• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2010 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 /* TO DO:
18  *   1.  Perhaps keep several copies of the encrypted key, in case something
19  *       goes horribly wrong?
20  *
21  */
22 
23 #include <sys/types.h>
24 #include <sys/stat.h>
25 #include <fcntl.h>
26 #include <unistd.h>
27 #include <stdio.h>
28 #include <sys/ioctl.h>
29 #include <linux/dm-ioctl.h>
30 #include <libgen.h>
31 #include <stdlib.h>
32 #include <sys/param.h>
33 #include <string.h>
34 #include <sys/mount.h>
35 #include <openssl/evp.h>
36 #include <openssl/sha.h>
37 #include <errno.h>
38 #include <cutils/android_reboot.h>
39 #include <ext4.h>
40 #include <linux/kdev_t.h>
41 #include <fs_mgr.h>
42 #include "cryptfs.h"
43 #define LOG_TAG "Cryptfs"
44 #include "cutils/android_reboot.h"
45 #include "cutils/log.h"
46 #include "cutils/properties.h"
47 #include "hardware_legacy/power.h"
48 #include "VolumeManager.h"
49 
50 #define DM_CRYPT_BUF_SIZE 4096
51 #define DATA_MNT_POINT "/data"
52 
53 #define HASH_COUNT 2000
54 #define KEY_LEN_BYTES 16
55 #define IV_LEN_BYTES 16
56 
57 #define KEY_IN_FOOTER  "footer"
58 
59 #define EXT4_FS 1
60 #define FAT_FS 2
61 
62 char *me = "cryptfs";
63 
64 static unsigned char saved_master_key[KEY_LEN_BYTES];
65 static char *saved_data_blkdev;
66 static char *saved_mount_point;
67 static int  master_key_saved = 0;
68 #define FSTAB_PREFIX "/fstab."
69 static char fstab_filename[PROPERTY_VALUE_MAX + sizeof(FSTAB_PREFIX)];
70 
ioctl_init(struct dm_ioctl * io,size_t dataSize,const char * name,unsigned flags)71 static void ioctl_init(struct dm_ioctl *io, size_t dataSize, const char *name, unsigned flags)
72 {
73     memset(io, 0, dataSize);
74     io->data_size = dataSize;
75     io->data_start = sizeof(struct dm_ioctl);
76     io->version[0] = 4;
77     io->version[1] = 0;
78     io->version[2] = 0;
79     io->flags = flags;
80     if (name) {
81         strncpy(io->name, name, sizeof(io->name));
82     }
83 }
84 
get_fs_size(char * dev)85 static unsigned int get_fs_size(char *dev)
86 {
87     int fd, block_size;
88     struct ext4_super_block sb;
89     off64_t len;
90 
91     if ((fd = open(dev, O_RDONLY)) < 0) {
92         SLOGE("Cannot open device to get filesystem size ");
93         return 0;
94     }
95 
96     if (lseek64(fd, 1024, SEEK_SET) < 0) {
97         SLOGE("Cannot seek to superblock");
98         return 0;
99     }
100 
101     if (read(fd, &sb, sizeof(sb)) != sizeof(sb)) {
102         SLOGE("Cannot read superblock");
103         return 0;
104     }
105 
106     close(fd);
107 
108     block_size = 1024 << sb.s_log_block_size;
109     /* compute length in bytes */
110     len = ( ((off64_t)sb.s_blocks_count_hi << 32) + sb.s_blocks_count_lo) * block_size;
111 
112     /* return length in sectors */
113     return (unsigned int) (len / 512);
114 }
115 
get_blkdev_size(int fd)116 static unsigned int get_blkdev_size(int fd)
117 {
118   unsigned int nr_sec;
119 
120   if ( (ioctl(fd, BLKGETSIZE, &nr_sec)) == -1) {
121     nr_sec = 0;
122   }
123 
124   return nr_sec;
125 }
126 
127 /* Get and cache the name of the fstab file so we don't
128  * keep talking over the socket to the property service.
129  */
get_fstab_filename(void)130 static char *get_fstab_filename(void)
131 {
132     if (fstab_filename[0] == 0) {
133         strcpy(fstab_filename, FSTAB_PREFIX);
134         property_get("ro.hardware", fstab_filename + sizeof(FSTAB_PREFIX) - 1, "");
135     }
136 
137     return fstab_filename;
138 }
139 
140 /* key or salt can be NULL, in which case just skip writing that value.  Useful to
141  * update the failed mount count but not change the key.
142  */
put_crypt_ftr_and_key(char * real_blk_name,struct crypt_mnt_ftr * crypt_ftr,unsigned char * key,unsigned char * salt)143 static int put_crypt_ftr_and_key(char *real_blk_name, struct crypt_mnt_ftr *crypt_ftr,
144                                   unsigned char *key, unsigned char *salt)
145 {
146   int fd;
147   unsigned int nr_sec, cnt;
148   off64_t off;
149   int rc = -1;
150   char *fname;
151   char key_loc[PROPERTY_VALUE_MAX];
152   struct stat statbuf;
153 
154   fs_mgr_get_crypt_info(get_fstab_filename(), key_loc, 0, sizeof(key_loc));
155 
156   if (!strcmp(key_loc, KEY_IN_FOOTER)) {
157     fname = real_blk_name;
158     if ( (fd = open(fname, O_RDWR)) < 0) {
159       SLOGE("Cannot open real block device %s\n", fname);
160       return -1;
161     }
162 
163     if ( (nr_sec = get_blkdev_size(fd)) == 0) {
164       SLOGE("Cannot get size of block device %s\n", fname);
165       goto errout;
166     }
167 
168     /* If it's an encrypted Android partition, the last 16 Kbytes contain the
169      * encryption info footer and key, and plenty of bytes to spare for future
170      * growth.
171      */
172     off = ((off64_t)nr_sec * 512) - CRYPT_FOOTER_OFFSET;
173 
174     if (lseek64(fd, off, SEEK_SET) == -1) {
175       SLOGE("Cannot seek to real block device footer\n");
176       goto errout;
177     }
178   } else if (key_loc[0] == '/') {
179     fname = key_loc;
180     if ( (fd = open(fname, O_RDWR | O_CREAT, 0600)) < 0) {
181       SLOGE("Cannot open footer file %s\n", fname);
182       return -1;
183     }
184   } else {
185     SLOGE("Unexpected value for crypto key location\n");
186     return -1;;
187   }
188 
189   if ((cnt = write(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) {
190     SLOGE("Cannot write real block device footer\n");
191     goto errout;
192   }
193 
194   if (key) {
195     if (crypt_ftr->keysize != KEY_LEN_BYTES) {
196       SLOGE("Keysize of %d bits not supported for real block device %s\n",
197             crypt_ftr->keysize*8, fname);
198       goto errout;
199     }
200 
201     if ( (cnt = write(fd, key, crypt_ftr->keysize)) != crypt_ftr->keysize) {
202       SLOGE("Cannot write key for real block device %s\n", fname);
203       goto errout;
204     }
205   }
206 
207   if (salt) {
208     /* Compute the offset from the last write to the salt */
209     off = KEY_TO_SALT_PADDING;
210     if (! key)
211       off += crypt_ftr->keysize;
212 
213     if (lseek64(fd, off, SEEK_CUR) == -1) {
214       SLOGE("Cannot seek to real block device salt \n");
215       goto errout;
216     }
217 
218     if ( (cnt = write(fd, salt, SALT_LEN)) != SALT_LEN) {
219       SLOGE("Cannot write salt for real block device %s\n", fname);
220       goto errout;
221     }
222   }
223 
224   fstat(fd, &statbuf);
225   /* If the keys are kept on a raw block device, do not try to truncate it. */
226   if (S_ISREG(statbuf.st_mode) && (key_loc[0] == '/')) {
227     if (ftruncate(fd, 0x4000)) {
228       SLOGE("Cannot set footer file size\n", fname);
229       goto errout;
230     }
231   }
232 
233   /* Success! */
234   rc = 0;
235 
236 errout:
237   close(fd);
238   return rc;
239 
240 }
241 
get_crypt_ftr_and_key(char * real_blk_name,struct crypt_mnt_ftr * crypt_ftr,unsigned char * key,unsigned char * salt)242 static int get_crypt_ftr_and_key(char *real_blk_name, struct crypt_mnt_ftr *crypt_ftr,
243                                   unsigned char *key, unsigned char *salt)
244 {
245   int fd;
246   unsigned int nr_sec, cnt;
247   off64_t off;
248   int rc = -1;
249   char key_loc[PROPERTY_VALUE_MAX];
250   char *fname;
251   struct stat statbuf;
252 
253   fs_mgr_get_crypt_info(get_fstab_filename(), key_loc, 0, sizeof(key_loc));
254 
255   if (!strcmp(key_loc, KEY_IN_FOOTER)) {
256     fname = real_blk_name;
257     if ( (fd = open(fname, O_RDONLY)) < 0) {
258       SLOGE("Cannot open real block device %s\n", fname);
259       return -1;
260     }
261 
262     if ( (nr_sec = get_blkdev_size(fd)) == 0) {
263       SLOGE("Cannot get size of block device %s\n", fname);
264       goto errout;
265     }
266 
267     /* If it's an encrypted Android partition, the last 16 Kbytes contain the
268      * encryption info footer and key, and plenty of bytes to spare for future
269      * growth.
270      */
271     off = ((off64_t)nr_sec * 512) - CRYPT_FOOTER_OFFSET;
272 
273     if (lseek64(fd, off, SEEK_SET) == -1) {
274       SLOGE("Cannot seek to real block device footer\n");
275       goto errout;
276     }
277   } else if (key_loc[0] == '/') {
278     fname = key_loc;
279     if ( (fd = open(fname, O_RDONLY)) < 0) {
280       SLOGE("Cannot open footer file %s\n", fname);
281       return -1;
282     }
283 
284     /* Make sure it's 16 Kbytes in length */
285     fstat(fd, &statbuf);
286     if (S_ISREG(statbuf.st_mode) && (statbuf.st_size != 0x4000)) {
287       SLOGE("footer file %s is not the expected size!\n", fname);
288       goto errout;
289     }
290   } else {
291     SLOGE("Unexpected value for crypto key location\n");
292     return -1;;
293   }
294 
295   if ( (cnt = read(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) {
296     SLOGE("Cannot read real block device footer\n");
297     goto errout;
298   }
299 
300   if (crypt_ftr->magic != CRYPT_MNT_MAGIC) {
301     SLOGE("Bad magic for real block device %s\n", fname);
302     goto errout;
303   }
304 
305   if (crypt_ftr->major_version != 1) {
306     SLOGE("Cannot understand major version %d real block device footer\n",
307           crypt_ftr->major_version);
308     goto errout;
309   }
310 
311   if (crypt_ftr->minor_version != 0) {
312     SLOGW("Warning: crypto footer minor version %d, expected 0, continuing...\n",
313           crypt_ftr->minor_version);
314   }
315 
316   if (crypt_ftr->ftr_size > sizeof(struct crypt_mnt_ftr)) {
317     /* the footer size is bigger than we expected.
318      * Skip to it's stated end so we can read the key.
319      */
320     if (lseek(fd, crypt_ftr->ftr_size - sizeof(struct crypt_mnt_ftr),  SEEK_CUR) == -1) {
321       SLOGE("Cannot seek to start of key\n");
322       goto errout;
323     }
324   }
325 
326   if (crypt_ftr->keysize != KEY_LEN_BYTES) {
327     SLOGE("Keysize of %d bits not supported for real block device %s\n",
328           crypt_ftr->keysize * 8, fname);
329     goto errout;
330   }
331 
332   if ( (cnt = read(fd, key, crypt_ftr->keysize)) != crypt_ftr->keysize) {
333     SLOGE("Cannot read key for real block device %s\n", fname);
334     goto errout;
335   }
336 
337   if (lseek64(fd, KEY_TO_SALT_PADDING, SEEK_CUR) == -1) {
338     SLOGE("Cannot seek to real block device salt\n");
339     goto errout;
340   }
341 
342   if ( (cnt = read(fd, salt, SALT_LEN)) != SALT_LEN) {
343     SLOGE("Cannot read salt for real block device %s\n", fname);
344     goto errout;
345   }
346 
347   /* Success! */
348   rc = 0;
349 
350 errout:
351   close(fd);
352   return rc;
353 }
354 
355 /* Convert a binary key of specified length into an ascii hex string equivalent,
356  * without the leading 0x and with null termination
357  */
convert_key_to_hex_ascii(unsigned char * master_key,unsigned int keysize,char * master_key_ascii)358 void convert_key_to_hex_ascii(unsigned char *master_key, unsigned int keysize,
359                               char *master_key_ascii)
360 {
361   unsigned int i, a;
362   unsigned char nibble;
363 
364   for (i=0, a=0; i<keysize; i++, a+=2) {
365     /* For each byte, write out two ascii hex digits */
366     nibble = (master_key[i] >> 4) & 0xf;
367     master_key_ascii[a] = nibble + (nibble > 9 ? 0x37 : 0x30);
368 
369     nibble = master_key[i] & 0xf;
370     master_key_ascii[a+1] = nibble + (nibble > 9 ? 0x37 : 0x30);
371   }
372 
373   /* Add the null termination */
374   master_key_ascii[a] = '\0';
375 
376 }
377 
create_crypto_blk_dev(struct crypt_mnt_ftr * crypt_ftr,unsigned char * master_key,char * real_blk_name,char * crypto_blk_name,const char * name)378 static int create_crypto_blk_dev(struct crypt_mnt_ftr *crypt_ftr, unsigned char *master_key,
379                                     char *real_blk_name, char *crypto_blk_name, const char *name)
380 {
381   char buffer[DM_CRYPT_BUF_SIZE];
382   char master_key_ascii[129]; /* Large enough to hold 512 bit key and null */
383   char *crypt_params;
384   struct dm_ioctl *io;
385   struct dm_target_spec *tgt;
386   unsigned int minor;
387   int fd;
388   int retval = -1;
389 
390   if ((fd = open("/dev/device-mapper", O_RDWR)) < 0 ) {
391     SLOGE("Cannot open device-mapper\n");
392     goto errout;
393   }
394 
395   io = (struct dm_ioctl *) buffer;
396 
397   ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
398   if (ioctl(fd, DM_DEV_CREATE, io)) {
399     SLOGE("Cannot create dm-crypt device\n");
400     goto errout;
401   }
402 
403   /* Get the device status, in particular, the name of it's device file */
404   ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
405   if (ioctl(fd, DM_DEV_STATUS, io)) {
406     SLOGE("Cannot retrieve dm-crypt device status\n");
407     goto errout;
408   }
409   minor = (io->dev & 0xff) | ((io->dev >> 12) & 0xfff00);
410   snprintf(crypto_blk_name, MAXPATHLEN, "/dev/block/dm-%u", minor);
411 
412   /* Load the mapping table for this device */
413   tgt = (struct dm_target_spec *) &buffer[sizeof(struct dm_ioctl)];
414 
415   ioctl_init(io, 4096, name, 0);
416   io->target_count = 1;
417   tgt->status = 0;
418   tgt->sector_start = 0;
419   tgt->length = crypt_ftr->fs_size;
420   strcpy(tgt->target_type, "crypt");
421 
422   crypt_params = buffer + sizeof(struct dm_ioctl) + sizeof(struct dm_target_spec);
423   convert_key_to_hex_ascii(master_key, crypt_ftr->keysize, master_key_ascii);
424   sprintf(crypt_params, "%s %s 0 %s 0", crypt_ftr->crypto_type_name,
425           master_key_ascii, real_blk_name);
426   crypt_params += strlen(crypt_params) + 1;
427   crypt_params = (char *) (((unsigned long)crypt_params + 7) & ~8); /* Align to an 8 byte boundary */
428   tgt->next = crypt_params - buffer;
429 
430   if (ioctl(fd, DM_TABLE_LOAD, io)) {
431       SLOGE("Cannot load dm-crypt mapping table.\n");
432       goto errout;
433   }
434 
435   /* Resume this device to activate it */
436   ioctl_init(io, 4096, name, 0);
437 
438   if (ioctl(fd, DM_DEV_SUSPEND, io)) {
439     SLOGE("Cannot resume the dm-crypt device\n");
440     goto errout;
441   }
442 
443   /* We made it here with no errors.  Woot! */
444   retval = 0;
445 
446 errout:
447   close(fd);   /* If fd is <0 from a failed open call, it's safe to just ignore the close error */
448 
449   return retval;
450 }
451 
delete_crypto_blk_dev(char * name)452 static int delete_crypto_blk_dev(char *name)
453 {
454   int fd;
455   char buffer[DM_CRYPT_BUF_SIZE];
456   struct dm_ioctl *io;
457   int retval = -1;
458 
459   if ((fd = open("/dev/device-mapper", O_RDWR)) < 0 ) {
460     SLOGE("Cannot open device-mapper\n");
461     goto errout;
462   }
463 
464   io = (struct dm_ioctl *) buffer;
465 
466   ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
467   if (ioctl(fd, DM_DEV_REMOVE, io)) {
468     SLOGE("Cannot remove dm-crypt device\n");
469     goto errout;
470   }
471 
472   /* We made it here with no errors.  Woot! */
473   retval = 0;
474 
475 errout:
476   close(fd);    /* If fd is <0 from a failed open call, it's safe to just ignore the close error */
477 
478   return retval;
479 
480 }
481 
pbkdf2(char * passwd,unsigned char * salt,unsigned char * ikey)482 static void pbkdf2(char *passwd, unsigned char *salt, unsigned char *ikey)
483 {
484     /* Turn the password into a key and IV that can decrypt the master key */
485     PKCS5_PBKDF2_HMAC_SHA1(passwd, strlen(passwd), salt, SALT_LEN,
486                            HASH_COUNT, KEY_LEN_BYTES+IV_LEN_BYTES, ikey);
487 }
488 
encrypt_master_key(char * passwd,unsigned char * salt,unsigned char * decrypted_master_key,unsigned char * encrypted_master_key)489 static int encrypt_master_key(char *passwd, unsigned char *salt,
490                               unsigned char *decrypted_master_key,
491                               unsigned char *encrypted_master_key)
492 {
493     unsigned char ikey[32+32] = { 0 }; /* Big enough to hold a 256 bit key and 256 bit IV */
494     EVP_CIPHER_CTX e_ctx;
495     int encrypted_len, final_len;
496 
497     /* Turn the password into a key and IV that can decrypt the master key */
498     pbkdf2(passwd, salt, ikey);
499 
500     /* Initialize the decryption engine */
501     if (! EVP_EncryptInit(&e_ctx, EVP_aes_128_cbc(), ikey, ikey+KEY_LEN_BYTES)) {
502         SLOGE("EVP_EncryptInit failed\n");
503         return -1;
504     }
505     EVP_CIPHER_CTX_set_padding(&e_ctx, 0); /* Turn off padding as our data is block aligned */
506 
507     /* Encrypt the master key */
508     if (! EVP_EncryptUpdate(&e_ctx, encrypted_master_key, &encrypted_len,
509                               decrypted_master_key, KEY_LEN_BYTES)) {
510         SLOGE("EVP_EncryptUpdate failed\n");
511         return -1;
512     }
513     if (! EVP_EncryptFinal(&e_ctx, encrypted_master_key + encrypted_len, &final_len)) {
514         SLOGE("EVP_EncryptFinal failed\n");
515         return -1;
516     }
517 
518     if (encrypted_len + final_len != KEY_LEN_BYTES) {
519         SLOGE("EVP_Encryption length check failed with %d, %d bytes\n", encrypted_len, final_len);
520         return -1;
521     } else {
522         return 0;
523     }
524 }
525 
decrypt_master_key(char * passwd,unsigned char * salt,unsigned char * encrypted_master_key,unsigned char * decrypted_master_key)526 static int decrypt_master_key(char *passwd, unsigned char *salt,
527                               unsigned char *encrypted_master_key,
528                               unsigned char *decrypted_master_key)
529 {
530   unsigned char ikey[32+32] = { 0 }; /* Big enough to hold a 256 bit key and 256 bit IV */
531   EVP_CIPHER_CTX d_ctx;
532   int decrypted_len, final_len;
533 
534   /* Turn the password into a key and IV that can decrypt the master key */
535   pbkdf2(passwd, salt, ikey);
536 
537   /* Initialize the decryption engine */
538   if (! EVP_DecryptInit(&d_ctx, EVP_aes_128_cbc(), ikey, ikey+KEY_LEN_BYTES)) {
539     return -1;
540   }
541   EVP_CIPHER_CTX_set_padding(&d_ctx, 0); /* Turn off padding as our data is block aligned */
542   /* Decrypt the master key */
543   if (! EVP_DecryptUpdate(&d_ctx, decrypted_master_key, &decrypted_len,
544                             encrypted_master_key, KEY_LEN_BYTES)) {
545     return -1;
546   }
547   if (! EVP_DecryptFinal(&d_ctx, decrypted_master_key + decrypted_len, &final_len)) {
548     return -1;
549   }
550 
551   if (decrypted_len + final_len != KEY_LEN_BYTES) {
552     return -1;
553   } else {
554     return 0;
555   }
556 }
557 
create_encrypted_random_key(char * passwd,unsigned char * master_key,unsigned char * salt)558 static int create_encrypted_random_key(char *passwd, unsigned char *master_key, unsigned char *salt)
559 {
560     int fd;
561     unsigned char key_buf[KEY_LEN_BYTES];
562     EVP_CIPHER_CTX e_ctx;
563     int encrypted_len, final_len;
564 
565     /* Get some random bits for a key */
566     fd = open("/dev/urandom", O_RDONLY);
567     read(fd, key_buf, sizeof(key_buf));
568     read(fd, salt, SALT_LEN);
569     close(fd);
570 
571     /* Now encrypt it with the password */
572     return encrypt_master_key(passwd, salt, key_buf, master_key);
573 }
574 
wait_and_unmount(char * mountpoint)575 static int wait_and_unmount(char *mountpoint)
576 {
577     int i, rc;
578 #define WAIT_UNMOUNT_COUNT 20
579 
580     /*  Now umount the tmpfs filesystem */
581     for (i=0; i<WAIT_UNMOUNT_COUNT; i++) {
582         if (umount(mountpoint)) {
583             if (errno == EINVAL) {
584                 /* EINVAL is returned if the directory is not a mountpoint,
585                  * i.e. there is no filesystem mounted there.  So just get out.
586                  */
587                 break;
588             }
589             sleep(1);
590             i++;
591         } else {
592           break;
593         }
594     }
595 
596     if (i < WAIT_UNMOUNT_COUNT) {
597       SLOGD("unmounting %s succeeded\n", mountpoint);
598       rc = 0;
599     } else {
600       SLOGE("unmounting %s failed\n", mountpoint);
601       rc = -1;
602     }
603 
604     return rc;
605 }
606 
607 #define DATA_PREP_TIMEOUT 100
prep_data_fs(void)608 static int prep_data_fs(void)
609 {
610     int i;
611 
612     /* Do the prep of the /data filesystem */
613     property_set("vold.post_fs_data_done", "0");
614     property_set("vold.decrypt", "trigger_post_fs_data");
615     SLOGD("Just triggered post_fs_data\n");
616 
617     /* Wait a max of 25 seconds, hopefully it takes much less */
618     for (i=0; i<DATA_PREP_TIMEOUT; i++) {
619         char p[PROPERTY_VALUE_MAX];
620 
621         property_get("vold.post_fs_data_done", p, "0");
622         if (*p == '1') {
623             break;
624         } else {
625             usleep(250000);
626         }
627     }
628     if (i == DATA_PREP_TIMEOUT) {
629         /* Ugh, we failed to prep /data in time.  Bail. */
630         return -1;
631     } else {
632         SLOGD("post_fs_data done\n");
633         return 0;
634     }
635 }
636 
cryptfs_restart(void)637 int cryptfs_restart(void)
638 {
639     char fs_type[32];
640     char real_blkdev[MAXPATHLEN];
641     char crypto_blkdev[MAXPATHLEN];
642     char fs_options[256];
643     unsigned long mnt_flags;
644     struct stat statbuf;
645     int rc = -1, i;
646     static int restart_successful = 0;
647 
648     /* Validate that it's OK to call this routine */
649     if (! master_key_saved) {
650         SLOGE("Encrypted filesystem not validated, aborting");
651         return -1;
652     }
653 
654     if (restart_successful) {
655         SLOGE("System already restarted with encrypted disk, aborting");
656         return -1;
657     }
658 
659     /* Here is where we shut down the framework.  The init scripts
660      * start all services in one of three classes: core, main or late_start.
661      * On boot, we start core and main.  Now, we stop main, but not core,
662      * as core includes vold and a few other really important things that
663      * we need to keep running.  Once main has stopped, we should be able
664      * to umount the tmpfs /data, then mount the encrypted /data.
665      * We then restart the class main, and also the class late_start.
666      * At the moment, I've only put a few things in late_start that I know
667      * are not needed to bring up the framework, and that also cause problems
668      * with unmounting the tmpfs /data, but I hope to add add more services
669      * to the late_start class as we optimize this to decrease the delay
670      * till the user is asked for the password to the filesystem.
671      */
672 
673     /* The init files are setup to stop the class main when vold.decrypt is
674      * set to trigger_reset_main.
675      */
676     property_set("vold.decrypt", "trigger_reset_main");
677     SLOGD("Just asked init to shut down class main\n");
678 
679     /* Now that the framework is shutdown, we should be able to umount()
680      * the tmpfs filesystem, and mount the real one.
681      */
682 
683     property_get("ro.crypto.fs_crypto_blkdev", crypto_blkdev, "");
684     if (strlen(crypto_blkdev) == 0) {
685         SLOGE("fs_crypto_blkdev not set\n");
686         return -1;
687     }
688 
689     if (! (rc = wait_and_unmount(DATA_MNT_POINT)) ) {
690         /* If that succeeded, then mount the decrypted filesystem */
691         fs_mgr_do_mount(get_fstab_filename(), DATA_MNT_POINT, crypto_blkdev, 0);
692 
693         property_set("vold.decrypt", "trigger_load_persist_props");
694         /* Create necessary paths on /data */
695         if (prep_data_fs()) {
696             return -1;
697         }
698 
699         /* startup service classes main and late_start */
700         property_set("vold.decrypt", "trigger_restart_framework");
701         SLOGD("Just triggered restart_framework\n");
702 
703         /* Give it a few moments to get started */
704         sleep(1);
705     }
706 
707     if (rc == 0) {
708         restart_successful = 1;
709     }
710 
711     return rc;
712 }
713 
do_crypto_complete(char * mount_point)714 static int do_crypto_complete(char *mount_point)
715 {
716   struct crypt_mnt_ftr crypt_ftr;
717   unsigned char encrypted_master_key[32];
718   unsigned char salt[SALT_LEN];
719   char real_blkdev[MAXPATHLEN];
720   char encrypted_state[PROPERTY_VALUE_MAX];
721   char key_loc[PROPERTY_VALUE_MAX];
722 
723   property_get("ro.crypto.state", encrypted_state, "");
724   if (strcmp(encrypted_state, "encrypted") ) {
725     SLOGE("not running with encryption, aborting");
726     return 1;
727   }
728 
729   fs_mgr_get_crypt_info(get_fstab_filename(), 0, real_blkdev, sizeof(real_blkdev));
730 
731   if (get_crypt_ftr_and_key(real_blkdev, &crypt_ftr, encrypted_master_key, salt)) {
732     fs_mgr_get_crypt_info(get_fstab_filename(), key_loc, 0, sizeof(key_loc));
733 
734     /*
735      * Only report this error if key_loc is a file and it exists.
736      * If the device was never encrypted, and /data is not mountable for
737      * some reason, returning 1 should prevent the UI from presenting the
738      * a "enter password" screen, or worse, a "press button to wipe the
739      * device" screen.
740      */
741     if ((key_loc[0] == '/') && (access("key_loc", F_OK) == -1)) {
742       SLOGE("master key file does not exist, aborting");
743       return 1;
744     } else {
745       SLOGE("Error getting crypt footer and key\n");
746       return -1;
747     }
748   }
749 
750   if (crypt_ftr.flags & CRYPT_ENCRYPTION_IN_PROGRESS) {
751     SLOGE("Encryption process didn't finish successfully\n");
752     return -2;  /* -2 is the clue to the UI that there is no usable data on the disk,
753                  * and give the user an option to wipe the disk */
754   }
755 
756   /* We passed the test! We shall diminish, and return to the west */
757   return 0;
758 }
759 
test_mount_encrypted_fs(char * passwd,char * mount_point,char * label)760 static int test_mount_encrypted_fs(char *passwd, char *mount_point, char *label)
761 {
762   struct crypt_mnt_ftr crypt_ftr;
763   /* Allocate enough space for a 256 bit key, but we may use less */
764   unsigned char encrypted_master_key[32], decrypted_master_key[32];
765   unsigned char salt[SALT_LEN];
766   char crypto_blkdev[MAXPATHLEN];
767   char real_blkdev[MAXPATHLEN];
768   char tmp_mount_point[64];
769   unsigned int orig_failed_decrypt_count;
770   char encrypted_state[PROPERTY_VALUE_MAX];
771   int rc;
772 
773   property_get("ro.crypto.state", encrypted_state, "");
774   if ( master_key_saved || strcmp(encrypted_state, "encrypted") ) {
775     SLOGE("encrypted fs already validated or not running with encryption, aborting");
776     return -1;
777   }
778 
779   fs_mgr_get_crypt_info(get_fstab_filename(), 0, real_blkdev, sizeof(real_blkdev));
780 
781   if (get_crypt_ftr_and_key(real_blkdev, &crypt_ftr, encrypted_master_key, salt)) {
782     SLOGE("Error getting crypt footer and key\n");
783     return -1;
784   }
785 
786   SLOGD("crypt_ftr->fs_size = %lld\n", crypt_ftr.fs_size);
787   orig_failed_decrypt_count = crypt_ftr.failed_decrypt_count;
788 
789   if (! (crypt_ftr.flags & CRYPT_MNT_KEY_UNENCRYPTED) ) {
790     decrypt_master_key(passwd, salt, encrypted_master_key, decrypted_master_key);
791   }
792 
793   if (create_crypto_blk_dev(&crypt_ftr, decrypted_master_key,
794                                real_blkdev, crypto_blkdev, label)) {
795     SLOGE("Error creating decrypted block device\n");
796     return -1;
797   }
798 
799   /* If init detects an encrypted filesystme, it writes a file for each such
800    * encrypted fs into the tmpfs /data filesystem, and then the framework finds those
801    * files and passes that data to me */
802   /* Create a tmp mount point to try mounting the decryptd fs
803    * Since we're here, the mount_point should be a tmpfs filesystem, so make
804    * a directory in it to test mount the decrypted filesystem.
805    */
806   sprintf(tmp_mount_point, "%s/tmp_mnt", mount_point);
807   mkdir(tmp_mount_point, 0755);
808   if (fs_mgr_do_mount(get_fstab_filename(), DATA_MNT_POINT, crypto_blkdev, tmp_mount_point)) {
809     SLOGE("Error temp mounting decrypted block device\n");
810     delete_crypto_blk_dev(label);
811     crypt_ftr.failed_decrypt_count++;
812   } else {
813     /* Success, so just umount and we'll mount it properly when we restart
814      * the framework.
815      */
816     umount(tmp_mount_point);
817     crypt_ftr.failed_decrypt_count  = 0;
818   }
819 
820   if (orig_failed_decrypt_count != crypt_ftr.failed_decrypt_count) {
821     put_crypt_ftr_and_key(real_blkdev, &crypt_ftr, 0, 0);
822   }
823 
824   if (crypt_ftr.failed_decrypt_count) {
825     /* We failed to mount the device, so return an error */
826     rc = crypt_ftr.failed_decrypt_count;
827 
828   } else {
829     /* Woot!  Success!  Save the name of the crypto block device
830      * so we can mount it when restarting the framework.
831      */
832     property_set("ro.crypto.fs_crypto_blkdev", crypto_blkdev);
833 
834     /* Also save a the master key so we can reencrypted the key
835      * the key when we want to change the password on it.
836      */
837     memcpy(saved_master_key, decrypted_master_key, KEY_LEN_BYTES);
838     saved_data_blkdev = strdup(real_blkdev);
839     saved_mount_point = strdup(mount_point);
840     master_key_saved = 1;
841     rc = 0;
842   }
843 
844   return rc;
845 }
846 
847 /* Called by vold when it wants to undo the crypto mapping of a volume it
848  * manages.  This is usually in response to a factory reset, when we want
849  * to undo the crypto mapping so the volume is formatted in the clear.
850  */
cryptfs_revert_volume(const char * label)851 int cryptfs_revert_volume(const char *label)
852 {
853     return delete_crypto_blk_dev((char *)label);
854 }
855 
856 /*
857  * Called by vold when it's asked to mount an encrypted, nonremovable volume.
858  * Setup a dm-crypt mapping, use the saved master key from
859  * setting up the /data mapping, and return the new device path.
860  */
cryptfs_setup_volume(const char * label,int major,int minor,char * crypto_sys_path,unsigned int max_path,int * new_major,int * new_minor)861 int cryptfs_setup_volume(const char *label, int major, int minor,
862                          char *crypto_sys_path, unsigned int max_path,
863                          int *new_major, int *new_minor)
864 {
865     char real_blkdev[MAXPATHLEN], crypto_blkdev[MAXPATHLEN];
866     struct crypt_mnt_ftr sd_crypt_ftr;
867     unsigned char key[32], salt[32];
868     struct stat statbuf;
869     int nr_sec, fd;
870 
871     sprintf(real_blkdev, "/dev/block/vold/%d:%d", major, minor);
872 
873     /* Just want the footer, but gotta get it all */
874     get_crypt_ftr_and_key(saved_data_blkdev, &sd_crypt_ftr, key, salt);
875 
876     /* Update the fs_size field to be the size of the volume */
877     fd = open(real_blkdev, O_RDONLY);
878     nr_sec = get_blkdev_size(fd);
879     close(fd);
880     if (nr_sec == 0) {
881         SLOGE("Cannot get size of volume %s\n", real_blkdev);
882         return -1;
883     }
884 
885     sd_crypt_ftr.fs_size = nr_sec;
886     create_crypto_blk_dev(&sd_crypt_ftr, saved_master_key, real_blkdev,
887                           crypto_blkdev, label);
888 
889     stat(crypto_blkdev, &statbuf);
890     *new_major = MAJOR(statbuf.st_rdev);
891     *new_minor = MINOR(statbuf.st_rdev);
892 
893     /* Create path to sys entry for this block device */
894     snprintf(crypto_sys_path, max_path, "/devices/virtual/block/%s", strrchr(crypto_blkdev, '/')+1);
895 
896     return 0;
897 }
898 
cryptfs_crypto_complete(void)899 int cryptfs_crypto_complete(void)
900 {
901   return do_crypto_complete("/data");
902 }
903 
cryptfs_check_passwd(char * passwd)904 int cryptfs_check_passwd(char *passwd)
905 {
906     int rc = -1;
907 
908     rc = test_mount_encrypted_fs(passwd, DATA_MNT_POINT, "userdata");
909 
910     return rc;
911 }
912 
cryptfs_verify_passwd(char * passwd)913 int cryptfs_verify_passwd(char *passwd)
914 {
915     struct crypt_mnt_ftr crypt_ftr;
916     /* Allocate enough space for a 256 bit key, but we may use less */
917     unsigned char encrypted_master_key[32], decrypted_master_key[32];
918     unsigned char salt[SALT_LEN];
919     char real_blkdev[MAXPATHLEN];
920     char encrypted_state[PROPERTY_VALUE_MAX];
921     int rc;
922 
923     property_get("ro.crypto.state", encrypted_state, "");
924     if (strcmp(encrypted_state, "encrypted") ) {
925         SLOGE("device not encrypted, aborting");
926         return -2;
927     }
928 
929     if (!master_key_saved) {
930         SLOGE("encrypted fs not yet mounted, aborting");
931         return -1;
932     }
933 
934     if (!saved_mount_point) {
935         SLOGE("encrypted fs failed to save mount point, aborting");
936         return -1;
937     }
938 
939     fs_mgr_get_crypt_info(get_fstab_filename(), 0, real_blkdev, sizeof(real_blkdev));
940 
941     if (get_crypt_ftr_and_key(real_blkdev, &crypt_ftr, encrypted_master_key, salt)) {
942         SLOGE("Error getting crypt footer and key\n");
943         return -1;
944     }
945 
946     if (crypt_ftr.flags & CRYPT_MNT_KEY_UNENCRYPTED) {
947         /* If the device has no password, then just say the password is valid */
948         rc = 0;
949     } else {
950         decrypt_master_key(passwd, salt, encrypted_master_key, decrypted_master_key);
951         if (!memcmp(decrypted_master_key, saved_master_key, crypt_ftr.keysize)) {
952             /* They match, the password is correct */
953             rc = 0;
954         } else {
955             /* If incorrect, sleep for a bit to prevent dictionary attacks */
956             sleep(1);
957             rc = 1;
958         }
959     }
960 
961     return rc;
962 }
963 
964 /* Initialize a crypt_mnt_ftr structure.  The keysize is
965  * defaulted to 16 bytes, and the filesystem size to 0.
966  * Presumably, at a minimum, the caller will update the
967  * filesystem size and crypto_type_name after calling this function.
968  */
cryptfs_init_crypt_mnt_ftr(struct crypt_mnt_ftr * ftr)969 static void cryptfs_init_crypt_mnt_ftr(struct crypt_mnt_ftr *ftr)
970 {
971     ftr->magic = CRYPT_MNT_MAGIC;
972     ftr->major_version = 1;
973     ftr->minor_version = 0;
974     ftr->ftr_size = sizeof(struct crypt_mnt_ftr);
975     ftr->flags = 0;
976     ftr->keysize = KEY_LEN_BYTES;
977     ftr->spare1 = 0;
978     ftr->fs_size = 0;
979     ftr->failed_decrypt_count = 0;
980     ftr->crypto_type_name[0] = '\0';
981 }
982 
cryptfs_enable_wipe(char * crypto_blkdev,off64_t size,int type)983 static int cryptfs_enable_wipe(char *crypto_blkdev, off64_t size, int type)
984 {
985     char cmdline[256];
986     int rc = -1;
987 
988     if (type == EXT4_FS) {
989         snprintf(cmdline, sizeof(cmdline), "/system/bin/make_ext4fs -a /data -l %lld %s",
990                  size * 512, crypto_blkdev);
991         SLOGI("Making empty filesystem with command %s\n", cmdline);
992     } else if (type== FAT_FS) {
993         snprintf(cmdline, sizeof(cmdline), "/system/bin/newfs_msdos -F 32 -O android -c 8 -s %lld %s",
994                  size, crypto_blkdev);
995         SLOGI("Making empty filesystem with command %s\n", cmdline);
996     } else {
997         SLOGE("cryptfs_enable_wipe(): unknown filesystem type %d\n", type);
998         return -1;
999     }
1000 
1001     if (system(cmdline)) {
1002       SLOGE("Error creating empty filesystem on %s\n", crypto_blkdev);
1003     } else {
1004       SLOGD("Successfully created empty filesystem on %s\n", crypto_blkdev);
1005       rc = 0;
1006     }
1007 
1008     return rc;
1009 }
1010 
unix_read(int fd,void * buff,int len)1011 static inline int unix_read(int  fd, void*  buff, int  len)
1012 {
1013     int  ret;
1014     do { ret = read(fd, buff, len); } while (ret < 0 && errno == EINTR);
1015     return ret;
1016 }
1017 
unix_write(int fd,const void * buff,int len)1018 static inline int unix_write(int  fd, const void*  buff, int  len)
1019 {
1020     int  ret;
1021     do { ret = write(fd, buff, len); } while (ret < 0 && errno == EINTR);
1022     return ret;
1023 }
1024 
1025 #define CRYPT_INPLACE_BUFSIZE 4096
1026 #define CRYPT_SECTORS_PER_BUFSIZE (CRYPT_INPLACE_BUFSIZE / 512)
cryptfs_enable_inplace(char * crypto_blkdev,char * real_blkdev,off64_t size,off64_t * size_already_done,off64_t tot_size)1027 static int cryptfs_enable_inplace(char *crypto_blkdev, char *real_blkdev, off64_t size,
1028                                   off64_t *size_already_done, off64_t tot_size)
1029 {
1030     int realfd, cryptofd;
1031     char *buf[CRYPT_INPLACE_BUFSIZE];
1032     int rc = -1;
1033     off64_t numblocks, i, remainder;
1034     off64_t one_pct, cur_pct, new_pct;
1035     off64_t blocks_already_done, tot_numblocks;
1036 
1037     if ( (realfd = open(real_blkdev, O_RDONLY)) < 0) {
1038         SLOGE("Error opening real_blkdev %s for inplace encrypt\n", real_blkdev);
1039         return -1;
1040     }
1041 
1042     if ( (cryptofd = open(crypto_blkdev, O_WRONLY)) < 0) {
1043         SLOGE("Error opening crypto_blkdev %s for inplace encrypt\n", crypto_blkdev);
1044         close(realfd);
1045         return -1;
1046     }
1047 
1048     /* This is pretty much a simple loop of reading 4K, and writing 4K.
1049      * The size passed in is the number of 512 byte sectors in the filesystem.
1050      * So compute the number of whole 4K blocks we should read/write,
1051      * and the remainder.
1052      */
1053     numblocks = size / CRYPT_SECTORS_PER_BUFSIZE;
1054     remainder = size % CRYPT_SECTORS_PER_BUFSIZE;
1055     tot_numblocks = tot_size / CRYPT_SECTORS_PER_BUFSIZE;
1056     blocks_already_done = *size_already_done / CRYPT_SECTORS_PER_BUFSIZE;
1057 
1058     SLOGE("Encrypting filesystem in place...");
1059 
1060     one_pct = tot_numblocks / 100;
1061     cur_pct = 0;
1062     /* process the majority of the filesystem in blocks */
1063     for (i=0; i<numblocks; i++) {
1064         new_pct = (i + blocks_already_done) / one_pct;
1065         if (new_pct > cur_pct) {
1066             char buf[8];
1067 
1068             cur_pct = new_pct;
1069             snprintf(buf, sizeof(buf), "%lld", cur_pct);
1070             property_set("vold.encrypt_progress", buf);
1071         }
1072         if (unix_read(realfd, buf, CRYPT_INPLACE_BUFSIZE) <= 0) {
1073             SLOGE("Error reading real_blkdev %s for inplace encrypt\n", crypto_blkdev);
1074             goto errout;
1075         }
1076         if (unix_write(cryptofd, buf, CRYPT_INPLACE_BUFSIZE) <= 0) {
1077             SLOGE("Error writing crypto_blkdev %s for inplace encrypt\n", crypto_blkdev);
1078             goto errout;
1079         }
1080     }
1081 
1082     /* Do any remaining sectors */
1083     for (i=0; i<remainder; i++) {
1084         if (unix_read(realfd, buf, 512) <= 0) {
1085             SLOGE("Error reading rival sectors from real_blkdev %s for inplace encrypt\n", crypto_blkdev);
1086             goto errout;
1087         }
1088         if (unix_write(cryptofd, buf, 512) <= 0) {
1089             SLOGE("Error writing final sectors to crypto_blkdev %s for inplace encrypt\n", crypto_blkdev);
1090             goto errout;
1091         }
1092     }
1093 
1094     *size_already_done += size;
1095     rc = 0;
1096 
1097 errout:
1098     close(realfd);
1099     close(cryptofd);
1100 
1101     return rc;
1102 }
1103 
1104 #define CRYPTO_ENABLE_WIPE 1
1105 #define CRYPTO_ENABLE_INPLACE 2
1106 
1107 #define FRAMEWORK_BOOT_WAIT 60
1108 
should_encrypt(struct volume_info * volume)1109 static inline int should_encrypt(struct volume_info *volume)
1110 {
1111     return (volume->flags & (VOL_ENCRYPTABLE | VOL_NONREMOVABLE)) ==
1112             (VOL_ENCRYPTABLE | VOL_NONREMOVABLE);
1113 }
1114 
cryptfs_enable(char * howarg,char * passwd)1115 int cryptfs_enable(char *howarg, char *passwd)
1116 {
1117     int how = 0;
1118     char crypto_blkdev[MAXPATHLEN], real_blkdev[MAXPATHLEN], sd_crypto_blkdev[MAXPATHLEN];
1119     unsigned long nr_sec;
1120     unsigned char master_key[KEY_LEN_BYTES], decrypted_master_key[KEY_LEN_BYTES];
1121     unsigned char salt[SALT_LEN];
1122     int rc=-1, fd, i, ret;
1123     struct crypt_mnt_ftr crypt_ftr, sd_crypt_ftr;;
1124     char tmpfs_options[PROPERTY_VALUE_MAX];
1125     char encrypted_state[PROPERTY_VALUE_MAX];
1126     char lockid[32] = { 0 };
1127     char key_loc[PROPERTY_VALUE_MAX];
1128     char fuse_sdcard[PROPERTY_VALUE_MAX];
1129     char *sd_mnt_point;
1130     char sd_blk_dev[256] = { 0 };
1131     int num_vols;
1132     struct volume_info *vol_list = 0;
1133     off64_t cur_encryption_done=0, tot_encryption_size=0;
1134 
1135     property_get("ro.crypto.state", encrypted_state, "");
1136     if (strcmp(encrypted_state, "unencrypted")) {
1137         SLOGE("Device is already running encrypted, aborting");
1138         goto error_unencrypted;
1139     }
1140 
1141     fs_mgr_get_crypt_info(get_fstab_filename(), key_loc, 0, sizeof(key_loc));
1142 
1143     if (!strcmp(howarg, "wipe")) {
1144       how = CRYPTO_ENABLE_WIPE;
1145     } else if (! strcmp(howarg, "inplace")) {
1146       how = CRYPTO_ENABLE_INPLACE;
1147     } else {
1148       /* Shouldn't happen, as CommandListener vets the args */
1149       goto error_unencrypted;
1150     }
1151 
1152     fs_mgr_get_crypt_info(get_fstab_filename(), 0, real_blkdev, sizeof(real_blkdev));
1153 
1154     /* Get the size of the real block device */
1155     fd = open(real_blkdev, O_RDONLY);
1156     if ( (nr_sec = get_blkdev_size(fd)) == 0) {
1157         SLOGE("Cannot get size of block device %s\n", real_blkdev);
1158         goto error_unencrypted;
1159     }
1160     close(fd);
1161 
1162     /* If doing inplace encryption, make sure the orig fs doesn't include the crypto footer */
1163     if ((how == CRYPTO_ENABLE_INPLACE) && (!strcmp(key_loc, KEY_IN_FOOTER))) {
1164         unsigned int fs_size_sec, max_fs_size_sec;
1165 
1166         fs_size_sec = get_fs_size(real_blkdev);
1167         max_fs_size_sec = nr_sec - (CRYPT_FOOTER_OFFSET / 512);
1168 
1169         if (fs_size_sec > max_fs_size_sec) {
1170             SLOGE("Orig filesystem overlaps crypto footer region.  Cannot encrypt in place.");
1171             goto error_unencrypted;
1172         }
1173     }
1174 
1175     /* Get a wakelock as this may take a while, and we don't want the
1176      * device to sleep on us.  We'll grab a partial wakelock, and if the UI
1177      * wants to keep the screen on, it can grab a full wakelock.
1178      */
1179     snprintf(lockid, sizeof(lockid), "enablecrypto%d", (int) getpid());
1180     acquire_wake_lock(PARTIAL_WAKE_LOCK, lockid);
1181 
1182      /* Get the sdcard mount point */
1183      sd_mnt_point = getenv("EXTERNAL_STORAGE");
1184      if (! sd_mnt_point) {
1185          sd_mnt_point = "/mnt/sdcard";
1186      }
1187 
1188     num_vols=vold_getNumDirectVolumes();
1189     vol_list = malloc(sizeof(struct volume_info) * num_vols);
1190     vold_getDirectVolumeList(vol_list);
1191 
1192     for (i=0; i<num_vols; i++) {
1193         if (should_encrypt(&vol_list[i])) {
1194             fd = open(vol_list[i].blk_dev, O_RDONLY);
1195             if ( (vol_list[i].size = get_blkdev_size(fd)) == 0) {
1196                 SLOGE("Cannot get size of block device %s\n", vol_list[i].blk_dev);
1197                 goto error_unencrypted;
1198             }
1199             close(fd);
1200 
1201             ret=vold_disableVol(vol_list[i].label);
1202             if ((ret < 0) && (ret != UNMOUNT_NOT_MOUNTED_ERR)) {
1203                 /* -2 is returned when the device exists but is not currently mounted.
1204                  * ignore the error and continue. */
1205                 SLOGE("Failed to unmount volume %s\n", vol_list[i].label);
1206                 goto error_unencrypted;
1207             }
1208         }
1209     }
1210 
1211     /* The init files are setup to stop the class main and late start when
1212      * vold sets trigger_shutdown_framework.
1213      */
1214     property_set("vold.decrypt", "trigger_shutdown_framework");
1215     SLOGD("Just asked init to shut down class main\n");
1216 
1217     if (vold_unmountAllAsecs()) {
1218         /* Just report the error.  If any are left mounted,
1219          * umounting /data below will fail and handle the error.
1220          */
1221         SLOGE("Error unmounting internal asecs");
1222     }
1223 
1224     property_get("ro.crypto.fuse_sdcard", fuse_sdcard, "");
1225     if (!strcmp(fuse_sdcard, "true")) {
1226         /* This is a device using the fuse layer to emulate the sdcard semantics
1227          * on top of the userdata partition.  vold does not manage it, it is managed
1228          * by the sdcard service.  The sdcard service was killed by the property trigger
1229          * above, so just unmount it now.  We must do this _AFTER_ killing the framework,
1230          * unlike the case for vold managed devices above.
1231          */
1232         if (wait_and_unmount(sd_mnt_point)) {
1233             goto error_shutting_down;
1234         }
1235     }
1236 
1237     /* Now unmount the /data partition. */
1238     if (wait_and_unmount(DATA_MNT_POINT)) {
1239         goto error_shutting_down;
1240     }
1241 
1242     /* Do extra work for a better UX when doing the long inplace encryption */
1243     if (how == CRYPTO_ENABLE_INPLACE) {
1244         /* Now that /data is unmounted, we need to mount a tmpfs
1245          * /data, set a property saying we're doing inplace encryption,
1246          * and restart the framework.
1247          */
1248         if (fs_mgr_do_tmpfs_mount(DATA_MNT_POINT)) {
1249             goto error_shutting_down;
1250         }
1251         /* Tells the framework that inplace encryption is starting */
1252         property_set("vold.encrypt_progress", "0");
1253 
1254         /* restart the framework. */
1255         /* Create necessary paths on /data */
1256         if (prep_data_fs()) {
1257             goto error_shutting_down;
1258         }
1259 
1260         /* startup service classes main and late_start */
1261         property_set("vold.decrypt", "trigger_restart_min_framework");
1262         SLOGD("Just triggered restart_min_framework\n");
1263 
1264         /* OK, the framework is restarted and will soon be showing a
1265          * progress bar.  Time to setup an encrypted mapping, and
1266          * either write a new filesystem, or encrypt in place updating
1267          * the progress bar as we work.
1268          */
1269     }
1270 
1271     /* Start the actual work of making an encrypted filesystem */
1272     /* Initialize a crypt_mnt_ftr for the partition */
1273     cryptfs_init_crypt_mnt_ftr(&crypt_ftr);
1274     if (!strcmp(key_loc, KEY_IN_FOOTER)) {
1275         crypt_ftr.fs_size = nr_sec - (CRYPT_FOOTER_OFFSET / 512);
1276     } else {
1277         crypt_ftr.fs_size = nr_sec;
1278     }
1279     crypt_ftr.flags |= CRYPT_ENCRYPTION_IN_PROGRESS;
1280     strcpy((char *)crypt_ftr.crypto_type_name, "aes-cbc-essiv:sha256");
1281 
1282     /* Make an encrypted master key */
1283     if (create_encrypted_random_key(passwd, master_key, salt)) {
1284         SLOGE("Cannot create encrypted master key\n");
1285         goto error_unencrypted;
1286     }
1287 
1288     /* Write the key to the end of the partition */
1289     put_crypt_ftr_and_key(real_blkdev, &crypt_ftr, master_key, salt);
1290 
1291     decrypt_master_key(passwd, salt, master_key, decrypted_master_key);
1292     create_crypto_blk_dev(&crypt_ftr, decrypted_master_key, real_blkdev, crypto_blkdev,
1293                           "userdata");
1294 
1295     /* The size of the userdata partition, and add in the vold volumes below */
1296     tot_encryption_size = crypt_ftr.fs_size;
1297 
1298     /* setup crypto mapping for all encryptable volumes handled by vold */
1299     for (i=0; i<num_vols; i++) {
1300         if (should_encrypt(&vol_list[i])) {
1301             vol_list[i].crypt_ftr = crypt_ftr; /* gotta love struct assign */
1302             vol_list[i].crypt_ftr.fs_size = vol_list[i].size;
1303             create_crypto_blk_dev(&vol_list[i].crypt_ftr, decrypted_master_key,
1304                                   vol_list[i].blk_dev, vol_list[i].crypto_blkdev,
1305                                   vol_list[i].label);
1306             tot_encryption_size += vol_list[i].size;
1307         }
1308     }
1309 
1310     if (how == CRYPTO_ENABLE_WIPE) {
1311         rc = cryptfs_enable_wipe(crypto_blkdev, crypt_ftr.fs_size, EXT4_FS);
1312         /* Encrypt all encryptable volumes handled by vold */
1313         if (!rc) {
1314             for (i=0; i<num_vols; i++) {
1315                 if (should_encrypt(&vol_list[i])) {
1316                     rc = cryptfs_enable_wipe(vol_list[i].crypto_blkdev,
1317                                              vol_list[i].crypt_ftr.fs_size, FAT_FS);
1318                 }
1319             }
1320         }
1321     } else if (how == CRYPTO_ENABLE_INPLACE) {
1322         rc = cryptfs_enable_inplace(crypto_blkdev, real_blkdev, crypt_ftr.fs_size,
1323                                     &cur_encryption_done, tot_encryption_size);
1324         /* Encrypt all encryptable volumes handled by vold */
1325         if (!rc) {
1326             for (i=0; i<num_vols; i++) {
1327                 if (should_encrypt(&vol_list[i])) {
1328                     rc = cryptfs_enable_inplace(vol_list[i].crypto_blkdev,
1329                                                 vol_list[i].blk_dev,
1330                                                 vol_list[i].crypt_ftr.fs_size,
1331                                                 &cur_encryption_done, tot_encryption_size);
1332                 }
1333             }
1334         }
1335         if (!rc) {
1336             /* The inplace routine never actually sets the progress to 100%
1337              * due to the round down nature of integer division, so set it here */
1338             property_set("vold.encrypt_progress", "100");
1339         }
1340     } else {
1341         /* Shouldn't happen */
1342         SLOGE("cryptfs_enable: internal error, unknown option\n");
1343         goto error_unencrypted;
1344     }
1345 
1346     /* Undo the dm-crypt mapping whether we succeed or not */
1347     delete_crypto_blk_dev("userdata");
1348     for (i=0; i<num_vols; i++) {
1349         if (should_encrypt(&vol_list[i])) {
1350             delete_crypto_blk_dev(vol_list[i].label);
1351         }
1352     }
1353 
1354     free(vol_list);
1355 
1356     if (! rc) {
1357         /* Success */
1358 
1359         /* Clear the encryption in progres flag in the footer */
1360         crypt_ftr.flags &= ~CRYPT_ENCRYPTION_IN_PROGRESS;
1361         put_crypt_ftr_and_key(real_blkdev, &crypt_ftr, 0, 0);
1362 
1363         sleep(2); /* Give the UI a chance to show 100% progress */
1364         android_reboot(ANDROID_RB_RESTART, 0, 0);
1365     } else {
1366         char value[PROPERTY_VALUE_MAX];
1367 
1368         property_get("ro.vold.wipe_on_cyrypt_fail", value, "0");
1369         if (!strcmp(value, "1")) {
1370             /* wipe data if encryption failed */
1371             SLOGE("encryption failed - rebooting into recovery to wipe data\n");
1372             mkdir("/cache/recovery", 0700);
1373             int fd = open("/cache/recovery/command", O_RDWR|O_CREAT|O_TRUNC);
1374             if (fd >= 0) {
1375                 write(fd, "--wipe_data", strlen("--wipe_data") + 1);
1376                 close(fd);
1377             } else {
1378                 SLOGE("could not open /cache/recovery/command\n");
1379             }
1380             android_reboot(ANDROID_RB_RESTART2, 0, "recovery");
1381         } else {
1382             /* set property to trigger dialog */
1383             property_set("vold.encrypt_progress", "error_partially_encrypted");
1384             release_wake_lock(lockid);
1385         }
1386         return -1;
1387     }
1388 
1389     /* hrm, the encrypt step claims success, but the reboot failed.
1390      * This should not happen.
1391      * Set the property and return.  Hope the framework can deal with it.
1392      */
1393     property_set("vold.encrypt_progress", "error_reboot_failed");
1394     release_wake_lock(lockid);
1395     return rc;
1396 
1397 error_unencrypted:
1398     free(vol_list);
1399     property_set("vold.encrypt_progress", "error_not_encrypted");
1400     if (lockid[0]) {
1401         release_wake_lock(lockid);
1402     }
1403     return -1;
1404 
1405 error_shutting_down:
1406     /* we failed, and have not encrypted anthing, so the users's data is still intact,
1407      * but the framework is stopped and not restarted to show the error, so it's up to
1408      * vold to restart the system.
1409      */
1410     SLOGE("Error enabling encryption after framework is shutdown, no data changed, restarting system");
1411     android_reboot(ANDROID_RB_RESTART, 0, 0);
1412 
1413     /* shouldn't get here */
1414     property_set("vold.encrypt_progress", "error_shutting_down");
1415     free(vol_list);
1416     if (lockid[0]) {
1417         release_wake_lock(lockid);
1418     }
1419     return -1;
1420 }
1421 
cryptfs_changepw(char * newpw)1422 int cryptfs_changepw(char *newpw)
1423 {
1424     struct crypt_mnt_ftr crypt_ftr;
1425     unsigned char encrypted_master_key[KEY_LEN_BYTES], decrypted_master_key[KEY_LEN_BYTES];
1426     unsigned char salt[SALT_LEN];
1427     char real_blkdev[MAXPATHLEN];
1428 
1429     /* This is only allowed after we've successfully decrypted the master key */
1430     if (! master_key_saved) {
1431         SLOGE("Key not saved, aborting");
1432         return -1;
1433     }
1434 
1435     fs_mgr_get_crypt_info(get_fstab_filename(), 0, real_blkdev, sizeof(real_blkdev));
1436     if (strlen(real_blkdev) == 0) {
1437         SLOGE("Can't find real blkdev");
1438         return -1;
1439     }
1440 
1441     /* get key */
1442     if (get_crypt_ftr_and_key(real_blkdev, &crypt_ftr, encrypted_master_key, salt)) {
1443       SLOGE("Error getting crypt footer and key");
1444       return -1;
1445     }
1446 
1447     encrypt_master_key(newpw, salt, saved_master_key, encrypted_master_key);
1448 
1449     /* save the key */
1450     put_crypt_ftr_and_key(real_blkdev, &crypt_ftr, encrypted_master_key, salt);
1451 
1452     return 0;
1453 }
1454