1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "sola_time_scaler.h"
18
19 #include <math.h>
20 #include <hlogging.h>
21 #include <algorithm>
22
23 #include "ring_buffer.h"
24
25 #define FLAGS_sola_ring_buffer 2.0
26 #define FLAGS_sola_enable_correlation true
27
28
29 namespace video_editing {
30
31 // Returns a cross-correlation score for the specified buffers.
Correlate(const float * buffer1,const float * buffer2,int num_frames)32 int SolaAnalyzer::Correlate(const float* buffer1, const float* buffer2,
33 int num_frames) {
34 CHECK(initialized_);
35
36 int score = 0;
37 num_frames *= num_channels_;
38 while (num_frames-- > 0) {
39 // Increment the score if the sign bits match.
40 score += ((bit_cast<int32>(*buffer1++) ^ bit_cast<int32>(*buffer2++)) >= 0)
41 ? 1 : 0;
42 }
43 return score;
44 }
45
46 // Trivial SolaAnalyzer class to bypass correlation.
47 class SolaBypassAnalyzer : public SolaAnalyzer {
48 public:
SolaBypassAnalyzer()49 SolaBypassAnalyzer() { }
Correlate(const float *,const float *,int num_frames)50 virtual int Correlate(const float*, const float*, int num_frames) {
51 return num_frames * num_channels_;
52 }
53 };
54
55
56 // Default constructor.
SolaTimeScaler()57 SolaTimeScaler::SolaTimeScaler()
58 : input_buffer_(NULL), output_buffer_(NULL), analyzer_(NULL) {
59 sample_rate_ = 0;
60 num_channels_ = 0;
61
62 draining_ = false;
63 initialized_ = false;
64 }
65
~SolaTimeScaler()66 SolaTimeScaler::~SolaTimeScaler() {
67 delete input_buffer_;
68 delete output_buffer_;
69 delete analyzer_;
70 }
71
72 // Injects a SolaAnalyzer instance for analyzing signal frames.
set_analyzer(SolaAnalyzer * analyzer)73 void SolaTimeScaler::set_analyzer(SolaAnalyzer* analyzer) {
74 MutexLock lock(&mutex_); // lock out processing while updating
75 delete analyzer_;
76 analyzer_ = analyzer;
77 }
78
79 // Initializes a SOLA timescaler.
Init(double sample_rate,int num_channels,double initial_speed,double window_duration,double overlap_duration)80 void SolaTimeScaler::Init(double sample_rate,
81 int num_channels,
82 double initial_speed,
83 double window_duration,
84 double overlap_duration) {
85 MutexLock lock(&mutex_); // lock out processing while updating
86
87 sample_rate_ = sample_rate;
88 num_channels_ = num_channels;
89 speed_ = initial_speed;
90 window_duration_ = window_duration;
91 overlap_duration_ = overlap_duration;
92
93 initialized_ = true;
94 GenerateParameters();
95 Reset();
96 }
97
98 // Adjusts the rate scaling factor.
set_speed(double speed)99 void SolaTimeScaler::set_speed(double speed) {
100 MutexLock lock(&mutex_); // lock out processing while updating
101
102 speed_ = speed;
103 GenerateParameters();
104 }
105
106 // Generates processing parameters from the current settings.
GenerateParameters()107 void SolaTimeScaler::GenerateParameters() {
108 if (speed_ < 0.1) {
109 LOGE("Requested speed %fx limited to 0.1x", speed_);
110 speed_ = 0.1;
111 } else if (speed_ > 8.0) {
112 LOGE("Requested speed %fx limited to 8.0x", speed_);
113 speed_ = 8.0;
114 }
115
116 ratio_ = 1.0 / speed_;
117
118 num_window_frames_ = nearbyint(sample_rate_ * window_duration_);
119
120 // Limit the overlap to half the window size, and round up to an odd number.
121 // Half of overlap window (rounded down) is also a useful number.
122 overlap_duration_ = min(overlap_duration_, window_duration_ / 2.0);
123 num_overlap_frames_ = nearbyint(sample_rate_ * overlap_duration_);
124 num_overlap_frames_ |= 1;
125 half_overlap_frames_ = num_overlap_frames_ >> 1;
126
127 if (speed_ >= 1.) {
128 // For compression (speed up), adjacent input windows overlap in the output.
129 input_window_offset_ = num_window_frames_;
130 target_merge_offset_ = nearbyint(num_window_frames_ * ratio_);
131 } else {
132 // For expansion (slow down), each input window start point overlaps the
133 // previous, and they are placed adjacently in the output
134 // (+/- half the overlap size).
135 input_window_offset_ = nearbyint(num_window_frames_ * speed_);
136 target_merge_offset_ = num_window_frames_;
137 }
138
139 // Make sure we copy enough extra data to be able to perform a
140 // frame correlation over the range of target merge point +/- half overlap,
141 // even when the previous merge point was adjusted backwards a half overlap.
142 max_frames_to_merge_ = max(num_window_frames_,
143 target_merge_offset_ + (2 * num_overlap_frames_));
144 min_output_to_hold_=
145 max_frames_to_merge_ + num_overlap_frames_ - target_merge_offset_;
146 }
147
148 // The input buffer has one writer and reader.
149 // The output buffer has one reader/updater, and one reader/consumer.
150 static const int kInputReader = 0;
151 static const int kOutputAnalysis = 0;
152 static const int kOutputConsumer = 1;
153
Reset()154 void SolaTimeScaler::Reset() {
155 CHECK(initialized_);
156 double duration = max(FLAGS_sola_ring_buffer, 20. * window_duration_);
157 draining_ = false;
158
159 delete input_buffer_;
160 input_buffer_ = new RingBuffer();
161 input_buffer_->Init(static_cast<int>
162 (sample_rate_ * duration), num_channels_, 1);
163
164 delete output_buffer_;
165 output_buffer_ = new RingBuffer();
166 output_buffer_->Init(static_cast<int>
167 (sample_rate_ * ratio_ * duration), num_channels_, 2);
168
169 if (analyzer_ == NULL) {
170 if (FLAGS_sola_enable_correlation) {
171 analyzer_ = new SolaAnalyzer();
172 } else {
173 analyzer_ = new SolaBypassAnalyzer();
174 }
175 }
176 analyzer_->Init(sample_rate_, num_channels_);
177 }
178
179 // Returns the number of frames that the input buffer can accept.
input_limit() const180 int SolaTimeScaler::input_limit() const {
181 CHECK(initialized_);
182 return input_buffer_->overhead();
183 }
184
185 // Returns the number of available output frames.
available()186 int SolaTimeScaler::available() {
187 CHECK(initialized_);
188
189 int available = output_buffer_->available(kOutputConsumer);
190 if (available > min_output_to_hold_) {
191 available -= min_output_to_hold_;
192 } else if (draining_) {
193 Process();
194 available = output_buffer_->available(kOutputConsumer);
195 if (available > min_output_to_hold_) {
196 available -= min_output_to_hold_;
197 }
198 } else {
199 available = 0;
200 }
201 return available;
202 }
203
Drain()204 void SolaTimeScaler::Drain() {
205 CHECK(initialized_);
206
207 draining_ = true;
208 }
209
210
211 // Feeds audio to the timescaler, and processes as much data as possible.
InjectSamples(float * buffer,int num_frames)212 int SolaTimeScaler::InjectSamples(float* buffer, int num_frames) {
213 CHECK(initialized_);
214
215 // Do not write more frames than the buffer can accept.
216 num_frames = min(input_limit(), num_frames);
217 if (!num_frames) {
218 return 0;
219 }
220
221 // Copy samples to the input buffer and then process whatever can be consumed.
222 input_buffer_->Write(buffer, num_frames);
223 Process();
224 return num_frames;
225 }
226
227 // Retrieves audio data from the timescaler.
RetrieveSamples(float * buffer,int num_frames)228 int SolaTimeScaler::RetrieveSamples(float* buffer, int num_frames) {
229 CHECK(initialized_);
230
231 // Do not read more frames than available.
232 num_frames = min(available(), num_frames);
233 if (!num_frames) {
234 return 0;
235 }
236
237 output_buffer_->Copy(kOutputConsumer, buffer, num_frames);
238 output_buffer_->Seek(kOutputConsumer,
239 output_buffer_->Tell(kOutputConsumer) + num_frames);
240
241 return num_frames;
242 }
243
244 // Munges input samples to produce output.
Process()245 bool SolaTimeScaler::Process() {
246 CHECK(initialized_);
247 bool generated_data = false;
248
249 // We can only process data if there is sufficient input available
250 // (or we are draining the latency), and there is sufficient room
251 // for output to be merged.
252 while (((input_buffer_->available(kInputReader) > max_frames_to_merge_) ||
253 draining_) && (output_buffer_->overhead() >= max_frames_to_merge_)) {
254 MutexLock lock(&mutex_); // lock out updates while processing each window
255
256 // Determine the number of samples to merge into the output.
257 int input_count =
258 min(input_buffer_->available(kInputReader), max_frames_to_merge_);
259 if (input_count == 0) {
260 break;
261 }
262 // The input reader always points to the next window to process.
263 float* input_pointer = input_buffer_->GetPointer(kInputReader, input_count);
264
265 // The analysis reader always points to the ideal target merge point,
266 // minus half an overlap window (ie, the starting point for correlation).
267 // That means the available data from that point equals the number
268 // of samples that must be cross-faded.
269 int output_merge_cnt = output_buffer_->available(kOutputAnalysis);
270 float* output_pointer =
271 output_buffer_->GetPointer(kOutputAnalysis, output_merge_cnt);
272
273 // If there is not enough data to do a proper correlation,
274 // just merge at the ideal target point. Otherwise,
275 // find the best correlation score, working from the center out.
276 int merge_offset = min(output_merge_cnt, half_overlap_frames_);
277
278 if ((output_merge_cnt >= (2 * num_overlap_frames_)) &&
279 (input_count >= num_overlap_frames_)) {
280 int best_offset = merge_offset;
281 int best_score = 0;
282 int score;
283 for (int i = 0; i <= half_overlap_frames_; ++i) {
284 score = analyzer_->Correlate(input_pointer,
285 output_pointer + ((merge_offset + i) * num_channels_),
286 num_overlap_frames_);
287 if (score > best_score) {
288 best_score = score;
289 best_offset = merge_offset + i;
290 if (score == (num_overlap_frames_ * num_channels_)) {
291 break; // It doesn't get better than perfect.
292 }
293 }
294 if (i > 0) {
295 score = analyzer_->Correlate(input_pointer,
296 output_pointer + ((merge_offset - i) * num_channels_),
297 num_overlap_frames_);
298 if (score > best_score) {
299 best_score = score;
300 best_offset = merge_offset - i;
301 if (score == (num_overlap_frames_ * num_channels_)) {
302 break; // It doesn't get better than perfect.
303 }
304 }
305 }
306 }
307 merge_offset = best_offset;
308 } else if ((output_merge_cnt > 0) && !draining_) {
309 LOGE("no correlation performed");
310 }
311
312 // Crossfade the overlap between input and output, and then
313 // copy in the remaining input.
314 int crossfade_count = max(0, (output_merge_cnt - merge_offset));
315 crossfade_count = min(crossfade_count, input_count);
316 int remaining_count = input_count - crossfade_count;
317
318 float* merge_pointer = output_pointer + (merge_offset * num_channels_);
319 float flt_count = static_cast<float>(crossfade_count);
320 for (int i = 0; i < crossfade_count; ++i) {
321 // Linear cross-fade, for now.
322 float input_scale = static_cast<float>(i) / flt_count;
323 float output_scale = 1. - input_scale;
324 for (int j = 0; j < num_channels_; ++j) {
325 *merge_pointer = (*merge_pointer * output_scale) +
326 (*input_pointer++ * input_scale);
327 ++merge_pointer;
328 }
329 }
330 // Copy the merged buffer back into the output, if necessary, and
331 // append the rest of the window.
332 output_buffer_->MergeBack(kOutputAnalysis,
333 output_pointer, output_merge_cnt);
334 output_buffer_->Write(input_pointer, remaining_count);
335
336 // Advance the output analysis pointer to the next target merge point,
337 // minus half an overlap window. The target merge point is always
338 // calculated as a delta from the previous ideal target, not the actual
339 // target, to avoid drift.
340 int output_advance = target_merge_offset_;
341 if (output_merge_cnt < half_overlap_frames_) {
342 // On the first window, back up the pointer for the next correlation.
343 // Thereafter, that compensation is preserved.
344 output_advance -= half_overlap_frames_;
345 }
346
347 // Don't advance beyond the available data, when finishing up.
348 if (draining_) {
349 output_advance =
350 min(output_advance, output_buffer_->available(kOutputAnalysis));
351 }
352 output_buffer_->Seek(kOutputAnalysis,
353 output_buffer_->Tell(kOutputAnalysis) + output_advance);
354
355 // Advance the input pointer beyond the frames that are no longer needed.
356 input_buffer_->Seek(kInputReader, input_buffer_->Tell(kInputReader) +
357 min(input_count, input_window_offset_));
358
359 if ((crossfade_count + remaining_count) > 0) {
360 generated_data = true;
361 }
362 } // while (more to process)
363 return generated_data;
364 }
365
366 } // namespace video_editing
367