• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #include <stdarg.h>
29 #include <math.h>
30 
31 #include "globals.h"
32 #include "utils.h"
33 #include "strtod.h"
34 #include "bignum.h"
35 #include "cached-powers.h"
36 #include "double.h"
37 
38 namespace v8 {
39 namespace internal {
40 
41 // 2^53 = 9007199254740992.
42 // Any integer with at most 15 decimal digits will hence fit into a double
43 // (which has a 53bit significand) without loss of precision.
44 static const int kMaxExactDoubleIntegerDecimalDigits = 15;
45 // 2^64 = 18446744073709551616 > 10^19
46 static const int kMaxUint64DecimalDigits = 19;
47 
48 // Max double: 1.7976931348623157 x 10^308
49 // Min non-zero double: 4.9406564584124654 x 10^-324
50 // Any x >= 10^309 is interpreted as +infinity.
51 // Any x <= 10^-324 is interpreted as 0.
52 // Note that 2.5e-324 (despite being smaller than the min double) will be read
53 // as non-zero (equal to the min non-zero double).
54 static const int kMaxDecimalPower = 309;
55 static const int kMinDecimalPower = -324;
56 
57 // 2^64 = 18446744073709551616
58 static const uint64_t kMaxUint64 = V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF);
59 
60 
61 static const double exact_powers_of_ten[] = {
62   1.0,  // 10^0
63   10.0,
64   100.0,
65   1000.0,
66   10000.0,
67   100000.0,
68   1000000.0,
69   10000000.0,
70   100000000.0,
71   1000000000.0,
72   10000000000.0,  // 10^10
73   100000000000.0,
74   1000000000000.0,
75   10000000000000.0,
76   100000000000000.0,
77   1000000000000000.0,
78   10000000000000000.0,
79   100000000000000000.0,
80   1000000000000000000.0,
81   10000000000000000000.0,
82   100000000000000000000.0,  // 10^20
83   1000000000000000000000.0,
84   // 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22
85   10000000000000000000000.0
86 };
87 static const int kExactPowersOfTenSize = ARRAY_SIZE(exact_powers_of_ten);
88 
89 // Maximum number of significant digits in the decimal representation.
90 // In fact the value is 772 (see conversions.cc), but to give us some margin
91 // we round up to 780.
92 static const int kMaxSignificantDecimalDigits = 780;
93 
TrimLeadingZeros(Vector<const char> buffer)94 static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) {
95   for (int i = 0; i < buffer.length(); i++) {
96     if (buffer[i] != '0') {
97       return buffer.SubVector(i, buffer.length());
98     }
99   }
100   return Vector<const char>(buffer.start(), 0);
101 }
102 
103 
TrimTrailingZeros(Vector<const char> buffer)104 static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) {
105   for (int i = buffer.length() - 1; i >= 0; --i) {
106     if (buffer[i] != '0') {
107       return buffer.SubVector(0, i + 1);
108     }
109   }
110   return Vector<const char>(buffer.start(), 0);
111 }
112 
113 
TrimToMaxSignificantDigits(Vector<const char> buffer,int exponent,char * significant_buffer,int * significant_exponent)114 static void TrimToMaxSignificantDigits(Vector<const char> buffer,
115                                        int exponent,
116                                        char* significant_buffer,
117                                        int* significant_exponent) {
118   for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) {
119     significant_buffer[i] = buffer[i];
120   }
121   // The input buffer has been trimmed. Therefore the last digit must be
122   // different from '0'.
123   ASSERT(buffer[buffer.length() - 1] != '0');
124   // Set the last digit to be non-zero. This is sufficient to guarantee
125   // correct rounding.
126   significant_buffer[kMaxSignificantDecimalDigits - 1] = '1';
127   *significant_exponent =
128       exponent + (buffer.length() - kMaxSignificantDecimalDigits);
129 }
130 
131 // Reads digits from the buffer and converts them to a uint64.
132 // Reads in as many digits as fit into a uint64.
133 // When the string starts with "1844674407370955161" no further digit is read.
134 // Since 2^64 = 18446744073709551616 it would still be possible read another
135 // digit if it was less or equal than 6, but this would complicate the code.
ReadUint64(Vector<const char> buffer,int * number_of_read_digits)136 static uint64_t ReadUint64(Vector<const char> buffer,
137                            int* number_of_read_digits) {
138   uint64_t result = 0;
139   int i = 0;
140   while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) {
141     int digit = buffer[i++] - '0';
142     ASSERT(0 <= digit && digit <= 9);
143     result = 10 * result + digit;
144   }
145   *number_of_read_digits = i;
146   return result;
147 }
148 
149 
150 // Reads a DiyFp from the buffer.
151 // The returned DiyFp is not necessarily normalized.
152 // If remaining_decimals is zero then the returned DiyFp is accurate.
153 // Otherwise it has been rounded and has error of at most 1/2 ulp.
ReadDiyFp(Vector<const char> buffer,DiyFp * result,int * remaining_decimals)154 static void ReadDiyFp(Vector<const char> buffer,
155                       DiyFp* result,
156                       int* remaining_decimals) {
157   int read_digits;
158   uint64_t significand = ReadUint64(buffer, &read_digits);
159   if (buffer.length() == read_digits) {
160     *result = DiyFp(significand, 0);
161     *remaining_decimals = 0;
162   } else {
163     // Round the significand.
164     if (buffer[read_digits] >= '5') {
165       significand++;
166     }
167     // Compute the binary exponent.
168     int exponent = 0;
169     *result = DiyFp(significand, exponent);
170     *remaining_decimals = buffer.length() - read_digits;
171   }
172 }
173 
174 
DoubleStrtod(Vector<const char> trimmed,int exponent,double * result)175 static bool DoubleStrtod(Vector<const char> trimmed,
176                          int exponent,
177                          double* result) {
178 #if (defined(V8_TARGET_ARCH_IA32) || defined(USE_SIMULATOR)) \
179     && !defined(_MSC_VER)
180   // On x86 the floating-point stack can be 64 or 80 bits wide. If it is
181   // 80 bits wide (as is the case on Linux) then double-rounding occurs and the
182   // result is not accurate.
183   // We know that Windows32 with MSVC, unlike with MinGW32, uses 64 bits and is
184   // therefore accurate.
185   // Note that the ARM and MIPS simulators are compiled for 32bits. They
186   // therefore exhibit the same problem.
187   return false;
188 #endif
189   if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) {
190     int read_digits;
191     // The trimmed input fits into a double.
192     // If the 10^exponent (resp. 10^-exponent) fits into a double too then we
193     // can compute the result-double simply by multiplying (resp. dividing) the
194     // two numbers.
195     // This is possible because IEEE guarantees that floating-point operations
196     // return the best possible approximation.
197     if (exponent < 0 && -exponent < kExactPowersOfTenSize) {
198       // 10^-exponent fits into a double.
199       *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
200       ASSERT(read_digits == trimmed.length());
201       *result /= exact_powers_of_ten[-exponent];
202       return true;
203     }
204     if (0 <= exponent && exponent < kExactPowersOfTenSize) {
205       // 10^exponent fits into a double.
206       *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
207       ASSERT(read_digits == trimmed.length());
208       *result *= exact_powers_of_ten[exponent];
209       return true;
210     }
211     int remaining_digits =
212         kMaxExactDoubleIntegerDecimalDigits - trimmed.length();
213     if ((0 <= exponent) &&
214         (exponent - remaining_digits < kExactPowersOfTenSize)) {
215       // The trimmed string was short and we can multiply it with
216       // 10^remaining_digits. As a result the remaining exponent now fits
217       // into a double too.
218       *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
219       ASSERT(read_digits == trimmed.length());
220       *result *= exact_powers_of_ten[remaining_digits];
221       *result *= exact_powers_of_ten[exponent - remaining_digits];
222       return true;
223     }
224   }
225   return false;
226 }
227 
228 
229 // Returns 10^exponent as an exact DiyFp.
230 // The given exponent must be in the range [1; kDecimalExponentDistance[.
AdjustmentPowerOfTen(int exponent)231 static DiyFp AdjustmentPowerOfTen(int exponent) {
232   ASSERT(0 < exponent);
233   ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance);
234   // Simply hardcode the remaining powers for the given decimal exponent
235   // distance.
236   ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8);
237   switch (exponent) {
238     case 1: return DiyFp(V8_2PART_UINT64_C(0xa0000000, 00000000), -60);
239     case 2: return DiyFp(V8_2PART_UINT64_C(0xc8000000, 00000000), -57);
240     case 3: return DiyFp(V8_2PART_UINT64_C(0xfa000000, 00000000), -54);
241     case 4: return DiyFp(V8_2PART_UINT64_C(0x9c400000, 00000000), -50);
242     case 5: return DiyFp(V8_2PART_UINT64_C(0xc3500000, 00000000), -47);
243     case 6: return DiyFp(V8_2PART_UINT64_C(0xf4240000, 00000000), -44);
244     case 7: return DiyFp(V8_2PART_UINT64_C(0x98968000, 00000000), -40);
245     default:
246       UNREACHABLE();
247       return DiyFp(0, 0);
248   }
249 }
250 
251 
252 // If the function returns true then the result is the correct double.
253 // Otherwise it is either the correct double or the double that is just below
254 // the correct double.
DiyFpStrtod(Vector<const char> buffer,int exponent,double * result)255 static bool DiyFpStrtod(Vector<const char> buffer,
256                         int exponent,
257                         double* result) {
258   DiyFp input;
259   int remaining_decimals;
260   ReadDiyFp(buffer, &input, &remaining_decimals);
261   // Since we may have dropped some digits the input is not accurate.
262   // If remaining_decimals is different than 0 than the error is at most
263   // .5 ulp (unit in the last place).
264   // We don't want to deal with fractions and therefore keep a common
265   // denominator.
266   const int kDenominatorLog = 3;
267   const int kDenominator = 1 << kDenominatorLog;
268   // Move the remaining decimals into the exponent.
269   exponent += remaining_decimals;
270   int error = (remaining_decimals == 0 ? 0 : kDenominator / 2);
271 
272   int old_e = input.e();
273   input.Normalize();
274   error <<= old_e - input.e();
275 
276   ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent);
277   if (exponent < PowersOfTenCache::kMinDecimalExponent) {
278     *result = 0.0;
279     return true;
280   }
281   DiyFp cached_power;
282   int cached_decimal_exponent;
283   PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent,
284                                                      &cached_power,
285                                                      &cached_decimal_exponent);
286 
287   if (cached_decimal_exponent != exponent) {
288     int adjustment_exponent = exponent - cached_decimal_exponent;
289     DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent);
290     input.Multiply(adjustment_power);
291     if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) {
292       // The product of input with the adjustment power fits into a 64 bit
293       // integer.
294       ASSERT(DiyFp::kSignificandSize == 64);
295     } else {
296       // The adjustment power is exact. There is hence only an error of 0.5.
297       error += kDenominator / 2;
298     }
299   }
300 
301   input.Multiply(cached_power);
302   // The error introduced by a multiplication of a*b equals
303   //   error_a + error_b + error_a*error_b/2^64 + 0.5
304   // Substituting a with 'input' and b with 'cached_power' we have
305   //   error_b = 0.5  (all cached powers have an error of less than 0.5 ulp),
306   //   error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64
307   int error_b = kDenominator / 2;
308   int error_ab = (error == 0 ? 0 : 1);  // We round up to 1.
309   int fixed_error = kDenominator / 2;
310   error += error_b + error_ab + fixed_error;
311 
312   old_e = input.e();
313   input.Normalize();
314   error <<= old_e - input.e();
315 
316   // See if the double's significand changes if we add/subtract the error.
317   int order_of_magnitude = DiyFp::kSignificandSize + input.e();
318   int effective_significand_size =
319       Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude);
320   int precision_digits_count =
321       DiyFp::kSignificandSize - effective_significand_size;
322   if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) {
323     // This can only happen for very small denormals. In this case the
324     // half-way multiplied by the denominator exceeds the range of an uint64.
325     // Simply shift everything to the right.
326     int shift_amount = (precision_digits_count + kDenominatorLog) -
327         DiyFp::kSignificandSize + 1;
328     input.set_f(input.f() >> shift_amount);
329     input.set_e(input.e() + shift_amount);
330     // We add 1 for the lost precision of error, and kDenominator for
331     // the lost precision of input.f().
332     error = (error >> shift_amount) + 1 + kDenominator;
333     precision_digits_count -= shift_amount;
334   }
335   // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too.
336   ASSERT(DiyFp::kSignificandSize == 64);
337   ASSERT(precision_digits_count < 64);
338   uint64_t one64 = 1;
339   uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1;
340   uint64_t precision_bits = input.f() & precision_bits_mask;
341   uint64_t half_way = one64 << (precision_digits_count - 1);
342   precision_bits *= kDenominator;
343   half_way *= kDenominator;
344   DiyFp rounded_input(input.f() >> precision_digits_count,
345                       input.e() + precision_digits_count);
346   if (precision_bits >= half_way + error) {
347     rounded_input.set_f(rounded_input.f() + 1);
348   }
349   // If the last_bits are too close to the half-way case than we are too
350   // inaccurate and round down. In this case we return false so that we can
351   // fall back to a more precise algorithm.
352 
353   *result = Double(rounded_input).value();
354   if (half_way - error < precision_bits && precision_bits < half_way + error) {
355     // Too imprecise. The caller will have to fall back to a slower version.
356     // However the returned number is guaranteed to be either the correct
357     // double, or the next-lower double.
358     return false;
359   } else {
360     return true;
361   }
362 }
363 
364 
365 // Returns the correct double for the buffer*10^exponent.
366 // The variable guess should be a close guess that is either the correct double
367 // or its lower neighbor (the nearest double less than the correct one).
368 // Preconditions:
369 //   buffer.length() + exponent <= kMaxDecimalPower + 1
370 //   buffer.length() + exponent > kMinDecimalPower
371 //   buffer.length() <= kMaxDecimalSignificantDigits
BignumStrtod(Vector<const char> buffer,int exponent,double guess)372 static double BignumStrtod(Vector<const char> buffer,
373                            int exponent,
374                            double guess) {
375   if (guess == V8_INFINITY) {
376     return guess;
377   }
378 
379   DiyFp upper_boundary = Double(guess).UpperBoundary();
380 
381   ASSERT(buffer.length() + exponent <= kMaxDecimalPower + 1);
382   ASSERT(buffer.length() + exponent > kMinDecimalPower);
383   ASSERT(buffer.length() <= kMaxSignificantDecimalDigits);
384   // Make sure that the Bignum will be able to hold all our numbers.
385   // Our Bignum implementation has a separate field for exponents. Shifts will
386   // consume at most one bigit (< 64 bits).
387   // ln(10) == 3.3219...
388   ASSERT(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits);
389   Bignum input;
390   Bignum boundary;
391   input.AssignDecimalString(buffer);
392   boundary.AssignUInt64(upper_boundary.f());
393   if (exponent >= 0) {
394     input.MultiplyByPowerOfTen(exponent);
395   } else {
396     boundary.MultiplyByPowerOfTen(-exponent);
397   }
398   if (upper_boundary.e() > 0) {
399     boundary.ShiftLeft(upper_boundary.e());
400   } else {
401     input.ShiftLeft(-upper_boundary.e());
402   }
403   int comparison = Bignum::Compare(input, boundary);
404   if (comparison < 0) {
405     return guess;
406   } else if (comparison > 0) {
407     return Double(guess).NextDouble();
408   } else if ((Double(guess).Significand() & 1) == 0) {
409     // Round towards even.
410     return guess;
411   } else {
412     return Double(guess).NextDouble();
413   }
414 }
415 
416 
Strtod(Vector<const char> buffer,int exponent)417 double Strtod(Vector<const char> buffer, int exponent) {
418   Vector<const char> left_trimmed = TrimLeadingZeros(buffer);
419   Vector<const char> trimmed = TrimTrailingZeros(left_trimmed);
420   exponent += left_trimmed.length() - trimmed.length();
421   if (trimmed.length() == 0) return 0.0;
422   if (trimmed.length() > kMaxSignificantDecimalDigits) {
423     char significant_buffer[kMaxSignificantDecimalDigits];
424     int significant_exponent;
425     TrimToMaxSignificantDigits(trimmed, exponent,
426                                significant_buffer, &significant_exponent);
427     return Strtod(Vector<const char>(significant_buffer,
428                                      kMaxSignificantDecimalDigits),
429                   significant_exponent);
430   }
431   if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) return V8_INFINITY;
432   if (exponent + trimmed.length() <= kMinDecimalPower) return 0.0;
433 
434   double guess;
435   if (DoubleStrtod(trimmed, exponent, &guess) ||
436       DiyFpStrtod(trimmed, exponent, &guess)) {
437     return guess;
438   }
439   return BignumStrtod(trimmed, exponent, guess);
440 }
441 
442 } }  // namespace v8::internal
443