• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2005 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ANDROID_VECTOR_H
18 #define ANDROID_VECTOR_H
19 
20 #include <new>
21 #include <stdint.h>
22 #include <sys/types.h>
23 
24 #include <utils/Log.h>
25 #include <utils/VectorImpl.h>
26 #include <utils/TypeHelpers.h>
27 
28 // ---------------------------------------------------------------------------
29 
30 namespace android {
31 
32 template <typename TYPE>
33 class SortedVector;
34 
35 /*!
36  * The main templated vector class ensuring type safety
37  * while making use of VectorImpl.
38  * This is the class users want to use.
39  */
40 
41 template <class TYPE>
42 class Vector : private VectorImpl
43 {
44 public:
45             typedef TYPE    value_type;
46 
47     /*!
48      * Constructors and destructors
49      */
50 
51                             Vector();
52                             Vector(const Vector<TYPE>& rhs);
53     explicit                Vector(const SortedVector<TYPE>& rhs);
54     virtual                 ~Vector();
55 
56     /*! copy operator */
57             const Vector<TYPE>&     operator = (const Vector<TYPE>& rhs) const;
58             Vector<TYPE>&           operator = (const Vector<TYPE>& rhs);
59 
60             const Vector<TYPE>&     operator = (const SortedVector<TYPE>& rhs) const;
61             Vector<TYPE>&           operator = (const SortedVector<TYPE>& rhs);
62 
63             /*
64      * empty the vector
65      */
66 
clear()67     inline  void            clear()             { VectorImpl::clear(); }
68 
69     /*!
70      * vector stats
71      */
72 
73     //! returns number of items in the vector
size()74     inline  size_t          size() const                { return VectorImpl::size(); }
75     //! returns wether or not the vector is empty
isEmpty()76     inline  bool            isEmpty() const             { return VectorImpl::isEmpty(); }
77     //! returns how many items can be stored without reallocating the backing store
capacity()78     inline  size_t          capacity() const            { return VectorImpl::capacity(); }
79     //! setst the capacity. capacity can never be reduced less than size()
setCapacity(size_t size)80     inline  ssize_t         setCapacity(size_t size)    { return VectorImpl::setCapacity(size); }
81 
82     /*!
83      * C-style array access
84      */
85 
86     //! read-only C-style access
87     inline  const TYPE*     array() const;
88     //! read-write C-style access
89             TYPE*           editArray();
90 
91     /*!
92      * accessors
93      */
94 
95     //! read-only access to an item at a given index
96     inline  const TYPE&     operator [] (size_t index) const;
97     //! alternate name for operator []
98     inline  const TYPE&     itemAt(size_t index) const;
99     //! stack-usage of the vector. returns the top of the stack (last element)
100             const TYPE&     top() const;
101     //! same as operator [], but allows to access the vector backward (from the end) with a negative index
102             const TYPE&     mirrorItemAt(ssize_t index) const;
103 
104     /*!
105      * modifing the array
106      */
107 
108     //! copy-on write support, grants write access to an item
109             TYPE&           editItemAt(size_t index);
110     //! grants right acces to the top of the stack (last element)
111             TYPE&           editTop();
112 
113             /*!
114              * append/insert another vector
115              */
116 
117     //! insert another vector at a given index
118             ssize_t         insertVectorAt(const Vector<TYPE>& vector, size_t index);
119 
120     //! append another vector at the end of this one
121             ssize_t         appendVector(const Vector<TYPE>& vector);
122 
123 
124     //! insert an array at a given index
125             ssize_t         insertArrayAt(const TYPE* array, size_t index, size_t length);
126 
127     //! append an array at the end of this vector
128             ssize_t         appendArray(const TYPE* array, size_t length);
129 
130             /*!
131              * add/insert/replace items
132              */
133 
134     //! insert one or several items initialized with their default constructor
135     inline  ssize_t         insertAt(size_t index, size_t numItems = 1);
136     //! insert one or several items initialized from a prototype item
137             ssize_t         insertAt(const TYPE& prototype_item, size_t index, size_t numItems = 1);
138     //! pop the top of the stack (removes the last element). No-op if the stack's empty
139     inline  void            pop();
140     //! pushes an item initialized with its default constructor
141     inline  void            push();
142     //! pushes an item on the top of the stack
143             void            push(const TYPE& item);
144     //! same as push() but returns the index the item was added at (or an error)
145     inline  ssize_t         add();
146     //! same as push() but returns the index the item was added at (or an error)
147             ssize_t         add(const TYPE& item);
148     //! replace an item with a new one initialized with its default constructor
149     inline  ssize_t         replaceAt(size_t index);
150     //! replace an item with a new one
151             ssize_t         replaceAt(const TYPE& item, size_t index);
152 
153     /*!
154      * remove items
155      */
156 
157     //! remove several items
158     inline  ssize_t         removeItemsAt(size_t index, size_t count = 1);
159     //! remove one item
removeAt(size_t index)160     inline  ssize_t         removeAt(size_t index)  { return removeItemsAt(index); }
161 
162     /*!
163      * sort (stable) the array
164      */
165 
166      typedef int (*compar_t)(const TYPE* lhs, const TYPE* rhs);
167      typedef int (*compar_r_t)(const TYPE* lhs, const TYPE* rhs, void* state);
168 
169      inline status_t        sort(compar_t cmp);
170      inline status_t        sort(compar_r_t cmp, void* state);
171 
172      // for debugging only
getItemSize()173      inline size_t getItemSize() const { return itemSize(); }
174 
175 
176      /*
177       * these inlines add some level of compatibility with STL. eventually
178       * we should probably turn things around.
179       */
180      typedef TYPE* iterator;
181      typedef TYPE const* const_iterator;
182 
begin()183      inline iterator begin() { return editArray(); }
end()184      inline iterator end()   { return editArray() + size(); }
begin()185      inline const_iterator begin() const { return array(); }
end()186      inline const_iterator end() const   { return array() + size(); }
reserve(size_t n)187      inline void reserve(size_t n) { setCapacity(n); }
empty()188      inline bool empty() const{ return isEmpty(); }
push_back(const TYPE & item)189      inline void push_back(const TYPE& item)  { insertAt(item, size(), 1); }
push_front(const TYPE & item)190      inline void push_front(const TYPE& item) { insertAt(item, 0, 1); }
erase(iterator pos)191      inline iterator erase(iterator pos) {
192          return begin() + removeItemsAt(pos-array());
193      }
194 
195 protected:
196     virtual void    do_construct(void* storage, size_t num) const;
197     virtual void    do_destroy(void* storage, size_t num) const;
198     virtual void    do_copy(void* dest, const void* from, size_t num) const;
199     virtual void    do_splat(void* dest, const void* item, size_t num) const;
200     virtual void    do_move_forward(void* dest, const void* from, size_t num) const;
201     virtual void    do_move_backward(void* dest, const void* from, size_t num) const;
202 };
203 
204 // Vector<T> can be trivially moved using memcpy() because moving does not
205 // require any change to the underlying SharedBuffer contents or reference count.
206 template<typename T> struct trait_trivial_move<Vector<T> > { enum { value = true }; };
207 
208 // ---------------------------------------------------------------------------
209 // No user serviceable parts from here...
210 // ---------------------------------------------------------------------------
211 
212 template<class TYPE> inline
213 Vector<TYPE>::Vector()
214     : VectorImpl(sizeof(TYPE),
215                 ((traits<TYPE>::has_trivial_ctor   ? HAS_TRIVIAL_CTOR   : 0)
216                 |(traits<TYPE>::has_trivial_dtor   ? HAS_TRIVIAL_DTOR   : 0)
217                 |(traits<TYPE>::has_trivial_copy   ? HAS_TRIVIAL_COPY   : 0))
218                 )
219 {
220 }
221 
222 template<class TYPE> inline
223 Vector<TYPE>::Vector(const Vector<TYPE>& rhs)
224     : VectorImpl(rhs) {
225 }
226 
227 template<class TYPE> inline
228 Vector<TYPE>::Vector(const SortedVector<TYPE>& rhs)
229     : VectorImpl(static_cast<const VectorImpl&>(rhs)) {
230 }
231 
232 template<class TYPE> inline
233 Vector<TYPE>::~Vector() {
234     finish_vector();
235 }
236 
237 template<class TYPE> inline
238 Vector<TYPE>& Vector<TYPE>::operator = (const Vector<TYPE>& rhs) {
239     VectorImpl::operator = (rhs);
240     return *this;
241 }
242 
243 template<class TYPE> inline
244 const Vector<TYPE>& Vector<TYPE>::operator = (const Vector<TYPE>& rhs) const {
245     VectorImpl::operator = (static_cast<const VectorImpl&>(rhs));
246     return *this;
247 }
248 
249 template<class TYPE> inline
250 Vector<TYPE>& Vector<TYPE>::operator = (const SortedVector<TYPE>& rhs) {
251     VectorImpl::operator = (static_cast<const VectorImpl&>(rhs));
252     return *this;
253 }
254 
255 template<class TYPE> inline
256 const Vector<TYPE>& Vector<TYPE>::operator = (const SortedVector<TYPE>& rhs) const {
257     VectorImpl::operator = (rhs);
258     return *this;
259 }
260 
261 template<class TYPE> inline
262 const TYPE* Vector<TYPE>::array() const {
263     return static_cast<const TYPE *>(arrayImpl());
264 }
265 
266 template<class TYPE> inline
267 TYPE* Vector<TYPE>::editArray() {
268     return static_cast<TYPE *>(editArrayImpl());
269 }
270 
271 
272 template<class TYPE> inline
273 const TYPE& Vector<TYPE>::operator[](size_t index) const {
274     LOG_FATAL_IF( index>=size(),
275                   "itemAt: index %d is past size %d", (int)index, (int)size() );
276     return *(array() + index);
277 }
278 
279 template<class TYPE> inline
280 const TYPE& Vector<TYPE>::itemAt(size_t index) const {
281     return operator[](index);
282 }
283 
284 template<class TYPE> inline
285 const TYPE& Vector<TYPE>::mirrorItemAt(ssize_t index) const {
286     LOG_FATAL_IF( (index>0 ? index : -index)>=size(),
287                   "mirrorItemAt: index %d is past size %d",
288                   (int)index, (int)size() );
289     return *(array() + ((index<0) ? (size()-index) : index));
290 }
291 
292 template<class TYPE> inline
293 const TYPE& Vector<TYPE>::top() const {
294     return *(array() + size() - 1);
295 }
296 
297 template<class TYPE> inline
298 TYPE& Vector<TYPE>::editItemAt(size_t index) {
299     return *( static_cast<TYPE *>(editItemLocation(index)) );
300 }
301 
302 template<class TYPE> inline
303 TYPE& Vector<TYPE>::editTop() {
304     return *( static_cast<TYPE *>(editItemLocation(size()-1)) );
305 }
306 
307 template<class TYPE> inline
308 ssize_t Vector<TYPE>::insertVectorAt(const Vector<TYPE>& vector, size_t index) {
309     return VectorImpl::insertVectorAt(reinterpret_cast<const VectorImpl&>(vector), index);
310 }
311 
312 template<class TYPE> inline
313 ssize_t Vector<TYPE>::appendVector(const Vector<TYPE>& vector) {
314     return VectorImpl::appendVector(reinterpret_cast<const VectorImpl&>(vector));
315 }
316 
317 template<class TYPE> inline
318 ssize_t Vector<TYPE>::insertArrayAt(const TYPE* array, size_t index, size_t length) {
319     return VectorImpl::insertArrayAt(array, index, length);
320 }
321 
322 template<class TYPE> inline
323 ssize_t Vector<TYPE>::appendArray(const TYPE* array, size_t length) {
324     return VectorImpl::appendArray(array, length);
325 }
326 
327 template<class TYPE> inline
328 ssize_t Vector<TYPE>::insertAt(const TYPE& item, size_t index, size_t numItems) {
329     return VectorImpl::insertAt(&item, index, numItems);
330 }
331 
332 template<class TYPE> inline
333 void Vector<TYPE>::push(const TYPE& item) {
334     return VectorImpl::push(&item);
335 }
336 
337 template<class TYPE> inline
338 ssize_t Vector<TYPE>::add(const TYPE& item) {
339     return VectorImpl::add(&item);
340 }
341 
342 template<class TYPE> inline
343 ssize_t Vector<TYPE>::replaceAt(const TYPE& item, size_t index) {
344     return VectorImpl::replaceAt(&item, index);
345 }
346 
347 template<class TYPE> inline
348 ssize_t Vector<TYPE>::insertAt(size_t index, size_t numItems) {
349     return VectorImpl::insertAt(index, numItems);
350 }
351 
352 template<class TYPE> inline
353 void Vector<TYPE>::pop() {
354     VectorImpl::pop();
355 }
356 
357 template<class TYPE> inline
358 void Vector<TYPE>::push() {
359     VectorImpl::push();
360 }
361 
362 template<class TYPE> inline
363 ssize_t Vector<TYPE>::add() {
364     return VectorImpl::add();
365 }
366 
367 template<class TYPE> inline
368 ssize_t Vector<TYPE>::replaceAt(size_t index) {
369     return VectorImpl::replaceAt(index);
370 }
371 
372 template<class TYPE> inline
373 ssize_t Vector<TYPE>::removeItemsAt(size_t index, size_t count) {
374     return VectorImpl::removeItemsAt(index, count);
375 }
376 
377 template<class TYPE> inline
378 status_t Vector<TYPE>::sort(Vector<TYPE>::compar_t cmp) {
379     return VectorImpl::sort((VectorImpl::compar_t)cmp);
380 }
381 
382 template<class TYPE> inline
383 status_t Vector<TYPE>::sort(Vector<TYPE>::compar_r_t cmp, void* state) {
384     return VectorImpl::sort((VectorImpl::compar_r_t)cmp, state);
385 }
386 
387 // ---------------------------------------------------------------------------
388 
389 template<class TYPE>
390 void Vector<TYPE>::do_construct(void* storage, size_t num) const {
391     construct_type( reinterpret_cast<TYPE*>(storage), num );
392 }
393 
394 template<class TYPE>
395 void Vector<TYPE>::do_destroy(void* storage, size_t num) const {
396     destroy_type( reinterpret_cast<TYPE*>(storage), num );
397 }
398 
399 template<class TYPE>
400 void Vector<TYPE>::do_copy(void* dest, const void* from, size_t num) const {
401     copy_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
402 }
403 
404 template<class TYPE>
405 void Vector<TYPE>::do_splat(void* dest, const void* item, size_t num) const {
406     splat_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(item), num );
407 }
408 
409 template<class TYPE>
410 void Vector<TYPE>::do_move_forward(void* dest, const void* from, size_t num) const {
411     move_forward_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
412 }
413 
414 template<class TYPE>
415 void Vector<TYPE>::do_move_backward(void* dest, const void* from, size_t num) const {
416     move_backward_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
417 }
418 
419 }; // namespace android
420 
421 
422 // ---------------------------------------------------------------------------
423 
424 #endif // ANDROID_VECTOR_H
425