• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "EffectReverb"
18 //#define LOG_NDEBUG 0
19 #include <cutils/log.h>
20 #include <stdlib.h>
21 #include <string.h>
22 #include <stdbool.h>
23 #include "EffectReverb.h"
24 #include "EffectsMath.h"
25 
26 // effect_handle_t interface implementation for reverb effect
27 const struct effect_interface_s gReverbInterface = {
28         Reverb_Process,
29         Reverb_Command,
30         Reverb_GetDescriptor,
31         NULL
32 };
33 
34 // Google auxiliary environmental reverb UUID: 1f0ae2e0-4ef7-11df-bc09-0002a5d5c51b
35 static const effect_descriptor_t gAuxEnvReverbDescriptor = {
36         {0xc2e5d5f0, 0x94bd, 0x4763, 0x9cac, {0x4e, 0x23, 0x4d, 0x06, 0x83, 0x9e}},
37         {0x1f0ae2e0, 0x4ef7, 0x11df, 0xbc09, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
38         EFFECT_CONTROL_API_VERSION,
39         // flags other than EFFECT_FLAG_TYPE_AUXILIARY set for test purpose
40         EFFECT_FLAG_TYPE_AUXILIARY | EFFECT_FLAG_DEVICE_IND | EFFECT_FLAG_AUDIO_MODE_IND,
41         0, // TODO
42         33,
43         "Aux Environmental Reverb",
44         "The Android Open Source Project"
45 };
46 
47 // Google insert environmental reverb UUID: aa476040-6342-11df-91a4-0002a5d5c51b
48 static const effect_descriptor_t gInsertEnvReverbDescriptor = {
49         {0xc2e5d5f0, 0x94bd, 0x4763, 0x9cac, {0x4e, 0x23, 0x4d, 0x06, 0x83, 0x9e}},
50         {0xaa476040, 0x6342, 0x11df, 0x91a4, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
51         EFFECT_CONTROL_API_VERSION,
52         EFFECT_FLAG_TYPE_INSERT | EFFECT_FLAG_INSERT_FIRST,
53         0, // TODO
54         33,
55         "Insert Environmental reverb",
56         "The Android Open Source Project"
57 };
58 
59 // Google auxiliary preset reverb UUID: 63909320-53a6-11df-bdbd-0002a5d5c51b
60 static const effect_descriptor_t gAuxPresetReverbDescriptor = {
61         {0x47382d60, 0xddd8, 0x11db, 0xbf3a, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
62         {0x63909320, 0x53a6, 0x11df, 0xbdbd, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
63         EFFECT_CONTROL_API_VERSION,
64         EFFECT_FLAG_TYPE_AUXILIARY,
65         0, // TODO
66         33,
67         "Aux Preset Reverb",
68         "The Android Open Source Project"
69 };
70 
71 // Google insert preset reverb UUID: d93dc6a0-6342-11df-b128-0002a5d5c51b
72 static const effect_descriptor_t gInsertPresetReverbDescriptor = {
73         {0x47382d60, 0xddd8, 0x11db, 0xbf3a, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
74         {0xd93dc6a0, 0x6342, 0x11df, 0xb128, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
75         EFFECT_CONTROL_API_VERSION,
76         EFFECT_FLAG_TYPE_INSERT | EFFECT_FLAG_INSERT_FIRST,
77         0, // TODO
78         33,
79         "Insert Preset Reverb",
80         "The Android Open Source Project"
81 };
82 
83 // gDescriptors contains pointers to all defined effect descriptor in this library
84 static const effect_descriptor_t * const gDescriptors[] = {
85         &gAuxEnvReverbDescriptor,
86         &gInsertEnvReverbDescriptor,
87         &gAuxPresetReverbDescriptor,
88         &gInsertPresetReverbDescriptor
89 };
90 
91 /*----------------------------------------------------------------------------
92  * Effect API implementation
93  *--------------------------------------------------------------------------*/
94 
95 /*--- Effect Library Interface Implementation ---*/
96 
EffectQueryNumberEffects(uint32_t * pNumEffects)97 int EffectQueryNumberEffects(uint32_t *pNumEffects) {
98     *pNumEffects = sizeof(gDescriptors) / sizeof(const effect_descriptor_t *);
99     return 0;
100 }
101 
EffectQueryEffect(uint32_t index,effect_descriptor_t * pDescriptor)102 int EffectQueryEffect(uint32_t index, effect_descriptor_t *pDescriptor) {
103     if (pDescriptor == NULL) {
104         return -EINVAL;
105     }
106     if (index >= sizeof(gDescriptors) / sizeof(const effect_descriptor_t *)) {
107         return -EINVAL;
108     }
109     memcpy(pDescriptor, gDescriptors[index],
110             sizeof(effect_descriptor_t));
111     return 0;
112 }
113 
EffectCreate(const effect_uuid_t * uuid,int32_t sessionId,int32_t ioId,effect_handle_t * pHandle)114 int EffectCreate(const effect_uuid_t *uuid,
115         int32_t sessionId,
116         int32_t ioId,
117         effect_handle_t *pHandle) {
118     int ret;
119     int i;
120     reverb_module_t *module;
121     const effect_descriptor_t *desc;
122     int aux = 0;
123     int preset = 0;
124 
125     ALOGV("EffectLibCreateEffect start");
126 
127     if (pHandle == NULL || uuid == NULL) {
128         return -EINVAL;
129     }
130 
131     for (i = 0; gDescriptors[i] != NULL; i++) {
132         desc = gDescriptors[i];
133         if (memcmp(uuid, &desc->uuid, sizeof(effect_uuid_t))
134                 == 0) {
135             break;
136         }
137     }
138 
139     if (gDescriptors[i] == NULL) {
140         return -ENOENT;
141     }
142 
143     module = malloc(sizeof(reverb_module_t));
144 
145     module->itfe = &gReverbInterface;
146 
147     module->context.mState = REVERB_STATE_UNINITIALIZED;
148 
149     if (memcmp(&desc->type, SL_IID_PRESETREVERB, sizeof(effect_uuid_t)) == 0) {
150         preset = 1;
151     }
152     if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
153         aux = 1;
154     }
155     ret = Reverb_Init(module, aux, preset);
156     if (ret < 0) {
157         ALOGW("EffectLibCreateEffect() init failed");
158         free(module);
159         return ret;
160     }
161 
162     *pHandle = (effect_handle_t) module;
163 
164     module->context.mState = REVERB_STATE_INITIALIZED;
165 
166     ALOGV("EffectLibCreateEffect %p ,size %d", module, sizeof(reverb_module_t));
167 
168     return 0;
169 }
170 
EffectRelease(effect_handle_t handle)171 int EffectRelease(effect_handle_t handle) {
172     reverb_module_t *pRvbModule = (reverb_module_t *)handle;
173 
174     ALOGV("EffectLibReleaseEffect %p", handle);
175     if (handle == NULL) {
176         return -EINVAL;
177     }
178 
179     pRvbModule->context.mState = REVERB_STATE_UNINITIALIZED;
180 
181     free(pRvbModule);
182     return 0;
183 }
184 
EffectGetDescriptor(const effect_uuid_t * uuid,effect_descriptor_t * pDescriptor)185 int EffectGetDescriptor(const effect_uuid_t *uuid,
186                         effect_descriptor_t *pDescriptor) {
187     int i;
188     int length = sizeof(gDescriptors) / sizeof(const effect_descriptor_t *);
189 
190     if (pDescriptor == NULL || uuid == NULL){
191         ALOGV("EffectGetDescriptor() called with NULL pointer");
192         return -EINVAL;
193     }
194 
195     for (i = 0; i < length; i++) {
196         if (memcmp(uuid, &gDescriptors[i]->uuid, sizeof(effect_uuid_t)) == 0) {
197             memcpy(pDescriptor, gDescriptors[i], sizeof(effect_descriptor_t));
198             ALOGV("EffectGetDescriptor - UUID matched Reverb type %d, UUID = %x",
199                  i, gDescriptors[i]->uuid.timeLow);
200             return 0;
201         }
202     }
203 
204     return -EINVAL;
205 } /* end EffectGetDescriptor */
206 
207 /*--- Effect Control Interface Implementation ---*/
208 
Reverb_Process(effect_handle_t self,audio_buffer_t * inBuffer,audio_buffer_t * outBuffer)209 static int Reverb_Process(effect_handle_t self, audio_buffer_t *inBuffer, audio_buffer_t *outBuffer) {
210     reverb_object_t *pReverb;
211     int16_t *pSrc, *pDst;
212     reverb_module_t *pRvbModule = (reverb_module_t *)self;
213 
214     if (pRvbModule == NULL) {
215         return -EINVAL;
216     }
217 
218     if (inBuffer == NULL || inBuffer->raw == NULL ||
219         outBuffer == NULL || outBuffer->raw == NULL ||
220         inBuffer->frameCount != outBuffer->frameCount) {
221         return -EINVAL;
222     }
223 
224     pReverb = (reverb_object_t*) &pRvbModule->context;
225 
226     if (pReverb->mState == REVERB_STATE_UNINITIALIZED) {
227         return -EINVAL;
228     }
229     if (pReverb->mState == REVERB_STATE_INITIALIZED) {
230         return -ENODATA;
231     }
232 
233     //if bypassed or the preset forces the signal to be completely dry
234     if (pReverb->m_bBypass != 0) {
235         if (inBuffer->raw != outBuffer->raw) {
236             int16_t smp;
237             pSrc = inBuffer->s16;
238             pDst = outBuffer->s16;
239             size_t count = inBuffer->frameCount;
240             if (pRvbModule->config.inputCfg.channels == pRvbModule->config.outputCfg.channels) {
241                 count *= 2;
242                 while (count--) {
243                     *pDst++ = *pSrc++;
244                 }
245             } else {
246                 while (count--) {
247                     smp = *pSrc++;
248                     *pDst++ = smp;
249                     *pDst++ = smp;
250                 }
251             }
252         }
253         return 0;
254     }
255 
256     if (pReverb->m_nNextRoom != pReverb->m_nCurrentRoom) {
257         ReverbUpdateRoom(pReverb, true);
258     }
259 
260     pSrc = inBuffer->s16;
261     pDst = outBuffer->s16;
262     size_t numSamples = outBuffer->frameCount;
263     while (numSamples) {
264         uint32_t processedSamples;
265         if (numSamples > (uint32_t) pReverb->m_nUpdatePeriodInSamples) {
266             processedSamples = (uint32_t) pReverb->m_nUpdatePeriodInSamples;
267         } else {
268             processedSamples = numSamples;
269         }
270 
271         /* increment update counter */
272         pReverb->m_nUpdateCounter += (int16_t) processedSamples;
273         /* check if update counter needs to be reset */
274         if (pReverb->m_nUpdateCounter >= pReverb->m_nUpdatePeriodInSamples) {
275             /* update interval has elapsed, so reset counter */
276             pReverb->m_nUpdateCounter -= pReverb->m_nUpdatePeriodInSamples;
277             ReverbUpdateXfade(pReverb, pReverb->m_nUpdatePeriodInSamples);
278 
279         } /* end if m_nUpdateCounter >= update interval */
280 
281         Reverb(pReverb, processedSamples, pDst, pSrc);
282 
283         numSamples -= processedSamples;
284         if (pReverb->m_Aux) {
285             pSrc += processedSamples;
286         } else {
287             pSrc += processedSamples * NUM_OUTPUT_CHANNELS;
288         }
289         pDst += processedSamples * NUM_OUTPUT_CHANNELS;
290     }
291 
292     return 0;
293 }
294 
295 
Reverb_Command(effect_handle_t self,uint32_t cmdCode,uint32_t cmdSize,void * pCmdData,uint32_t * replySize,void * pReplyData)296 static int Reverb_Command(effect_handle_t self, uint32_t cmdCode, uint32_t cmdSize,
297         void *pCmdData, uint32_t *replySize, void *pReplyData) {
298     reverb_module_t *pRvbModule = (reverb_module_t *) self;
299     reverb_object_t *pReverb;
300     int retsize;
301 
302     if (pRvbModule == NULL ||
303             pRvbModule->context.mState == REVERB_STATE_UNINITIALIZED) {
304         return -EINVAL;
305     }
306 
307     pReverb = (reverb_object_t*) &pRvbModule->context;
308 
309     ALOGV("Reverb_Command command %d cmdSize %d",cmdCode, cmdSize);
310 
311     switch (cmdCode) {
312     case EFFECT_CMD_INIT:
313         if (pReplyData == NULL || *replySize != sizeof(int)) {
314             return -EINVAL;
315         }
316         *(int *) pReplyData = Reverb_Init(pRvbModule, pReverb->m_Aux, pReverb->m_Preset);
317         if (*(int *) pReplyData == 0) {
318             pRvbModule->context.mState = REVERB_STATE_INITIALIZED;
319         }
320         break;
321     case EFFECT_CMD_SET_CONFIG:
322         if (pCmdData == NULL || cmdSize != sizeof(effect_config_t)
323                 || pReplyData == NULL || *replySize != sizeof(int)) {
324             return -EINVAL;
325         }
326         *(int *) pReplyData = Reverb_setConfig(pRvbModule,
327                 (effect_config_t *)pCmdData, false);
328         break;
329     case EFFECT_CMD_GET_CONFIG:
330         if (pReplyData == NULL || *replySize != sizeof(effect_config_t)) {
331             return -EINVAL;
332         }
333         Reverb_getConfig(pRvbModule, (effect_config_t *) pCmdData);
334         break;
335     case EFFECT_CMD_RESET:
336         Reverb_Reset(pReverb, false);
337         break;
338     case EFFECT_CMD_GET_PARAM:
339         ALOGV("Reverb_Command EFFECT_CMD_GET_PARAM pCmdData %p, *replySize %d, pReplyData: %p",pCmdData, *replySize, pReplyData);
340 
341         if (pCmdData == NULL || cmdSize < (int)(sizeof(effect_param_t) + sizeof(int32_t)) ||
342             pReplyData == NULL || *replySize < (int) sizeof(effect_param_t)) {
343             return -EINVAL;
344         }
345         effect_param_t *rep = (effect_param_t *) pReplyData;
346         memcpy(pReplyData, pCmdData, sizeof(effect_param_t) + sizeof(int32_t));
347         ALOGV("Reverb_Command EFFECT_CMD_GET_PARAM param %d, replySize %d",*(int32_t *)rep->data, rep->vsize);
348         rep->status = Reverb_getParameter(pReverb, *(int32_t *)rep->data, &rep->vsize,
349                 rep->data + sizeof(int32_t));
350         *replySize = sizeof(effect_param_t) + sizeof(int32_t) + rep->vsize;
351         break;
352     case EFFECT_CMD_SET_PARAM:
353         ALOGV("Reverb_Command EFFECT_CMD_SET_PARAM cmdSize %d pCmdData %p, *replySize %d, pReplyData %p",
354                 cmdSize, pCmdData, *replySize, pReplyData);
355         if (pCmdData == NULL || (cmdSize < (int)(sizeof(effect_param_t) + sizeof(int32_t)))
356                 || pReplyData == NULL || *replySize != (int)sizeof(int32_t)) {
357             return -EINVAL;
358         }
359         effect_param_t *cmd = (effect_param_t *) pCmdData;
360         *(int *)pReplyData = Reverb_setParameter(pReverb, *(int32_t *)cmd->data,
361                 cmd->vsize, cmd->data + sizeof(int32_t));
362         break;
363     case EFFECT_CMD_ENABLE:
364         if (pReplyData == NULL || *replySize != sizeof(int)) {
365             return -EINVAL;
366         }
367         if (pReverb->mState != REVERB_STATE_INITIALIZED) {
368             return -ENOSYS;
369         }
370         pReverb->mState = REVERB_STATE_ACTIVE;
371         ALOGV("EFFECT_CMD_ENABLE() OK");
372         *(int *)pReplyData = 0;
373         break;
374     case EFFECT_CMD_DISABLE:
375         if (pReplyData == NULL || *replySize != sizeof(int)) {
376             return -EINVAL;
377         }
378         if (pReverb->mState != REVERB_STATE_ACTIVE) {
379             return -ENOSYS;
380         }
381         pReverb->mState = REVERB_STATE_INITIALIZED;
382         ALOGV("EFFECT_CMD_DISABLE() OK");
383         *(int *)pReplyData = 0;
384         break;
385     case EFFECT_CMD_SET_DEVICE:
386         if (pCmdData == NULL || cmdSize != (int)sizeof(uint32_t)) {
387             return -EINVAL;
388         }
389         ALOGV("Reverb_Command EFFECT_CMD_SET_DEVICE: 0x%08x", *(uint32_t *)pCmdData);
390         break;
391     case EFFECT_CMD_SET_VOLUME: {
392         // audio output is always stereo => 2 channel volumes
393         if (pCmdData == NULL || cmdSize != (int)sizeof(uint32_t) * 2) {
394             return -EINVAL;
395         }
396         float left = (float)(*(uint32_t *)pCmdData) / (1 << 24);
397         float right = (float)(*((uint32_t *)pCmdData + 1)) / (1 << 24);
398         ALOGV("Reverb_Command EFFECT_CMD_SET_VOLUME: left %f, right %f ", left, right);
399         break;
400         }
401     case EFFECT_CMD_SET_AUDIO_MODE:
402         if (pCmdData == NULL || cmdSize != (int)sizeof(uint32_t)) {
403             return -EINVAL;
404         }
405         ALOGV("Reverb_Command EFFECT_CMD_SET_AUDIO_MODE: %d", *(uint32_t *)pCmdData);
406         break;
407     default:
408         ALOGW("Reverb_Command invalid command %d",cmdCode);
409         return -EINVAL;
410     }
411 
412     return 0;
413 }
414 
Reverb_GetDescriptor(effect_handle_t self,effect_descriptor_t * pDescriptor)415 int Reverb_GetDescriptor(effect_handle_t   self,
416                                     effect_descriptor_t *pDescriptor)
417 {
418     reverb_module_t *pRvbModule = (reverb_module_t *) self;
419     reverb_object_t *pReverb;
420     const effect_descriptor_t *desc;
421 
422     if (pRvbModule == NULL ||
423             pRvbModule->context.mState == REVERB_STATE_UNINITIALIZED) {
424         return -EINVAL;
425     }
426 
427     pReverb = (reverb_object_t*) &pRvbModule->context;
428 
429     if (pReverb->m_Aux) {
430         if (pReverb->m_Preset) {
431             desc = &gAuxPresetReverbDescriptor;
432         } else {
433             desc = &gAuxEnvReverbDescriptor;
434         }
435     } else {
436         if (pReverb->m_Preset) {
437             desc = &gInsertPresetReverbDescriptor;
438         } else {
439             desc = &gInsertEnvReverbDescriptor;
440         }
441     }
442 
443     memcpy(pDescriptor, desc, sizeof(effect_descriptor_t));
444 
445     return 0;
446 }   /* end Reverb_getDescriptor */
447 
448 /*----------------------------------------------------------------------------
449  * Reverb internal functions
450  *--------------------------------------------------------------------------*/
451 
452 /*----------------------------------------------------------------------------
453  * Reverb_Init()
454  *----------------------------------------------------------------------------
455  * Purpose:
456  * Initialize reverb context and apply default parameters
457  *
458  * Inputs:
459  *  pRvbModule    - pointer to reverb effect module
460  *  aux           - indicates if the reverb is used as auxiliary (1) or insert (0)
461  *  preset        - indicates if the reverb is used in preset (1) or environmental (0) mode
462  *
463  * Outputs:
464  *
465  * Side Effects:
466  *
467  *----------------------------------------------------------------------------
468  */
469 
Reverb_Init(reverb_module_t * pRvbModule,int aux,int preset)470 int Reverb_Init(reverb_module_t *pRvbModule, int aux, int preset) {
471     int ret;
472 
473     ALOGV("Reverb_Init module %p, aux: %d, preset: %d", pRvbModule,aux, preset);
474 
475     memset(&pRvbModule->context, 0, sizeof(reverb_object_t));
476 
477     pRvbModule->context.m_Aux = (uint16_t)aux;
478     pRvbModule->context.m_Preset = (uint16_t)preset;
479 
480     pRvbModule->config.inputCfg.samplingRate = 44100;
481     if (aux) {
482         pRvbModule->config.inputCfg.channels = AUDIO_CHANNEL_OUT_MONO;
483     } else {
484         pRvbModule->config.inputCfg.channels = AUDIO_CHANNEL_OUT_STEREO;
485     }
486     pRvbModule->config.inputCfg.format = AUDIO_FORMAT_PCM_16_BIT;
487     pRvbModule->config.inputCfg.bufferProvider.getBuffer = NULL;
488     pRvbModule->config.inputCfg.bufferProvider.releaseBuffer = NULL;
489     pRvbModule->config.inputCfg.bufferProvider.cookie = NULL;
490     pRvbModule->config.inputCfg.accessMode = EFFECT_BUFFER_ACCESS_READ;
491     pRvbModule->config.inputCfg.mask = EFFECT_CONFIG_ALL;
492     pRvbModule->config.outputCfg.samplingRate = 44100;
493     pRvbModule->config.outputCfg.channels = AUDIO_CHANNEL_OUT_STEREO;
494     pRvbModule->config.outputCfg.format = AUDIO_FORMAT_PCM_16_BIT;
495     pRvbModule->config.outputCfg.bufferProvider.getBuffer = NULL;
496     pRvbModule->config.outputCfg.bufferProvider.releaseBuffer = NULL;
497     pRvbModule->config.outputCfg.bufferProvider.cookie = NULL;
498     pRvbModule->config.outputCfg.accessMode = EFFECT_BUFFER_ACCESS_ACCUMULATE;
499     pRvbModule->config.outputCfg.mask = EFFECT_CONFIG_ALL;
500 
501     ret = Reverb_setConfig(pRvbModule, &pRvbModule->config, true);
502     if (ret < 0) {
503         ALOGV("Reverb_Init error %d on module %p", ret, pRvbModule);
504     }
505 
506     return ret;
507 }
508 
509 /*----------------------------------------------------------------------------
510  * Reverb_setConfig()
511  *----------------------------------------------------------------------------
512  * Purpose:
513  *  Set input and output audio configuration.
514  *
515  * Inputs:
516  *  pRvbModule    - pointer to reverb effect module
517  *  pConfig       - pointer to effect_config_t structure containing input
518  *              and output audio parameters configuration
519  *  init          - true if called from init function
520  * Outputs:
521  *
522  * Side Effects:
523  *
524  *----------------------------------------------------------------------------
525  */
526 
Reverb_setConfig(reverb_module_t * pRvbModule,effect_config_t * pConfig,bool init)527 int Reverb_setConfig(reverb_module_t *pRvbModule, effect_config_t *pConfig,
528         bool init) {
529     reverb_object_t *pReverb = &pRvbModule->context;
530     int bufferSizeInSamples;
531     int updatePeriodInSamples;
532     int xfadePeriodInSamples;
533 
534     // Check configuration compatibility with build options
535     if (pConfig->inputCfg.samplingRate
536         != pConfig->outputCfg.samplingRate
537         || pConfig->outputCfg.channels != OUTPUT_CHANNELS
538         || pConfig->inputCfg.format != AUDIO_FORMAT_PCM_16_BIT
539         || pConfig->outputCfg.format != AUDIO_FORMAT_PCM_16_BIT) {
540         ALOGV("Reverb_setConfig invalid config");
541         return -EINVAL;
542     }
543     if ((pReverb->m_Aux && (pConfig->inputCfg.channels != AUDIO_CHANNEL_OUT_MONO)) ||
544         (!pReverb->m_Aux && (pConfig->inputCfg.channels != AUDIO_CHANNEL_OUT_STEREO))) {
545         ALOGV("Reverb_setConfig invalid config");
546         return -EINVAL;
547     }
548 
549     memcpy(&pRvbModule->config, pConfig, sizeof(effect_config_t));
550 
551     pReverb->m_nSamplingRate = pRvbModule->config.outputCfg.samplingRate;
552 
553     switch (pReverb->m_nSamplingRate) {
554     case 8000:
555         pReverb->m_nUpdatePeriodInBits = 5;
556         bufferSizeInSamples = 4096;
557         pReverb->m_nCosWT_5KHz = -23170;
558         break;
559     case 16000:
560         pReverb->m_nUpdatePeriodInBits = 6;
561         bufferSizeInSamples = 8192;
562         pReverb->m_nCosWT_5KHz = -12540;
563         break;
564     case 22050:
565         pReverb->m_nUpdatePeriodInBits = 7;
566         bufferSizeInSamples = 8192;
567         pReverb->m_nCosWT_5KHz = 4768;
568         break;
569     case 32000:
570         pReverb->m_nUpdatePeriodInBits = 7;
571         bufferSizeInSamples = 16384;
572         pReverb->m_nCosWT_5KHz = 18205;
573         break;
574     case 44100:
575         pReverb->m_nUpdatePeriodInBits = 8;
576         bufferSizeInSamples = 16384;
577         pReverb->m_nCosWT_5KHz = 24799;
578         break;
579     case 48000:
580         pReverb->m_nUpdatePeriodInBits = 8;
581         bufferSizeInSamples = 16384;
582         pReverb->m_nCosWT_5KHz = 25997;
583         break;
584     default:
585         ALOGV("Reverb_setConfig invalid sampling rate %d", pReverb->m_nSamplingRate);
586         return -EINVAL;
587     }
588 
589     // Define a mask for circular addressing, so that array index
590     // can wraparound and stay in array boundary of 0, 1, ..., (buffer size -1)
591     // The buffer size MUST be a power of two
592     pReverb->m_nBufferMask = (int32_t) (bufferSizeInSamples - 1);
593     /* reverb parameters are updated every 2^(pReverb->m_nUpdatePeriodInBits) samples */
594     updatePeriodInSamples = (int32_t) (0x1L << pReverb->m_nUpdatePeriodInBits);
595     /*
596      calculate the update counter by bitwise ANDING with this value to
597      generate a 2^n modulo value
598      */
599     pReverb->m_nUpdatePeriodInSamples = (int32_t) updatePeriodInSamples;
600 
601     xfadePeriodInSamples = (int32_t) (REVERB_XFADE_PERIOD_IN_SECONDS
602             * (double) pReverb->m_nSamplingRate);
603 
604     // set xfade parameters
605     pReverb->m_nPhaseIncrement
606             = (int16_t) (65536 / ((int16_t) xfadePeriodInSamples
607                     / (int16_t) updatePeriodInSamples));
608 
609     if (init) {
610         ReverbReadInPresets(pReverb);
611 
612         // for debugging purposes, allow noise generator
613         pReverb->m_bUseNoise = true;
614 
615         // for debugging purposes, allow bypass
616         pReverb->m_bBypass = 0;
617 
618         pReverb->m_nNextRoom = 1;
619 
620         pReverb->m_nNoise = (int16_t) 0xABCD;
621     }
622 
623     Reverb_Reset(pReverb, init);
624 
625     return 0;
626 }
627 
628 /*----------------------------------------------------------------------------
629  * Reverb_getConfig()
630  *----------------------------------------------------------------------------
631  * Purpose:
632  *  Get input and output audio configuration.
633  *
634  * Inputs:
635  *  pRvbModule    - pointer to reverb effect module
636  *  pConfig       - pointer to effect_config_t structure containing input
637  *              and output audio parameters configuration
638  * Outputs:
639  *
640  * Side Effects:
641  *
642  *----------------------------------------------------------------------------
643  */
644 
Reverb_getConfig(reverb_module_t * pRvbModule,effect_config_t * pConfig)645 void Reverb_getConfig(reverb_module_t *pRvbModule, effect_config_t *pConfig)
646 {
647     memcpy(pConfig, &pRvbModule->config, sizeof(effect_config_t));
648 }
649 
650 /*----------------------------------------------------------------------------
651  * Reverb_Reset()
652  *----------------------------------------------------------------------------
653  * Purpose:
654  *  Reset internal states and clear delay lines.
655  *
656  * Inputs:
657  *  pReverb    - pointer to reverb context
658  *  init       - true if called from init function
659  *
660  * Outputs:
661  *
662  * Side Effects:
663  *
664  *----------------------------------------------------------------------------
665  */
666 
Reverb_Reset(reverb_object_t * pReverb,bool init)667 void Reverb_Reset(reverb_object_t *pReverb, bool init) {
668     int bufferSizeInSamples = (int32_t) (pReverb->m_nBufferMask + 1);
669     int maxApSamples;
670     int maxDelaySamples;
671     int maxEarlySamples;
672     int ap1In;
673     int delay0In;
674     int delay1In;
675     int32_t i;
676     uint16_t nOffset;
677 
678     maxApSamples = ((int32_t) (MAX_AP_TIME * pReverb->m_nSamplingRate) >> 16);
679     maxDelaySamples = ((int32_t) (MAX_DELAY_TIME * pReverb->m_nSamplingRate)
680             >> 16);
681     maxEarlySamples = ((int32_t) (MAX_EARLY_TIME * pReverb->m_nSamplingRate)
682             >> 16);
683 
684     ap1In = (AP0_IN + maxApSamples + GUARD);
685     delay0In = (ap1In + maxApSamples + GUARD);
686     delay1In = (delay0In + maxDelaySamples + GUARD);
687     // Define the max offsets for the end points of each section
688     // i.e., we don't expect a given section's taps to go beyond
689     // the following limits
690 
691     pReverb->m_nEarly0in = (delay1In + maxDelaySamples + GUARD);
692     pReverb->m_nEarly1in = (pReverb->m_nEarly0in + maxEarlySamples + GUARD);
693 
694     pReverb->m_sAp0.m_zApIn = AP0_IN;
695 
696     pReverb->m_zD0In = delay0In;
697 
698     pReverb->m_sAp1.m_zApIn = ap1In;
699 
700     pReverb->m_zD1In = delay1In;
701 
702     pReverb->m_zOutLpfL = 0;
703     pReverb->m_zOutLpfR = 0;
704 
705     pReverb->m_nRevFbkR = 0;
706     pReverb->m_nRevFbkL = 0;
707 
708     // set base index into circular buffer
709     pReverb->m_nBaseIndex = 0;
710 
711     // clear the reverb delay line
712     for (i = 0; i < bufferSizeInSamples; i++) {
713         pReverb->m_nDelayLine[i] = 0;
714     }
715 
716     ReverbUpdateRoom(pReverb, init);
717 
718     pReverb->m_nUpdateCounter = 0;
719 
720     pReverb->m_nPhase = -32768;
721 
722     pReverb->m_nSin = 0;
723     pReverb->m_nCos = 0;
724     pReverb->m_nSinIncrement = 0;
725     pReverb->m_nCosIncrement = 0;
726 
727     // set delay tap lengths
728     nOffset = ReverbCalculateNoise(pReverb);
729 
730     pReverb->m_zD1Cross = pReverb->m_nDelay1Out - pReverb->m_nMaxExcursion
731             + nOffset;
732 
733     nOffset = ReverbCalculateNoise(pReverb);
734 
735     pReverb->m_zD0Cross = pReverb->m_nDelay0Out - pReverb->m_nMaxExcursion
736             - nOffset;
737 
738     nOffset = ReverbCalculateNoise(pReverb);
739 
740     pReverb->m_zD0Self = pReverb->m_nDelay0Out - pReverb->m_nMaxExcursion
741             - nOffset;
742 
743     nOffset = ReverbCalculateNoise(pReverb);
744 
745     pReverb->m_zD1Self = pReverb->m_nDelay1Out - pReverb->m_nMaxExcursion
746             + nOffset;
747 }
748 
749 /*----------------------------------------------------------------------------
750  * Reverb_getParameter()
751  *----------------------------------------------------------------------------
752  * Purpose:
753  * Get a Reverb parameter
754  *
755  * Inputs:
756  *  pReverb       - handle to instance data
757  *  param         - parameter
758  *  pValue        - pointer to variable to hold retrieved value
759  *  pSize         - pointer to value size: maximum size as input
760  *
761  * Outputs:
762  *  *pValue updated with parameter value
763  *  *pSize updated with actual value size
764  *
765  *
766  * Side Effects:
767  *
768  *----------------------------------------------------------------------------
769  */
Reverb_getParameter(reverb_object_t * pReverb,int32_t param,size_t * pSize,void * pValue)770 int Reverb_getParameter(reverb_object_t *pReverb, int32_t param, size_t *pSize,
771         void *pValue) {
772     int32_t *pValue32;
773     int16_t *pValue16;
774     t_reverb_settings *pProperties;
775     int32_t i;
776     int32_t temp;
777     int32_t temp2;
778     size_t size;
779 
780     if (pReverb->m_Preset) {
781         if (param != REVERB_PARAM_PRESET || *pSize < sizeof(int16_t)) {
782             return -EINVAL;
783         }
784         size = sizeof(int16_t);
785         pValue16 = (int16_t *)pValue;
786         // REVERB_PRESET_NONE is mapped to bypass
787         if (pReverb->m_bBypass != 0) {
788             *pValue16 = (int16_t)REVERB_PRESET_NONE;
789         } else {
790             *pValue16 = (int16_t)(pReverb->m_nNextRoom + 1);
791         }
792         ALOGV("get REVERB_PARAM_PRESET, preset %d", *pValue16);
793     } else {
794         switch (param) {
795         case REVERB_PARAM_ROOM_LEVEL:
796         case REVERB_PARAM_ROOM_HF_LEVEL:
797         case REVERB_PARAM_DECAY_HF_RATIO:
798         case REVERB_PARAM_REFLECTIONS_LEVEL:
799         case REVERB_PARAM_REVERB_LEVEL:
800         case REVERB_PARAM_DIFFUSION:
801         case REVERB_PARAM_DENSITY:
802             size = sizeof(int16_t);
803             break;
804 
805         case REVERB_PARAM_BYPASS:
806         case REVERB_PARAM_DECAY_TIME:
807         case REVERB_PARAM_REFLECTIONS_DELAY:
808         case REVERB_PARAM_REVERB_DELAY:
809             size = sizeof(int32_t);
810             break;
811 
812         case REVERB_PARAM_PROPERTIES:
813             size = sizeof(t_reverb_settings);
814             break;
815 
816         default:
817             return -EINVAL;
818         }
819 
820         if (*pSize < size) {
821             return -EINVAL;
822         }
823 
824         pValue32 = (int32_t *) pValue;
825         pValue16 = (int16_t *) pValue;
826         pProperties = (t_reverb_settings *) pValue;
827 
828         switch (param) {
829         case REVERB_PARAM_BYPASS:
830             *pValue32 = (int32_t) pReverb->m_bBypass;
831             break;
832 
833         case REVERB_PARAM_PROPERTIES:
834             pValue16 = &pProperties->roomLevel;
835             /* FALL THROUGH */
836 
837         case REVERB_PARAM_ROOM_LEVEL:
838             // Convert m_nRoomLpfFwd to millibels
839             temp = (pReverb->m_nRoomLpfFwd << 15)
840                     / (32767 - pReverb->m_nRoomLpfFbk);
841             *pValue16 = Effects_Linear16ToMillibels(temp);
842 
843             ALOGV("get REVERB_PARAM_ROOM_LEVEL %d, gain %d, m_nRoomLpfFwd %d, m_nRoomLpfFbk %d", *pValue16, temp, pReverb->m_nRoomLpfFwd, pReverb->m_nRoomLpfFbk);
844 
845             if (param == REVERB_PARAM_ROOM_LEVEL) {
846                 break;
847             }
848             pValue16 = &pProperties->roomHFLevel;
849             /* FALL THROUGH */
850 
851         case REVERB_PARAM_ROOM_HF_LEVEL:
852             // The ratio between linear gain at 0Hz and at 5000Hz for the room low pass is:
853             // (1 + a1) / sqrt(a1^2 + 2*C*a1 + 1) where:
854             // - a1 is minus the LP feedback gain: -pReverb->m_nRoomLpfFbk
855             // - C is cos(2piWT) @ 5000Hz: pReverb->m_nCosWT_5KHz
856 
857             temp = MULT_EG1_EG1(pReverb->m_nRoomLpfFbk, pReverb->m_nRoomLpfFbk);
858             ALOGV("get REVERB_PARAM_ROOM_HF_LEVEL, a1^2 %d", temp);
859             temp2 = MULT_EG1_EG1(pReverb->m_nRoomLpfFbk, pReverb->m_nCosWT_5KHz)
860                     << 1;
861             ALOGV("get REVERB_PARAM_ROOM_HF_LEVEL, 2 Cos a1 %d", temp2);
862             temp = 32767 + temp - temp2;
863             ALOGV("get REVERB_PARAM_ROOM_HF_LEVEL, a1^2 + 2 Cos a1 + 1 %d", temp);
864             temp = Effects_Sqrt(temp) * 181;
865             ALOGV("get REVERB_PARAM_ROOM_HF_LEVEL, SQRT(a1^2 + 2 Cos a1 + 1) %d", temp);
866             temp = ((32767 - pReverb->m_nRoomLpfFbk) << 15) / temp;
867 
868             ALOGV("get REVERB_PARAM_ROOM_HF_LEVEL, gain %d, m_nRoomLpfFwd %d, m_nRoomLpfFbk %d", temp, pReverb->m_nRoomLpfFwd, pReverb->m_nRoomLpfFbk);
869 
870             *pValue16 = Effects_Linear16ToMillibels(temp);
871 
872             if (param == REVERB_PARAM_ROOM_HF_LEVEL) {
873                 break;
874             }
875             pValue32 = (int32_t *)&pProperties->decayTime;
876             /* FALL THROUGH */
877 
878         case REVERB_PARAM_DECAY_TIME:
879             // Calculate reverb feedback path gain
880             temp = (pReverb->m_nRvbLpfFwd << 15) / (32767 - pReverb->m_nRvbLpfFbk);
881             temp = Effects_Linear16ToMillibels(temp);
882 
883             // Calculate decay time: g = -6000 d/DT , g gain in millibels, d reverb delay, DT decay time
884             temp = (-6000 * pReverb->m_nLateDelay) / temp;
885 
886             // Convert samples to ms
887             *pValue32 = (temp * 1000) / pReverb->m_nSamplingRate;
888 
889             ALOGV("get REVERB_PARAM_DECAY_TIME, samples %d, ms %d", temp, *pValue32);
890 
891             if (param == REVERB_PARAM_DECAY_TIME) {
892                 break;
893             }
894             pValue16 = &pProperties->decayHFRatio;
895             /* FALL THROUGH */
896 
897         case REVERB_PARAM_DECAY_HF_RATIO:
898             // If r is the decay HF ratio  (r = REVERB_PARAM_DECAY_HF_RATIO/1000) we have:
899             //       DT_5000Hz = DT_0Hz * r
900             //  and  G_5000Hz = -6000 * d / DT_5000Hz and G_0Hz = -6000 * d / DT_0Hz in millibels so :
901             // r = G_0Hz/G_5000Hz in millibels
902             // The linear gain at 5000Hz is b0 / sqrt(a1^2 + 2*C*a1 + 1) where:
903             // - a1 is minus the LP feedback gain: -pReverb->m_nRvbLpfFbk
904             // - b0 is the LP forward gain: pReverb->m_nRvbLpfFwd
905             // - C is cos(2piWT) @ 5000Hz: pReverb->m_nCosWT_5KHz
906             if (pReverb->m_nRvbLpfFbk == 0) {
907                 *pValue16 = 1000;
908                 ALOGV("get REVERB_PARAM_DECAY_HF_RATIO, pReverb->m_nRvbLpfFbk == 0, ratio %d", *pValue16);
909             } else {
910                 temp = MULT_EG1_EG1(pReverb->m_nRvbLpfFbk, pReverb->m_nRvbLpfFbk);
911                 temp2 = MULT_EG1_EG1(pReverb->m_nRvbLpfFbk, pReverb->m_nCosWT_5KHz)
912                         << 1;
913                 temp = 32767 + temp - temp2;
914                 temp = Effects_Sqrt(temp) * 181;
915                 temp = (pReverb->m_nRvbLpfFwd << 15) / temp;
916                 // The linear gain at 0Hz is b0 / (a1 + 1)
917                 temp2 = (pReverb->m_nRvbLpfFwd << 15) / (32767
918                         - pReverb->m_nRvbLpfFbk);
919 
920                 temp = Effects_Linear16ToMillibels(temp);
921                 temp2 = Effects_Linear16ToMillibels(temp2);
922                 ALOGV("get REVERB_PARAM_DECAY_HF_RATIO, gain 5KHz %d mB, gain DC %d mB", temp, temp2);
923 
924                 if (temp == 0)
925                     temp = 1;
926                 temp = (int16_t) ((1000 * temp2) / temp);
927                 if (temp > 1000)
928                     temp = 1000;
929 
930                 *pValue16 = temp;
931                 ALOGV("get REVERB_PARAM_DECAY_HF_RATIO, ratio %d", *pValue16);
932             }
933 
934             if (param == REVERB_PARAM_DECAY_HF_RATIO) {
935                 break;
936             }
937             pValue16 = &pProperties->reflectionsLevel;
938             /* FALL THROUGH */
939 
940         case REVERB_PARAM_REFLECTIONS_LEVEL:
941             *pValue16 = Effects_Linear16ToMillibels(pReverb->m_nEarlyGain);
942 
943             ALOGV("get REVERB_PARAM_REFLECTIONS_LEVEL, %d", *pValue16);
944             if (param == REVERB_PARAM_REFLECTIONS_LEVEL) {
945                 break;
946             }
947             pValue32 = (int32_t *)&pProperties->reflectionsDelay;
948             /* FALL THROUGH */
949 
950         case REVERB_PARAM_REFLECTIONS_DELAY:
951             // convert samples to ms
952             *pValue32 = (pReverb->m_nEarlyDelay * 1000) / pReverb->m_nSamplingRate;
953 
954             ALOGV("get REVERB_PARAM_REFLECTIONS_DELAY, samples %d, ms %d", pReverb->m_nEarlyDelay, *pValue32);
955 
956             if (param == REVERB_PARAM_REFLECTIONS_DELAY) {
957                 break;
958             }
959             pValue16 = &pProperties->reverbLevel;
960             /* FALL THROUGH */
961 
962         case REVERB_PARAM_REVERB_LEVEL:
963             // Convert linear gain to millibels
964             *pValue16 = Effects_Linear16ToMillibels(pReverb->m_nLateGain << 2);
965 
966             ALOGV("get REVERB_PARAM_REVERB_LEVEL %d", *pValue16);
967 
968             if (param == REVERB_PARAM_REVERB_LEVEL) {
969                 break;
970             }
971             pValue32 = (int32_t *)&pProperties->reverbDelay;
972             /* FALL THROUGH */
973 
974         case REVERB_PARAM_REVERB_DELAY:
975             // convert samples to ms
976             *pValue32 = (pReverb->m_nLateDelay * 1000) / pReverb->m_nSamplingRate;
977 
978             ALOGV("get REVERB_PARAM_REVERB_DELAY, samples %d, ms %d", pReverb->m_nLateDelay, *pValue32);
979 
980             if (param == REVERB_PARAM_REVERB_DELAY) {
981                 break;
982             }
983             pValue16 = &pProperties->diffusion;
984             /* FALL THROUGH */
985 
986         case REVERB_PARAM_DIFFUSION:
987             temp = (int16_t) ((1000 * (pReverb->m_sAp0.m_nApGain - AP0_GAIN_BASE))
988                     / AP0_GAIN_RANGE);
989 
990             if (temp < 0)
991                 temp = 0;
992             if (temp > 1000)
993                 temp = 1000;
994 
995             *pValue16 = temp;
996             ALOGV("get REVERB_PARAM_DIFFUSION, %d, AP0 gain %d", *pValue16, pReverb->m_sAp0.m_nApGain);
997 
998             if (param == REVERB_PARAM_DIFFUSION) {
999                 break;
1000             }
1001             pValue16 = &pProperties->density;
1002             /* FALL THROUGH */
1003 
1004         case REVERB_PARAM_DENSITY:
1005             // Calculate AP delay in time units
1006             temp = ((pReverb->m_sAp0.m_zApOut - pReverb->m_sAp0.m_zApIn) << 16)
1007                     / pReverb->m_nSamplingRate;
1008 
1009             temp = (int16_t) ((1000 * (temp - AP0_TIME_BASE)) / AP0_TIME_RANGE);
1010 
1011             if (temp < 0)
1012                 temp = 0;
1013             if (temp > 1000)
1014                 temp = 1000;
1015 
1016             *pValue16 = temp;
1017 
1018             ALOGV("get REVERB_PARAM_DENSITY, %d, AP0 delay smps %d", *pValue16, pReverb->m_sAp0.m_zApOut - pReverb->m_sAp0.m_zApIn);
1019             break;
1020 
1021         default:
1022             break;
1023         }
1024     }
1025 
1026     *pSize = size;
1027 
1028     ALOGV("Reverb_getParameter, context %p, param %d, value %d",
1029             pReverb, param, *(int *)pValue);
1030 
1031     return 0;
1032 } /* end Reverb_getParameter */
1033 
1034 /*----------------------------------------------------------------------------
1035  * Reverb_setParameter()
1036  *----------------------------------------------------------------------------
1037  * Purpose:
1038  * Set a Reverb parameter
1039  *
1040  * Inputs:
1041  *  pReverb       - handle to instance data
1042  *  param         - parameter
1043  *  pValue        - pointer to parameter value
1044  *  size          - value size
1045  *
1046  * Outputs:
1047  *
1048  *
1049  * Side Effects:
1050  *
1051  *----------------------------------------------------------------------------
1052  */
Reverb_setParameter(reverb_object_t * pReverb,int32_t param,size_t size,void * pValue)1053 int Reverb_setParameter(reverb_object_t *pReverb, int32_t param, size_t size,
1054         void *pValue) {
1055     int32_t value32;
1056     int16_t value16;
1057     t_reverb_settings *pProperties;
1058     int32_t i;
1059     int32_t temp;
1060     int32_t temp2;
1061     reverb_preset_t *pPreset;
1062     int maxSamples;
1063     int32_t averageDelay;
1064     size_t paramSize;
1065 
1066     ALOGV("Reverb_setParameter, context %p, param %d, value16 %d, value32 %d",
1067             pReverb, param, *(int16_t *)pValue, *(int32_t *)pValue);
1068 
1069     if (pReverb->m_Preset) {
1070         if (param != REVERB_PARAM_PRESET || size != sizeof(int16_t)) {
1071             return -EINVAL;
1072         }
1073         value16 = *(int16_t *)pValue;
1074         ALOGV("set REVERB_PARAM_PRESET, preset %d", value16);
1075         if (value16 < REVERB_PRESET_NONE || value16 > REVERB_PRESET_PLATE) {
1076             return -EINVAL;
1077         }
1078         // REVERB_PRESET_NONE is mapped to bypass
1079         if (value16 == REVERB_PRESET_NONE) {
1080             pReverb->m_bBypass = 1;
1081         } else {
1082             pReverb->m_bBypass = 0;
1083             pReverb->m_nNextRoom = value16 - 1;
1084         }
1085     } else {
1086         switch (param) {
1087         case REVERB_PARAM_ROOM_LEVEL:
1088         case REVERB_PARAM_ROOM_HF_LEVEL:
1089         case REVERB_PARAM_DECAY_HF_RATIO:
1090         case REVERB_PARAM_REFLECTIONS_LEVEL:
1091         case REVERB_PARAM_REVERB_LEVEL:
1092         case REVERB_PARAM_DIFFUSION:
1093         case REVERB_PARAM_DENSITY:
1094             paramSize = sizeof(int16_t);
1095             break;
1096 
1097         case REVERB_PARAM_BYPASS:
1098         case REVERB_PARAM_DECAY_TIME:
1099         case REVERB_PARAM_REFLECTIONS_DELAY:
1100         case REVERB_PARAM_REVERB_DELAY:
1101             paramSize = sizeof(int32_t);
1102             break;
1103 
1104         case REVERB_PARAM_PROPERTIES:
1105             paramSize = sizeof(t_reverb_settings);
1106             break;
1107 
1108         default:
1109             return -EINVAL;
1110         }
1111 
1112         if (size != paramSize) {
1113             return -EINVAL;
1114         }
1115 
1116         if (paramSize == sizeof(int16_t)) {
1117             value16 = *(int16_t *) pValue;
1118         } else if (paramSize == sizeof(int32_t)) {
1119             value32 = *(int32_t *) pValue;
1120         } else {
1121             pProperties = (t_reverb_settings *) pValue;
1122         }
1123 
1124         pPreset = &pReverb->m_sPreset.m_sPreset[pReverb->m_nNextRoom];
1125 
1126         switch (param) {
1127         case REVERB_PARAM_BYPASS:
1128             pReverb->m_bBypass = (uint16_t)value32;
1129             break;
1130 
1131         case REVERB_PARAM_PROPERTIES:
1132             value16 = pProperties->roomLevel;
1133             /* FALL THROUGH */
1134 
1135         case REVERB_PARAM_ROOM_LEVEL:
1136             // Convert millibels to linear 16 bit signed => m_nRoomLpfFwd
1137             if (value16 > 0)
1138                 return -EINVAL;
1139 
1140             temp = Effects_MillibelsToLinear16(value16);
1141 
1142             pReverb->m_nRoomLpfFwd
1143                     = MULT_EG1_EG1(temp, (32767 - pReverb->m_nRoomLpfFbk));
1144 
1145             ALOGV("REVERB_PARAM_ROOM_LEVEL, gain %d, new m_nRoomLpfFwd %d, m_nRoomLpfFbk %d", temp, pReverb->m_nRoomLpfFwd, pReverb->m_nRoomLpfFbk);
1146             if (param == REVERB_PARAM_ROOM_LEVEL)
1147                 break;
1148             value16 = pProperties->roomHFLevel;
1149             /* FALL THROUGH */
1150 
1151         case REVERB_PARAM_ROOM_HF_LEVEL:
1152 
1153             // Limit to 0 , -40dB range because of low pass implementation
1154             if (value16 > 0 || value16 < -4000)
1155                 return -EINVAL;
1156             // Convert attenuation @ 5000H expressed in millibels to => m_nRoomLpfFbk
1157             // m_nRoomLpfFbk is -a1 where a1 is the solution of:
1158             // a1^2 + 2*(C-dG^2)/(1-dG^2)*a1 + 1 = 0 where:
1159             // - C is cos(2*pi*5000/Fs) (pReverb->m_nCosWT_5KHz)
1160             // - dG is G0/Gf (G0 is the linear gain at DC and Gf is the wanted gain at 5000Hz)
1161 
1162             // Save current DC gain m_nRoomLpfFwd / (32767 - m_nRoomLpfFbk) to keep it unchanged
1163             // while changing HF level
1164             temp2 = (pReverb->m_nRoomLpfFwd << 15) / (32767
1165                     - pReverb->m_nRoomLpfFbk);
1166             if (value16 == 0) {
1167                 pReverb->m_nRoomLpfFbk = 0;
1168             } else {
1169                 int32_t dG2, b, delta;
1170 
1171                 // dG^2
1172                 temp = Effects_MillibelsToLinear16(value16);
1173                 ALOGV("REVERB_PARAM_ROOM_HF_LEVEL, HF gain %d", temp);
1174                 temp = (1 << 30) / temp;
1175                 ALOGV("REVERB_PARAM_ROOM_HF_LEVEL, 1/ HF gain %d", temp);
1176                 dG2 = (int32_t) (((int64_t) temp * (int64_t) temp) >> 15);
1177                 ALOGV("REVERB_PARAM_ROOM_HF_LEVEL, 1/ HF gain ^ 2 %d", dG2);
1178                 // b = 2*(C-dG^2)/(1-dG^2)
1179                 b = (int32_t) ((((int64_t) 1 << (15 + 1))
1180                         * ((int64_t) pReverb->m_nCosWT_5KHz - (int64_t) dG2))
1181                         / ((int64_t) 32767 - (int64_t) dG2));
1182 
1183                 // delta = b^2 - 4
1184                 delta = (int32_t) ((((int64_t) b * (int64_t) b) >> 15) - (1 << (15
1185                         + 2)));
1186 
1187                 ALOGV_IF(delta > (1<<30), " delta overflow %d", delta);
1188 
1189                 ALOGV("REVERB_PARAM_ROOM_HF_LEVEL, dG2 %d, b %d, delta %d, m_nCosWT_5KHz %d", dG2, b, delta, pReverb->m_nCosWT_5KHz);
1190                 // m_nRoomLpfFbk = -a1 = - (- b + sqrt(delta)) / 2
1191                 pReverb->m_nRoomLpfFbk = (b - Effects_Sqrt(delta) * 181) >> 1;
1192             }
1193             ALOGV("REVERB_PARAM_ROOM_HF_LEVEL, olg DC gain %d new m_nRoomLpfFbk %d, old m_nRoomLpfFwd %d",
1194                     temp2, pReverb->m_nRoomLpfFbk, pReverb->m_nRoomLpfFwd);
1195 
1196             pReverb->m_nRoomLpfFwd
1197                     = MULT_EG1_EG1(temp2, (32767 - pReverb->m_nRoomLpfFbk));
1198             ALOGV("REVERB_PARAM_ROOM_HF_LEVEL, new m_nRoomLpfFwd %d", pReverb->m_nRoomLpfFwd);
1199 
1200             if (param == REVERB_PARAM_ROOM_HF_LEVEL)
1201                 break;
1202             value32 = pProperties->decayTime;
1203             /* FALL THROUGH */
1204 
1205         case REVERB_PARAM_DECAY_TIME:
1206 
1207             // Convert milliseconds to => m_nRvbLpfFwd (function of m_nRvbLpfFbk)
1208             // convert ms to samples
1209             value32 = (value32 * pReverb->m_nSamplingRate) / 1000;
1210 
1211             // calculate valid decay time range as a function of current reverb delay and
1212             // max feed back gain. Min value <=> -40dB in one pass, Max value <=> feedback gain = -1 dB
1213             // Calculate attenuation for each round in late reverb given a total attenuation of -6000 millibels.
1214             // g = -6000 d/DT , g gain in millibels, d reverb delay, DT decay time
1215             averageDelay = pReverb->m_nLateDelay - pReverb->m_nMaxExcursion;
1216             averageDelay += ((pReverb->m_sAp0.m_zApOut - pReverb->m_sAp0.m_zApIn)
1217                     + (pReverb->m_sAp1.m_zApOut - pReverb->m_sAp1.m_zApIn)) >> 1;
1218 
1219             temp = (-6000 * averageDelay) / value32;
1220             ALOGV("REVERB_PARAM_DECAY_TIME, delay smps %d, DT smps %d, gain mB %d",averageDelay, value32, temp);
1221             if (temp < -4000 || temp > -100)
1222                 return -EINVAL;
1223 
1224             // calculate low pass gain by adding reverb input attenuation (pReverb->m_nLateGain) and substrating output
1225             // xfade and sum gain (max +9dB)
1226             temp -= Effects_Linear16ToMillibels(pReverb->m_nLateGain) + 900;
1227             temp = Effects_MillibelsToLinear16(temp);
1228 
1229             // DC gain (temp) = b0 / (1 + a1) = pReverb->m_nRvbLpfFwd / (32767 - pReverb->m_nRvbLpfFbk)
1230             pReverb->m_nRvbLpfFwd
1231                     = MULT_EG1_EG1(temp, (32767 - pReverb->m_nRvbLpfFbk));
1232 
1233             ALOGV("REVERB_PARAM_DECAY_TIME, gain %d, new m_nRvbLpfFwd %d, old m_nRvbLpfFbk %d, reverb gain %d", temp, pReverb->m_nRvbLpfFwd, pReverb->m_nRvbLpfFbk, Effects_Linear16ToMillibels(pReverb->m_nLateGain));
1234 
1235             if (param == REVERB_PARAM_DECAY_TIME)
1236                 break;
1237             value16 = pProperties->decayHFRatio;
1238             /* FALL THROUGH */
1239 
1240         case REVERB_PARAM_DECAY_HF_RATIO:
1241 
1242             // We limit max value to 1000 because reverb filter is lowpass only
1243             if (value16 < 100 || value16 > 1000)
1244                 return -EINVAL;
1245             // Convert per mille to => m_nLpfFwd, m_nLpfFbk
1246 
1247             // Save current DC gain m_nRoomLpfFwd / (32767 - m_nRoomLpfFbk) to keep it unchanged
1248             // while changing HF level
1249             temp2 = (pReverb->m_nRvbLpfFwd << 15) / (32767 - pReverb->m_nRvbLpfFbk);
1250 
1251             if (value16 == 1000) {
1252                 pReverb->m_nRvbLpfFbk = 0;
1253             } else {
1254                 int32_t dG2, b, delta;
1255 
1256                 temp = Effects_Linear16ToMillibels(temp2);
1257                 // G_5000Hz = G_DC * (1000/REVERB_PARAM_DECAY_HF_RATIO) in millibels
1258 
1259                 value32 = ((int32_t) 1000 << 15) / (int32_t) value16;
1260                 ALOGV("REVERB_PARAM_DECAY_HF_RATIO, DC gain %d, DC gain mB %d, 1000/R %d", temp2, temp, value32);
1261 
1262                 temp = (int32_t) (((int64_t) temp * (int64_t) value32) >> 15);
1263 
1264                 if (temp < -4000) {
1265                     ALOGV("REVERB_PARAM_DECAY_HF_RATIO HF gain overflow %d mB", temp);
1266                     temp = -4000;
1267                 }
1268 
1269                 temp = Effects_MillibelsToLinear16(temp);
1270                 ALOGV("REVERB_PARAM_DECAY_HF_RATIO, HF gain %d", temp);
1271                 // dG^2
1272                 temp = (temp2 << 15) / temp;
1273                 dG2 = (int32_t) (((int64_t) temp * (int64_t) temp) >> 15);
1274 
1275                 // b = 2*(C-dG^2)/(1-dG^2)
1276                 b = (int32_t) ((((int64_t) 1 << (15 + 1))
1277                         * ((int64_t) pReverb->m_nCosWT_5KHz - (int64_t) dG2))
1278                         / ((int64_t) 32767 - (int64_t) dG2));
1279 
1280                 // delta = b^2 - 4
1281                 delta = (int32_t) ((((int64_t) b * (int64_t) b) >> 15) - (1 << (15
1282                         + 2)));
1283 
1284                 // m_nRoomLpfFbk = -a1 = - (- b + sqrt(delta)) / 2
1285                 pReverb->m_nRvbLpfFbk = (b - Effects_Sqrt(delta) * 181) >> 1;
1286 
1287                 ALOGV("REVERB_PARAM_DECAY_HF_RATIO, dG2 %d, b %d, delta %d", dG2, b, delta);
1288 
1289             }
1290 
1291             ALOGV("REVERB_PARAM_DECAY_HF_RATIO, gain %d, m_nRvbLpfFbk %d, m_nRvbLpfFwd %d", temp2, pReverb->m_nRvbLpfFbk, pReverb->m_nRvbLpfFwd);
1292 
1293             pReverb->m_nRvbLpfFwd
1294                     = MULT_EG1_EG1(temp2, (32767 - pReverb->m_nRvbLpfFbk));
1295 
1296             if (param == REVERB_PARAM_DECAY_HF_RATIO)
1297                 break;
1298             value16 = pProperties->reflectionsLevel;
1299             /* FALL THROUGH */
1300 
1301         case REVERB_PARAM_REFLECTIONS_LEVEL:
1302             // We limit max value to 0 because gain is limited to 0dB
1303             if (value16 > 0 || value16 < -6000)
1304                 return -EINVAL;
1305 
1306             // Convert millibels to linear 16 bit signed and recompute m_sEarlyL.m_nGain[i] and m_sEarlyR.m_nGain[i].
1307             value16 = Effects_MillibelsToLinear16(value16);
1308             for (i = 0; i < REVERB_MAX_NUM_REFLECTIONS; i++) {
1309                 pReverb->m_sEarlyL.m_nGain[i]
1310                         = MULT_EG1_EG1(pPreset->m_sEarlyL.m_nGain[i],value16);
1311                 pReverb->m_sEarlyR.m_nGain[i]
1312                         = MULT_EG1_EG1(pPreset->m_sEarlyR.m_nGain[i],value16);
1313             }
1314             pReverb->m_nEarlyGain = value16;
1315             ALOGV("REVERB_PARAM_REFLECTIONS_LEVEL, m_nEarlyGain %d", pReverb->m_nEarlyGain);
1316 
1317             if (param == REVERB_PARAM_REFLECTIONS_LEVEL)
1318                 break;
1319             value32 = pProperties->reflectionsDelay;
1320             /* FALL THROUGH */
1321 
1322         case REVERB_PARAM_REFLECTIONS_DELAY:
1323             // We limit max value MAX_EARLY_TIME
1324             // convert ms to time units
1325             temp = (value32 * 65536) / 1000;
1326             if (temp < 0 || temp > MAX_EARLY_TIME)
1327                 return -EINVAL;
1328 
1329             maxSamples = (int32_t) (MAX_EARLY_TIME * pReverb->m_nSamplingRate)
1330                     >> 16;
1331             temp = (temp * pReverb->m_nSamplingRate) >> 16;
1332             for (i = 0; i < REVERB_MAX_NUM_REFLECTIONS; i++) {
1333                 temp2 = temp + (((int32_t) pPreset->m_sEarlyL.m_zDelay[i]
1334                         * pReverb->m_nSamplingRate) >> 16);
1335                 if (temp2 > maxSamples)
1336                     temp2 = maxSamples;
1337                 pReverb->m_sEarlyL.m_zDelay[i] = pReverb->m_nEarly0in + temp2;
1338                 temp2 = temp + (((int32_t) pPreset->m_sEarlyR.m_zDelay[i]
1339                         * pReverb->m_nSamplingRate) >> 16);
1340                 if (temp2 > maxSamples)
1341                     temp2 = maxSamples;
1342                 pReverb->m_sEarlyR.m_zDelay[i] = pReverb->m_nEarly1in + temp2;
1343             }
1344             pReverb->m_nEarlyDelay = temp;
1345 
1346             ALOGV("REVERB_PARAM_REFLECTIONS_DELAY, m_nEarlyDelay smps %d max smp delay %d", pReverb->m_nEarlyDelay, maxSamples);
1347 
1348             // Convert milliseconds to sample count => m_nEarlyDelay
1349             if (param == REVERB_PARAM_REFLECTIONS_DELAY)
1350                 break;
1351             value16 = pProperties->reverbLevel;
1352             /* FALL THROUGH */
1353 
1354         case REVERB_PARAM_REVERB_LEVEL:
1355             // We limit max value to 0 because gain is limited to 0dB
1356             if (value16 > 0 || value16 < -6000)
1357                 return -EINVAL;
1358             // Convert millibels to linear 16 bits (gange 0 - 8191) => m_nLateGain.
1359             pReverb->m_nLateGain = Effects_MillibelsToLinear16(value16) >> 2;
1360 
1361             ALOGV("REVERB_PARAM_REVERB_LEVEL, m_nLateGain %d", pReverb->m_nLateGain);
1362 
1363             if (param == REVERB_PARAM_REVERB_LEVEL)
1364                 break;
1365             value32 = pProperties->reverbDelay;
1366             /* FALL THROUGH */
1367 
1368         case REVERB_PARAM_REVERB_DELAY:
1369             // We limit max value to MAX_DELAY_TIME
1370             // convert ms to time units
1371             temp = (value32 * 65536) / 1000;
1372             if (temp < 0 || temp > MAX_DELAY_TIME)
1373                 return -EINVAL;
1374 
1375             maxSamples = (int32_t) (MAX_DELAY_TIME * pReverb->m_nSamplingRate)
1376                     >> 16;
1377             temp = (temp * pReverb->m_nSamplingRate) >> 16;
1378             if ((temp + pReverb->m_nMaxExcursion) > maxSamples) {
1379                 temp = maxSamples - pReverb->m_nMaxExcursion;
1380             }
1381             if (temp < pReverb->m_nMaxExcursion) {
1382                 temp = pReverb->m_nMaxExcursion;
1383             }
1384 
1385             temp -= pReverb->m_nLateDelay;
1386             pReverb->m_nDelay0Out += temp;
1387             pReverb->m_nDelay1Out += temp;
1388             pReverb->m_nLateDelay += temp;
1389 
1390             ALOGV("REVERB_PARAM_REVERB_DELAY, m_nLateDelay smps %d max smp delay %d", pReverb->m_nLateDelay, maxSamples);
1391 
1392             // Convert milliseconds to sample count => m_nDelay1Out + m_nMaxExcursion
1393             if (param == REVERB_PARAM_REVERB_DELAY)
1394                 break;
1395 
1396             value16 = pProperties->diffusion;
1397             /* FALL THROUGH */
1398 
1399         case REVERB_PARAM_DIFFUSION:
1400             if (value16 < 0 || value16 > 1000)
1401                 return -EINVAL;
1402 
1403             // Convert per mille to m_sAp0.m_nApGain, m_sAp1.m_nApGain
1404             pReverb->m_sAp0.m_nApGain = AP0_GAIN_BASE + ((int32_t) value16
1405                     * AP0_GAIN_RANGE) / 1000;
1406             pReverb->m_sAp1.m_nApGain = AP1_GAIN_BASE + ((int32_t) value16
1407                     * AP1_GAIN_RANGE) / 1000;
1408 
1409             ALOGV("REVERB_PARAM_DIFFUSION, m_sAp0.m_nApGain %d m_sAp1.m_nApGain %d", pReverb->m_sAp0.m_nApGain, pReverb->m_sAp1.m_nApGain);
1410 
1411             if (param == REVERB_PARAM_DIFFUSION)
1412                 break;
1413 
1414             value16 = pProperties->density;
1415             /* FALL THROUGH */
1416 
1417         case REVERB_PARAM_DENSITY:
1418             if (value16 < 0 || value16 > 1000)
1419                 return -EINVAL;
1420 
1421             // Convert per mille to m_sAp0.m_zApOut, m_sAp1.m_zApOut
1422             maxSamples = (int32_t) (MAX_AP_TIME * pReverb->m_nSamplingRate) >> 16;
1423 
1424             temp = AP0_TIME_BASE + ((int32_t) value16 * AP0_TIME_RANGE) / 1000;
1425             /*lint -e{702} shift for performance */
1426             temp = (temp * pReverb->m_nSamplingRate) >> 16;
1427             if (temp > maxSamples)
1428                 temp = maxSamples;
1429             pReverb->m_sAp0.m_zApOut = (uint16_t) (pReverb->m_sAp0.m_zApIn + temp);
1430 
1431             ALOGV("REVERB_PARAM_DENSITY, Ap0 delay smps %d", temp);
1432 
1433             temp = AP1_TIME_BASE + ((int32_t) value16 * AP1_TIME_RANGE) / 1000;
1434             /*lint -e{702} shift for performance */
1435             temp = (temp * pReverb->m_nSamplingRate) >> 16;
1436             if (temp > maxSamples)
1437                 temp = maxSamples;
1438             pReverb->m_sAp1.m_zApOut = (uint16_t) (pReverb->m_sAp1.m_zApIn + temp);
1439 
1440             ALOGV("Ap1 delay smps %d", temp);
1441 
1442             break;
1443 
1444         default:
1445             break;
1446         }
1447     }
1448 
1449     return 0;
1450 } /* end Reverb_setParameter */
1451 
1452 /*----------------------------------------------------------------------------
1453  * ReverbUpdateXfade
1454  *----------------------------------------------------------------------------
1455  * Purpose:
1456  * Update the xfade parameters as required
1457  *
1458  * Inputs:
1459  * nNumSamplesToAdd - number of samples to write to buffer
1460  *
1461  * Outputs:
1462  *
1463  *
1464  * Side Effects:
1465  * - xfade parameters will be changed
1466  *
1467  *----------------------------------------------------------------------------
1468  */
ReverbUpdateXfade(reverb_object_t * pReverb,int nNumSamplesToAdd)1469 static int ReverbUpdateXfade(reverb_object_t *pReverb, int nNumSamplesToAdd) {
1470     uint16_t nOffset;
1471     int16_t tempCos;
1472     int16_t tempSin;
1473 
1474     if (pReverb->m_nXfadeCounter >= pReverb->m_nXfadeInterval) {
1475         /* update interval has elapsed, so reset counter */
1476         pReverb->m_nXfadeCounter = 0;
1477 
1478         // Pin the sin,cos values to min / max values to ensure that the
1479         // modulated taps' coefs are zero (thus no clicks)
1480         if (pReverb->m_nPhaseIncrement > 0) {
1481             // if phase increment > 0, then sin -> 1, cos -> 0
1482             pReverb->m_nSin = 32767;
1483             pReverb->m_nCos = 0;
1484 
1485             // reset the phase to match the sin, cos values
1486             pReverb->m_nPhase = 32767;
1487 
1488             // modulate the cross taps because their tap coefs are zero
1489             nOffset = ReverbCalculateNoise(pReverb);
1490 
1491             pReverb->m_zD1Cross = pReverb->m_nDelay1Out
1492                     - pReverb->m_nMaxExcursion + nOffset;
1493 
1494             nOffset = ReverbCalculateNoise(pReverb);
1495 
1496             pReverb->m_zD0Cross = pReverb->m_nDelay0Out
1497                     - pReverb->m_nMaxExcursion - nOffset;
1498         } else {
1499             // if phase increment < 0, then sin -> 0, cos -> 1
1500             pReverb->m_nSin = 0;
1501             pReverb->m_nCos = 32767;
1502 
1503             // reset the phase to match the sin, cos values
1504             pReverb->m_nPhase = -32768;
1505 
1506             // modulate the self taps because their tap coefs are zero
1507             nOffset = ReverbCalculateNoise(pReverb);
1508 
1509             pReverb->m_zD0Self = pReverb->m_nDelay0Out
1510                     - pReverb->m_nMaxExcursion - nOffset;
1511 
1512             nOffset = ReverbCalculateNoise(pReverb);
1513 
1514             pReverb->m_zD1Self = pReverb->m_nDelay1Out
1515                     - pReverb->m_nMaxExcursion + nOffset;
1516 
1517         } // end if-else (pReverb->m_nPhaseIncrement > 0)
1518 
1519         // Reverse the direction of the sin,cos so that the
1520         // tap whose coef was previously increasing now decreases
1521         // and vice versa
1522         pReverb->m_nPhaseIncrement = -pReverb->m_nPhaseIncrement;
1523 
1524     } // end if counter >= update interval
1525 
1526     //compute what phase will be next time
1527     pReverb->m_nPhase += pReverb->m_nPhaseIncrement;
1528 
1529     //calculate what the new sin and cos need to reach by the next update
1530     ReverbCalculateSinCos(pReverb->m_nPhase, &tempSin, &tempCos);
1531 
1532     //calculate the per-sample increment required to get there by the next update
1533     /*lint -e{702} shift for performance */
1534     pReverb->m_nSinIncrement = (tempSin - pReverb->m_nSin)
1535             >> pReverb->m_nUpdatePeriodInBits;
1536 
1537     /*lint -e{702} shift for performance */
1538     pReverb->m_nCosIncrement = (tempCos - pReverb->m_nCos)
1539             >> pReverb->m_nUpdatePeriodInBits;
1540 
1541     /* increment update counter */
1542     pReverb->m_nXfadeCounter += (uint16_t) nNumSamplesToAdd;
1543 
1544     return 0;
1545 
1546 } /* end ReverbUpdateXfade */
1547 
1548 /*----------------------------------------------------------------------------
1549  * ReverbCalculateNoise
1550  *----------------------------------------------------------------------------
1551  * Purpose:
1552  * Calculate a noise sample and limit its value
1553  *
1554  * Inputs:
1555  * nMaxExcursion - noise value is limited to this value
1556  * pnNoise - return new noise sample in this (not limited)
1557  *
1558  * Outputs:
1559  * new limited noise value
1560  *
1561  * Side Effects:
1562  * - *pnNoise noise value is updated
1563  *
1564  *----------------------------------------------------------------------------
1565  */
ReverbCalculateNoise(reverb_object_t * pReverb)1566 static uint16_t ReverbCalculateNoise(reverb_object_t *pReverb) {
1567     int16_t nNoise = pReverb->m_nNoise;
1568 
1569     // calculate new noise value
1570     if (pReverb->m_bUseNoise) {
1571         nNoise = (int16_t) (nNoise * 5 + 1);
1572     } else {
1573         nNoise = 0;
1574     }
1575 
1576     pReverb->m_nNoise = nNoise;
1577     // return the limited noise value
1578     return (pReverb->m_nMaxExcursion & nNoise);
1579 
1580 } /* end ReverbCalculateNoise */
1581 
1582 /*----------------------------------------------------------------------------
1583  * ReverbCalculateSinCos
1584  *----------------------------------------------------------------------------
1585  * Purpose:
1586  * Calculate a new sin and cosine value based on the given phase
1587  *
1588  * Inputs:
1589  * nPhase   - phase angle
1590  * pnSin    - input old value, output new value
1591  * pnCos    - input old value, output new value
1592  *
1593  * Outputs:
1594  *
1595  * Side Effects:
1596  * - *pnSin, *pnCos are updated
1597  *
1598  *----------------------------------------------------------------------------
1599  */
ReverbCalculateSinCos(int16_t nPhase,int16_t * pnSin,int16_t * pnCos)1600 static int ReverbCalculateSinCos(int16_t nPhase, int16_t *pnSin, int16_t *pnCos) {
1601     int32_t nTemp;
1602     int32_t nNetAngle;
1603 
1604     //  -1 <=  nPhase  < 1
1605     // However, for the calculation, we need a value
1606     // that ranges from -1/2 to +1/2, so divide the phase by 2
1607     /*lint -e{702} shift for performance */
1608     nNetAngle = nPhase >> 1;
1609 
1610     /*
1611      Implement the following
1612      sin(x) = (2-4*c)*x^2 + c + x
1613      cos(x) = (2-4*c)*x^2 + c - x
1614 
1615      where  c = 1/sqrt(2)
1616      using the a0 + x*(a1 + x*a2) approach
1617      */
1618 
1619     /* limit the input "angle" to be between -0.5 and +0.5 */
1620     if (nNetAngle > EG1_HALF) {
1621         nNetAngle = EG1_HALF;
1622     } else if (nNetAngle < EG1_MINUS_HALF) {
1623         nNetAngle = EG1_MINUS_HALF;
1624     }
1625 
1626     /* calculate sin */
1627     nTemp = EG1_ONE + MULT_EG1_EG1(REVERB_PAN_G2, nNetAngle);
1628     nTemp = REVERB_PAN_G0 + MULT_EG1_EG1(nTemp, nNetAngle);
1629     *pnSin = (int16_t) SATURATE_EG1(nTemp);
1630 
1631     /* calculate cos */
1632     nTemp = -EG1_ONE + MULT_EG1_EG1(REVERB_PAN_G2, nNetAngle);
1633     nTemp = REVERB_PAN_G0 + MULT_EG1_EG1(nTemp, nNetAngle);
1634     *pnCos = (int16_t) SATURATE_EG1(nTemp);
1635 
1636     return 0;
1637 } /* end ReverbCalculateSinCos */
1638 
1639 /*----------------------------------------------------------------------------
1640  * Reverb
1641  *----------------------------------------------------------------------------
1642  * Purpose:
1643  * apply reverb to the given signal
1644  *
1645  * Inputs:
1646  * nNu
1647  * pnSin    - input old value, output new value
1648  * pnCos    - input old value, output new value
1649  *
1650  * Outputs:
1651  * number of samples actually reverberated
1652  *
1653  * Side Effects:
1654  *
1655  *----------------------------------------------------------------------------
1656  */
Reverb(reverb_object_t * pReverb,int nNumSamplesToAdd,short * pOutputBuffer,short * pInputBuffer)1657 static int Reverb(reverb_object_t *pReverb, int nNumSamplesToAdd,
1658         short *pOutputBuffer, short *pInputBuffer) {
1659     int32_t i;
1660     int32_t nDelayOut0;
1661     int32_t nDelayOut1;
1662     uint16_t nBase;
1663 
1664     uint32_t nAddr;
1665     int32_t nTemp1;
1666     int32_t nTemp2;
1667     int32_t nApIn;
1668     int32_t nApOut;
1669 
1670     int32_t j;
1671     int32_t nEarlyOut;
1672 
1673     int32_t tempValue;
1674 
1675     // get the base address
1676     nBase = pReverb->m_nBaseIndex;
1677 
1678     for (i = 0; i < nNumSamplesToAdd; i++) {
1679         // ********** Left Allpass - start
1680         nApIn = *pInputBuffer;
1681         if (!pReverb->m_Aux) {
1682             pInputBuffer++;
1683         }
1684         // store to early delay line
1685         nAddr = CIRCULAR(nBase, pReverb->m_nEarly0in, pReverb->m_nBufferMask);
1686         pReverb->m_nDelayLine[nAddr] = (short) nApIn;
1687 
1688         // left input = (left dry * m_nLateGain) + right feedback from previous period
1689 
1690         nApIn = SATURATE(nApIn + pReverb->m_nRevFbkR);
1691         nApIn = MULT_EG1_EG1(nApIn, pReverb->m_nLateGain);
1692 
1693         // fetch allpass delay line out
1694         //nAddr = CIRCULAR(nBase, psAp0->m_zApOut, pReverb->m_nBufferMask);
1695         nAddr
1696                 = CIRCULAR(nBase, pReverb->m_sAp0.m_zApOut, pReverb->m_nBufferMask);
1697         nDelayOut0 = pReverb->m_nDelayLine[nAddr];
1698 
1699         // calculate allpass feedforward; subtract the feedforward result
1700         nTemp1 = MULT_EG1_EG1(nApIn, pReverb->m_sAp0.m_nApGain);
1701         nApOut = SATURATE(nDelayOut0 - nTemp1); // allpass output
1702 
1703         // calculate allpass feedback; add the feedback result
1704         nTemp1 = MULT_EG1_EG1(nApOut, pReverb->m_sAp0.m_nApGain);
1705         nTemp1 = SATURATE(nApIn + nTemp1);
1706 
1707         // inject into allpass delay
1708         nAddr
1709                 = CIRCULAR(nBase, pReverb->m_sAp0.m_zApIn, pReverb->m_nBufferMask);
1710         pReverb->m_nDelayLine[nAddr] = (short) nTemp1;
1711 
1712         // inject allpass output into delay line
1713         nAddr = CIRCULAR(nBase, pReverb->m_zD0In, pReverb->m_nBufferMask);
1714         pReverb->m_nDelayLine[nAddr] = (short) nApOut;
1715 
1716         // ********** Left Allpass - end
1717 
1718         // ********** Right Allpass - start
1719         nApIn = (*pInputBuffer++);
1720         // store to early delay line
1721         nAddr = CIRCULAR(nBase, pReverb->m_nEarly1in, pReverb->m_nBufferMask);
1722         pReverb->m_nDelayLine[nAddr] = (short) nApIn;
1723 
1724         // right input = (right dry * m_nLateGain) + left feedback from previous period
1725         /*lint -e{702} use shift for performance */
1726         nApIn = SATURATE(nApIn + pReverb->m_nRevFbkL);
1727         nApIn = MULT_EG1_EG1(nApIn, pReverb->m_nLateGain);
1728 
1729         // fetch allpass delay line out
1730         nAddr
1731                 = CIRCULAR(nBase, pReverb->m_sAp1.m_zApOut, pReverb->m_nBufferMask);
1732         nDelayOut1 = pReverb->m_nDelayLine[nAddr];
1733 
1734         // calculate allpass feedforward; subtract the feedforward result
1735         nTemp1 = MULT_EG1_EG1(nApIn, pReverb->m_sAp1.m_nApGain);
1736         nApOut = SATURATE(nDelayOut1 - nTemp1); // allpass output
1737 
1738         // calculate allpass feedback; add the feedback result
1739         nTemp1 = MULT_EG1_EG1(nApOut, pReverb->m_sAp1.m_nApGain);
1740         nTemp1 = SATURATE(nApIn + nTemp1);
1741 
1742         // inject into allpass delay
1743         nAddr
1744                 = CIRCULAR(nBase, pReverb->m_sAp1.m_zApIn, pReverb->m_nBufferMask);
1745         pReverb->m_nDelayLine[nAddr] = (short) nTemp1;
1746 
1747         // inject allpass output into delay line
1748         nAddr = CIRCULAR(nBase, pReverb->m_zD1In, pReverb->m_nBufferMask);
1749         pReverb->m_nDelayLine[nAddr] = (short) nApOut;
1750 
1751         // ********** Right Allpass - end
1752 
1753         // ********** D0 output - start
1754         // fetch delay line self out
1755         nAddr = CIRCULAR(nBase, pReverb->m_zD0Self, pReverb->m_nBufferMask);
1756         nDelayOut0 = pReverb->m_nDelayLine[nAddr];
1757 
1758         // calculate delay line self out
1759         nTemp1 = MULT_EG1_EG1(nDelayOut0, pReverb->m_nSin);
1760 
1761         // fetch delay line cross out
1762         nAddr = CIRCULAR(nBase, pReverb->m_zD1Cross, pReverb->m_nBufferMask);
1763         nDelayOut0 = pReverb->m_nDelayLine[nAddr];
1764 
1765         // calculate delay line self out
1766         nTemp2 = MULT_EG1_EG1(nDelayOut0, pReverb->m_nCos);
1767 
1768         // calculate unfiltered delay out
1769         nDelayOut0 = SATURATE(nTemp1 + nTemp2);
1770 
1771         // ********** D0 output - end
1772 
1773         // ********** D1 output - start
1774         // fetch delay line self out
1775         nAddr = CIRCULAR(nBase, pReverb->m_zD1Self, pReverb->m_nBufferMask);
1776         nDelayOut1 = pReverb->m_nDelayLine[nAddr];
1777 
1778         // calculate delay line self out
1779         nTemp1 = MULT_EG1_EG1(nDelayOut1, pReverb->m_nSin);
1780 
1781         // fetch delay line cross out
1782         nAddr = CIRCULAR(nBase, pReverb->m_zD0Cross, pReverb->m_nBufferMask);
1783         nDelayOut1 = pReverb->m_nDelayLine[nAddr];
1784 
1785         // calculate delay line self out
1786         nTemp2 = MULT_EG1_EG1(nDelayOut1, pReverb->m_nCos);
1787 
1788         // calculate unfiltered delay out
1789         nDelayOut1 = SATURATE(nTemp1 + nTemp2);
1790 
1791         // ********** D1 output - end
1792 
1793         // ********** mixer and feedback - start
1794         // sum is fedback to right input (R + L)
1795         nDelayOut0 = (short) SATURATE(nDelayOut0 + nDelayOut1);
1796 
1797         // difference is feedback to left input (R - L)
1798         /*lint -e{685} lint complains that it can't saturate negative */
1799         nDelayOut1 = (short) SATURATE(nDelayOut1 - nDelayOut0);
1800 
1801         // ********** mixer and feedback - end
1802 
1803         // calculate lowpass filter (mixer scale factor included in LPF feedforward)
1804         nTemp1 = MULT_EG1_EG1(nDelayOut0, pReverb->m_nRvbLpfFwd);
1805 
1806         nTemp2 = MULT_EG1_EG1(pReverb->m_nRevFbkL, pReverb->m_nRvbLpfFbk);
1807 
1808         // calculate filtered delay out and simultaneously update LPF state variable
1809         // filtered delay output is stored in m_nRevFbkL
1810         pReverb->m_nRevFbkL = (short) SATURATE(nTemp1 + nTemp2);
1811 
1812         // calculate lowpass filter (mixer scale factor included in LPF feedforward)
1813         nTemp1 = MULT_EG1_EG1(nDelayOut1, pReverb->m_nRvbLpfFwd);
1814 
1815         nTemp2 = MULT_EG1_EG1(pReverb->m_nRevFbkR, pReverb->m_nRvbLpfFbk);
1816 
1817         // calculate filtered delay out and simultaneously update LPF state variable
1818         // filtered delay output is stored in m_nRevFbkR
1819         pReverb->m_nRevFbkR = (short) SATURATE(nTemp1 + nTemp2);
1820 
1821         // ********** start early reflection generator, left
1822         //psEarly = &(pReverb->m_sEarlyL);
1823 
1824 
1825         for (j = 0; j < REVERB_MAX_NUM_REFLECTIONS; j++) {
1826             // fetch delay line out
1827             //nAddr = CIRCULAR(nBase, psEarly->m_zDelay[j], pReverb->m_nBufferMask);
1828             nAddr
1829                     = CIRCULAR(nBase, pReverb->m_sEarlyL.m_zDelay[j], pReverb->m_nBufferMask);
1830 
1831             nTemp1 = pReverb->m_nDelayLine[nAddr];
1832 
1833             // calculate reflection
1834             //nTemp1 = MULT_EG1_EG1(nDelayOut0, psEarly->m_nGain[j]);
1835             nTemp1 = MULT_EG1_EG1(nTemp1, pReverb->m_sEarlyL.m_nGain[j]);
1836 
1837             nDelayOut0 = SATURATE(nDelayOut0 + nTemp1);
1838 
1839         } // end for (j=0; j < REVERB_MAX_NUM_REFLECTIONS; j++)
1840 
1841         // apply lowpass to early reflections and reverb output
1842         //nTemp1 = MULT_EG1_EG1(nEarlyOut, psEarly->m_nRvbLpfFwd);
1843         nTemp1 = MULT_EG1_EG1(nDelayOut0, pReverb->m_nRoomLpfFwd);
1844 
1845         //nTemp2 = MULT_EG1_EG1(psEarly->m_zLpf, psEarly->m_nLpfFbk);
1846         nTemp2 = MULT_EG1_EG1(pReverb->m_zOutLpfL, pReverb->m_nRoomLpfFbk);
1847 
1848         // calculate filtered out and simultaneously update LPF state variable
1849         // filtered output is stored in m_zOutLpfL
1850         pReverb->m_zOutLpfL = (short) SATURATE(nTemp1 + nTemp2);
1851 
1852         //sum with output buffer
1853         tempValue = *pOutputBuffer;
1854         *pOutputBuffer++ = (short) SATURATE(tempValue+pReverb->m_zOutLpfL);
1855 
1856         // ********** end early reflection generator, left
1857 
1858         // ********** start early reflection generator, right
1859         //psEarly = &(pReverb->m_sEarlyR);
1860 
1861         for (j = 0; j < REVERB_MAX_NUM_REFLECTIONS; j++) {
1862             // fetch delay line out
1863             nAddr
1864                     = CIRCULAR(nBase, pReverb->m_sEarlyR.m_zDelay[j], pReverb->m_nBufferMask);
1865             nTemp1 = pReverb->m_nDelayLine[nAddr];
1866 
1867             // calculate reflection
1868             nTemp1 = MULT_EG1_EG1(nTemp1, pReverb->m_sEarlyR.m_nGain[j]);
1869 
1870             nDelayOut1 = SATURATE(nDelayOut1 + nTemp1);
1871 
1872         } // end for (j=0; j < REVERB_MAX_NUM_REFLECTIONS; j++)
1873 
1874         // apply lowpass to early reflections
1875         nTemp1 = MULT_EG1_EG1(nDelayOut1, pReverb->m_nRoomLpfFwd);
1876 
1877         nTemp2 = MULT_EG1_EG1(pReverb->m_zOutLpfR, pReverb->m_nRoomLpfFbk);
1878 
1879         // calculate filtered out and simultaneously update LPF state variable
1880         // filtered output is stored in m_zOutLpfR
1881         pReverb->m_zOutLpfR = (short) SATURATE(nTemp1 + nTemp2);
1882 
1883         //sum with output buffer
1884         tempValue = *pOutputBuffer;
1885         *pOutputBuffer++ = (short) SATURATE(tempValue + pReverb->m_zOutLpfR);
1886 
1887         // ********** end early reflection generator, right
1888 
1889         // decrement base addr for next sample period
1890         nBase--;
1891 
1892         pReverb->m_nSin += pReverb->m_nSinIncrement;
1893         pReverb->m_nCos += pReverb->m_nCosIncrement;
1894 
1895     } // end for (i=0; i < nNumSamplesToAdd; i++)
1896 
1897     // store the most up to date version
1898     pReverb->m_nBaseIndex = nBase;
1899 
1900     return 0;
1901 } /* end Reverb */
1902 
1903 /*----------------------------------------------------------------------------
1904  * ReverbUpdateRoom
1905  *----------------------------------------------------------------------------
1906  * Purpose:
1907  * Update the room's preset parameters as required
1908  *
1909  * Inputs:
1910  *
1911  * Outputs:
1912  *
1913  *
1914  * Side Effects:
1915  * - reverb paramters (fbk, fwd, etc) will be changed
1916  * - m_nCurrentRoom := m_nNextRoom
1917  *----------------------------------------------------------------------------
1918  */
ReverbUpdateRoom(reverb_object_t * pReverb,bool fullUpdate)1919 static int ReverbUpdateRoom(reverb_object_t *pReverb, bool fullUpdate) {
1920     int temp;
1921     int i;
1922     int maxSamples;
1923     int earlyDelay;
1924     int earlyGain;
1925 
1926     reverb_preset_t *pPreset =
1927             &pReverb->m_sPreset.m_sPreset[pReverb->m_nNextRoom];
1928 
1929     if (fullUpdate) {
1930         pReverb->m_nRvbLpfFwd = pPreset->m_nRvbLpfFwd;
1931         pReverb->m_nRvbLpfFbk = pPreset->m_nRvbLpfFbk;
1932 
1933         pReverb->m_nEarlyGain = pPreset->m_nEarlyGain;
1934         //stored as time based, convert to sample based
1935         pReverb->m_nLateGain = pPreset->m_nLateGain;
1936         pReverb->m_nRoomLpfFbk = pPreset->m_nRoomLpfFbk;
1937         pReverb->m_nRoomLpfFwd = pPreset->m_nRoomLpfFwd;
1938 
1939         // set the early reflections gains
1940         earlyGain = pPreset->m_nEarlyGain;
1941         for (i = 0; i < REVERB_MAX_NUM_REFLECTIONS; i++) {
1942             pReverb->m_sEarlyL.m_nGain[i]
1943                     = MULT_EG1_EG1(pPreset->m_sEarlyL.m_nGain[i],earlyGain);
1944             pReverb->m_sEarlyR.m_nGain[i]
1945                     = MULT_EG1_EG1(pPreset->m_sEarlyR.m_nGain[i],earlyGain);
1946         }
1947 
1948         pReverb->m_nMaxExcursion = pPreset->m_nMaxExcursion;
1949 
1950         pReverb->m_sAp0.m_nApGain = pPreset->m_nAp0_ApGain;
1951         pReverb->m_sAp1.m_nApGain = pPreset->m_nAp1_ApGain;
1952 
1953         // set the early reflections delay
1954         earlyDelay = ((int) pPreset->m_nEarlyDelay * pReverb->m_nSamplingRate)
1955                 >> 16;
1956         pReverb->m_nEarlyDelay = earlyDelay;
1957         maxSamples = (int32_t) (MAX_EARLY_TIME * pReverb->m_nSamplingRate)
1958                 >> 16;
1959         for (i = 0; i < REVERB_MAX_NUM_REFLECTIONS; i++) {
1960             //stored as time based, convert to sample based
1961             temp = earlyDelay + (((int) pPreset->m_sEarlyL.m_zDelay[i]
1962                     * pReverb->m_nSamplingRate) >> 16);
1963             if (temp > maxSamples)
1964                 temp = maxSamples;
1965             pReverb->m_sEarlyL.m_zDelay[i] = pReverb->m_nEarly0in + temp;
1966             //stored as time based, convert to sample based
1967             temp = earlyDelay + (((int) pPreset->m_sEarlyR.m_zDelay[i]
1968                     * pReverb->m_nSamplingRate) >> 16);
1969             if (temp > maxSamples)
1970                 temp = maxSamples;
1971             pReverb->m_sEarlyR.m_zDelay[i] = pReverb->m_nEarly1in + temp;
1972         }
1973 
1974         maxSamples = (int32_t) (MAX_DELAY_TIME * pReverb->m_nSamplingRate)
1975                 >> 16;
1976         //stored as time based, convert to sample based
1977         /*lint -e{702} shift for performance */
1978         temp = (pPreset->m_nLateDelay * pReverb->m_nSamplingRate) >> 16;
1979         if ((temp + pReverb->m_nMaxExcursion) > maxSamples) {
1980             temp = maxSamples - pReverb->m_nMaxExcursion;
1981         }
1982         temp -= pReverb->m_nLateDelay;
1983         pReverb->m_nDelay0Out += temp;
1984         pReverb->m_nDelay1Out += temp;
1985         pReverb->m_nLateDelay += temp;
1986 
1987         maxSamples = (int32_t) (MAX_AP_TIME * pReverb->m_nSamplingRate) >> 16;
1988         //stored as time based, convert to absolute sample value
1989         temp = pPreset->m_nAp0_ApOut;
1990         /*lint -e{702} shift for performance */
1991         temp = (temp * pReverb->m_nSamplingRate) >> 16;
1992         if (temp > maxSamples)
1993             temp = maxSamples;
1994         pReverb->m_sAp0.m_zApOut = (uint16_t) (pReverb->m_sAp0.m_zApIn + temp);
1995 
1996         //stored as time based, convert to absolute sample value
1997         temp = pPreset->m_nAp1_ApOut;
1998         /*lint -e{702} shift for performance */
1999         temp = (temp * pReverb->m_nSamplingRate) >> 16;
2000         if (temp > maxSamples)
2001             temp = maxSamples;
2002         pReverb->m_sAp1.m_zApOut = (uint16_t) (pReverb->m_sAp1.m_zApIn + temp);
2003         //gpsReverbObject->m_sAp1.m_zApOut = pPreset->m_nAp1_ApOut;
2004     }
2005 
2006     //stored as time based, convert to sample based
2007     temp = pPreset->m_nXfadeInterval;
2008     /*lint -e{702} shift for performance */
2009     temp = (temp * pReverb->m_nSamplingRate) >> 16;
2010     pReverb->m_nXfadeInterval = (uint16_t) temp;
2011     //gsReverbObject.m_nXfadeInterval = pPreset->m_nXfadeInterval;
2012     pReverb->m_nXfadeCounter = pReverb->m_nXfadeInterval + 1; // force update on first iteration
2013 
2014     pReverb->m_nCurrentRoom = pReverb->m_nNextRoom;
2015 
2016     return 0;
2017 
2018 } /* end ReverbUpdateRoom */
2019 
2020 /*----------------------------------------------------------------------------
2021  * ReverbReadInPresets()
2022  *----------------------------------------------------------------------------
2023  * Purpose: sets global reverb preset bank to defaults
2024  *
2025  * Inputs:
2026  *
2027  * Outputs:
2028  *
2029  *----------------------------------------------------------------------------
2030  */
ReverbReadInPresets(reverb_object_t * pReverb)2031 static int ReverbReadInPresets(reverb_object_t *pReverb) {
2032 
2033     int preset;
2034 
2035     // this is for test only. OpenSL ES presets are mapped to 4 presets.
2036     // REVERB_PRESET_NONE is mapped to bypass
2037     for (preset = 0; preset < REVERB_NUM_PRESETS; preset++) {
2038         reverb_preset_t *pPreset = &pReverb->m_sPreset.m_sPreset[preset];
2039         switch (preset + 1) {
2040         case REVERB_PRESET_PLATE:
2041         case REVERB_PRESET_SMALLROOM:
2042             pPreset->m_nRvbLpfFbk = 5077;
2043             pPreset->m_nRvbLpfFwd = 11076;
2044             pPreset->m_nEarlyGain = 27690;
2045             pPreset->m_nEarlyDelay = 1311;
2046             pPreset->m_nLateGain = 8191;
2047             pPreset->m_nLateDelay = 3932;
2048             pPreset->m_nRoomLpfFbk = 3692;
2049             pPreset->m_nRoomLpfFwd = 20474;
2050             pPreset->m_sEarlyL.m_zDelay[0] = 1376;
2051             pPreset->m_sEarlyL.m_nGain[0] = 22152;
2052             pPreset->m_sEarlyL.m_zDelay[1] = 1462;
2053             pPreset->m_sEarlyL.m_nGain[1] = 17537;
2054             pPreset->m_sEarlyL.m_zDelay[2] = 0;
2055             pPreset->m_sEarlyL.m_nGain[2] = 14768;
2056             pPreset->m_sEarlyL.m_zDelay[3] = 1835;
2057             pPreset->m_sEarlyL.m_nGain[3] = 14307;
2058             pPreset->m_sEarlyL.m_zDelay[4] = 0;
2059             pPreset->m_sEarlyL.m_nGain[4] = 13384;
2060             pPreset->m_sEarlyR.m_zDelay[0] = 721;
2061             pPreset->m_sEarlyR.m_nGain[0] = 20306;
2062             pPreset->m_sEarlyR.m_zDelay[1] = 2621;
2063             pPreset->m_sEarlyR.m_nGain[1] = 17537;
2064             pPreset->m_sEarlyR.m_zDelay[2] = 0;
2065             pPreset->m_sEarlyR.m_nGain[2] = 14768;
2066             pPreset->m_sEarlyR.m_zDelay[3] = 0;
2067             pPreset->m_sEarlyR.m_nGain[3] = 16153;
2068             pPreset->m_sEarlyR.m_zDelay[4] = 0;
2069             pPreset->m_sEarlyR.m_nGain[4] = 13384;
2070             pPreset->m_nMaxExcursion = 127;
2071             pPreset->m_nXfadeInterval = 6470; //6483;
2072             pPreset->m_nAp0_ApGain = 14768;
2073             pPreset->m_nAp0_ApOut = 792;
2074             pPreset->m_nAp1_ApGain = 14777;
2075             pPreset->m_nAp1_ApOut = 1191;
2076             pPreset->m_rfu4 = 0;
2077             pPreset->m_rfu5 = 0;
2078             pPreset->m_rfu6 = 0;
2079             pPreset->m_rfu7 = 0;
2080             pPreset->m_rfu8 = 0;
2081             pPreset->m_rfu9 = 0;
2082             pPreset->m_rfu10 = 0;
2083             break;
2084         case REVERB_PRESET_MEDIUMROOM:
2085         case REVERB_PRESET_LARGEROOM:
2086             pPreset->m_nRvbLpfFbk = 5077;
2087             pPreset->m_nRvbLpfFwd = 12922;
2088             pPreset->m_nEarlyGain = 27690;
2089             pPreset->m_nEarlyDelay = 1311;
2090             pPreset->m_nLateGain = 8191;
2091             pPreset->m_nLateDelay = 3932;
2092             pPreset->m_nRoomLpfFbk = 3692;
2093             pPreset->m_nRoomLpfFwd = 21703;
2094             pPreset->m_sEarlyL.m_zDelay[0] = 1376;
2095             pPreset->m_sEarlyL.m_nGain[0] = 22152;
2096             pPreset->m_sEarlyL.m_zDelay[1] = 1462;
2097             pPreset->m_sEarlyL.m_nGain[1] = 17537;
2098             pPreset->m_sEarlyL.m_zDelay[2] = 0;
2099             pPreset->m_sEarlyL.m_nGain[2] = 14768;
2100             pPreset->m_sEarlyL.m_zDelay[3] = 1835;
2101             pPreset->m_sEarlyL.m_nGain[3] = 14307;
2102             pPreset->m_sEarlyL.m_zDelay[4] = 0;
2103             pPreset->m_sEarlyL.m_nGain[4] = 13384;
2104             pPreset->m_sEarlyR.m_zDelay[0] = 721;
2105             pPreset->m_sEarlyR.m_nGain[0] = 20306;
2106             pPreset->m_sEarlyR.m_zDelay[1] = 2621;
2107             pPreset->m_sEarlyR.m_nGain[1] = 17537;
2108             pPreset->m_sEarlyR.m_zDelay[2] = 0;
2109             pPreset->m_sEarlyR.m_nGain[2] = 14768;
2110             pPreset->m_sEarlyR.m_zDelay[3] = 0;
2111             pPreset->m_sEarlyR.m_nGain[3] = 16153;
2112             pPreset->m_sEarlyR.m_zDelay[4] = 0;
2113             pPreset->m_sEarlyR.m_nGain[4] = 13384;
2114             pPreset->m_nMaxExcursion = 127;
2115             pPreset->m_nXfadeInterval = 6449;
2116             pPreset->m_nAp0_ApGain = 15691;
2117             pPreset->m_nAp0_ApOut = 774;
2118             pPreset->m_nAp1_ApGain = 16317;
2119             pPreset->m_nAp1_ApOut = 1155;
2120             pPreset->m_rfu4 = 0;
2121             pPreset->m_rfu5 = 0;
2122             pPreset->m_rfu6 = 0;
2123             pPreset->m_rfu7 = 0;
2124             pPreset->m_rfu8 = 0;
2125             pPreset->m_rfu9 = 0;
2126             pPreset->m_rfu10 = 0;
2127             break;
2128         case REVERB_PRESET_MEDIUMHALL:
2129             pPreset->m_nRvbLpfFbk = 6461;
2130             pPreset->m_nRvbLpfFwd = 14307;
2131             pPreset->m_nEarlyGain = 27690;
2132             pPreset->m_nEarlyDelay = 1311;
2133             pPreset->m_nLateGain = 8191;
2134             pPreset->m_nLateDelay = 3932;
2135             pPreset->m_nRoomLpfFbk = 3692;
2136             pPreset->m_nRoomLpfFwd = 24569;
2137             pPreset->m_sEarlyL.m_zDelay[0] = 1376;
2138             pPreset->m_sEarlyL.m_nGain[0] = 22152;
2139             pPreset->m_sEarlyL.m_zDelay[1] = 1462;
2140             pPreset->m_sEarlyL.m_nGain[1] = 17537;
2141             pPreset->m_sEarlyL.m_zDelay[2] = 0;
2142             pPreset->m_sEarlyL.m_nGain[2] = 14768;
2143             pPreset->m_sEarlyL.m_zDelay[3] = 1835;
2144             pPreset->m_sEarlyL.m_nGain[3] = 14307;
2145             pPreset->m_sEarlyL.m_zDelay[4] = 0;
2146             pPreset->m_sEarlyL.m_nGain[4] = 13384;
2147             pPreset->m_sEarlyR.m_zDelay[0] = 721;
2148             pPreset->m_sEarlyR.m_nGain[0] = 20306;
2149             pPreset->m_sEarlyR.m_zDelay[1] = 2621;
2150             pPreset->m_sEarlyR.m_nGain[1] = 17537;
2151             pPreset->m_sEarlyR.m_zDelay[2] = 0;
2152             pPreset->m_sEarlyR.m_nGain[2] = 14768;
2153             pPreset->m_sEarlyR.m_zDelay[3] = 0;
2154             pPreset->m_sEarlyR.m_nGain[3] = 16153;
2155             pPreset->m_sEarlyR.m_zDelay[4] = 0;
2156             pPreset->m_sEarlyR.m_nGain[4] = 13384;
2157             pPreset->m_nMaxExcursion = 127;
2158             pPreset->m_nXfadeInterval = 6391;
2159             pPreset->m_nAp0_ApGain = 15230;
2160             pPreset->m_nAp0_ApOut = 708;
2161             pPreset->m_nAp1_ApGain = 15547;
2162             pPreset->m_nAp1_ApOut = 1023;
2163             pPreset->m_rfu4 = 0;
2164             pPreset->m_rfu5 = 0;
2165             pPreset->m_rfu6 = 0;
2166             pPreset->m_rfu7 = 0;
2167             pPreset->m_rfu8 = 0;
2168             pPreset->m_rfu9 = 0;
2169             pPreset->m_rfu10 = 0;
2170             break;
2171         case REVERB_PRESET_LARGEHALL:
2172             pPreset->m_nRvbLpfFbk = 8307;
2173             pPreset->m_nRvbLpfFwd = 14768;
2174             pPreset->m_nEarlyGain = 27690;
2175             pPreset->m_nEarlyDelay = 1311;
2176             pPreset->m_nLateGain = 8191;
2177             pPreset->m_nLateDelay = 3932;
2178             pPreset->m_nRoomLpfFbk = 3692;
2179             pPreset->m_nRoomLpfFwd = 24569;
2180             pPreset->m_sEarlyL.m_zDelay[0] = 1376;
2181             pPreset->m_sEarlyL.m_nGain[0] = 22152;
2182             pPreset->m_sEarlyL.m_zDelay[1] = 2163;
2183             pPreset->m_sEarlyL.m_nGain[1] = 17537;
2184             pPreset->m_sEarlyL.m_zDelay[2] = 0;
2185             pPreset->m_sEarlyL.m_nGain[2] = 14768;
2186             pPreset->m_sEarlyL.m_zDelay[3] = 1835;
2187             pPreset->m_sEarlyL.m_nGain[3] = 14307;
2188             pPreset->m_sEarlyL.m_zDelay[4] = 0;
2189             pPreset->m_sEarlyL.m_nGain[4] = 13384;
2190             pPreset->m_sEarlyR.m_zDelay[0] = 721;
2191             pPreset->m_sEarlyR.m_nGain[0] = 20306;
2192             pPreset->m_sEarlyR.m_zDelay[1] = 2621;
2193             pPreset->m_sEarlyR.m_nGain[1] = 17537;
2194             pPreset->m_sEarlyR.m_zDelay[2] = 0;
2195             pPreset->m_sEarlyR.m_nGain[2] = 14768;
2196             pPreset->m_sEarlyR.m_zDelay[3] = 0;
2197             pPreset->m_sEarlyR.m_nGain[3] = 16153;
2198             pPreset->m_sEarlyR.m_zDelay[4] = 0;
2199             pPreset->m_sEarlyR.m_nGain[4] = 13384;
2200             pPreset->m_nMaxExcursion = 127;
2201             pPreset->m_nXfadeInterval = 6388;
2202             pPreset->m_nAp0_ApGain = 15691;
2203             pPreset->m_nAp0_ApOut = 711;
2204             pPreset->m_nAp1_ApGain = 16317;
2205             pPreset->m_nAp1_ApOut = 1029;
2206             pPreset->m_rfu4 = 0;
2207             pPreset->m_rfu5 = 0;
2208             pPreset->m_rfu6 = 0;
2209             pPreset->m_rfu7 = 0;
2210             pPreset->m_rfu8 = 0;
2211             pPreset->m_rfu9 = 0;
2212             pPreset->m_rfu10 = 0;
2213             break;
2214         }
2215     }
2216 
2217     return 0;
2218 }
2219 
2220 audio_effect_library_t AUDIO_EFFECT_LIBRARY_INFO_SYM = {
2221     .tag = AUDIO_EFFECT_LIBRARY_TAG,
2222     .version = EFFECT_LIBRARY_API_VERSION,
2223     .name = "Test Equalizer Library",
2224     .implementor = "The Android Open Source Project",
2225     .query_num_effects = EffectQueryNumberEffects,
2226     .query_effect = EffectQueryEffect,
2227     .create_effect = EffectCreate,
2228     .release_effect = EffectRelease,
2229     .get_descriptor = EffectGetDescriptor,
2230 };
2231