFunction(ExternalReference::random_uint32_function(isolate()), 1);
3247   // Return value is in v0.
3248 }
3249 
3250 
DoMathLog(LUnaryMathOperation * instr)3251 void LCodeGen::DoMathLog(LUnaryMathOperation* instr) {
3252   ASSERT(ToDoubleRegister(instr->result()).is(f4));
3253   TranscendentalCacheStub stub(TranscendentalCache::LOG,
3254                                TranscendentalCacheStub::UNTAGGED);
3255   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3256 }
3257 
3258 
DoMathTan(LUnaryMathOperation * instr)3259 void LCodeGen::DoMathTan(LUnaryMathOperation* instr) {
3260   ASSERT(ToDoubleRegister(instr->result()).is(f4));
3261   TranscendentalCacheStub stub(TranscendentalCache::TAN,
3262                                TranscendentalCacheStub::UNTAGGED);
3263   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3264 }
3265 
3266 
DoMathCos(LUnaryMathOperation * instr)3267 void LCodeGen::DoMathCos(LUnaryMathOperation* instr) {
3268   ASSERT(ToDoubleRegister(instr->result()).is(f4));
3269   TranscendentalCacheStub stub(TranscendentalCache::COS,
3270                                TranscendentalCacheStub::UNTAGGED);
3271   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3272 }
3273 
3274 
DoMathSin(LUnaryMathOperation * instr)3275 void LCodeGen::DoMathSin(LUnaryMathOperation* instr) {
3276   ASSERT(ToDoubleRegister(instr->result()).is(f4));
3277   TranscendentalCacheStub stub(TranscendentalCache::SIN,
3278                                TranscendentalCacheStub::UNTAGGED);
3279   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3280 }
3281 
3282 
DoUnaryMathOperation(LUnaryMathOperation * instr)3283 void LCodeGen::DoUnaryMathOperation(LUnaryMathOperation* instr) {
3284   switch (instr->op()) {
3285     case kMathAbs:
3286       DoMathAbs(instr);
3287       break;
3288     case kMathFloor:
3289       DoMathFloor(instr);
3290       break;
3291     case kMathRound:
3292       DoMathRound(instr);
3293       break;
3294     case kMathSqrt:
3295       DoMathSqrt(instr);
3296       break;
3297     case kMathPowHalf:
3298       DoMathPowHalf(instr);
3299       break;
3300     case kMathCos:
3301       DoMathCos(instr);
3302       break;
3303     case kMathSin:
3304       DoMathSin(instr);
3305       break;
3306     case kMathTan:
3307       DoMathTan(instr);
3308       break;
3309     case kMathLog:
3310       DoMathLog(instr);
3311       break;
3312     default:
3313       Abort("Unimplemented type of LUnaryMathOperation.");
3314       UNREACHABLE();
3315   }
3316 }
3317 
3318 
DoInvokeFunction(LInvokeFunction * instr)3319 void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
3320   ASSERT(ToRegister(instr->function()).is(a1));
3321   ASSERT(instr->HasPointerMap());
3322   ASSERT(instr->HasDeoptimizationEnvironment());
3323   LPointerMap* pointers = instr->pointer_map();
3324   RecordPosition(pointers->position());
3325   SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3326   ParameterCount count(instr->arity());
3327   __ InvokeFunction(a1, count, CALL_FUNCTION, generator, CALL_AS_METHOD);
3328   __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
3329 }
3330 
3331 
DoCallKeyed(LCallKeyed * instr)3332 void LCodeGen::DoCallKeyed(LCallKeyed* instr) {
3333   ASSERT(ToRegister(instr->result()).is(v0));
3334 
3335   int arity = instr->arity();
3336   Handle<Code> ic =
3337       isolate()->stub_cache()->ComputeKeyedCallInitialize(arity);
3338   CallCode(ic, RelocInfo::CODE_TARGET, instr);
3339   __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
3340 }
3341 
3342 
DoCallNamed(LCallNamed * instr)3343 void LCodeGen::DoCallNamed(LCallNamed* instr) {
3344   ASSERT(ToRegister(instr->result()).is(v0));
3345 
3346   int arity = instr->arity();
3347   RelocInfo::Mode mode = RelocInfo::CODE_TARGET;
3348   Handle<Code> ic =
3349       isolate()->stub_cache()->ComputeCallInitialize(arity, mode);
3350   __ li(a2, Operand(instr->name()));
3351   CallCode(ic, mode, instr);
3352   // Restore context register.
3353   __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
3354 }
3355 
3356 
DoCallFunction(LCallFunction * instr)3357 void LCodeGen::DoCallFunction(LCallFunction* instr) {
3358   ASSERT(ToRegister(instr->function()).is(a1));
3359   ASSERT(ToRegister(instr->result()).is(v0));
3360 
3361   int arity = instr->arity();
3362   CallFunctionStub stub(arity, NO_CALL_FUNCTION_FLAGS);
3363   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3364   __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
3365 }
3366 
3367 
DoCallGlobal(LCallGlobal * instr)3368 void LCodeGen::DoCallGlobal(LCallGlobal* instr) {
3369   ASSERT(ToRegister(instr->result()).is(v0));
3370 
3371   int arity = instr->arity();
3372   RelocInfo::Mode mode = RelocInfo::CODE_TARGET_CONTEXT;
3373   Handle<Code> ic =
3374       isolate()->stub_cache()->ComputeCallInitialize(arity, mode);
3375   __ li(a2, Operand(instr->name()));
3376   CallCode(ic, mode, instr);
3377   __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
3378 }
3379 
3380 
DoCallKnownGlobal(LCallKnownGlobal * instr)3381 void LCodeGen::DoCallKnownGlobal(LCallKnownGlobal* instr) {
3382   ASSERT(ToRegister(instr->result()).is(v0));
3383   CallKnownFunction(instr->target(), instr->arity(), instr, CALL_AS_FUNCTION);
3384 }
3385 
3386 
DoCallNew(LCallNew * instr)3387 void LCodeGen::DoCallNew(LCallNew* instr) {
3388   ASSERT(ToRegister(instr->InputAt(0)).is(a1));
3389   ASSERT(ToRegister(instr->result()).is(v0));
3390 
3391   CallConstructStub stub(NO_CALL_FUNCTION_FLAGS);
3392   __ li(a0, Operand(instr->arity()));
3393   CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
3394 }
3395 
3396 
DoCallRuntime(LCallRuntime * instr)3397 void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
3398   CallRuntime(instr->function(), instr->arity(), instr);
3399 }
3400 
3401 
DoStoreNamedField(LStoreNamedField * instr)3402 void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
3403   Register object = ToRegister(instr->object());
3404   Register value = ToRegister(instr->value());
3405   Register scratch = scratch0();
3406   int offset = instr->offset();
3407 
3408   ASSERT(!object.is(value));
3409 
3410   if (!instr->transition().is_null()) {
3411     __ li(scratch, Operand(instr->transition()));
3412     __ sw(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
3413   }
3414 
3415   // Do the store.
3416   HType type = instr->hydrogen()->value()->type();
3417   SmiCheck check_needed =
3418       type.IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
3419   if (instr->is_in_object()) {
3420     __ sw(value, FieldMemOperand(object, offset));
3421     if (instr->hydrogen()->NeedsWriteBarrier()) {
3422       // Update the write barrier for the object for in-object properties.
3423       __ RecordWriteField(object,
3424                           offset,
3425                           value,
3426                           scratch,
3427                           kRAHasBeenSaved,
3428                           kSaveFPRegs,
3429                           EMIT_REMEMBERED_SET,
3430                           check_needed);
3431     }
3432   } else {
3433     __ lw(scratch, FieldMemOperand(object, JSObject::kPropertiesOffset));
3434     __ sw(value, FieldMemOperand(scratch, offset));
3435     if (instr->hydrogen()->NeedsWriteBarrier()) {
3436       // Update the write barrier for the properties array.
3437       // object is used as a scratch register.
3438       __ RecordWriteField(scratch,
3439                           offset,
3440                           value,
3441                           object,
3442                           kRAHasBeenSaved,
3443                           kSaveFPRegs,
3444                           EMIT_REMEMBERED_SET,
3445                           check_needed);
3446     }
3447   }
3448 }
3449 
3450 
DoStoreNamedGeneric(LStoreNamedGeneric * instr)3451 void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
3452   ASSERT(ToRegister(instr->object()).is(a1));
3453   ASSERT(ToRegister(instr->value()).is(a0));
3454 
3455   // Name is always in a2.
3456   __ li(a2, Operand(instr->name()));
3457   Handle<Code> ic = (instr->strict_mode_flag() == kStrictMode)
3458       ? isolate()->builtins()->StoreIC_Initialize_Strict()
3459       : isolate()->builtins()->StoreIC_Initialize();
3460   CallCode(ic, RelocInfo::CODE_TARGET, instr);
3461 }
3462 
3463 
DoBoundsCheck(LBoundsCheck * instr)3464 void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
3465   DeoptimizeIf(hs,
3466                instr->environment(),
3467                ToRegister(instr->index()),
3468                Operand(ToRegister(instr->length())));
3469 }
3470 
3471 
DoStoreKeyedFastElement(LStoreKeyedFastElement * instr)3472 void LCodeGen::DoStoreKeyedFastElement(LStoreKeyedFastElement* instr) {
3473   Register value = ToRegister(instr->value());
3474   Register elements = ToRegister(instr->object());
3475   Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) : no_reg;
3476   Register scratch = scratch0();
3477 
3478   // Do the store.
3479   if (instr->key()->IsConstantOperand()) {
3480     ASSERT(!instr->hydrogen()->NeedsWriteBarrier());
3481     LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
3482     int offset =
3483         ToInteger32(const_operand) * kPointerSize + FixedArray::kHeaderSize;
3484     __ sw(value, FieldMemOperand(elements, offset));
3485   } else {
3486     __ sll(scratch, key, kPointerSizeLog2);
3487     __ addu(scratch, elements, scratch);
3488     __ sw(value, FieldMemOperand(scratch, FixedArray::kHeaderSize));
3489   }
3490 
3491   if (instr->hydrogen()->NeedsWriteBarrier()) {
3492     HType type = instr->hydrogen()->value()->type();
3493     SmiCheck check_needed =
3494         type.IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
3495     // Compute address of modified element and store it into key register.
3496     __ Addu(key, scratch, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
3497     __ RecordWrite(elements,
3498                    key,
3499                    value,
3500                    kRAHasBeenSaved,
3501                    kSaveFPRegs,
3502                    EMIT_REMEMBERED_SET,
3503                    check_needed);
3504   }
3505 }
3506 
3507 
DoStoreKeyedFastDoubleElement(LStoreKeyedFastDoubleElement * instr)3508 void LCodeGen::DoStoreKeyedFastDoubleElement(
3509     LStoreKeyedFastDoubleElement* instr) {
3510   DoubleRegister value = ToDoubleRegister(instr->value());
3511   Register elements = ToRegister(instr->elements());
3512   Register key = no_reg;
3513   Register scratch = scratch0();
3514   bool key_is_constant = instr->key()->IsConstantOperand();
3515   int constant_key = 0;
3516   Label not_nan;
3517 
3518   // Calculate the effective address of the slot in the array to store the
3519   // double value.
3520   if (key_is_constant) {
3521     constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
3522     if (constant_key & 0xF0000000) {
3523       Abort("array index constant value too big.");
3524     }
3525   } else {
3526     key = ToRegister(instr->key());
3527   }
3528   int shift_size = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
3529   if (key_is_constant) {
3530     __ Addu(scratch, elements, Operand(constant_key * (1 << shift_size) +
3531             FixedDoubleArray::kHeaderSize - kHeapObjectTag));
3532   } else {
3533     __ sll(scratch, key, shift_size);
3534     __ Addu(scratch, elements, Operand(scratch));
3535     __ Addu(scratch, scratch,
3536             Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag));
3537   }
3538 
3539   Label is_nan;
3540   // Check for NaN. All NaNs must be canonicalized.
3541   __ BranchF(NULL, &is_nan, eq, value, value);
3542   __ Branch(&not_nan);
3543 
3544   // Only load canonical NaN if the comparison above set the overflow.
3545   __ bind(&is_nan);
3546   __ Move(value, FixedDoubleArray::canonical_not_the_hole_nan_as_double());
3547 
3548   __ bind(&not_nan);
3549   __ sdc1(value, MemOperand(scratch));
3550 }
3551 
3552 
DoStoreKeyedSpecializedArrayElement(LStoreKeyedSpecializedArrayElement * instr)3553 void LCodeGen::DoStoreKeyedSpecializedArrayElement(
3554     LStoreKeyedSpecializedArrayElement* instr) {
3555 
3556   Register external_pointer = ToRegister(instr->external_pointer());
3557   Register key = no_reg;
3558   ElementsKind elements_kind = instr->elements_kind();
3559   bool key_is_constant = instr->key()->IsConstantOperand();
3560   int constant_key = 0;
3561   if (key_is_constant) {
3562     constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
3563     if (constant_key & 0xF0000000) {
3564       Abort("array index constant value too big.");
3565     }
3566   } else {
3567     key = ToRegister(instr->key());
3568   }
3569   int shift_size = ElementsKindToShiftSize(elements_kind);
3570 
3571   if (elements_kind == EXTERNAL_FLOAT_ELEMENTS ||
3572       elements_kind == EXTERNAL_DOUBLE_ELEMENTS) {
3573     FPURegister value(ToDoubleRegister(instr->value()));
3574     if (key_is_constant) {
3575       __ Addu(scratch0(), external_pointer, constant_key * (1 << shift_size));
3576     } else {
3577       __ sll(scratch0(), key, shift_size);
3578       __ Addu(scratch0(), scratch0(), external_pointer);
3579     }
3580 
3581     if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) {
3582       __ cvt_s_d(double_scratch0(), value);
3583       __ swc1(double_scratch0(), MemOperand(scratch0()));
3584     } else {  // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS
3585       __ sdc1(value, MemOperand(scratch0()));
3586     }
3587   } else {
3588     Register value(ToRegister(instr->value()));
3589     MemOperand mem_operand(zero_reg);
3590     Register scratch = scratch0();
3591     if (key_is_constant) {
3592       mem_operand = MemOperand(external_pointer,
3593                                constant_key * (1 << shift_size));
3594     } else {
3595       __ sll(scratch, key, shift_size);
3596       __ Addu(scratch, scratch, external_pointer);
3597       mem_operand = MemOperand(scratch);
3598     }
3599     switch (elements_kind) {
3600       case EXTERNAL_PIXEL_ELEMENTS:
3601       case EXTERNAL_BYTE_ELEMENTS:
3602       case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
3603         __ sb(value, mem_operand);
3604         break;
3605       case EXTERNAL_SHORT_ELEMENTS:
3606       case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
3607         __ sh(value, mem_operand);
3608         break;
3609       case EXTERNAL_INT_ELEMENTS:
3610       case EXTERNAL_UNSIGNED_INT_ELEMENTS:
3611         __ sw(value, mem_operand);
3612         break;
3613       case EXTERNAL_FLOAT_ELEMENTS:
3614       case EXTERNAL_DOUBLE_ELEMENTS:
3615       case FAST_DOUBLE_ELEMENTS:
3616       case FAST_ELEMENTS:
3617       case FAST_SMI_ONLY_ELEMENTS:
3618       case DICTIONARY_ELEMENTS:
3619       case NON_STRICT_ARGUMENTS_ELEMENTS:
3620         UNREACHABLE();
3621         break;
3622     }
3623   }
3624 }
3625 
DoStoreKeyedGeneric(LStoreKeyedGeneric * instr)3626 void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
3627   ASSERT(ToRegister(instr->object()).is(a2));
3628   ASSERT(ToRegister(instr->key()).is(a1));
3629   ASSERT(ToRegister(instr->value()).is(a0));
3630 
3631   Handle<Code> ic = (instr->strict_mode_flag() == kStrictMode)
3632       ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict()
3633       : isolate()->builtins()->KeyedStoreIC_Initialize();
3634   CallCode(ic, RelocInfo::CODE_TARGET, instr);
3635 }
3636 
3637 
DoTransitionElementsKind(LTransitionElementsKind * instr)3638 void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
3639   Register object_reg = ToRegister(instr->object());
3640   Register new_map_reg = ToRegister(instr->new_map_reg());
3641   Register scratch = scratch0();
3642 
3643   Handle<Map> from_map = instr->original_map();
3644   Handle<Map> to_map = instr->transitioned_map();
3645   ElementsKind from_kind = from_map->elements_kind();
3646   ElementsKind to_kind = to_map->elements_kind();
3647 
3648   __ mov(ToRegister(instr->result()), object_reg);
3649 
3650   Label not_applicable;
3651   __ lw(scratch, FieldMemOperand(object_reg, HeapObject::kMapOffset));
3652   __ Branch(&not_applicable, ne, scratch, Operand(from_map));
3653 
3654   __ li(new_map_reg, Operand(to_map));
3655   if (from_kind == FAST_SMI_ONLY_ELEMENTS && to_kind == FAST_ELEMENTS) {
3656     __ sw(new_map_reg, FieldMemOperand(object_reg, HeapObject::kMapOffset));
3657     // Write barrier.
3658     __ RecordWriteField(object_reg, HeapObject::kMapOffset, new_map_reg,
3659                         scratch, kRAHasBeenSaved, kDontSaveFPRegs);
3660   } else if (from_kind == FAST_SMI_ONLY_ELEMENTS &&
3661       to_kind == FAST_DOUBLE_ELEMENTS) {
3662     Register fixed_object_reg = ToRegister(instr->temp_reg());
3663     ASSERT(fixed_object_reg.is(a2));
3664     ASSERT(new_map_reg.is(a3));
3665     __ mov(fixed_object_reg, object_reg);
3666     CallCode(isolate()->builtins()->TransitionElementsSmiToDouble(),
3667              RelocInfo::CODE_TARGET, instr);
3668   } else if (from_kind == FAST_DOUBLE_ELEMENTS && to_kind == FAST_ELEMENTS) {
3669     Register fixed_object_reg = ToRegister(instr->temp_reg());
3670     ASSERT(fixed_object_reg.is(a2));
3671     ASSERT(new_map_reg.is(a3));
3672     __ mov(fixed_object_reg, object_reg);
3673     CallCode(isolate()->builtins()->TransitionElementsDoubleToObject(),
3674              RelocInfo::CODE_TARGET, instr);
3675   } else {
3676     UNREACHABLE();
3677   }
3678   __ bind(&not_applicable);
3679 }
3680 
3681 
DoStringAdd(LStringAdd * instr)3682 void LCodeGen::DoStringAdd(LStringAdd* instr) {
3683   __ push(ToRegister(instr->left()));
3684   __ push(ToRegister(instr->right()));
3685   StringAddStub stub(NO_STRING_CHECK_IN_STUB);
3686   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3687 }
3688 
3689 
DoStringCharCodeAt(LStringCharCodeAt * instr)3690 void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
3691   class DeferredStringCharCodeAt: public LDeferredCode {
3692    public:
3693     DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
3694         : LDeferredCode(codegen), instr_(instr) { }
3695     virtual void Generate() { codegen()->DoDeferredStringCharCodeAt(instr_); }
3696     virtual LInstruction* instr() { return instr_; }
3697    private:
3698     LStringCharCodeAt* instr_;
3699   };
3700 
3701   DeferredStringCharCodeAt* deferred =
3702       new DeferredStringCharCodeAt(this, instr);
3703   StringCharLoadGenerator::Generate(masm(),
3704                                     ToRegister(instr->string()),
3705                                     ToRegister(instr->index()),
3706                                     ToRegister(instr->result()),
3707                                     deferred->entry());
3708   __ bind(deferred->exit());
3709 }
3710 
3711 
DoDeferredStringCharCodeAt(LStringCharCodeAt * instr)3712 void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
3713   Register string = ToRegister(instr->string());
3714   Register result = ToRegister(instr->result());
3715   Register scratch = scratch0();
3716 
3717   // TODO(3095996): Get rid of this. For now, we need to make the
3718   // result register contain a valid pointer because it is already
3719   // contained in the register pointer map.
3720   __ mov(result, zero_reg);
3721 
3722   PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
3723   __ push(string);
3724   // Push the index as a smi. This is safe because of the checks in
3725   // DoStringCharCodeAt above.
3726   if (instr->index()->IsConstantOperand()) {
3727     int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
3728     __ Addu(scratch, zero_reg, Operand(Smi::FromInt(const_index)));
3729     __ push(scratch);
3730   } else {
3731     Register index = ToRegister(instr->index());
3732     __ SmiTag(index);
3733     __ push(index);
3734   }
3735   CallRuntimeFromDeferred(Runtime::kStringCharCodeAt, 2, instr);
3736   if (FLAG_debug_code) {
3737     __ AbortIfNotSmi(v0);
3738   }
3739   __ SmiUntag(v0);
3740   __ StoreToSafepointRegisterSlot(v0, result);
3741 }
3742 
3743 
DoStringCharFromCode(LStringCharFromCode * instr)3744 void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
3745   class DeferredStringCharFromCode: public LDeferredCode {
3746    public:
3747     DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
3748         : LDeferredCode(codegen), instr_(instr) { }
3749     virtual void Generate() { codegen()->DoDeferredStringCharFromCode(instr_); }
3750     virtual LInstruction* instr() { return instr_; }
3751    private:
3752     LStringCharFromCode* instr_;
3753   };
3754 
3755   DeferredStringCharFromCode* deferred =
3756       new DeferredStringCharFromCode(this, instr);
3757 
3758   ASSERT(instr->hydrogen()->value()->representation().IsInteger32());
3759   Register char_code = ToRegister(instr->char_code());
3760   Register result = ToRegister(instr->result());
3761   Register scratch = scratch0();
3762   ASSERT(!char_code.is(result));
3763 
3764   __ Branch(deferred->entry(), hi,
3765             char_code, Operand(String::kMaxAsciiCharCode));
3766   __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
3767   __ sll(scratch, char_code, kPointerSizeLog2);
3768   __ Addu(result, result, scratch);
3769   __ lw(result, FieldMemOperand(result, FixedArray::kHeaderSize));
3770   __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
3771   __ Branch(deferred->entry(), eq, result, Operand(scratch));
3772   __ bind(deferred->exit());
3773 }
3774 
3775 
DoDeferredStringCharFromCode(LStringCharFromCode * instr)3776 void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
3777   Register char_code = ToRegister(instr->char_code());
3778   Register result = ToRegister(instr->result());
3779 
3780   // TODO(3095996): Get rid of this. For now, we need to make the
3781   // result register contain a valid pointer because it is already
3782   // contained in the register pointer map.
3783   __ mov(result, zero_reg);
3784 
3785   PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
3786   __ SmiTag(char_code);
3787   __ push(char_code);
3788   CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr);
3789   __ StoreToSafepointRegisterSlot(v0, result);
3790 }
3791 
3792 
DoStringLength(LStringLength * instr)3793 void LCodeGen::DoStringLength(LStringLength* instr) {
3794   Register string = ToRegister(instr->InputAt(0));
3795   Register result = ToRegister(instr->result());
3796   __ lw(result, FieldMemOperand(string, String::kLengthOffset));
3797 }
3798 
3799 
DoInteger32ToDouble(LInteger32ToDouble * instr)3800 void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
3801   LOperand* input = instr->InputAt(0);
3802   ASSERT(input->IsRegister() || input->IsStackSlot());
3803   LOperand* output = instr->result();
3804   ASSERT(output->IsDoubleRegister());
3805   FPURegister single_scratch = double_scratch0().low();
3806   if (input->IsStackSlot()) {
3807     Register scratch = scratch0();
3808     __ lw(scratch, ToMemOperand(input));
3809     __ mtc1(scratch, single_scratch);
3810   } else {
3811     __ mtc1(ToRegister(input), single_scratch);
3812   }
3813   __ cvt_d_w(ToDoubleRegister(output), single_scratch);
3814 }
3815 
3816 
DoNumberTagI(LNumberTagI * instr)3817 void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
3818   class DeferredNumberTagI: public LDeferredCode {
3819    public:
3820     DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr)
3821         : LDeferredCode(codegen), instr_(instr) { }
3822     virtual void Generate() { codegen()->DoDeferredNumberTagI(instr_); }
3823     virtual LInstruction* instr() { return instr_; }
3824    private:
3825     LNumberTagI* instr_;
3826   };
3827 
3828   Register src = ToRegister(instr->InputAt(0));
3829   Register dst = ToRegister(instr->result());
3830   Register overflow = scratch0();
3831 
3832   DeferredNumberTagI* deferred = new DeferredNumberTagI(this, instr);
3833   __ SmiTagCheckOverflow(dst, src, overflow);
3834   __ BranchOnOverflow(deferred->entry(), overflow);
3835   __ bind(deferred->exit());
3836 }
3837 
3838 
DoDeferredNumberTagI(LNumberTagI * instr)3839 void LCodeGen::DoDeferredNumberTagI(LNumberTagI* instr) {
3840   Label slow;
3841   Register src = ToRegister(instr->InputAt(0));
3842   Register dst = ToRegister(instr->result());
3843   FPURegister dbl_scratch = double_scratch0();
3844 
3845   // Preserve the value of all registers.
3846   PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
3847 
3848   // There was overflow, so bits 30 and 31 of the original integer
3849   // disagree. Try to allocate a heap number in new space and store
3850   // the value in there. If that fails, call the runtime system.
3851   Label done;
3852   if (dst.is(src)) {
3853     __ SmiUntag(src, dst);
3854     __ Xor(src, src, Operand(0x80000000));
3855   }
3856   __ mtc1(src, dbl_scratch);
3857   __ cvt_d_w(dbl_scratch, dbl_scratch);
3858   if (FLAG_inline_new) {
3859     __ LoadRoot(t2, Heap::kHeapNumberMapRootIndex);
3860     __ AllocateHeapNumber(t1, a3, t0, t2, &slow);
3861     __ Move(dst, t1);
3862     __ Branch(&done);
3863   }
3864 
3865   // Slow case: Call the runtime system to do the number allocation.
3866   __ bind(&slow);
3867 
3868   // TODO(3095996): Put a valid pointer value in the stack slot where the result
3869   // register is stored, as this register is in the pointer map, but contains an
3870   // integer value.
3871   __ StoreToSafepointRegisterSlot(zero_reg, dst);
3872   CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr);
3873   __ Move(dst, v0);
3874 
3875   // Done. Put the value in dbl_scratch into the value of the allocated heap
3876   // number.
3877   __ bind(&done);
3878   __ sdc1(dbl_scratch, FieldMemOperand(dst, HeapNumber::kValueOffset));
3879   __ StoreToSafepointRegisterSlot(dst, dst);
3880 }
3881 
3882 
DoNumberTagD(LNumberTagD * instr)3883 void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
3884   class DeferredNumberTagD: public LDeferredCode {
3885    public:
3886     DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
3887         : LDeferredCode(codegen), instr_(instr) { }
3888     virtual void Generate() { codegen()->DoDeferredNumberTagD(instr_); }
3889     virtual LInstruction* instr() { return instr_; }
3890    private:
3891     LNumberTagD* instr_;
3892   };
3893 
3894   DoubleRegister input_reg = ToDoubleRegister(instr->InputAt(0));
3895   Register scratch = scratch0();
3896   Register reg = ToRegister(instr->result());
3897   Register temp1 = ToRegister(instr->TempAt(0));
3898   Register temp2 = ToRegister(instr->TempAt(1));
3899 
3900   DeferredNumberTagD* deferred = new DeferredNumberTagD(this, instr);
3901   if (FLAG_inline_new) {
3902     __ LoadRoot(scratch, Heap::kHeapNumberMapRootIndex);
3903     __ AllocateHeapNumber(reg, temp1, temp2, scratch, deferred->entry());
3904   } else {
3905     __ Branch(deferred->entry());
3906   }
3907   __ bind(deferred->exit());
3908   __ sdc1(input_reg, FieldMemOperand(reg, HeapNumber::kValueOffset));
3909 }
3910 
3911 
DoDeferredNumberTagD(LNumberTagD * instr)3912 void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
3913   // TODO(3095996): Get rid of this. For now, we need to make the
3914   // result register contain a valid pointer because it is already
3915   // contained in the register pointer map.
3916   Register reg = ToRegister(instr->result());
3917   __ mov(reg, zero_reg);
3918 
3919   PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
3920   CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr);
3921   __ StoreToSafepointRegisterSlot(v0, reg);
3922 }
3923 
3924 
DoSmiTag(LSmiTag * instr)3925 void LCodeGen::DoSmiTag(LSmiTag* instr) {
3926   ASSERT(!instr->hydrogen_value()->CheckFlag(HValue::kCanOverflow));
3927   __ SmiTag(ToRegister(instr->result()), ToRegister(instr->InputAt(0)));
3928 }
3929 
3930 
DoSmiUntag(LSmiUntag * instr)3931 void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
3932   Register scratch = scratch0();
3933   Register input = ToRegister(instr->InputAt(0));
3934   Register result = ToRegister(instr->result());
3935   if (instr->needs_check()) {
3936     STATIC_ASSERT(kHeapObjectTag == 1);
3937     // If the input is a HeapObject, value of scratch won't be zero.
3938     __ And(scratch, input, Operand(kHeapObjectTag));
3939     __ SmiUntag(result, input);
3940     DeoptimizeIf(ne, instr->environment(), scratch, Operand(zero_reg));
3941   } else {
3942     __ SmiUntag(result, input);
3943   }
3944 }
3945 
3946 
EmitNumberUntagD(Register input_reg,DoubleRegister result_reg,bool deoptimize_on_undefined,bool deoptimize_on_minus_zero,LEnvironment * env)3947 void LCodeGen::EmitNumberUntagD(Register input_reg,
3948                                 DoubleRegister result_reg,
3949                                 bool deoptimize_on_undefined,
3950                                 bool deoptimize_on_minus_zero,
3951                                 LEnvironment* env) {
3952   Register scratch = scratch0();
3953 
3954   Label load_smi, heap_number, done;
3955 
3956   // Smi check.
3957   __ UntagAndJumpIfSmi(scratch, input_reg, &load_smi);
3958 
3959   // Heap number map check.
3960   __ lw(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
3961   __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
3962   if (deoptimize_on_undefined) {
3963     DeoptimizeIf(ne, env, scratch, Operand(at));
3964   } else {
3965     Label heap_number;
3966     __ Branch(&heap_number, eq, scratch, Operand(at));
3967 
3968     __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
3969     DeoptimizeIf(ne, env, input_reg, Operand(at));
3970 
3971     // Convert undefined to NaN.
3972     __ LoadRoot(at, Heap::kNanValueRootIndex);
3973     __ ldc1(result_reg, FieldMemOperand(at, HeapNumber::kValueOffset));
3974     __ Branch(&done);
3975 
3976     __ bind(&heap_number);
3977   }
3978   // Heap number to double register conversion.
3979   __ ldc1(result_reg, FieldMemOperand(input_reg, HeapNumber::kValueOffset));
3980   if (deoptimize_on_minus_zero) {
3981     __ mfc1(at, result_reg.low());
3982     __ Branch(&done, ne, at, Operand(zero_reg));
3983     __ mfc1(scratch, result_reg.high());
3984     DeoptimizeIf(eq, env, scratch, Operand(HeapNumber::kSignMask));
3985   }
3986   __ Branch(&done);
3987 
3988   // Smi to double register conversion
3989   __ bind(&load_smi);
3990   // scratch: untagged value of input_reg
3991   __ mtc1(scratch, result_reg);
3992   __ cvt_d_w(result_reg, result_reg);
3993   __ bind(&done);
3994 }
3995 
3996 
DoDeferredTaggedToI(LTaggedToI * instr)3997 void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) {
3998   Register input_reg = ToRegister(instr->InputAt(0));
3999   Register scratch1 = scratch0();
4000   Register scratch2 = ToRegister(instr->TempAt(0));
4001   DoubleRegister double_scratch = double_scratch0();
4002   FPURegister single_scratch = double_scratch.low();
4003 
4004   ASSERT(!scratch1.is(input_reg) && !scratch1.is(scratch2));
4005   ASSERT(!scratch2.is(input_reg) && !scratch2.is(scratch1));
4006 
4007   Label done;
4008 
4009   // The input is a tagged HeapObject.
4010   // Heap number map check.
4011   __ lw(scratch1, FieldMemOperand(input_reg, HeapObject::kMapOffset));
4012   __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
4013   // This 'at' value and scratch1 map value are used for tests in both clauses
4014   // of the if.
4015 
4016   if (instr->truncating()) {
4017     Register scratch3 = ToRegister(instr->TempAt(1));
4018     DoubleRegister double_scratch2 = ToDoubleRegister(instr->TempAt(2));
4019     ASSERT(!scratch3.is(input_reg) &&
4020            !scratch3.is(scratch1) &&
4021            !scratch3.is(scratch2));
4022     // Performs a truncating conversion of a floating point number as used by
4023     // the JS bitwise operations.
4024     Label heap_number;
4025     __ Branch(&heap_number, eq, scratch1, Operand(at));  // HeapNumber map?
4026     // Check for undefined. Undefined is converted to zero for truncating
4027     // conversions.
4028     __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
4029     DeoptimizeIf(ne, instr->environment(), input_reg, Operand(at));
4030     ASSERT(ToRegister(instr->result()).is(input_reg));
4031     __ mov(input_reg, zero_reg);
4032     __ Branch(&done);
4033 
4034     __ bind(&heap_number);
4035     __ ldc1(double_scratch2,
4036             FieldMemOperand(input_reg, HeapNumber::kValueOffset));
4037     __ EmitECMATruncate(input_reg,
4038                         double_scratch2,
4039                         single_scratch,
4040                         scratch1,
4041                         scratch2,
4042                         scratch3);
4043   } else {
4044     // Deoptimize if we don't have a heap number.
4045     DeoptimizeIf(ne, instr->environment(), scratch1, Operand(at));
4046 
4047     // Load the double value.
4048     __ ldc1(double_scratch,
4049             FieldMemOperand(input_reg, HeapNumber::kValueOffset));
4050 
4051     Register except_flag = scratch2;
4052     __ EmitFPUTruncate(kRoundToZero,
4053                        single_scratch,
4054                        double_scratch,
4055                        scratch1,
4056                        except_flag,
4057                        kCheckForInexactConversion);
4058 
4059     // Deopt if the operation did not succeed.
4060     DeoptimizeIf(ne, instr->environment(), except_flag, Operand(zero_reg));
4061 
4062     // Load the result.
4063     __ mfc1(input_reg, single_scratch);
4064 
4065     if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
4066       __ Branch(&done, ne, input_reg, Operand(zero_reg));
4067 
4068       __ mfc1(scratch1, double_scratch.high());
4069       __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
4070       DeoptimizeIf(ne, instr->environment(), scratch1, Operand(zero_reg));
4071     }
4072   }
4073   __ bind(&done);
4074 }
4075 
4076 
DoTaggedToI(LTaggedToI * instr)4077 void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
4078   class DeferredTaggedToI: public LDeferredCode {
4079    public:
4080     DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
4081         : LDeferredCode(codegen), instr_(instr) { }
4082     virtual void Generate() { codegen()->DoDeferredTaggedToI(instr_); }
4083     virtual LInstruction* instr() { return instr_; }
4084    private:
4085     LTaggedToI* instr_;
4086   };
4087 
4088   LOperand* input = instr->InputAt(0);
4089   ASSERT(input->IsRegister());
4090   ASSERT(input->Equals(instr->result()));
4091 
4092   Register input_reg = ToRegister(input);
4093 
4094   DeferredTaggedToI* deferred = new DeferredTaggedToI(this, instr);
4095 
4096   // Let the deferred code handle the HeapObject case.
4097   __ JumpIfNotSmi(input_reg, deferred->entry());
4098 
4099   // Smi to int32 conversion.
4100   __ SmiUntag(input_reg);
4101   __ bind(deferred->exit());
4102 }
4103 
4104 
DoNumberUntagD(LNumberUntagD * instr)4105 void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
4106   LOperand* input = instr->InputAt(0);
4107   ASSERT(input->IsRegister());
4108   LOperand* result = instr->result();
4109   ASSERT(result->IsDoubleRegister());
4110 
4111   Register input_reg = ToRegister(input);
4112   DoubleRegister result_reg = ToDoubleRegister(result);
4113 
4114   EmitNumberUntagD(input_reg, result_reg,
4115                    instr->hydrogen()->deoptimize_on_undefined(),
4116                    instr->hydrogen()->deoptimize_on_minus_zero(),
4117                    instr->environment());
4118 }
4119 
4120 
DoDoubleToI(LDoubleToI * instr)4121 void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
4122   Register result_reg = ToRegister(instr->result());
4123   Register scratch1 = scratch0();
4124   Register scratch2 = ToRegister(instr->TempAt(0));
4125   DoubleRegister double_input = ToDoubleRegister(instr->InputAt(0));
4126   FPURegister single_scratch = double_scratch0().low();
4127 
4128   if (instr->truncating()) {
4129     Register scratch3 = ToRegister(instr->TempAt(1));
4130     __ EmitECMATruncate(result_reg,
4131                         double_input,
4132                         single_scratch,
4133                         scratch1,
4134                         scratch2,
4135                         scratch3);
4136   } else {
4137     Register except_flag = scratch2;
4138 
4139     __ EmitFPUTruncate(kRoundToMinusInf,
4140                        single_scratch,
4141                        double_input,
4142                        scratch1,
4143                        except_flag,
4144                        kCheckForInexactConversion);
4145 
4146     // Deopt if the operation did not succeed (except_flag != 0).
4147     DeoptimizeIf(ne, instr->environment(), except_flag, Operand(zero_reg));
4148 
4149     // Load the result.
4150     __ mfc1(result_reg, single_scratch);
4151   }
4152 }
4153 
4154 
DoCheckSmi(LCheckSmi * instr)4155 void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
4156   LOperand* input = instr->InputAt(0);
4157   __ And(at, ToRegister(input), Operand(kSmiTagMask));
4158   DeoptimizeIf(ne, instr->environment(), at, Operand(zero_reg));
4159 }
4160 
4161 
DoCheckNonSmi(LCheckNonSmi * instr)4162 void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
4163   LOperand* input = instr->InputAt(0);
4164   __ And(at, ToRegister(input), Operand(kSmiTagMask));
4165   DeoptimizeIf(eq, instr->environment(), at, Operand(zero_reg));
4166 }
4167 
4168 
DoCheckInstanceType(LCheckInstanceType * instr)4169 void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
4170   Register input = ToRegister(instr->InputAt(0));
4171   Register scratch = scratch0();
4172 
4173   __ GetObjectType(input, scratch, scratch);
4174 
4175   if (instr->hydrogen()->is_interval_check()) {
4176     InstanceType first;
4177     InstanceType last;
4178     instr->hydrogen()->GetCheckInterval(&first, &last);
4179 
4180     // If there is only one type in the interval check for equality.
4181     if (first == last) {
4182       DeoptimizeIf(ne, instr->environment(), scratch, Operand(first));
4183     } else {
4184       DeoptimizeIf(lo, instr->environment(), scratch, Operand(first));
4185       // Omit check for the last type.
4186       if (last != LAST_TYPE) {
4187         DeoptimizeIf(hi, instr->environment(), scratch, Operand(last));
4188       }
4189     }
4190   } else {
4191     uint8_t mask;
4192     uint8_t tag;
4193     instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
4194 
4195     if (IsPowerOf2(mask)) {
4196       ASSERT(tag == 0 || IsPowerOf2(tag));
4197       __ And(at, scratch, mask);
4198       DeoptimizeIf(tag == 0 ? ne : eq, instr->environment(),
4199           at, Operand(zero_reg));
4200     } else {
4201       __ And(scratch, scratch, Operand(mask));
4202       DeoptimizeIf(ne, instr->environment(), scratch, Operand(tag));
4203     }
4204   }
4205 }
4206 
4207 
DoCheckFunction(LCheckFunction * instr)4208 void LCodeGen::DoCheckFunction(LCheckFunction* instr) {
4209   Register reg = ToRegister(instr->value());
4210   Handle<JSFunction> target = instr->hydrogen()->target();
4211   if (isolate()->heap()->InNewSpace(*target)) {
4212     Register reg = ToRegister(instr->value());
4213     Handle<JSGlobalPropertyCell> cell =
4214         isolate()->factory()->NewJSGlobalPropertyCell(target);
4215     __ li(at, Operand(Handle<Object>(cell)));
4216     __ lw(at, FieldMemOperand(at, JSGlobalPropertyCell::kValueOffset));
4217     DeoptimizeIf(ne, instr->environment(), reg,
4218                  Operand(at));
4219   } else {
4220     DeoptimizeIf(ne, instr->environment(), reg,
4221                  Operand(target));
4222   }
4223 }
4224 
4225 
DoCheckMapCommon(Register reg,Register scratch,Handle<Map> map,CompareMapMode mode,LEnvironment * env)4226 void LCodeGen::DoCheckMapCommon(Register reg,
4227                                 Register scratch,
4228                                 Handle<Map> map,
4229                                 CompareMapMode mode,
4230                                 LEnvironment* env) {
4231   Label success;
4232   __ CompareMapAndBranch(reg, scratch, map, &success, eq, &success, mode);
4233   DeoptimizeIf(al, env);
4234   __ bind(&success);
4235 }
4236 
4237 
DoCheckMap(LCheckMap * instr)4238 void LCodeGen::DoCheckMap(LCheckMap* instr) {
4239   Register scratch = scratch0();
4240   LOperand* input = instr->InputAt(0);
4241   ASSERT(input->IsRegister());
4242   Register reg = ToRegister(input);
4243   Handle<Map> map = instr->hydrogen()->map();
4244   DoCheckMapCommon(reg, scratch, map, instr->hydrogen()->mode(),
4245                    instr->environment());
4246 }
4247 
4248 
DoClampDToUint8(LClampDToUint8 * instr)4249 void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
4250   DoubleRegister value_reg = ToDoubleRegister(instr->unclamped());
4251   Register result_reg = ToRegister(instr->result());
4252   DoubleRegister temp_reg = ToDoubleRegister(instr->TempAt(0));
4253   __ ClampDoubleToUint8(result_reg, value_reg, temp_reg);
4254 }
4255 
4256 
DoClampIToUint8(LClampIToUint8 * instr)4257 void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
4258   Register unclamped_reg = ToRegister(instr->unclamped());
4259   Register result_reg = ToRegister(instr->result());
4260   __ ClampUint8(result_reg, unclamped_reg);
4261 }
4262 
4263 
DoClampTToUint8(LClampTToUint8 * instr)4264 void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
4265   Register scratch = scratch0();
4266   Register input_reg = ToRegister(instr->unclamped());
4267   Register result_reg = ToRegister(instr->result());
4268   DoubleRegister temp_reg = ToDoubleRegister(instr->TempAt(0));
4269   Label is_smi, done, heap_number;
4270 
4271   // Both smi and heap number cases are handled.
4272   __ UntagAndJumpIfSmi(scratch, input_reg, &is_smi);
4273 
4274   // Check for heap number
4275   __ lw(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
4276   __ Branch(&heap_number, eq, scratch, Operand(factory()->heap_number_map()));
4277 
4278   // Check for undefined. Undefined is converted to zero for clamping
4279   // conversions.
4280   DeoptimizeIf(ne, instr->environment(), input_reg,
4281                Operand(factory()->undefined_value()));
4282   __ mov(result_reg, zero_reg);
4283   __ jmp(&done);
4284 
4285   // Heap number
4286   __ bind(&heap_number);
4287   __ ldc1(double_scratch0(), FieldMemOperand(input_reg,
4288                                              HeapNumber::kValueOffset));
4289   __ ClampDoubleToUint8(result_reg, double_scratch0(), temp_reg);
4290   __ jmp(&done);
4291 
4292   __ bind(&is_smi);
4293   __ ClampUint8(result_reg, scratch);
4294 
4295   __ bind(&done);
4296 }
4297 
4298 
DoCheckPrototypeMaps(LCheckPrototypeMaps * instr)4299 void LCodeGen::DoCheckPrototypeMaps(LCheckPrototypeMaps* instr) {
4300   Register temp1 = ToRegister(instr->TempAt(0));
4301   Register temp2 = ToRegister(instr->TempAt(1));
4302 
4303   Handle<JSObject> holder = instr->holder();
4304   Handle<JSObject> current_prototype = instr->prototype();
4305 
4306   // Load prototype object.
4307   __ LoadHeapObject(temp1, current_prototype);
4308 
4309   // Check prototype maps up to the holder.
4310   while (!current_prototype.is_identical_to(holder)) {
4311     DoCheckMapCommon(temp1, temp2,
4312                      Handle<Map>(current_prototype->map()),
4313                      ALLOW_ELEMENT_TRANSITION_MAPS, instr->environment());
4314     current_prototype =
4315         Handle<JSObject>(JSObject::cast(current_prototype->GetPrototype()));
4316     // Load next prototype object.
4317     __ LoadHeapObject(temp1, current_prototype);
4318   }
4319 
4320   // Check the holder map.
4321   DoCheckMapCommon(temp1, temp2,
4322                    Handle<Map>(current_prototype->map()),
4323                    ALLOW_ELEMENT_TRANSITION_MAPS, instr->environment());
4324 }
4325 
4326 
DoAllocateObject(LAllocateObject * instr)4327 void LCodeGen::DoAllocateObject(LAllocateObject* instr) {
4328   class DeferredAllocateObject: public LDeferredCode {
4329    public:
4330     DeferredAllocateObject(LCodeGen* codegen, LAllocateObject* instr)
4331         : LDeferredCode(codegen), instr_(instr) { }
4332     virtual void Generate() { codegen()->DoDeferredAllocateObject(instr_); }
4333     virtual LInstruction* instr() { return instr_; }
4334    private:
4335     LAllocateObject* instr_;
4336   };
4337 
4338   DeferredAllocateObject* deferred = new DeferredAllocateObject(this, instr);
4339 
4340   Register result = ToRegister(instr->result());
4341   Register scratch = ToRegister(instr->TempAt(0));
4342   Register scratch2 = ToRegister(instr->TempAt(1));
4343   Handle<JSFunction> constructor = instr->hydrogen()->constructor();
4344   Handle<Map> initial_map(constructor->initial_map());
4345   int instance_size = initial_map->instance_size();
4346   ASSERT(initial_map->pre_allocated_property_fields() +
4347          initial_map->unused_property_fields() -
4348          initial_map->inobject_properties() == 0);
4349 
4350   // Allocate memory for the object.  The initial map might change when
4351   // the constructor's prototype changes, but instance size and property
4352   // counts remain unchanged (if slack tracking finished).
4353   ASSERT(!constructor->shared()->IsInobjectSlackTrackingInProgress());
4354   __ AllocateInNewSpace(instance_size,
4355                         result,
4356                         scratch,
4357                         scratch2,
4358                         deferred->entry(),
4359                         TAG_OBJECT);
4360 
4361   // Load the initial map.
4362   Register map = scratch;
4363   __ LoadHeapObject(map, constructor);
4364   __ lw(map, FieldMemOperand(map, JSFunction::kPrototypeOrInitialMapOffset));
4365 
4366   // Initialize map and fields of the newly allocated object.
4367   ASSERT(initial_map->instance_type() == JS_OBJECT_TYPE);
4368   __ sw(map, FieldMemOperand(result, JSObject::kMapOffset));
4369   __ LoadRoot(scratch, Heap::kEmptyFixedArrayRootIndex);
4370   __ sw(scratch, FieldMemOperand(result, JSObject::kElementsOffset));
4371   __ sw(scratch, FieldMemOperand(result, JSObject::kPropertiesOffset));
4372   if (initial_map->inobject_properties() != 0) {
4373     __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
4374     for (int i = 0; i < initial_map->inobject_properties(); i++) {
4375       int property_offset = JSObject::kHeaderSize + i * kPointerSize;
4376       __ sw(scratch, FieldMemOperand(result, property_offset));
4377     }
4378   }
4379 
4380   __ bind(deferred->exit());
4381 }
4382 
4383 
DoDeferredAllocateObject(LAllocateObject * instr)4384 void LCodeGen::DoDeferredAllocateObject(LAllocateObject* instr) {
4385   Register result = ToRegister(instr->result());
4386   Handle<JSFunction> constructor = instr->hydrogen()->constructor();
4387 
4388   // TODO(3095996): Get rid of this. For now, we need to make the
4389   // result register contain a valid pointer because it is already
4390   // contained in the register pointer map.
4391   __ mov(result, zero_reg);
4392 
4393   PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
4394   __ LoadHeapObject(a0, constructor);
4395   __ push(a0);
4396   CallRuntimeFromDeferred(Runtime::kNewObject, 1, instr);
4397   __ StoreToSafepointRegisterSlot(v0, result);
4398 }
4399 
4400 
DoArrayLiteral(LArrayLiteral * instr)4401 void LCodeGen::DoArrayLiteral(LArrayLiteral* instr) {
4402   Heap* heap = isolate()->heap();
4403   ElementsKind boilerplate_elements_kind =
4404       instr->hydrogen()->boilerplate_elements_kind();
4405 
4406   // Deopt if the array literal boilerplate ElementsKind is of a type different
4407   // than the expected one. The check isn't necessary if the boilerplate has
4408   // already been converted to FAST_ELEMENTS.
4409   if (boilerplate_elements_kind != FAST_ELEMENTS) {
4410     __ LoadHeapObject(a1, instr->hydrogen()->boilerplate_object());
4411     // Load map into a2.
4412     __ lw(a2, FieldMemOperand(a1, HeapObject::kMapOffset));
4413     // Load the map's "bit field 2".
4414     __ lbu(a2, FieldMemOperand(a2, Map::kBitField2Offset));
4415     // Retrieve elements_kind from bit field 2.
4416     __ Ext(a2, a2, Map::kElementsKindShift, Map::kElementsKindBitCount);
4417     DeoptimizeIf(ne,
4418                  instr->environment(),
4419                  a2,
4420                  Operand(boilerplate_elements_kind));
4421   }
4422   __ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
4423   __ lw(a3, FieldMemOperand(a3, JSFunction::kLiteralsOffset));
4424   __ li(a2, Operand(Smi::FromInt(instr->hydrogen()->literal_index())));
4425   // Boilerplate already exists, constant elements are never accessed.
4426   // Pass an empty fixed array.
4427   __ li(a1, Operand(Handle<FixedArray>(heap->empty_fixed_array())));
4428   __ Push(a3, a2, a1);
4429 
4430   // Pick the right runtime function or stub to call.
4431   int length = instr->hydrogen()->length();
4432   if (instr->hydrogen()->IsCopyOnWrite()) {
4433     ASSERT(instr->hydrogen()->depth() == 1);
4434     FastCloneShallowArrayStub::Mode mode =
4435         FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS;
4436     FastCloneShallowArrayStub stub(mode, length);
4437     CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
4438   } else if (instr->hydrogen()->depth() > 1) {
4439     CallRuntime(Runtime::kCreateArrayLiteral, 3, instr);
4440   } else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) {
4441     CallRuntime(Runtime::kCreateArrayLiteralShallow, 3, instr);
4442   } else {
4443     FastCloneShallowArrayStub::Mode mode =
4444         boilerplate_elements_kind == FAST_DOUBLE_ELEMENTS
4445             ? FastCloneShallowArrayStub::CLONE_DOUBLE_ELEMENTS
4446             : FastCloneShallowArrayStub::CLONE_ELEMENTS;
4447     FastCloneShallowArrayStub stub(mode, length);
4448     CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
4449   }
4450 }
4451 
4452 
EmitDeepCopy(Handle<JSObject> object,Register result,Register source,int * offset)4453 void LCodeGen::EmitDeepCopy(Handle<JSObject> object,
4454                             Register result,
4455                             Register source,
4456                             int* offset) {
4457   ASSERT(!source.is(a2));
4458   ASSERT(!result.is(a2));
4459 
4460   // Only elements backing stores for non-COW arrays need to be copied.
4461   Handle<FixedArrayBase> elements(object->elements());
4462   bool has_elements = elements->length() > 0 &&
4463       elements->map() != isolate()->heap()->fixed_cow_array_map();
4464 
4465   // Increase the offset so that subsequent objects end up right after
4466   // this object and its backing store.
4467   int object_offset = *offset;
4468   int object_size = object->map()->instance_size();
4469   int elements_offset = *offset + object_size;
4470   int elements_size = has_elements ? elements->Size() : 0;
4471   *offset += object_size + elements_size;
4472 
4473   // Copy object header.
4474   ASSERT(object->properties()->length() == 0);
4475   int inobject_properties = object->map()->inobject_properties();
4476   int header_size = object_size - inobject_properties * kPointerSize;
4477   for (int i = 0; i < header_size; i += kPointerSize) {
4478     if (has_elements && i == JSObject::kElementsOffset) {
4479       __ Addu(a2, result, Operand(elements_offset));
4480     } else {
4481       __ lw(a2, FieldMemOperand(source, i));
4482     }
4483     __ sw(a2, FieldMemOperand(result, object_offset + i));
4484   }
4485 
4486   // Copy in-object properties.
4487   for (int i = 0; i < inobject_properties; i++) {
4488     int total_offset = object_offset + object->GetInObjectPropertyOffset(i);
4489     Handle<Object> value = Handle<Object>(object->InObjectPropertyAt(i));
4490     if (value->IsJSObject()) {
4491       Handle<JSObject> value_object = Handle<JSObject>::cast(value);
4492       __ Addu(a2, result, Operand(*offset));
4493       __ sw(a2, FieldMemOperand(result, total_offset));
4494       __ LoadHeapObject(source, value_object);
4495       EmitDeepCopy(value_object, result, source, offset);
4496     } else if (value->IsHeapObject()) {
4497       __ LoadHeapObject(a2, Handle<HeapObject>::cast(value));
4498       __ sw(a2, FieldMemOperand(result, total_offset));
4499     } else {
4500       __ li(a2, Operand(value));
4501       __ sw(a2, FieldMemOperand(result, total_offset));
4502     }
4503   }
4504 
4505 
4506   if (has_elements) {
4507     // Copy elements backing store header.
4508     __ LoadHeapObject(source, elements);
4509     for (int i = 0; i < FixedArray::kHeaderSize; i += kPointerSize) {
4510       __ lw(a2, FieldMemOperand(source, i));
4511       __ sw(a2, FieldMemOperand(result, elements_offset + i));
4512     }
4513 
4514     // Copy elements backing store content.
4515     int elements_length = has_elements ? elements->length() : 0;
4516     if (elements->IsFixedDoubleArray()) {
4517       Handle<FixedDoubleArray> double_array =
4518           Handle<FixedDoubleArray>::cast(elements);
4519       for (int i = 0; i < elements_length; i++) {
4520         int64_t value = double_array->get_representation(i);
4521         // We only support little endian mode...
4522         int32_t value_low = value & 0xFFFFFFFF;
4523         int32_t value_high = value >> 32;
4524         int total_offset =
4525             elements_offset + FixedDoubleArray::OffsetOfElementAt(i);
4526         __ li(a2, Operand(value_low));
4527         __ sw(a2, FieldMemOperand(result, total_offset));
4528         __ li(a2, Operand(value_high));
4529         __ sw(a2, FieldMemOperand(result, total_offset + 4));
4530       }
4531     } else if (elements->IsFixedArray()) {
4532       for (int i = 0; i < elements_length; i++) {
4533         int total_offset = elements_offset + FixedArray::OffsetOfElementAt(i);
4534         Handle<Object> value = JSObject::GetElement(object, i);
4535         if (value->IsJSObject()) {
4536           Handle<JSObject> value_object = Handle<JSObject>::cast(value);
4537           __ Addu(a2, result, Operand(*offset));
4538           __ sw(a2, FieldMemOperand(result, total_offset));
4539           __ LoadHeapObject(source, value_object);
4540           EmitDeepCopy(value_object, result, source, offset);
4541         } else if (value->IsHeapObject()) {
4542           __ LoadHeapObject(a2, Handle<HeapObject>::cast(value));
4543           __ sw(a2, FieldMemOperand(result, total_offset));
4544         } else {
4545           __ li(a2, Operand(value));
4546           __ sw(a2, FieldMemOperand(result, total_offset));
4547         }
4548       }
4549     } else {
4550       UNREACHABLE();
4551     }
4552   }
4553 }
4554 
4555 
DoFastLiteral(LFastLiteral * instr)4556 void LCodeGen::DoFastLiteral(LFastLiteral* instr) {
4557   int size = instr->hydrogen()->total_size();
4558 
4559   // Allocate all objects that are part of the literal in one big
4560   // allocation. This avoids multiple limit checks.
4561   Label allocated, runtime_allocate;
4562   __ AllocateInNewSpace(size, v0, a2, a3, &runtime_allocate, TAG_OBJECT);
4563   __ jmp(&allocated);
4564 
4565   __ bind(&runtime_allocate);
4566   __ li(a0, Operand(Smi::FromInt(size)));
4567   __ push(a0);
4568   CallRuntime(Runtime::kAllocateInNewSpace, 1, instr);
4569 
4570   __ bind(&allocated);
4571   int offset = 0;
4572   __ LoadHeapObject(a1, instr->hydrogen()->boilerplate());
4573   EmitDeepCopy(instr->hydrogen()->boilerplate(), v0, a1, &offset);
4574   ASSERT_EQ(size, offset);
4575 }
4576 
4577 
DoObjectLiteral(LObjectLiteral * instr)4578 void LCodeGen::DoObjectLiteral(LObjectLiteral* instr) {
4579   ASSERT(ToRegister(instr->result()).is(v0));
4580   Handle<FixedArray> literals(instr->environment()->closure()->literals());
4581   Handle<FixedArray> constant_properties =
4582       instr->hydrogen()->constant_properties();
4583 
4584   // Set up the parameters to the stub/runtime call.
4585   __ LoadHeapObject(t0, literals);
4586   __ li(a3, Operand(Smi::FromInt(instr->hydrogen()->literal_index())));
4587   __ li(a2, Operand(constant_properties));
4588   int flags = instr->hydrogen()->fast_elements()
4589       ? ObjectLiteral::kFastElements
4590       : ObjectLiteral::kNoFlags;
4591   __ li(a1, Operand(Smi::FromInt(flags)));
4592   __ Push(t0, a3, a2, a1);
4593 
4594   // Pick the right runtime function or stub to call.
4595   int properties_count = constant_properties->length() / 2;
4596   if (instr->hydrogen()->depth() > 1) {
4597     CallRuntime(Runtime::kCreateObjectLiteral, 4, instr);
4598   } else if (flags != ObjectLiteral::kFastElements ||
4599       properties_count > FastCloneShallowObjectStub::kMaximumClonedProperties) {
4600     CallRuntime(Runtime::kCreateObjectLiteralShallow, 4, instr);
4601   } else {
4602     FastCloneShallowObjectStub stub(properties_count);
4603     CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
4604   }
4605 }
4606 
4607 
DoToFastProperties(LToFastProperties * instr)4608 void LCodeGen::DoToFastProperties(LToFastProperties* instr) {
4609   ASSERT(ToRegister(instr->InputAt(0)).is(a0));
4610   ASSERT(ToRegister(instr->result()).is(v0));
4611   __ push(a0);
4612   CallRuntime(Runtime::kToFastProperties, 1, instr);
4613 }
4614 
4615 
DoRegExpLiteral(LRegExpLiteral * instr)4616 void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) {
4617   Label materialized;
4618   // Registers will be used as follows:
4619   // a3 = JS function.
4620   // t3 = literals array.
4621   // a1 = regexp literal.
4622   // a0 = regexp literal clone.
4623   // a2 and t0-t2 are used as temporaries.
4624   __ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
4625   __ lw(t3, FieldMemOperand(a3, JSFunction::kLiteralsOffset));
4626   int literal_offset = FixedArray::kHeaderSize +
4627       instr->hydrogen()->literal_index() * kPointerSize;
4628   __ lw(a1, FieldMemOperand(t3, literal_offset));
4629   __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
4630   __ Branch(&materialized, ne, a1, Operand(at));
4631 
4632   // Create regexp literal using runtime function
4633   // Result will be in v0.
4634   __ li(t2, Operand(Smi::FromInt(instr->hydrogen()->literal_index())));
4635   __ li(t1, Operand(instr->hydrogen()->pattern()));
4636   __ li(t0, Operand(instr->hydrogen()->flags()));
4637   __ Push(t3, t2, t1, t0);
4638   CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr);
4639   __ mov(a1, v0);
4640 
4641   __ bind(&materialized);
4642   int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
4643   Label allocated, runtime_allocate;
4644 
4645   __ AllocateInNewSpace(size, v0, a2, a3, &runtime_allocate, TAG_OBJECT);
4646   __ jmp(&allocated);
4647 
4648   __ bind(&runtime_allocate);
4649   __ li(a0, Operand(Smi::FromInt(size)));
4650   __ Push(a1, a0);
4651   CallRuntime(Runtime::kAllocateInNewSpace, 1, instr);
4652   __ pop(a1);
4653 
4654   __ bind(&allocated);
4655   // Copy the content into the newly allocated memory.
4656   // (Unroll copy loop once for better throughput).
4657   for (int i = 0; i < size - kPointerSize; i += 2 * kPointerSize) {
4658     __ lw(a3, FieldMemOperand(a1, i));
4659     __ lw(a2, FieldMemOperand(a1, i + kPointerSize));
4660     __ sw(a3, FieldMemOperand(v0, i));
4661     __ sw(a2, FieldMemOperand(v0, i + kPointerSize));
4662   }
4663   if ((size % (2 * kPointerSize)) != 0) {
4664     __ lw(a3, FieldMemOperand(a1, size - kPointerSize));
4665     __ sw(a3, FieldMemOperand(v0, size - kPointerSize));
4666   }
4667 }
4668 
4669 
DoFunctionLiteral(LFunctionLiteral * instr)4670 void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) {
4671   // Use the fast case closure allocation code that allocates in new
4672   // space for nested functions that don't need literals cloning.
4673   Handle<SharedFunctionInfo> shared_info = instr->shared_info();
4674   bool pretenure = instr->hydrogen()->pretenure();
4675   if (!pretenure && shared_info->num_literals() == 0) {
4676     FastNewClosureStub stub(shared_info->language_mode());
4677     __ li(a1, Operand(shared_info));
4678     __ push(a1);
4679     CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
4680   } else {
4681     __ li(a2, Operand(shared_info));
4682     __ li(a1, Operand(pretenure
4683                        ? factory()->true_value()
4684                        : factory()->false_value()));
4685     __ Push(cp, a2, a1);
4686     CallRuntime(Runtime::kNewClosure, 3, instr);
4687   }
4688 }
4689 
4690 
DoTypeof(LTypeof * instr)4691 void LCodeGen::DoTypeof(LTypeof* instr) {
4692   ASSERT(ToRegister(instr->result()).is(v0));
4693   Register input = ToRegister(instr->InputAt(0));
4694   __ push(input);
4695   CallRuntime(Runtime::kTypeof, 1, instr);
4696 }
4697 
4698 
DoTypeofIsAndBranch(LTypeofIsAndBranch * instr)4699 void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
4700   Register input = ToRegister(instr->InputAt(0));
4701   int true_block = chunk_->LookupDestination(instr->true_block_id());
4702   int false_block = chunk_->LookupDestination(instr->false_block_id());
4703   Label* true_label = chunk_->GetAssemblyLabel(true_block);
4704   Label* false_label = chunk_->GetAssemblyLabel(false_block);
4705 
4706   Register cmp1 = no_reg;
4707   Operand cmp2 = Operand(no_reg);
4708 
4709   Condition final_branch_condition = EmitTypeofIs(true_label,
4710                                                   false_label,
4711                                                   input,
4712                                                   instr->type_literal(),
4713                                                   cmp1,
4714                                                   cmp2);
4715 
4716   ASSERT(cmp1.is_valid());
4717   ASSERT(!cmp2.is_reg() || cmp2.rm().is_valid());
4718 
4719   if (final_branch_condition != kNoCondition) {
4720     EmitBranch(true_block, false_block, final_branch_condition, cmp1, cmp2);
4721   }
4722 }
4723 
4724 
EmitTypeofIs(Label * true_label,Label * false_label,Register input,Handle<String> type_name,Register & cmp1,Operand & cmp2)4725 Condition LCodeGen::EmitTypeofIs(Label* true_label,
4726                                  Label* false_label,
4727                                  Register input,
4728                                  Handle<String> type_name,
4729                                  Register& cmp1,
4730                                  Operand& cmp2) {
4731   // This function utilizes the delay slot heavily. This is used to load
4732   // values that are always usable without depending on the type of the input
4733   // register.
4734   Condition final_branch_condition = kNoCondition;
4735   Register scratch = scratch0();
4736   if (type_name->Equals(heap()->number_symbol())) {
4737     __ JumpIfSmi(input, true_label);
4738     __ lw(input, FieldMemOperand(input, HeapObject::kMapOffset));
4739     __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
4740     cmp1 = input;
4741     cmp2 = Operand(at);
4742     final_branch_condition = eq;
4743 
4744   } else if (type_name->Equals(heap()->string_symbol())) {
4745     __ JumpIfSmi(input, false_label);
4746     __ GetObjectType(input, input, scratch);
4747     __ Branch(USE_DELAY_SLOT, false_label,
4748               ge, scratch, Operand(FIRST_NONSTRING_TYPE));
4749     // input is an object so we can load the BitFieldOffset even if we take the
4750     // other branch.
4751     __ lbu(at, FieldMemOperand(input, Map::kBitFieldOffset));
4752     __ And(at, at, 1 << Map::kIsUndetectable);
4753     cmp1 = at;
4754     cmp2 = Operand(zero_reg);
4755     final_branch_condition = eq;
4756 
4757   } else if (type_name->Equals(heap()->boolean_symbol())) {
4758     __ LoadRoot(at, Heap::kTrueValueRootIndex);
4759     __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input));
4760     __ LoadRoot(at, Heap::kFalseValueRootIndex);
4761     cmp1 = at;
4762     cmp2 = Operand(input);
4763     final_branch_condition = eq;
4764 
4765   } else if (FLAG_harmony_typeof && type_name->Equals(heap()->null_symbol())) {
4766     __ LoadRoot(at, Heap::kNullValueRootIndex);
4767     cmp1 = at;
4768     cmp2 = Operand(input);
4769     final_branch_condition = eq;
4770 
4771   } else if (type_name->Equals(heap()->undefined_symbol())) {
4772     __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
4773     __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input));
4774     // The first instruction of JumpIfSmi is an And - it is safe in the delay
4775     // slot.
4776     __ JumpIfSmi(input, false_label);
4777     // Check for undetectable objects => true.
4778     __ lw(input, FieldMemOperand(input, HeapObject::kMapOffset));
4779     __ lbu(at, FieldMemOperand(input, Map::kBitFieldOffset));
4780     __ And(at, at, 1 << Map::kIsUndetectable);
4781     cmp1 = at;
4782     cmp2 = Operand(zero_reg);
4783     final_branch_condition = ne;
4784 
4785   } else if (type_name->Equals(heap()->function_symbol())) {
4786     STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
4787     __ JumpIfSmi(input, false_label);
4788     __ GetObjectType(input, scratch, input);
4789     __ Branch(true_label, eq, input, Operand(JS_FUNCTION_TYPE));
4790     cmp1 = input;
4791     cmp2 = Operand(JS_FUNCTION_PROXY_TYPE);
4792     final_branch_condition = eq;
4793 
4794   } else if (type_name->Equals(heap()->object_symbol())) {
4795     __ JumpIfSmi(input, false_label);
4796     if (!FLAG_harmony_typeof) {
4797       __ LoadRoot(at, Heap::kNullValueRootIndex);
4798       __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input));
4799     }
4800     // input is an object, it is safe to use GetObjectType in the delay slot.
4801     __ GetObjectType(input, input, scratch);
4802     __ Branch(USE_DELAY_SLOT, false_label,
4803               lt, scratch, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
4804     // Still an object, so the InstanceType can be loaded.
4805     __ lbu(scratch, FieldMemOperand(input, Map::kInstanceTypeOffset));
4806     __ Branch(USE_DELAY_SLOT, false_label,
4807               gt, scratch, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
4808     // Still an object, so the BitField can be loaded.
4809     // Check for undetectable objects => false.
4810     __ lbu(at, FieldMemOperand(input, Map::kBitFieldOffset));
4811     __ And(at, at, 1 << Map::kIsUndetectable);
4812     cmp1 = at;
4813     cmp2 = Operand(zero_reg);
4814     final_branch_condition = eq;
4815 
4816   } else {
4817     cmp1 = at;
4818     cmp2 = Operand(zero_reg);  // Set to valid regs, to avoid caller assertion.
4819     __ Branch(false_label);
4820   }
4821 
4822   return final_branch_condition;
4823 }
4824 
4825 
DoIsConstructCallAndBranch(LIsConstructCallAndBranch * instr)4826 void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) {
4827   Register temp1 = ToRegister(instr->TempAt(0));
4828   int true_block = chunk_->LookupDestination(instr->true_block_id());
4829   int false_block = chunk_->LookupDestination(instr->false_block_id());
4830 
4831   EmitIsConstructCall(temp1, scratch0());
4832 
4833   EmitBranch(true_block, false_block, eq, temp1,
4834              Operand(Smi::FromInt(StackFrame::CONSTRUCT)));
4835 }
4836 
4837 
EmitIsConstructCall(Register temp1,Register temp2)4838 void LCodeGen::EmitIsConstructCall(Register temp1, Register temp2) {
4839   ASSERT(!temp1.is(temp2));
4840   // Get the frame pointer for the calling frame.
4841   __ lw(temp1, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
4842 
4843   // Skip the arguments adaptor frame if it exists.
4844   Label check_frame_marker;
4845   __ lw(temp2, MemOperand(temp1, StandardFrameConstants::kContextOffset));
4846   __ Branch(&check_frame_marker, ne, temp2,
4847             Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
4848   __ lw(temp1, MemOperand(temp1, StandardFrameConstants::kCallerFPOffset));
4849 
4850   // Check the marker in the calling frame.
4851   __ bind(&check_frame_marker);
4852   __ lw(temp1, MemOperand(temp1, StandardFrameConstants::kMarkerOffset));
4853 }
4854 
4855 
EnsureSpaceForLazyDeopt()4856 void LCodeGen::EnsureSpaceForLazyDeopt() {
4857   // Ensure that we have enough space after the previous lazy-bailout
4858   // instruction for patching the code here.
4859   int current_pc = masm()->pc_offset();
4860   int patch_size = Deoptimizer::patch_size();
4861   if (current_pc < last_lazy_deopt_pc_ + patch_size) {
4862     int padding_size = last_lazy_deopt_pc_ + patch_size - current_pc;
4863     ASSERT_EQ(0, padding_size % Assembler::kInstrSize);
4864     while (padding_size > 0) {
4865       __ nop();
4866       padding_size -= Assembler::kInstrSize;
4867     }
4868   }
4869   last_lazy_deopt_pc_ = masm()->pc_offset();
4870 }
4871 
4872 
DoLazyBailout(LLazyBailout * instr)4873 void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
4874   EnsureSpaceForLazyDeopt();
4875   ASSERT(instr->HasEnvironment());
4876   LEnvironment* env = instr->environment();
4877   RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
4878   safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
4879 }
4880 
4881 
DoDeoptimize(LDeoptimize * instr)4882 void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
4883   DeoptimizeIf(al, instr->environment(), zero_reg, Operand(zero_reg));
4884 }
4885 
4886 
DoDeleteProperty(LDeleteProperty * instr)4887 void LCodeGen::DoDeleteProperty(LDeleteProperty* instr) {
4888   Register object = ToRegister(instr->object());
4889   Register key = ToRegister(instr->key());
4890   Register strict = scratch0();
4891   __ li(strict, Operand(Smi::FromInt(strict_mode_flag())));
4892   __ Push(object, key, strict);
4893   ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment());
4894   LPointerMap* pointers = instr->pointer_map();
4895   RecordPosition(pointers->position());
4896   SafepointGenerator safepoint_generator(
4897       this, pointers, Safepoint::kLazyDeopt);
4898   __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, safepoint_generator);
4899 }
4900 
4901 
DoIn(LIn * instr)4902 void LCodeGen::DoIn(LIn* instr) {
4903   Register obj = ToRegister(instr->object());
4904   Register key = ToRegister(instr->key());
4905   __ Push(key, obj);
4906   ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment());
4907   LPointerMap* pointers = instr->pointer_map();
4908   RecordPosition(pointers->position());
4909   SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt);
4910   __ InvokeBuiltin(Builtins::IN, CALL_FUNCTION, safepoint_generator);
4911 }
4912 
4913 
DoDeferredStackCheck(LStackCheck * instr)4914 void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
4915   PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
4916   __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
4917   RecordSafepointWithLazyDeopt(
4918       instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
4919   ASSERT(instr->HasEnvironment());
4920   LEnvironment* env = instr->environment();
4921   safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
4922 }
4923 
4924 
DoStackCheck(LStackCheck * instr)4925 void LCodeGen::DoStackCheck(LStackCheck* instr) {
4926   class DeferredStackCheck: public LDeferredCode {
4927    public:
4928     DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
4929         : LDeferredCode(codegen), instr_(instr) { }
4930     virtual void Generate() { codegen()->DoDeferredStackCheck(instr_); }
4931     virtual LInstruction* instr() { return instr_; }
4932    private:
4933     LStackCheck* instr_;
4934   };
4935 
4936   ASSERT(instr->HasEnvironment());
4937   LEnvironment* env = instr->environment();
4938   // There is no LLazyBailout instruction for stack-checks. We have to
4939   // prepare for lazy deoptimization explicitly here.
4940   if (instr->hydrogen()->is_function_entry()) {
4941     // Perform stack overflow check.
4942     Label done;
4943     __ LoadRoot(at, Heap::kStackLimitRootIndex);
4944     __ Branch(&done, hs, sp, Operand(at));
4945     StackCheckStub stub;
4946     CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
4947     EnsureSpaceForLazyDeopt();
4948     __ bind(&done);
4949     RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
4950     safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
4951   } else {
4952     ASSERT(instr->hydrogen()->is_backwards_branch());
4953     // Perform stack overflow check if this goto needs it before jumping.
4954     DeferredStackCheck* deferred_stack_check =
4955         new DeferredStackCheck(this, instr);
4956     __ LoadRoot(at, Heap::kStackLimitRootIndex);
4957     __ Branch(deferred_stack_check->entry(), lo, sp, Operand(at));
4958     EnsureSpaceForLazyDeopt();
4959     __ bind(instr->done_label());
4960     deferred_stack_check->SetExit(instr->done_label());
4961     RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
4962     // Don't record a deoptimization index for the safepoint here.
4963     // This will be done explicitly when emitting call and the safepoint in
4964     // the deferred code.
4965   }
4966 }
4967 
4968 
DoOsrEntry(LOsrEntry * instr)4969 void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
4970   // This is a pseudo-instruction that ensures that the environment here is
4971   // properly registered for deoptimization and records the assembler's PC
4972   // offset.
4973   LEnvironment* environment = instr->environment();
4974   environment->SetSpilledRegisters(instr->SpilledRegisterArray(),
4975                                    instr->SpilledDoubleRegisterArray());
4976 
4977   // If the environment were already registered, we would have no way of
4978   // backpatching it with the spill slot operands.
4979   ASSERT(!environment->HasBeenRegistered());
4980   RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
4981   ASSERT(osr_pc_offset_ == -1);
4982   osr_pc_offset_ = masm()->pc_offset();
4983 }
4984 
4985 
DoForInPrepareMap(LForInPrepareMap * instr)4986 void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
4987   Register result = ToRegister(instr->result());
4988   Register object = ToRegister(instr->object());
4989   __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
4990   DeoptimizeIf(eq, instr->environment(), object, Operand(at));
4991 
4992   Register null_value = t1;
4993   __ LoadRoot(null_value, Heap::kNullValueRootIndex);
4994   DeoptimizeIf(eq, instr->environment(), object, Operand(null_value));
4995 
4996   __ And(at, object, kSmiTagMask);
4997   DeoptimizeIf(eq, instr->environment(), at, Operand(zero_reg));
4998 
4999   STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
5000   __ GetObjectType(object, a1, a1);
5001   DeoptimizeIf(le, instr->environment(), a1, Operand(LAST_JS_PROXY_TYPE));
5002 
5003   Label use_cache, call_runtime;
5004   ASSERT(object.is(a0));
5005   __ CheckEnumCache(null_value, &call_runtime);
5006 
5007   __ lw(result, FieldMemOperand(object, HeapObject::kMapOffset));
5008   __ Branch(&use_cache);
5009 
5010   // Get the set of properties to enumerate.
5011   __ bind(&call_runtime);
5012   __ push(object);
5013   CallRuntime(Runtime::kGetPropertyNamesFast, 1, instr);
5014 
5015   __ lw(a1, FieldMemOperand(v0, HeapObject::kMapOffset));
5016   ASSERT(result.is(v0));
5017   __ LoadRoot(at, Heap::kMetaMapRootIndex);
5018   DeoptimizeIf(ne, instr->environment(), a1, Operand(at));
5019   __ bind(&use_cache);
5020 }
5021 
5022 
DoForInCacheArray(LForInCacheArray * instr)5023 void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
5024   Register map = ToRegister(instr->map());
5025   Register result = ToRegister(instr->result());
5026   __ LoadInstanceDescriptors(map, result);
5027   __ lw(result,
5028         FieldMemOperand(result, DescriptorArray::kEnumerationIndexOffset));
5029   __ lw(result,
5030         FieldMemOperand(result, FixedArray::SizeFor(instr->idx())));
5031   DeoptimizeIf(eq, instr->environment(), result, Operand(zero_reg));
5032 }
5033 
5034 
DoCheckMapValue(LCheckMapValue * instr)5035 void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
5036   Register object = ToRegister(instr->value());
5037   Register map = ToRegister(instr->map());
5038   __ lw(scratch0(), FieldMemOperand(object, HeapObject::kMapOffset));
5039   DeoptimizeIf(ne, instr->environment(), map, Operand(scratch0()));
5040 }
5041 
5042 
DoLoadFieldByIndex(LLoadFieldByIndex * instr)5043 void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
5044   Register object = ToRegister(instr->object());
5045   Register index = ToRegister(instr->index());
5046   Register result = ToRegister(instr->result());
5047   Register scratch = scratch0();
5048 
5049   Label out_of_object, done;
5050   __ Branch(USE_DELAY_SLOT, &out_of_object, lt, index, Operand(zero_reg));
5051   __ sll(scratch, index, kPointerSizeLog2 - kSmiTagSize);  // In delay slot.
5052 
5053   STATIC_ASSERT(kPointerSizeLog2 > kSmiTagSize);
5054   __ Addu(scratch, object, scratch);
5055   __ lw(result, FieldMemOperand(scratch, JSObject::kHeaderSize));
5056 
5057   __ Branch(&done);
5058 
5059   __ bind(&out_of_object);
5060   __ lw(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
5061   // Index is equal to negated out of object property index plus 1.
5062   __ Subu(scratch, result, scratch);
5063   __ lw(result, FieldMemOperand(scratch,
5064                                 FixedArray::kHeaderSize - kPointerSize));
5065   __ bind(&done);
5066 }
5067 
5068 
5069 #undef __
5070 
5071 } }  // namespace v8::internal
5072