• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #include "v8.h"
29 
30 #if defined(V8_TARGET_ARCH_X64)
31 
32 #include "serialize.h"
33 #include "unicode.h"
34 #include "log.h"
35 #include "regexp-stack.h"
36 #include "macro-assembler.h"
37 #include "regexp-macro-assembler.h"
38 #include "x64/regexp-macro-assembler-x64.h"
39 
40 namespace v8 {
41 namespace internal {
42 
43 #ifndef V8_INTERPRETED_REGEXP
44 
45 /*
46  * This assembler uses the following register assignment convention
47  * - rdx : currently loaded character(s) as ASCII or UC16. Must be loaded using
48  *         LoadCurrentCharacter before using any of the dispatch methods.
49  * - rdi : current position in input, as negative offset from end of string.
50  *         Please notice that this is the byte offset, not the character
51  *         offset! Is always a 32-bit signed (negative) offset, but must be
52  *         maintained sign-extended to 64 bits, since it is used as index.
53  * - rsi : end of input (points to byte after last character in input),
54  *         so that rsi+rdi points to the current character.
55  * - rbp : frame pointer. Used to access arguments, local variables and
56  *         RegExp registers.
57  * - rsp : points to tip of C stack.
58  * - rcx : points to tip of backtrack stack. The backtrack stack contains
59  *         only 32-bit values. Most are offsets from some base (e.g., character
60  *         positions from end of string or code location from Code* pointer).
61  * - r8  : code object pointer. Used to convert between absolute and
62  *         code-object-relative addresses.
63  *
64  * The registers rax, rbx, r9 and r11 are free to use for computations.
65  * If changed to use r12+, they should be saved as callee-save registers.
66  * The macro assembler special registers r12 and r13 (kSmiConstantRegister,
67  * kRootRegister) aren't special during execution of RegExp code (they don't
68  * hold the values assumed when creating JS code), so no Smi or Root related
69  * macro operations can be used.
70  *
71  * Each call to a C++ method should retain these registers.
72  *
73  * The stack will have the following content, in some order, indexable from the
74  * frame pointer (see, e.g., kStackHighEnd):
75  *    - Isolate* isolate     (Address of the current isolate)
76  *    - direct_call          (if 1, direct call from JavaScript code, if 0 call
77  *                            through the runtime system)
78  *    - stack_area_base      (High end of the memory area to use as
79  *                            backtracking stack)
80  *    - int* capture_array   (int[num_saved_registers_], for output).
81  *    - end of input         (Address of end of string)
82  *    - start of input       (Address of first character in string)
83  *    - start index          (character index of start)
84  *    - String* input_string (input string)
85  *    - return address
86  *    - backup of callee save registers (rbx, possibly rsi and rdi).
87  *    - Offset of location before start of input (effectively character
88  *      position -1). Used to initialize capture registers to a non-position.
89  *    - At start of string (if 1, we are starting at the start of the
90  *      string, otherwise 0)
91  *    - register 0  rbp[-n]   (Only positions must be stored in the first
92  *    - register 1  rbp[-n-8]  num_saved_registers_ registers)
93  *    - ...
94  *
95  * The first num_saved_registers_ registers are initialized to point to
96  * "character -1" in the string (i.e., char_size() bytes before the first
97  * character of the string). The remaining registers starts out uninitialized.
98  *
99  * The first seven values must be provided by the calling code by
100  * calling the code's entry address cast to a function pointer with the
101  * following signature:
102  * int (*match)(String* input_string,
103  *              int start_index,
104  *              Address start,
105  *              Address end,
106  *              int* capture_output_array,
107  *              bool at_start,
108  *              byte* stack_area_base,
109  *              bool direct_call)
110  */
111 
112 #define __ ACCESS_MASM((&masm_))
113 
RegExpMacroAssemblerX64(Mode mode,int registers_to_save)114 RegExpMacroAssemblerX64::RegExpMacroAssemblerX64(
115     Mode mode,
116     int registers_to_save)
117     : masm_(Isolate::Current(), NULL, kRegExpCodeSize),
118       no_root_array_scope_(&masm_),
119       code_relative_fixup_positions_(4),
120       mode_(mode),
121       num_registers_(registers_to_save),
122       num_saved_registers_(registers_to_save),
123       entry_label_(),
124       start_label_(),
125       success_label_(),
126       backtrack_label_(),
127       exit_label_() {
128   ASSERT_EQ(0, registers_to_save % 2);
129   __ jmp(&entry_label_);   // We'll write the entry code when we know more.
130   __ bind(&start_label_);  // And then continue from here.
131 }
132 
133 
~RegExpMacroAssemblerX64()134 RegExpMacroAssemblerX64::~RegExpMacroAssemblerX64() {
135   // Unuse labels in case we throw away the assembler without calling GetCode.
136   entry_label_.Unuse();
137   start_label_.Unuse();
138   success_label_.Unuse();
139   backtrack_label_.Unuse();
140   exit_label_.Unuse();
141   check_preempt_label_.Unuse();
142   stack_overflow_label_.Unuse();
143 }
144 
145 
stack_limit_slack()146 int RegExpMacroAssemblerX64::stack_limit_slack()  {
147   return RegExpStack::kStackLimitSlack;
148 }
149 
150 
AdvanceCurrentPosition(int by)151 void RegExpMacroAssemblerX64::AdvanceCurrentPosition(int by) {
152   if (by != 0) {
153     __ addq(rdi, Immediate(by * char_size()));
154   }
155 }
156 
157 
AdvanceRegister(int reg,int by)158 void RegExpMacroAssemblerX64::AdvanceRegister(int reg, int by) {
159   ASSERT(reg >= 0);
160   ASSERT(reg < num_registers_);
161   if (by != 0) {
162     __ addq(register_location(reg), Immediate(by));
163   }
164 }
165 
166 
Backtrack()167 void RegExpMacroAssemblerX64::Backtrack() {
168   CheckPreemption();
169   // Pop Code* offset from backtrack stack, add Code* and jump to location.
170   Pop(rbx);
171   __ addq(rbx, code_object_pointer());
172   __ jmp(rbx);
173 }
174 
175 
Bind(Label * label)176 void RegExpMacroAssemblerX64::Bind(Label* label) {
177   __ bind(label);
178 }
179 
180 
CheckCharacter(uint32_t c,Label * on_equal)181 void RegExpMacroAssemblerX64::CheckCharacter(uint32_t c, Label* on_equal) {
182   __ cmpl(current_character(), Immediate(c));
183   BranchOrBacktrack(equal, on_equal);
184 }
185 
186 
CheckCharacterGT(uc16 limit,Label * on_greater)187 void RegExpMacroAssemblerX64::CheckCharacterGT(uc16 limit, Label* on_greater) {
188   __ cmpl(current_character(), Immediate(limit));
189   BranchOrBacktrack(greater, on_greater);
190 }
191 
192 
CheckAtStart(Label * on_at_start)193 void RegExpMacroAssemblerX64::CheckAtStart(Label* on_at_start) {
194   Label not_at_start;
195   // Did we start the match at the start of the string at all?
196   __ cmpl(Operand(rbp, kStartIndex), Immediate(0));
197   BranchOrBacktrack(not_equal, &not_at_start);
198   // If we did, are we still at the start of the input?
199   __ lea(rax, Operand(rsi, rdi, times_1, 0));
200   __ cmpq(rax, Operand(rbp, kInputStart));
201   BranchOrBacktrack(equal, on_at_start);
202   __ bind(&not_at_start);
203 }
204 
205 
CheckNotAtStart(Label * on_not_at_start)206 void RegExpMacroAssemblerX64::CheckNotAtStart(Label* on_not_at_start) {
207   // Did we start the match at the start of the string at all?
208   __ cmpl(Operand(rbp, kStartIndex), Immediate(0));
209   BranchOrBacktrack(not_equal, on_not_at_start);
210   // If we did, are we still at the start of the input?
211   __ lea(rax, Operand(rsi, rdi, times_1, 0));
212   __ cmpq(rax, Operand(rbp, kInputStart));
213   BranchOrBacktrack(not_equal, on_not_at_start);
214 }
215 
216 
CheckCharacterLT(uc16 limit,Label * on_less)217 void RegExpMacroAssemblerX64::CheckCharacterLT(uc16 limit, Label* on_less) {
218   __ cmpl(current_character(), Immediate(limit));
219   BranchOrBacktrack(less, on_less);
220 }
221 
222 
CheckCharacters(Vector<const uc16> str,int cp_offset,Label * on_failure,bool check_end_of_string)223 void RegExpMacroAssemblerX64::CheckCharacters(Vector<const uc16> str,
224                                               int cp_offset,
225                                               Label* on_failure,
226                                               bool check_end_of_string) {
227 #ifdef DEBUG
228   // If input is ASCII, don't even bother calling here if the string to
229   // match contains a non-ASCII character.
230   if (mode_ == ASCII) {
231     ASSERT(String::IsAscii(str.start(), str.length()));
232   }
233 #endif
234   int byte_length = str.length() * char_size();
235   int byte_offset = cp_offset * char_size();
236   if (check_end_of_string) {
237     // Check that there are at least str.length() characters left in the input.
238     __ cmpl(rdi, Immediate(-(byte_offset + byte_length)));
239     BranchOrBacktrack(greater, on_failure);
240   }
241 
242   if (on_failure == NULL) {
243     // Instead of inlining a backtrack, (re)use the global backtrack target.
244     on_failure = &backtrack_label_;
245   }
246 
247   // Do one character test first to minimize loading for the case that
248   // we don't match at all (loading more than one character introduces that
249   // chance of reading unaligned and reading across cache boundaries).
250   // If the first character matches, expect a larger chance of matching the
251   // string, and start loading more characters at a time.
252   if (mode_ == ASCII) {
253     __ cmpb(Operand(rsi, rdi, times_1, byte_offset),
254             Immediate(static_cast<int8_t>(str[0])));
255   } else {
256     // Don't use 16-bit immediate. The size changing prefix throws off
257     // pre-decoding.
258     __ movzxwl(rax,
259                Operand(rsi, rdi, times_1, byte_offset));
260     __ cmpl(rax, Immediate(static_cast<int32_t>(str[0])));
261   }
262   BranchOrBacktrack(not_equal, on_failure);
263 
264   __ lea(rbx, Operand(rsi, rdi, times_1, 0));
265   for (int i = 1, n = str.length(); i < n; ) {
266     if (mode_ == ASCII) {
267       if (i + 8 <= n) {
268         uint64_t combined_chars =
269             (static_cast<uint64_t>(str[i + 0]) << 0) ||
270             (static_cast<uint64_t>(str[i + 1]) << 8) ||
271             (static_cast<uint64_t>(str[i + 2]) << 16) ||
272             (static_cast<uint64_t>(str[i + 3]) << 24) ||
273             (static_cast<uint64_t>(str[i + 4]) << 32) ||
274             (static_cast<uint64_t>(str[i + 5]) << 40) ||
275             (static_cast<uint64_t>(str[i + 6]) << 48) ||
276             (static_cast<uint64_t>(str[i + 7]) << 56);
277         __ movq(rax, combined_chars, RelocInfo::NONE);
278         __ cmpq(rax, Operand(rbx, byte_offset + i));
279         i += 8;
280       } else if (i + 4 <= n) {
281         uint32_t combined_chars =
282             (static_cast<uint32_t>(str[i + 0]) << 0) ||
283             (static_cast<uint32_t>(str[i + 1]) << 8) ||
284             (static_cast<uint32_t>(str[i + 2]) << 16) ||
285             (static_cast<uint32_t>(str[i + 3]) << 24);
286         __ cmpl(Operand(rbx, byte_offset + i), Immediate(combined_chars));
287         i += 4;
288       } else {
289         __ cmpb(Operand(rbx, byte_offset + i),
290                 Immediate(static_cast<int8_t>(str[i])));
291         i++;
292       }
293     } else {
294       ASSERT(mode_ == UC16);
295       if (i + 4 <= n) {
296         uint64_t combined_chars = *reinterpret_cast<const uint64_t*>(&str[i]);
297         __ movq(rax, combined_chars, RelocInfo::NONE);
298         __ cmpq(rax,
299                 Operand(rsi, rdi, times_1, byte_offset + i * sizeof(uc16)));
300         i += 4;
301       } else if (i + 2 <= n) {
302         uint32_t combined_chars = *reinterpret_cast<const uint32_t*>(&str[i]);
303         __ cmpl(Operand(rsi, rdi, times_1, byte_offset + i * sizeof(uc16)),
304                 Immediate(combined_chars));
305         i += 2;
306       } else {
307         __ movzxwl(rax,
308                    Operand(rsi, rdi, times_1, byte_offset + i * sizeof(uc16)));
309         __ cmpl(rax, Immediate(str[i]));
310         i++;
311       }
312     }
313     BranchOrBacktrack(not_equal, on_failure);
314   }
315 }
316 
317 
CheckGreedyLoop(Label * on_equal)318 void RegExpMacroAssemblerX64::CheckGreedyLoop(Label* on_equal) {
319   Label fallthrough;
320   __ cmpl(rdi, Operand(backtrack_stackpointer(), 0));
321   __ j(not_equal, &fallthrough);
322   Drop();
323   BranchOrBacktrack(no_condition, on_equal);
324   __ bind(&fallthrough);
325 }
326 
327 
CheckNotBackReferenceIgnoreCase(int start_reg,Label * on_no_match)328 void RegExpMacroAssemblerX64::CheckNotBackReferenceIgnoreCase(
329     int start_reg,
330     Label* on_no_match) {
331   Label fallthrough;
332   __ movq(rdx, register_location(start_reg));  // Offset of start of capture
333   __ movq(rbx, register_location(start_reg + 1));  // Offset of end of capture
334   __ subq(rbx, rdx);  // Length of capture.
335 
336   // -----------------------
337   // rdx  = Start offset of capture.
338   // rbx = Length of capture
339 
340   // If length is negative, this code will fail (it's a symptom of a partial or
341   // illegal capture where start of capture after end of capture).
342   // This must not happen (no back-reference can reference a capture that wasn't
343   // closed before in the reg-exp, and we must not generate code that can cause
344   // this condition).
345 
346   // If length is zero, either the capture is empty or it is nonparticipating.
347   // In either case succeed immediately.
348   __ j(equal, &fallthrough);
349 
350   if (mode_ == ASCII) {
351     Label loop_increment;
352     if (on_no_match == NULL) {
353       on_no_match = &backtrack_label_;
354     }
355 
356     __ lea(r9, Operand(rsi, rdx, times_1, 0));
357     __ lea(r11, Operand(rsi, rdi, times_1, 0));
358     __ addq(rbx, r9);  // End of capture
359     // ---------------------
360     // r11 - current input character address
361     // r9 - current capture character address
362     // rbx - end of capture
363 
364     Label loop;
365     __ bind(&loop);
366     __ movzxbl(rdx, Operand(r9, 0));
367     __ movzxbl(rax, Operand(r11, 0));
368     // al - input character
369     // dl - capture character
370     __ cmpb(rax, rdx);
371     __ j(equal, &loop_increment);
372 
373     // Mismatch, try case-insensitive match (converting letters to lower-case).
374     // I.e., if or-ing with 0x20 makes values equal and in range 'a'-'z', it's
375     // a match.
376     __ or_(rax, Immediate(0x20));  // Convert match character to lower-case.
377     __ or_(rdx, Immediate(0x20));  // Convert capture character to lower-case.
378     __ cmpb(rax, rdx);
379     __ j(not_equal, on_no_match);  // Definitely not equal.
380     __ subb(rax, Immediate('a'));
381     __ cmpb(rax, Immediate('z' - 'a'));
382     __ j(above, on_no_match);  // Weren't letters anyway.
383 
384     __ bind(&loop_increment);
385     // Increment pointers into match and capture strings.
386     __ addq(r11, Immediate(1));
387     __ addq(r9, Immediate(1));
388     // Compare to end of capture, and loop if not done.
389     __ cmpq(r9, rbx);
390     __ j(below, &loop);
391 
392     // Compute new value of character position after the matched part.
393     __ movq(rdi, r11);
394     __ subq(rdi, rsi);
395   } else {
396     ASSERT(mode_ == UC16);
397     // Save important/volatile registers before calling C function.
398 #ifndef _WIN64
399     // Caller save on Linux and callee save in Windows.
400     __ push(rsi);
401     __ push(rdi);
402 #endif
403     __ push(backtrack_stackpointer());
404 
405     static const int num_arguments = 4;
406     __ PrepareCallCFunction(num_arguments);
407 
408     // Put arguments into parameter registers. Parameters are
409     //   Address byte_offset1 - Address captured substring's start.
410     //   Address byte_offset2 - Address of current character position.
411     //   size_t byte_length - length of capture in bytes(!)
412     //   Isolate* isolate
413 #ifdef _WIN64
414     // Compute and set byte_offset1 (start of capture).
415     __ lea(rcx, Operand(rsi, rdx, times_1, 0));
416     // Set byte_offset2.
417     __ lea(rdx, Operand(rsi, rdi, times_1, 0));
418     // Set byte_length.
419     __ movq(r8, rbx);
420     // Isolate.
421     __ LoadAddress(r9, ExternalReference::isolate_address());
422 #else  // AMD64 calling convention
423     // Compute byte_offset2 (current position = rsi+rdi).
424     __ lea(rax, Operand(rsi, rdi, times_1, 0));
425     // Compute and set byte_offset1 (start of capture).
426     __ lea(rdi, Operand(rsi, rdx, times_1, 0));
427     // Set byte_offset2.
428     __ movq(rsi, rax);
429     // Set byte_length.
430     __ movq(rdx, rbx);
431     // Isolate.
432     __ LoadAddress(rcx, ExternalReference::isolate_address());
433 #endif
434 
435     { // NOLINT: Can't find a way to open this scope without confusing the
436       // linter.
437       AllowExternalCallThatCantCauseGC scope(&masm_);
438       ExternalReference compare =
439           ExternalReference::re_case_insensitive_compare_uc16(masm_.isolate());
440       __ CallCFunction(compare, num_arguments);
441     }
442 
443     // Restore original values before reacting on result value.
444     __ Move(code_object_pointer(), masm_.CodeObject());
445     __ pop(backtrack_stackpointer());
446 #ifndef _WIN64
447     __ pop(rdi);
448     __ pop(rsi);
449 #endif
450 
451     // Check if function returned non-zero for success or zero for failure.
452     __ testq(rax, rax);
453     BranchOrBacktrack(zero, on_no_match);
454     // On success, increment position by length of capture.
455     // Requires that rbx is callee save (true for both Win64 and AMD64 ABIs).
456     __ addq(rdi, rbx);
457   }
458   __ bind(&fallthrough);
459 }
460 
461 
CheckNotBackReference(int start_reg,Label * on_no_match)462 void RegExpMacroAssemblerX64::CheckNotBackReference(
463     int start_reg,
464     Label* on_no_match) {
465   Label fallthrough;
466 
467   // Find length of back-referenced capture.
468   __ movq(rdx, register_location(start_reg));
469   __ movq(rax, register_location(start_reg + 1));
470   __ subq(rax, rdx);  // Length to check.
471 
472   // Fail on partial or illegal capture (start of capture after end of capture).
473   // This must not happen (no back-reference can reference a capture that wasn't
474   // closed before in the reg-exp).
475   __ Check(greater_equal, "Invalid capture referenced");
476 
477   // Succeed on empty capture (including non-participating capture)
478   __ j(equal, &fallthrough);
479 
480   // -----------------------
481   // rdx - Start of capture
482   // rax - length of capture
483 
484   // Check that there are sufficient characters left in the input.
485   __ movl(rbx, rdi);
486   __ addl(rbx, rax);
487   BranchOrBacktrack(greater, on_no_match);
488 
489   // Compute pointers to match string and capture string
490   __ lea(rbx, Operand(rsi, rdi, times_1, 0));  // Start of match.
491   __ addq(rdx, rsi);  // Start of capture.
492   __ lea(r9, Operand(rdx, rax, times_1, 0));  // End of capture
493 
494   // -----------------------
495   // rbx - current capture character address.
496   // rbx - current input character address .
497   // r9 - end of input to match (capture length after rbx).
498 
499   Label loop;
500   __ bind(&loop);
501   if (mode_ == ASCII) {
502     __ movzxbl(rax, Operand(rdx, 0));
503     __ cmpb(rax, Operand(rbx, 0));
504   } else {
505     ASSERT(mode_ == UC16);
506     __ movzxwl(rax, Operand(rdx, 0));
507     __ cmpw(rax, Operand(rbx, 0));
508   }
509   BranchOrBacktrack(not_equal, on_no_match);
510   // Increment pointers into capture and match string.
511   __ addq(rbx, Immediate(char_size()));
512   __ addq(rdx, Immediate(char_size()));
513   // Check if we have reached end of match area.
514   __ cmpq(rdx, r9);
515   __ j(below, &loop);
516 
517   // Success.
518   // Set current character position to position after match.
519   __ movq(rdi, rbx);
520   __ subq(rdi, rsi);
521 
522   __ bind(&fallthrough);
523 }
524 
525 
CheckNotRegistersEqual(int reg1,int reg2,Label * on_not_equal)526 void RegExpMacroAssemblerX64::CheckNotRegistersEqual(int reg1,
527                                                      int reg2,
528                                                      Label* on_not_equal) {
529   __ movq(rax, register_location(reg1));
530   __ cmpq(rax, register_location(reg2));
531   BranchOrBacktrack(not_equal, on_not_equal);
532 }
533 
534 
CheckNotCharacter(uint32_t c,Label * on_not_equal)535 void RegExpMacroAssemblerX64::CheckNotCharacter(uint32_t c,
536                                                 Label* on_not_equal) {
537   __ cmpl(current_character(), Immediate(c));
538   BranchOrBacktrack(not_equal, on_not_equal);
539 }
540 
541 
CheckCharacterAfterAnd(uint32_t c,uint32_t mask,Label * on_equal)542 void RegExpMacroAssemblerX64::CheckCharacterAfterAnd(uint32_t c,
543                                                      uint32_t mask,
544                                                      Label* on_equal) {
545   __ movl(rax, current_character());
546   __ and_(rax, Immediate(mask));
547   __ cmpl(rax, Immediate(c));
548   BranchOrBacktrack(equal, on_equal);
549 }
550 
551 
CheckNotCharacterAfterAnd(uint32_t c,uint32_t mask,Label * on_not_equal)552 void RegExpMacroAssemblerX64::CheckNotCharacterAfterAnd(uint32_t c,
553                                                         uint32_t mask,
554                                                         Label* on_not_equal) {
555   __ movl(rax, current_character());
556   __ and_(rax, Immediate(mask));
557   __ cmpl(rax, Immediate(c));
558   BranchOrBacktrack(not_equal, on_not_equal);
559 }
560 
561 
CheckNotCharacterAfterMinusAnd(uc16 c,uc16 minus,uc16 mask,Label * on_not_equal)562 void RegExpMacroAssemblerX64::CheckNotCharacterAfterMinusAnd(
563     uc16 c,
564     uc16 minus,
565     uc16 mask,
566     Label* on_not_equal) {
567   ASSERT(minus < String::kMaxUtf16CodeUnit);
568   __ lea(rax, Operand(current_character(), -minus));
569   __ and_(rax, Immediate(mask));
570   __ cmpl(rax, Immediate(c));
571   BranchOrBacktrack(not_equal, on_not_equal);
572 }
573 
574 
CheckSpecialCharacterClass(uc16 type,Label * on_no_match)575 bool RegExpMacroAssemblerX64::CheckSpecialCharacterClass(uc16 type,
576                                                          Label* on_no_match) {
577   // Range checks (c in min..max) are generally implemented by an unsigned
578   // (c - min) <= (max - min) check, using the sequence:
579   //   lea(rax, Operand(current_character(), -min)) or sub(rax, Immediate(min))
580   //   cmp(rax, Immediate(max - min))
581   switch (type) {
582   case 's':
583     // Match space-characters
584     if (mode_ == ASCII) {
585       // ASCII space characters are '\t'..'\r' and ' '.
586       Label success;
587       __ cmpl(current_character(), Immediate(' '));
588       __ j(equal, &success);
589       // Check range 0x09..0x0d
590       __ lea(rax, Operand(current_character(), -'\t'));
591       __ cmpl(rax, Immediate('\r' - '\t'));
592       BranchOrBacktrack(above, on_no_match);
593       __ bind(&success);
594       return true;
595     }
596     return false;
597   case 'S':
598     // Match non-space characters.
599     if (mode_ == ASCII) {
600       // ASCII space characters are '\t'..'\r' and ' '.
601       __ cmpl(current_character(), Immediate(' '));
602       BranchOrBacktrack(equal, on_no_match);
603       __ lea(rax, Operand(current_character(), -'\t'));
604       __ cmpl(rax, Immediate('\r' - '\t'));
605       BranchOrBacktrack(below_equal, on_no_match);
606       return true;
607     }
608     return false;
609   case 'd':
610     // Match ASCII digits ('0'..'9')
611     __ lea(rax, Operand(current_character(), -'0'));
612     __ cmpl(rax, Immediate('9' - '0'));
613     BranchOrBacktrack(above, on_no_match);
614     return true;
615   case 'D':
616     // Match non ASCII-digits
617     __ lea(rax, Operand(current_character(), -'0'));
618     __ cmpl(rax, Immediate('9' - '0'));
619     BranchOrBacktrack(below_equal, on_no_match);
620     return true;
621   case '.': {
622     // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
623     __ movl(rax, current_character());
624     __ xor_(rax, Immediate(0x01));
625     // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
626     __ subl(rax, Immediate(0x0b));
627     __ cmpl(rax, Immediate(0x0c - 0x0b));
628     BranchOrBacktrack(below_equal, on_no_match);
629     if (mode_ == UC16) {
630       // Compare original value to 0x2028 and 0x2029, using the already
631       // computed (current_char ^ 0x01 - 0x0b). I.e., check for
632       // 0x201d (0x2028 - 0x0b) or 0x201e.
633       __ subl(rax, Immediate(0x2028 - 0x0b));
634       __ cmpl(rax, Immediate(0x2029 - 0x2028));
635       BranchOrBacktrack(below_equal, on_no_match);
636     }
637     return true;
638   }
639   case 'n': {
640     // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
641     __ movl(rax, current_character());
642     __ xor_(rax, Immediate(0x01));
643     // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
644     __ subl(rax, Immediate(0x0b));
645     __ cmpl(rax, Immediate(0x0c - 0x0b));
646     if (mode_ == ASCII) {
647       BranchOrBacktrack(above, on_no_match);
648     } else {
649       Label done;
650       BranchOrBacktrack(below_equal, &done);
651       // Compare original value to 0x2028 and 0x2029, using the already
652       // computed (current_char ^ 0x01 - 0x0b). I.e., check for
653       // 0x201d (0x2028 - 0x0b) or 0x201e.
654       __ subl(rax, Immediate(0x2028 - 0x0b));
655       __ cmpl(rax, Immediate(0x2029 - 0x2028));
656       BranchOrBacktrack(above, on_no_match);
657       __ bind(&done);
658     }
659     return true;
660   }
661   case 'w': {
662     if (mode_ != ASCII) {
663       // Table is 128 entries, so all ASCII characters can be tested.
664       __ cmpl(current_character(), Immediate('z'));
665       BranchOrBacktrack(above, on_no_match);
666     }
667     __ movq(rbx, ExternalReference::re_word_character_map());
668     ASSERT_EQ(0, word_character_map[0]);  // Character '\0' is not a word char.
669     __ testb(Operand(rbx, current_character(), times_1, 0),
670              current_character());
671     BranchOrBacktrack(zero, on_no_match);
672     return true;
673   }
674   case 'W': {
675     Label done;
676     if (mode_ != ASCII) {
677       // Table is 128 entries, so all ASCII characters can be tested.
678       __ cmpl(current_character(), Immediate('z'));
679       __ j(above, &done);
680     }
681     __ movq(rbx, ExternalReference::re_word_character_map());
682     ASSERT_EQ(0, word_character_map[0]);  // Character '\0' is not a word char.
683     __ testb(Operand(rbx, current_character(), times_1, 0),
684              current_character());
685     BranchOrBacktrack(not_zero, on_no_match);
686     if (mode_ != ASCII) {
687       __ bind(&done);
688     }
689     return true;
690   }
691 
692   case '*':
693     // Match any character.
694     return true;
695   // No custom implementation (yet): s(UC16), S(UC16).
696   default:
697     return false;
698   }
699 }
700 
701 
Fail()702 void RegExpMacroAssemblerX64::Fail() {
703   ASSERT(FAILURE == 0);  // Return value for failure is zero.
704   __ Set(rax, 0);
705   __ jmp(&exit_label_);
706 }
707 
708 
GetCode(Handle<String> source)709 Handle<HeapObject> RegExpMacroAssemblerX64::GetCode(Handle<String> source) {
710   // Finalize code - write the entry point code now we know how many
711   // registers we need.
712   // Entry code:
713   __ bind(&entry_label_);
714 
715   // Tell the system that we have a stack frame.  Because the type is MANUAL, no
716   // is generated.
717   FrameScope scope(&masm_, StackFrame::MANUAL);
718 
719   // Actually emit code to start a new stack frame.
720   __ push(rbp);
721   __ movq(rbp, rsp);
722   // Save parameters and callee-save registers. Order here should correspond
723   //  to order of kBackup_ebx etc.
724 #ifdef _WIN64
725   // MSVC passes arguments in rcx, rdx, r8, r9, with backing stack slots.
726   // Store register parameters in pre-allocated stack slots,
727   __ movq(Operand(rbp, kInputString), rcx);
728   __ movq(Operand(rbp, kStartIndex), rdx);  // Passed as int32 in edx.
729   __ movq(Operand(rbp, kInputStart), r8);
730   __ movq(Operand(rbp, kInputEnd), r9);
731   // Callee-save on Win64.
732   __ push(rsi);
733   __ push(rdi);
734   __ push(rbx);
735 #else
736   // GCC passes arguments in rdi, rsi, rdx, rcx, r8, r9 (and then on stack).
737   // Push register parameters on stack for reference.
738   ASSERT_EQ(kInputString, -1 * kPointerSize);
739   ASSERT_EQ(kStartIndex, -2 * kPointerSize);
740   ASSERT_EQ(kInputStart, -3 * kPointerSize);
741   ASSERT_EQ(kInputEnd, -4 * kPointerSize);
742   ASSERT_EQ(kRegisterOutput, -5 * kPointerSize);
743   ASSERT_EQ(kStackHighEnd, -6 * kPointerSize);
744   __ push(rdi);
745   __ push(rsi);
746   __ push(rdx);
747   __ push(rcx);
748   __ push(r8);
749   __ push(r9);
750 
751   __ push(rbx);  // Callee-save
752 #endif
753 
754   __ push(Immediate(0));  // Make room for "at start" constant.
755 
756   // Check if we have space on the stack for registers.
757   Label stack_limit_hit;
758   Label stack_ok;
759 
760   ExternalReference stack_limit =
761       ExternalReference::address_of_stack_limit(masm_.isolate());
762   __ movq(rcx, rsp);
763   __ movq(kScratchRegister, stack_limit);
764   __ subq(rcx, Operand(kScratchRegister, 0));
765   // Handle it if the stack pointer is already below the stack limit.
766   __ j(below_equal, &stack_limit_hit);
767   // Check if there is room for the variable number of registers above
768   // the stack limit.
769   __ cmpq(rcx, Immediate(num_registers_ * kPointerSize));
770   __ j(above_equal, &stack_ok);
771   // Exit with OutOfMemory exception. There is not enough space on the stack
772   // for our working registers.
773   __ Set(rax, EXCEPTION);
774   __ jmp(&exit_label_);
775 
776   __ bind(&stack_limit_hit);
777   __ Move(code_object_pointer(), masm_.CodeObject());
778   CallCheckStackGuardState();  // Preserves no registers beside rbp and rsp.
779   __ testq(rax, rax);
780   // If returned value is non-zero, we exit with the returned value as result.
781   __ j(not_zero, &exit_label_);
782 
783   __ bind(&stack_ok);
784 
785   // Allocate space on stack for registers.
786   __ subq(rsp, Immediate(num_registers_ * kPointerSize));
787   // Load string length.
788   __ movq(rsi, Operand(rbp, kInputEnd));
789   // Load input position.
790   __ movq(rdi, Operand(rbp, kInputStart));
791   // Set up rdi to be negative offset from string end.
792   __ subq(rdi, rsi);
793   // Set rax to address of char before start of the string
794   // (effectively string position -1).
795   __ movq(rbx, Operand(rbp, kStartIndex));
796   __ neg(rbx);
797   if (mode_ == UC16) {
798     __ lea(rax, Operand(rdi, rbx, times_2, -char_size()));
799   } else {
800     __ lea(rax, Operand(rdi, rbx, times_1, -char_size()));
801   }
802   // Store this value in a local variable, for use when clearing
803   // position registers.
804   __ movq(Operand(rbp, kInputStartMinusOne), rax);
805 
806   if (num_saved_registers_ > 0) {
807     // Fill saved registers with initial value = start offset - 1
808     // Fill in stack push order, to avoid accessing across an unwritten
809     // page (a problem on Windows).
810     __ Set(rcx, kRegisterZero);
811     Label init_loop;
812     __ bind(&init_loop);
813     __ movq(Operand(rbp, rcx, times_1, 0), rax);
814     __ subq(rcx, Immediate(kPointerSize));
815     __ cmpq(rcx,
816             Immediate(kRegisterZero - num_saved_registers_ * kPointerSize));
817     __ j(greater, &init_loop);
818   }
819   // Ensure that we have written to each stack page, in order. Skipping a page
820   // on Windows can cause segmentation faults. Assuming page size is 4k.
821   const int kPageSize = 4096;
822   const int kRegistersPerPage = kPageSize / kPointerSize;
823   for (int i = num_saved_registers_ + kRegistersPerPage - 1;
824       i < num_registers_;
825       i += kRegistersPerPage) {
826     __ movq(register_location(i), rax);  // One write every page.
827   }
828 
829   // Initialize backtrack stack pointer.
830   __ movq(backtrack_stackpointer(), Operand(rbp, kStackHighEnd));
831   // Initialize code object pointer.
832   __ Move(code_object_pointer(), masm_.CodeObject());
833   // Load previous char as initial value of current-character.
834   Label at_start;
835   __ cmpb(Operand(rbp, kStartIndex), Immediate(0));
836   __ j(equal, &at_start);
837   LoadCurrentCharacterUnchecked(-1, 1);  // Load previous char.
838   __ jmp(&start_label_);
839   __ bind(&at_start);
840   __ Set(current_character(), '\n');
841   __ jmp(&start_label_);
842 
843 
844   // Exit code:
845   if (success_label_.is_linked()) {
846     // Save captures when successful.
847     __ bind(&success_label_);
848     if (num_saved_registers_ > 0) {
849       // copy captures to output
850       __ movq(rdx, Operand(rbp, kStartIndex));
851       __ movq(rbx, Operand(rbp, kRegisterOutput));
852       __ movq(rcx, Operand(rbp, kInputEnd));
853       __ subq(rcx, Operand(rbp, kInputStart));
854       if (mode_ == UC16) {
855         __ lea(rcx, Operand(rcx, rdx, times_2, 0));
856       } else {
857         __ addq(rcx, rdx);
858       }
859       for (int i = 0; i < num_saved_registers_; i++) {
860         __ movq(rax, register_location(i));
861         __ addq(rax, rcx);  // Convert to index from start, not end.
862         if (mode_ == UC16) {
863           __ sar(rax, Immediate(1));  // Convert byte index to character index.
864         }
865         __ movl(Operand(rbx, i * kIntSize), rax);
866       }
867     }
868     __ Set(rax, SUCCESS);
869   }
870 
871   // Exit and return rax
872   __ bind(&exit_label_);
873 
874 #ifdef _WIN64
875   // Restore callee save registers.
876   __ lea(rsp, Operand(rbp, kLastCalleeSaveRegister));
877   __ pop(rbx);
878   __ pop(rdi);
879   __ pop(rsi);
880   // Stack now at rbp.
881 #else
882   // Restore callee save register.
883   __ movq(rbx, Operand(rbp, kBackup_rbx));
884   // Skip rsp to rbp.
885   __ movq(rsp, rbp);
886 #endif
887   // Exit function frame, restore previous one.
888   __ pop(rbp);
889   __ ret(0);
890 
891   // Backtrack code (branch target for conditional backtracks).
892   if (backtrack_label_.is_linked()) {
893     __ bind(&backtrack_label_);
894     Backtrack();
895   }
896 
897   Label exit_with_exception;
898 
899   // Preempt-code
900   if (check_preempt_label_.is_linked()) {
901     SafeCallTarget(&check_preempt_label_);
902 
903     __ push(backtrack_stackpointer());
904     __ push(rdi);
905 
906     CallCheckStackGuardState();
907     __ testq(rax, rax);
908     // If returning non-zero, we should end execution with the given
909     // result as return value.
910     __ j(not_zero, &exit_label_);
911 
912     // Restore registers.
913     __ Move(code_object_pointer(), masm_.CodeObject());
914     __ pop(rdi);
915     __ pop(backtrack_stackpointer());
916     // String might have moved: Reload esi from frame.
917     __ movq(rsi, Operand(rbp, kInputEnd));
918     SafeReturn();
919   }
920 
921   // Backtrack stack overflow code.
922   if (stack_overflow_label_.is_linked()) {
923     SafeCallTarget(&stack_overflow_label_);
924     // Reached if the backtrack-stack limit has been hit.
925 
926     Label grow_failed;
927     // Save registers before calling C function
928 #ifndef _WIN64
929     // Callee-save in Microsoft 64-bit ABI, but not in AMD64 ABI.
930     __ push(rsi);
931     __ push(rdi);
932 #endif
933 
934     // Call GrowStack(backtrack_stackpointer())
935     static const int num_arguments = 3;
936     __ PrepareCallCFunction(num_arguments);
937 #ifdef _WIN64
938     // Microsoft passes parameters in rcx, rdx, r8.
939     // First argument, backtrack stackpointer, is already in rcx.
940     __ lea(rdx, Operand(rbp, kStackHighEnd));  // Second argument
941     __ LoadAddress(r8, ExternalReference::isolate_address());
942 #else
943     // AMD64 ABI passes parameters in rdi, rsi, rdx.
944     __ movq(rdi, backtrack_stackpointer());   // First argument.
945     __ lea(rsi, Operand(rbp, kStackHighEnd));  // Second argument.
946     __ LoadAddress(rdx, ExternalReference::isolate_address());
947 #endif
948     ExternalReference grow_stack =
949         ExternalReference::re_grow_stack(masm_.isolate());
950     __ CallCFunction(grow_stack, num_arguments);
951     // If return NULL, we have failed to grow the stack, and
952     // must exit with a stack-overflow exception.
953     __ testq(rax, rax);
954     __ j(equal, &exit_with_exception);
955     // Otherwise use return value as new stack pointer.
956     __ movq(backtrack_stackpointer(), rax);
957     // Restore saved registers and continue.
958     __ Move(code_object_pointer(), masm_.CodeObject());
959 #ifndef _WIN64
960     __ pop(rdi);
961     __ pop(rsi);
962 #endif
963     SafeReturn();
964   }
965 
966   if (exit_with_exception.is_linked()) {
967     // If any of the code above needed to exit with an exception.
968     __ bind(&exit_with_exception);
969     // Exit with Result EXCEPTION(-1) to signal thrown exception.
970     __ Set(rax, EXCEPTION);
971     __ jmp(&exit_label_);
972   }
973 
974   FixupCodeRelativePositions();
975 
976   CodeDesc code_desc;
977   masm_.GetCode(&code_desc);
978   Isolate* isolate = ISOLATE;
979   Handle<Code> code = isolate->factory()->NewCode(
980       code_desc, Code::ComputeFlags(Code::REGEXP),
981       masm_.CodeObject());
982   PROFILE(isolate, RegExpCodeCreateEvent(*code, *source));
983   return Handle<HeapObject>::cast(code);
984 }
985 
986 
GoTo(Label * to)987 void RegExpMacroAssemblerX64::GoTo(Label* to) {
988   BranchOrBacktrack(no_condition, to);
989 }
990 
991 
IfRegisterGE(int reg,int comparand,Label * if_ge)992 void RegExpMacroAssemblerX64::IfRegisterGE(int reg,
993                                            int comparand,
994                                            Label* if_ge) {
995   __ cmpq(register_location(reg), Immediate(comparand));
996   BranchOrBacktrack(greater_equal, if_ge);
997 }
998 
999 
IfRegisterLT(int reg,int comparand,Label * if_lt)1000 void RegExpMacroAssemblerX64::IfRegisterLT(int reg,
1001                                            int comparand,
1002                                            Label* if_lt) {
1003   __ cmpq(register_location(reg), Immediate(comparand));
1004   BranchOrBacktrack(less, if_lt);
1005 }
1006 
1007 
IfRegisterEqPos(int reg,Label * if_eq)1008 void RegExpMacroAssemblerX64::IfRegisterEqPos(int reg,
1009                                               Label* if_eq) {
1010   __ cmpq(rdi, register_location(reg));
1011   BranchOrBacktrack(equal, if_eq);
1012 }
1013 
1014 
1015 RegExpMacroAssembler::IrregexpImplementation
Implementation()1016     RegExpMacroAssemblerX64::Implementation() {
1017   return kX64Implementation;
1018 }
1019 
1020 
LoadCurrentCharacter(int cp_offset,Label * on_end_of_input,bool check_bounds,int characters)1021 void RegExpMacroAssemblerX64::LoadCurrentCharacter(int cp_offset,
1022                                                    Label* on_end_of_input,
1023                                                    bool check_bounds,
1024                                                    int characters) {
1025   ASSERT(cp_offset >= -1);      // ^ and \b can look behind one character.
1026   ASSERT(cp_offset < (1<<30));  // Be sane! (And ensure negation works)
1027   if (check_bounds) {
1028     CheckPosition(cp_offset + characters - 1, on_end_of_input);
1029   }
1030   LoadCurrentCharacterUnchecked(cp_offset, characters);
1031 }
1032 
1033 
PopCurrentPosition()1034 void RegExpMacroAssemblerX64::PopCurrentPosition() {
1035   Pop(rdi);
1036 }
1037 
1038 
PopRegister(int register_index)1039 void RegExpMacroAssemblerX64::PopRegister(int register_index) {
1040   Pop(rax);
1041   __ movq(register_location(register_index), rax);
1042 }
1043 
1044 
PushBacktrack(Label * label)1045 void RegExpMacroAssemblerX64::PushBacktrack(Label* label) {
1046   Push(label);
1047   CheckStackLimit();
1048 }
1049 
1050 
PushCurrentPosition()1051 void RegExpMacroAssemblerX64::PushCurrentPosition() {
1052   Push(rdi);
1053 }
1054 
1055 
PushRegister(int register_index,StackCheckFlag check_stack_limit)1056 void RegExpMacroAssemblerX64::PushRegister(int register_index,
1057                                            StackCheckFlag check_stack_limit) {
1058   __ movq(rax, register_location(register_index));
1059   Push(rax);
1060   if (check_stack_limit) CheckStackLimit();
1061 }
1062 
1063 
ReadCurrentPositionFromRegister(int reg)1064 void RegExpMacroAssemblerX64::ReadCurrentPositionFromRegister(int reg) {
1065   __ movq(rdi, register_location(reg));
1066 }
1067 
1068 
ReadStackPointerFromRegister(int reg)1069 void RegExpMacroAssemblerX64::ReadStackPointerFromRegister(int reg) {
1070   __ movq(backtrack_stackpointer(), register_location(reg));
1071   __ addq(backtrack_stackpointer(), Operand(rbp, kStackHighEnd));
1072 }
1073 
1074 
SetCurrentPositionFromEnd(int by)1075 void RegExpMacroAssemblerX64::SetCurrentPositionFromEnd(int by) {
1076   Label after_position;
1077   __ cmpq(rdi, Immediate(-by * char_size()));
1078   __ j(greater_equal, &after_position, Label::kNear);
1079   __ movq(rdi, Immediate(-by * char_size()));
1080   // On RegExp code entry (where this operation is used), the character before
1081   // the current position is expected to be already loaded.
1082   // We have advanced the position, so it's safe to read backwards.
1083   LoadCurrentCharacterUnchecked(-1, 1);
1084   __ bind(&after_position);
1085 }
1086 
1087 
SetRegister(int register_index,int to)1088 void RegExpMacroAssemblerX64::SetRegister(int register_index, int to) {
1089   ASSERT(register_index >= num_saved_registers_);  // Reserved for positions!
1090   __ movq(register_location(register_index), Immediate(to));
1091 }
1092 
1093 
Succeed()1094 void RegExpMacroAssemblerX64::Succeed() {
1095   __ jmp(&success_label_);
1096 }
1097 
1098 
WriteCurrentPositionToRegister(int reg,int cp_offset)1099 void RegExpMacroAssemblerX64::WriteCurrentPositionToRegister(int reg,
1100                                                              int cp_offset) {
1101   if (cp_offset == 0) {
1102     __ movq(register_location(reg), rdi);
1103   } else {
1104     __ lea(rax, Operand(rdi, cp_offset * char_size()));
1105     __ movq(register_location(reg), rax);
1106   }
1107 }
1108 
1109 
ClearRegisters(int reg_from,int reg_to)1110 void RegExpMacroAssemblerX64::ClearRegisters(int reg_from, int reg_to) {
1111   ASSERT(reg_from <= reg_to);
1112   __ movq(rax, Operand(rbp, kInputStartMinusOne));
1113   for (int reg = reg_from; reg <= reg_to; reg++) {
1114     __ movq(register_location(reg), rax);
1115   }
1116 }
1117 
1118 
WriteStackPointerToRegister(int reg)1119 void RegExpMacroAssemblerX64::WriteStackPointerToRegister(int reg) {
1120   __ movq(rax, backtrack_stackpointer());
1121   __ subq(rax, Operand(rbp, kStackHighEnd));
1122   __ movq(register_location(reg), rax);
1123 }
1124 
1125 
1126 // Private methods:
1127 
CallCheckStackGuardState()1128 void RegExpMacroAssemblerX64::CallCheckStackGuardState() {
1129   // This function call preserves no register values. Caller should
1130   // store anything volatile in a C call or overwritten by this function.
1131   static const int num_arguments = 3;
1132   __ PrepareCallCFunction(num_arguments);
1133 #ifdef _WIN64
1134   // Second argument: Code* of self. (Do this before overwriting r8).
1135   __ movq(rdx, code_object_pointer());
1136   // Third argument: RegExp code frame pointer.
1137   __ movq(r8, rbp);
1138   // First argument: Next address on the stack (will be address of
1139   // return address).
1140   __ lea(rcx, Operand(rsp, -kPointerSize));
1141 #else
1142   // Third argument: RegExp code frame pointer.
1143   __ movq(rdx, rbp);
1144   // Second argument: Code* of self.
1145   __ movq(rsi, code_object_pointer());
1146   // First argument: Next address on the stack (will be address of
1147   // return address).
1148   __ lea(rdi, Operand(rsp, -kPointerSize));
1149 #endif
1150   ExternalReference stack_check =
1151       ExternalReference::re_check_stack_guard_state(masm_.isolate());
1152   __ CallCFunction(stack_check, num_arguments);
1153 }
1154 
1155 
1156 // Helper function for reading a value out of a stack frame.
1157 template <typename T>
frame_entry(Address re_frame,int frame_offset)1158 static T& frame_entry(Address re_frame, int frame_offset) {
1159   return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
1160 }
1161 
1162 
CheckStackGuardState(Address * return_address,Code * re_code,Address re_frame)1163 int RegExpMacroAssemblerX64::CheckStackGuardState(Address* return_address,
1164                                                   Code* re_code,
1165                                                   Address re_frame) {
1166   Isolate* isolate = frame_entry<Isolate*>(re_frame, kIsolate);
1167   ASSERT(isolate == Isolate::Current());
1168   if (isolate->stack_guard()->IsStackOverflow()) {
1169     isolate->StackOverflow();
1170     return EXCEPTION;
1171   }
1172 
1173   // If not real stack overflow the stack guard was used to interrupt
1174   // execution for another purpose.
1175 
1176   // If this is a direct call from JavaScript retry the RegExp forcing the call
1177   // through the runtime system. Currently the direct call cannot handle a GC.
1178   if (frame_entry<int>(re_frame, kDirectCall) == 1) {
1179     return RETRY;
1180   }
1181 
1182   // Prepare for possible GC.
1183   HandleScope handles(isolate);
1184   Handle<Code> code_handle(re_code);
1185 
1186   Handle<String> subject(frame_entry<String*>(re_frame, kInputString));
1187 
1188   // Current string.
1189   bool is_ascii = subject->IsAsciiRepresentationUnderneath();
1190 
1191   ASSERT(re_code->instruction_start() <= *return_address);
1192   ASSERT(*return_address <=
1193       re_code->instruction_start() + re_code->instruction_size());
1194 
1195   MaybeObject* result = Execution::HandleStackGuardInterrupt(isolate);
1196 
1197   if (*code_handle != re_code) {  // Return address no longer valid
1198     intptr_t delta = code_handle->address() - re_code->address();
1199     // Overwrite the return address on the stack.
1200     *return_address += delta;
1201   }
1202 
1203   if (result->IsException()) {
1204     return EXCEPTION;
1205   }
1206 
1207   Handle<String> subject_tmp = subject;
1208   int slice_offset = 0;
1209 
1210   // Extract the underlying string and the slice offset.
1211   if (StringShape(*subject_tmp).IsCons()) {
1212     subject_tmp = Handle<String>(ConsString::cast(*subject_tmp)->first());
1213   } else if (StringShape(*subject_tmp).IsSliced()) {
1214     SlicedString* slice = SlicedString::cast(*subject_tmp);
1215     subject_tmp = Handle<String>(slice->parent());
1216     slice_offset = slice->offset();
1217   }
1218 
1219   // String might have changed.
1220   if (subject_tmp->IsAsciiRepresentation() != is_ascii) {
1221     // If we changed between an ASCII and an UC16 string, the specialized
1222     // code cannot be used, and we need to restart regexp matching from
1223     // scratch (including, potentially, compiling a new version of the code).
1224     return RETRY;
1225   }
1226 
1227   // Otherwise, the content of the string might have moved. It must still
1228   // be a sequential or external string with the same content.
1229   // Update the start and end pointers in the stack frame to the current
1230   // location (whether it has actually moved or not).
1231   ASSERT(StringShape(*subject_tmp).IsSequential() ||
1232       StringShape(*subject_tmp).IsExternal());
1233 
1234   // The original start address of the characters to match.
1235   const byte* start_address = frame_entry<const byte*>(re_frame, kInputStart);
1236 
1237   // Find the current start address of the same character at the current string
1238   // position.
1239   int start_index = frame_entry<int>(re_frame, kStartIndex);
1240   const byte* new_address = StringCharacterPosition(*subject_tmp,
1241                                                     start_index + slice_offset);
1242 
1243   if (start_address != new_address) {
1244     // If there is a difference, update the object pointer and start and end
1245     // addresses in the RegExp stack frame to match the new value.
1246     const byte* end_address = frame_entry<const byte* >(re_frame, kInputEnd);
1247     int byte_length = static_cast<int>(end_address - start_address);
1248     frame_entry<const String*>(re_frame, kInputString) = *subject;
1249     frame_entry<const byte*>(re_frame, kInputStart) = new_address;
1250     frame_entry<const byte*>(re_frame, kInputEnd) = new_address + byte_length;
1251   } else if (frame_entry<const String*>(re_frame, kInputString) != *subject) {
1252     // Subject string might have been a ConsString that underwent
1253     // short-circuiting during GC. That will not change start_address but
1254     // will change pointer inside the subject handle.
1255     frame_entry<const String*>(re_frame, kInputString) = *subject;
1256   }
1257 
1258   return 0;
1259 }
1260 
1261 
register_location(int register_index)1262 Operand RegExpMacroAssemblerX64::register_location(int register_index) {
1263   ASSERT(register_index < (1<<30));
1264   if (num_registers_ <= register_index) {
1265     num_registers_ = register_index + 1;
1266   }
1267   return Operand(rbp, kRegisterZero - register_index * kPointerSize);
1268 }
1269 
1270 
CheckPosition(int cp_offset,Label * on_outside_input)1271 void RegExpMacroAssemblerX64::CheckPosition(int cp_offset,
1272                                             Label* on_outside_input) {
1273   __ cmpl(rdi, Immediate(-cp_offset * char_size()));
1274   BranchOrBacktrack(greater_equal, on_outside_input);
1275 }
1276 
1277 
BranchOrBacktrack(Condition condition,Label * to)1278 void RegExpMacroAssemblerX64::BranchOrBacktrack(Condition condition,
1279                                                 Label* to) {
1280   if (condition < 0) {  // No condition
1281     if (to == NULL) {
1282       Backtrack();
1283       return;
1284     }
1285     __ jmp(to);
1286     return;
1287   }
1288   if (to == NULL) {
1289     __ j(condition, &backtrack_label_);
1290     return;
1291   }
1292   __ j(condition, to);
1293 }
1294 
1295 
SafeCall(Label * to)1296 void RegExpMacroAssemblerX64::SafeCall(Label* to) {
1297   __ call(to);
1298 }
1299 
1300 
SafeCallTarget(Label * label)1301 void RegExpMacroAssemblerX64::SafeCallTarget(Label* label) {
1302   __ bind(label);
1303   __ subq(Operand(rsp, 0), code_object_pointer());
1304 }
1305 
1306 
SafeReturn()1307 void RegExpMacroAssemblerX64::SafeReturn() {
1308   __ addq(Operand(rsp, 0), code_object_pointer());
1309   __ ret(0);
1310 }
1311 
1312 
Push(Register source)1313 void RegExpMacroAssemblerX64::Push(Register source) {
1314   ASSERT(!source.is(backtrack_stackpointer()));
1315   // Notice: This updates flags, unlike normal Push.
1316   __ subq(backtrack_stackpointer(), Immediate(kIntSize));
1317   __ movl(Operand(backtrack_stackpointer(), 0), source);
1318 }
1319 
1320 
Push(Immediate value)1321 void RegExpMacroAssemblerX64::Push(Immediate value) {
1322   // Notice: This updates flags, unlike normal Push.
1323   __ subq(backtrack_stackpointer(), Immediate(kIntSize));
1324   __ movl(Operand(backtrack_stackpointer(), 0), value);
1325 }
1326 
1327 
FixupCodeRelativePositions()1328 void RegExpMacroAssemblerX64::FixupCodeRelativePositions() {
1329   for (int i = 0, n = code_relative_fixup_positions_.length(); i < n; i++) {
1330     int position = code_relative_fixup_positions_[i];
1331     // The position succeeds a relative label offset from position.
1332     // Patch the relative offset to be relative to the Code object pointer
1333     // instead.
1334     int patch_position = position - kIntSize;
1335     int offset = masm_.long_at(patch_position);
1336     masm_.long_at_put(patch_position,
1337                        offset
1338                        + position
1339                        + Code::kHeaderSize
1340                        - kHeapObjectTag);
1341   }
1342   code_relative_fixup_positions_.Clear();
1343 }
1344 
1345 
Push(Label * backtrack_target)1346 void RegExpMacroAssemblerX64::Push(Label* backtrack_target) {
1347   __ subq(backtrack_stackpointer(), Immediate(kIntSize));
1348   __ movl(Operand(backtrack_stackpointer(), 0), backtrack_target);
1349   MarkPositionForCodeRelativeFixup();
1350 }
1351 
1352 
Pop(Register target)1353 void RegExpMacroAssemblerX64::Pop(Register target) {
1354   ASSERT(!target.is(backtrack_stackpointer()));
1355   __ movsxlq(target, Operand(backtrack_stackpointer(), 0));
1356   // Notice: This updates flags, unlike normal Pop.
1357   __ addq(backtrack_stackpointer(), Immediate(kIntSize));
1358 }
1359 
1360 
Drop()1361 void RegExpMacroAssemblerX64::Drop() {
1362   __ addq(backtrack_stackpointer(), Immediate(kIntSize));
1363 }
1364 
1365 
CheckPreemption()1366 void RegExpMacroAssemblerX64::CheckPreemption() {
1367   // Check for preemption.
1368   Label no_preempt;
1369   ExternalReference stack_limit =
1370       ExternalReference::address_of_stack_limit(masm_.isolate());
1371   __ load_rax(stack_limit);
1372   __ cmpq(rsp, rax);
1373   __ j(above, &no_preempt);
1374 
1375   SafeCall(&check_preempt_label_);
1376 
1377   __ bind(&no_preempt);
1378 }
1379 
1380 
CheckStackLimit()1381 void RegExpMacroAssemblerX64::CheckStackLimit() {
1382   Label no_stack_overflow;
1383   ExternalReference stack_limit =
1384       ExternalReference::address_of_regexp_stack_limit(masm_.isolate());
1385   __ load_rax(stack_limit);
1386   __ cmpq(backtrack_stackpointer(), rax);
1387   __ j(above, &no_stack_overflow);
1388 
1389   SafeCall(&stack_overflow_label_);
1390 
1391   __ bind(&no_stack_overflow);
1392 }
1393 
1394 
LoadCurrentCharacterUnchecked(int cp_offset,int characters)1395 void RegExpMacroAssemblerX64::LoadCurrentCharacterUnchecked(int cp_offset,
1396                                                             int characters) {
1397   if (mode_ == ASCII) {
1398     if (characters == 4) {
1399       __ movl(current_character(), Operand(rsi, rdi, times_1, cp_offset));
1400     } else if (characters == 2) {
1401       __ movzxwl(current_character(), Operand(rsi, rdi, times_1, cp_offset));
1402     } else {
1403       ASSERT(characters == 1);
1404       __ movzxbl(current_character(), Operand(rsi, rdi, times_1, cp_offset));
1405     }
1406   } else {
1407     ASSERT(mode_ == UC16);
1408     if (characters == 2) {
1409       __ movl(current_character(),
1410               Operand(rsi, rdi, times_1, cp_offset * sizeof(uc16)));
1411     } else {
1412       ASSERT(characters == 1);
1413       __ movzxwl(current_character(),
1414                  Operand(rsi, rdi, times_1, cp_offset * sizeof(uc16)));
1415     }
1416   }
1417 }
1418 
1419 #undef __
1420 
1421 #endif  // V8_INTERPRETED_REGEXP
1422 
1423 }}  // namespace v8::internal
1424 
1425 #endif  // V8_TARGET_ARCH_X64
1426