1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include <stdarg.h>
29 #include <math.h>
30
31 #include "globals.h"
32 #include "utils.h"
33 #include "strtod.h"
34 #include "bignum.h"
35 #include "cached-powers.h"
36 #include "double.h"
37
38 namespace v8 {
39 namespace internal {
40
41 // 2^53 = 9007199254740992.
42 // Any integer with at most 15 decimal digits will hence fit into a double
43 // (which has a 53bit significand) without loss of precision.
44 static const int kMaxExactDoubleIntegerDecimalDigits = 15;
45 // 2^64 = 18446744073709551616 > 10^19
46 static const int kMaxUint64DecimalDigits = 19;
47
48 // Max double: 1.7976931348623157 x 10^308
49 // Min non-zero double: 4.9406564584124654 x 10^-324
50 // Any x >= 10^309 is interpreted as +infinity.
51 // Any x <= 10^-324 is interpreted as 0.
52 // Note that 2.5e-324 (despite being smaller than the min double) will be read
53 // as non-zero (equal to the min non-zero double).
54 static const int kMaxDecimalPower = 309;
55 static const int kMinDecimalPower = -324;
56
57 // 2^64 = 18446744073709551616
58 static const uint64_t kMaxUint64 = V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF);
59
60
61 static const double exact_powers_of_ten[] = {
62 1.0, // 10^0
63 10.0,
64 100.0,
65 1000.0,
66 10000.0,
67 100000.0,
68 1000000.0,
69 10000000.0,
70 100000000.0,
71 1000000000.0,
72 10000000000.0, // 10^10
73 100000000000.0,
74 1000000000000.0,
75 10000000000000.0,
76 100000000000000.0,
77 1000000000000000.0,
78 10000000000000000.0,
79 100000000000000000.0,
80 1000000000000000000.0,
81 10000000000000000000.0,
82 100000000000000000000.0, // 10^20
83 1000000000000000000000.0,
84 // 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22
85 10000000000000000000000.0
86 };
87 static const int kExactPowersOfTenSize = ARRAY_SIZE(exact_powers_of_ten);
88
89 // Maximum number of significant digits in the decimal representation.
90 // In fact the value is 772 (see conversions.cc), but to give us some margin
91 // we round up to 780.
92 static const int kMaxSignificantDecimalDigits = 780;
93
TrimLeadingZeros(Vector<const char> buffer)94 static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) {
95 for (int i = 0; i < buffer.length(); i++) {
96 if (buffer[i] != '0') {
97 return buffer.SubVector(i, buffer.length());
98 }
99 }
100 return Vector<const char>(buffer.start(), 0);
101 }
102
103
TrimTrailingZeros(Vector<const char> buffer)104 static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) {
105 for (int i = buffer.length() - 1; i >= 0; --i) {
106 if (buffer[i] != '0') {
107 return buffer.SubVector(0, i + 1);
108 }
109 }
110 return Vector<const char>(buffer.start(), 0);
111 }
112
113
TrimToMaxSignificantDigits(Vector<const char> buffer,int exponent,char * significant_buffer,int * significant_exponent)114 static void TrimToMaxSignificantDigits(Vector<const char> buffer,
115 int exponent,
116 char* significant_buffer,
117 int* significant_exponent) {
118 for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) {
119 significant_buffer[i] = buffer[i];
120 }
121 // The input buffer has been trimmed. Therefore the last digit must be
122 // different from '0'.
123 ASSERT(buffer[buffer.length() - 1] != '0');
124 // Set the last digit to be non-zero. This is sufficient to guarantee
125 // correct rounding.
126 significant_buffer[kMaxSignificantDecimalDigits - 1] = '1';
127 *significant_exponent =
128 exponent + (buffer.length() - kMaxSignificantDecimalDigits);
129 }
130
131 // Reads digits from the buffer and converts them to a uint64.
132 // Reads in as many digits as fit into a uint64.
133 // When the string starts with "1844674407370955161" no further digit is read.
134 // Since 2^64 = 18446744073709551616 it would still be possible read another
135 // digit if it was less or equal than 6, but this would complicate the code.
ReadUint64(Vector<const char> buffer,int * number_of_read_digits)136 static uint64_t ReadUint64(Vector<const char> buffer,
137 int* number_of_read_digits) {
138 uint64_t result = 0;
139 int i = 0;
140 while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) {
141 int digit = buffer[i++] - '0';
142 ASSERT(0 <= digit && digit <= 9);
143 result = 10 * result + digit;
144 }
145 *number_of_read_digits = i;
146 return result;
147 }
148
149
150 // Reads a DiyFp from the buffer.
151 // The returned DiyFp is not necessarily normalized.
152 // If remaining_decimals is zero then the returned DiyFp is accurate.
153 // Otherwise it has been rounded and has error of at most 1/2 ulp.
ReadDiyFp(Vector<const char> buffer,DiyFp * result,int * remaining_decimals)154 static void ReadDiyFp(Vector<const char> buffer,
155 DiyFp* result,
156 int* remaining_decimals) {
157 int read_digits;
158 uint64_t significand = ReadUint64(buffer, &read_digits);
159 if (buffer.length() == read_digits) {
160 *result = DiyFp(significand, 0);
161 *remaining_decimals = 0;
162 } else {
163 // Round the significand.
164 if (buffer[read_digits] >= '5') {
165 significand++;
166 }
167 // Compute the binary exponent.
168 int exponent = 0;
169 *result = DiyFp(significand, exponent);
170 *remaining_decimals = buffer.length() - read_digits;
171 }
172 }
173
174
DoubleStrtod(Vector<const char> trimmed,int exponent,double * result)175 static bool DoubleStrtod(Vector<const char> trimmed,
176 int exponent,
177 double* result) {
178 #if (defined(V8_TARGET_ARCH_IA32) || defined(USE_SIMULATOR)) \
179 && !defined(_MSC_VER)
180 // On x86 the floating-point stack can be 64 or 80 bits wide. If it is
181 // 80 bits wide (as is the case on Linux) then double-rounding occurs and the
182 // result is not accurate.
183 // We know that Windows32 with MSVC, unlike with MinGW32, uses 64 bits and is
184 // therefore accurate.
185 // Note that the ARM and MIPS simulators are compiled for 32bits. They
186 // therefore exhibit the same problem.
187 return false;
188 #endif
189 if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) {
190 int read_digits;
191 // The trimmed input fits into a double.
192 // If the 10^exponent (resp. 10^-exponent) fits into a double too then we
193 // can compute the result-double simply by multiplying (resp. dividing) the
194 // two numbers.
195 // This is possible because IEEE guarantees that floating-point operations
196 // return the best possible approximation.
197 if (exponent < 0 && -exponent < kExactPowersOfTenSize) {
198 // 10^-exponent fits into a double.
199 *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
200 ASSERT(read_digits == trimmed.length());
201 *result /= exact_powers_of_ten[-exponent];
202 return true;
203 }
204 if (0 <= exponent && exponent < kExactPowersOfTenSize) {
205 // 10^exponent fits into a double.
206 *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
207 ASSERT(read_digits == trimmed.length());
208 *result *= exact_powers_of_ten[exponent];
209 return true;
210 }
211 int remaining_digits =
212 kMaxExactDoubleIntegerDecimalDigits - trimmed.length();
213 if ((0 <= exponent) &&
214 (exponent - remaining_digits < kExactPowersOfTenSize)) {
215 // The trimmed string was short and we can multiply it with
216 // 10^remaining_digits. As a result the remaining exponent now fits
217 // into a double too.
218 *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
219 ASSERT(read_digits == trimmed.length());
220 *result *= exact_powers_of_ten[remaining_digits];
221 *result *= exact_powers_of_ten[exponent - remaining_digits];
222 return true;
223 }
224 }
225 return false;
226 }
227
228
229 // Returns 10^exponent as an exact DiyFp.
230 // The given exponent must be in the range [1; kDecimalExponentDistance[.
AdjustmentPowerOfTen(int exponent)231 static DiyFp AdjustmentPowerOfTen(int exponent) {
232 ASSERT(0 < exponent);
233 ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance);
234 // Simply hardcode the remaining powers for the given decimal exponent
235 // distance.
236 ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8);
237 switch (exponent) {
238 case 1: return DiyFp(V8_2PART_UINT64_C(0xa0000000, 00000000), -60);
239 case 2: return DiyFp(V8_2PART_UINT64_C(0xc8000000, 00000000), -57);
240 case 3: return DiyFp(V8_2PART_UINT64_C(0xfa000000, 00000000), -54);
241 case 4: return DiyFp(V8_2PART_UINT64_C(0x9c400000, 00000000), -50);
242 case 5: return DiyFp(V8_2PART_UINT64_C(0xc3500000, 00000000), -47);
243 case 6: return DiyFp(V8_2PART_UINT64_C(0xf4240000, 00000000), -44);
244 case 7: return DiyFp(V8_2PART_UINT64_C(0x98968000, 00000000), -40);
245 default:
246 UNREACHABLE();
247 return DiyFp(0, 0);
248 }
249 }
250
251
252 // If the function returns true then the result is the correct double.
253 // Otherwise it is either the correct double or the double that is just below
254 // the correct double.
DiyFpStrtod(Vector<const char> buffer,int exponent,double * result)255 static bool DiyFpStrtod(Vector<const char> buffer,
256 int exponent,
257 double* result) {
258 DiyFp input;
259 int remaining_decimals;
260 ReadDiyFp(buffer, &input, &remaining_decimals);
261 // Since we may have dropped some digits the input is not accurate.
262 // If remaining_decimals is different than 0 than the error is at most
263 // .5 ulp (unit in the last place).
264 // We don't want to deal with fractions and therefore keep a common
265 // denominator.
266 const int kDenominatorLog = 3;
267 const int kDenominator = 1 << kDenominatorLog;
268 // Move the remaining decimals into the exponent.
269 exponent += remaining_decimals;
270 int error = (remaining_decimals == 0 ? 0 : kDenominator / 2);
271
272 int old_e = input.e();
273 input.Normalize();
274 error <<= old_e - input.e();
275
276 ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent);
277 if (exponent < PowersOfTenCache::kMinDecimalExponent) {
278 *result = 0.0;
279 return true;
280 }
281 DiyFp cached_power;
282 int cached_decimal_exponent;
283 PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent,
284 &cached_power,
285 &cached_decimal_exponent);
286
287 if (cached_decimal_exponent != exponent) {
288 int adjustment_exponent = exponent - cached_decimal_exponent;
289 DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent);
290 input.Multiply(adjustment_power);
291 if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) {
292 // The product of input with the adjustment power fits into a 64 bit
293 // integer.
294 ASSERT(DiyFp::kSignificandSize == 64);
295 } else {
296 // The adjustment power is exact. There is hence only an error of 0.5.
297 error += kDenominator / 2;
298 }
299 }
300
301 input.Multiply(cached_power);
302 // The error introduced by a multiplication of a*b equals
303 // error_a + error_b + error_a*error_b/2^64 + 0.5
304 // Substituting a with 'input' and b with 'cached_power' we have
305 // error_b = 0.5 (all cached powers have an error of less than 0.5 ulp),
306 // error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64
307 int error_b = kDenominator / 2;
308 int error_ab = (error == 0 ? 0 : 1); // We round up to 1.
309 int fixed_error = kDenominator / 2;
310 error += error_b + error_ab + fixed_error;
311
312 old_e = input.e();
313 input.Normalize();
314 error <<= old_e - input.e();
315
316 // See if the double's significand changes if we add/subtract the error.
317 int order_of_magnitude = DiyFp::kSignificandSize + input.e();
318 int effective_significand_size =
319 Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude);
320 int precision_digits_count =
321 DiyFp::kSignificandSize - effective_significand_size;
322 if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) {
323 // This can only happen for very small denormals. In this case the
324 // half-way multiplied by the denominator exceeds the range of an uint64.
325 // Simply shift everything to the right.
326 int shift_amount = (precision_digits_count + kDenominatorLog) -
327 DiyFp::kSignificandSize + 1;
328 input.set_f(input.f() >> shift_amount);
329 input.set_e(input.e() + shift_amount);
330 // We add 1 for the lost precision of error, and kDenominator for
331 // the lost precision of input.f().
332 error = (error >> shift_amount) + 1 + kDenominator;
333 precision_digits_count -= shift_amount;
334 }
335 // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too.
336 ASSERT(DiyFp::kSignificandSize == 64);
337 ASSERT(precision_digits_count < 64);
338 uint64_t one64 = 1;
339 uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1;
340 uint64_t precision_bits = input.f() & precision_bits_mask;
341 uint64_t half_way = one64 << (precision_digits_count - 1);
342 precision_bits *= kDenominator;
343 half_way *= kDenominator;
344 DiyFp rounded_input(input.f() >> precision_digits_count,
345 input.e() + precision_digits_count);
346 if (precision_bits >= half_way + error) {
347 rounded_input.set_f(rounded_input.f() + 1);
348 }
349 // If the last_bits are too close to the half-way case than we are too
350 // inaccurate and round down. In this case we return false so that we can
351 // fall back to a more precise algorithm.
352
353 *result = Double(rounded_input).value();
354 if (half_way - error < precision_bits && precision_bits < half_way + error) {
355 // Too imprecise. The caller will have to fall back to a slower version.
356 // However the returned number is guaranteed to be either the correct
357 // double, or the next-lower double.
358 return false;
359 } else {
360 return true;
361 }
362 }
363
364
365 // Returns the correct double for the buffer*10^exponent.
366 // The variable guess should be a close guess that is either the correct double
367 // or its lower neighbor (the nearest double less than the correct one).
368 // Preconditions:
369 // buffer.length() + exponent <= kMaxDecimalPower + 1
370 // buffer.length() + exponent > kMinDecimalPower
371 // buffer.length() <= kMaxDecimalSignificantDigits
BignumStrtod(Vector<const char> buffer,int exponent,double guess)372 static double BignumStrtod(Vector<const char> buffer,
373 int exponent,
374 double guess) {
375 if (guess == V8_INFINITY) {
376 return guess;
377 }
378
379 DiyFp upper_boundary = Double(guess).UpperBoundary();
380
381 ASSERT(buffer.length() + exponent <= kMaxDecimalPower + 1);
382 ASSERT(buffer.length() + exponent > kMinDecimalPower);
383 ASSERT(buffer.length() <= kMaxSignificantDecimalDigits);
384 // Make sure that the Bignum will be able to hold all our numbers.
385 // Our Bignum implementation has a separate field for exponents. Shifts will
386 // consume at most one bigit (< 64 bits).
387 // ln(10) == 3.3219...
388 ASSERT(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits);
389 Bignum input;
390 Bignum boundary;
391 input.AssignDecimalString(buffer);
392 boundary.AssignUInt64(upper_boundary.f());
393 if (exponent >= 0) {
394 input.MultiplyByPowerOfTen(exponent);
395 } else {
396 boundary.MultiplyByPowerOfTen(-exponent);
397 }
398 if (upper_boundary.e() > 0) {
399 boundary.ShiftLeft(upper_boundary.e());
400 } else {
401 input.ShiftLeft(-upper_boundary.e());
402 }
403 int comparison = Bignum::Compare(input, boundary);
404 if (comparison < 0) {
405 return guess;
406 } else if (comparison > 0) {
407 return Double(guess).NextDouble();
408 } else if ((Double(guess).Significand() & 1) == 0) {
409 // Round towards even.
410 return guess;
411 } else {
412 return Double(guess).NextDouble();
413 }
414 }
415
416
Strtod(Vector<const char> buffer,int exponent)417 double Strtod(Vector<const char> buffer, int exponent) {
418 Vector<const char> left_trimmed = TrimLeadingZeros(buffer);
419 Vector<const char> trimmed = TrimTrailingZeros(left_trimmed);
420 exponent += left_trimmed.length() - trimmed.length();
421 if (trimmed.length() == 0) return 0.0;
422 if (trimmed.length() > kMaxSignificantDecimalDigits) {
423 char significant_buffer[kMaxSignificantDecimalDigits];
424 int significant_exponent;
425 TrimToMaxSignificantDigits(trimmed, exponent,
426 significant_buffer, &significant_exponent);
427 return Strtod(Vector<const char>(significant_buffer,
428 kMaxSignificantDecimalDigits),
429 significant_exponent);
430 }
431 if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) return V8_INFINITY;
432 if (exponent + trimmed.length() <= kMinDecimalPower) return 0.0;
433
434 double guess;
435 if (DoubleStrtod(trimmed, exponent, &guess) ||
436 DiyFpStrtod(trimmed, exponent, &guess)) {
437 return guess;
438 }
439 return BignumStrtod(trimmed, exponent, guess);
440 }
441
442 } } // namespace v8::internal
443