• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #include "v8.h"
29 #include "accessors.h"
30 
31 #include "cctest.h"
32 
33 
34 using namespace v8::internal;
35 
36 
AllocateAfterFailures()37 static MaybeObject* AllocateAfterFailures() {
38   static int attempts = 0;
39   if (++attempts < 3) return Failure::RetryAfterGC();
40   Heap* heap = Isolate::Current()->heap();
41 
42   // New space.
43   NewSpace* new_space = heap->new_space();
44   static const int kNewSpaceFillerSize = ByteArray::SizeFor(0);
45   while (new_space->Available() > kNewSpaceFillerSize) {
46     int available_before = static_cast<int>(new_space->Available());
47     CHECK(!heap->AllocateByteArray(0)->IsFailure());
48     if (available_before == new_space->Available()) {
49       // It seems that we are avoiding new space allocations when
50       // allocation is forced, so no need to fill up new space
51       // in order to make the test harder.
52       break;
53     }
54   }
55   CHECK(!heap->AllocateByteArray(100)->IsFailure());
56   CHECK(!heap->AllocateFixedArray(100, NOT_TENURED)->IsFailure());
57 
58   // Make sure we can allocate through optimized allocation functions
59   // for specific kinds.
60   CHECK(!heap->AllocateFixedArray(100)->IsFailure());
61   CHECK(!heap->AllocateHeapNumber(0.42)->IsFailure());
62   CHECK(!heap->AllocateArgumentsObject(Smi::FromInt(87), 10)->IsFailure());
63   Object* object = heap->AllocateJSObject(
64       *Isolate::Current()->object_function())->ToObjectChecked();
65   CHECK(!heap->CopyJSObject(JSObject::cast(object))->IsFailure());
66 
67   // Old data space.
68   OldSpace* old_data_space = heap->old_data_space();
69   static const int kOldDataSpaceFillerSize = ByteArray::SizeFor(0);
70   while (old_data_space->Available() > kOldDataSpaceFillerSize) {
71     CHECK(!heap->AllocateByteArray(0, TENURED)->IsFailure());
72   }
73   CHECK(!heap->AllocateRawAsciiString(100, TENURED)->IsFailure());
74 
75   // Old pointer space.
76   OldSpace* old_pointer_space = heap->old_pointer_space();
77   static const int kOldPointerSpaceFillerLength = 10000;
78   static const int kOldPointerSpaceFillerSize = FixedArray::SizeFor(
79       kOldPointerSpaceFillerLength);
80   while (old_pointer_space->Available() > kOldPointerSpaceFillerSize) {
81     CHECK(!heap->AllocateFixedArray(kOldPointerSpaceFillerLength, TENURED)->
82           IsFailure());
83   }
84   CHECK(!heap->AllocateFixedArray(kOldPointerSpaceFillerLength, TENURED)->
85         IsFailure());
86 
87   // Large object space.
88   static const int kLargeObjectSpaceFillerLength = 300000;
89   static const int kLargeObjectSpaceFillerSize = FixedArray::SizeFor(
90       kLargeObjectSpaceFillerLength);
91   ASSERT(kLargeObjectSpaceFillerSize > heap->old_pointer_space()->AreaSize());
92   while (heap->OldGenerationSpaceAvailable() > kLargeObjectSpaceFillerSize) {
93     CHECK(!heap->AllocateFixedArray(kLargeObjectSpaceFillerLength, TENURED)->
94           IsFailure());
95   }
96   CHECK(!heap->AllocateFixedArray(kLargeObjectSpaceFillerLength, TENURED)->
97         IsFailure());
98 
99   // Map space.
100   MapSpace* map_space = heap->map_space();
101   static const int kMapSpaceFillerSize = Map::kSize;
102   InstanceType instance_type = JS_OBJECT_TYPE;
103   int instance_size = JSObject::kHeaderSize;
104   while (map_space->Available() > kMapSpaceFillerSize) {
105     CHECK(!heap->AllocateMap(instance_type, instance_size)->IsFailure());
106   }
107   CHECK(!heap->AllocateMap(instance_type, instance_size)->IsFailure());
108 
109   // Test that we can allocate in old pointer space and code space.
110   CHECK(!heap->AllocateFixedArray(100, TENURED)->IsFailure());
111   CHECK(!heap->CopyCode(Isolate::Current()->builtins()->builtin(
112       Builtins::kIllegal))->IsFailure());
113 
114   // Return success.
115   return Smi::FromInt(42);
116 }
117 
118 
Test()119 static Handle<Object> Test() {
120   CALL_HEAP_FUNCTION(ISOLATE, AllocateAfterFailures(), Object);
121 }
122 
123 
TEST(StressHandles)124 TEST(StressHandles) {
125   v8::Persistent<v8::Context> env = v8::Context::New();
126   v8::HandleScope scope;
127   env->Enter();
128   Handle<Object> o = Test();
129   CHECK(o->IsSmi() && Smi::cast(*o)->value() == 42);
130   env->Exit();
131 }
132 
133 
TestAccessorGet(Object * object,void *)134 static MaybeObject* TestAccessorGet(Object* object, void*) {
135   return AllocateAfterFailures();
136 }
137 
138 
139 const AccessorDescriptor kDescriptor = {
140   TestAccessorGet,
141   0,
142   0
143 };
144 
145 
TEST(StressJS)146 TEST(StressJS) {
147   v8::Persistent<v8::Context> env = v8::Context::New();
148   v8::HandleScope scope;
149   env->Enter();
150   Handle<JSFunction> function =
151       FACTORY->NewFunction(FACTORY->function_symbol(), FACTORY->null_value());
152   // Force the creation of an initial map and set the code to
153   // something empty.
154   FACTORY->NewJSObject(function);
155   function->ReplaceCode(Isolate::Current()->builtins()->builtin(
156       Builtins::kEmptyFunction));
157   // Patch the map to have an accessor for "get".
158   Handle<Map> map(function->initial_map());
159   Handle<DescriptorArray> instance_descriptors(map->instance_descriptors());
160   Handle<Foreign> foreign = FACTORY->NewForeign(&kDescriptor);
161   instance_descriptors = FACTORY->CopyAppendForeignDescriptor(
162       instance_descriptors,
163       FACTORY->NewStringFromAscii(Vector<const char>("get", 3)),
164       foreign,
165       static_cast<PropertyAttributes>(0));
166   map->set_instance_descriptors(*instance_descriptors);
167   // Add the Foo constructor the global object.
168   env->Global()->Set(v8::String::New("Foo"), v8::Utils::ToLocal(function));
169   // Call the accessor through JavaScript.
170   v8::Handle<v8::Value> result =
171       v8::Script::Compile(v8::String::New("(new Foo).get"))->Run();
172   CHECK_EQ(42, result->Int32Value());
173   env->Exit();
174 }
175 
176 
177 // CodeRange test.
178 // Tests memory management in a CodeRange by allocating and freeing blocks,
179 // using a pseudorandom generator to choose block sizes geometrically
180 // distributed between 2 * Page::kPageSize and 2^5 + 1 * Page::kPageSize.
181 // Ensure that the freed chunks are collected and reused by allocating (in
182 // total) more than the size of the CodeRange.
183 
184 // This pseudorandom generator does not need to be particularly good.
185 // Use the lower half of the V8::Random() generator.
Pseudorandom()186 unsigned int Pseudorandom() {
187   static uint32_t lo = 2345;
188   lo = 18273 * (lo & 0xFFFF) + (lo >> 16);  // Provably not 0.
189   return lo & 0xFFFF;
190 }
191 
192 
193 // Plain old data class.  Represents a block of allocated memory.
194 class Block {
195  public:
Block(Address base_arg,int size_arg)196   Block(Address base_arg, int size_arg)
197       : base(base_arg), size(size_arg) {}
198 
199   Address base;
200   int size;
201 };
202 
203 
TEST(CodeRange)204 TEST(CodeRange) {
205   const int code_range_size = 32*MB;
206   OS::SetUp();
207   Isolate::Current()->InitializeLoggingAndCounters();
208   CodeRange* code_range = new CodeRange(Isolate::Current());
209   code_range->SetUp(code_range_size);
210   int current_allocated = 0;
211   int total_allocated = 0;
212   List<Block> blocks(1000);
213 
214   while (total_allocated < 5 * code_range_size) {
215     if (current_allocated < code_range_size / 10) {
216       // Allocate a block.
217       // Geometrically distributed sizes, greater than
218       // Page::kMaxNonCodeHeapObjectSize (which is greater than code page area).
219       // TODO(gc): instead of using 3 use some contant based on code_range_size
220       // kMaxHeapObjectSize.
221       size_t requested =
222           (Page::kMaxNonCodeHeapObjectSize << (Pseudorandom() % 3)) +
223           Pseudorandom() % 5000 + 1;
224       size_t allocated = 0;
225       Address base = code_range->AllocateRawMemory(requested, &allocated);
226       CHECK(base != NULL);
227       blocks.Add(Block(base, static_cast<int>(allocated)));
228       current_allocated += static_cast<int>(allocated);
229       total_allocated += static_cast<int>(allocated);
230     } else {
231       // Free a block.
232       int index = Pseudorandom() % blocks.length();
233       code_range->FreeRawMemory(blocks[index].base, blocks[index].size);
234       current_allocated -= blocks[index].size;
235       if (index < blocks.length() - 1) {
236         blocks[index] = blocks.RemoveLast();
237       } else {
238         blocks.RemoveLast();
239       }
240     }
241   }
242 
243   code_range->TearDown();
244   delete code_range;
245 }
246