• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- tsan_rtl.cc -------------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 //
12 // Main file (entry points) for the TSan run-time.
13 //===----------------------------------------------------------------------===//
14 
15 #include "sanitizer_common/sanitizer_atomic.h"
16 #include "sanitizer_common/sanitizer_common.h"
17 #include "sanitizer_common/sanitizer_libc.h"
18 #include "sanitizer_common/sanitizer_stackdepot.h"
19 #include "sanitizer_common/sanitizer_placement_new.h"
20 #include "sanitizer_common/sanitizer_symbolizer.h"
21 #include "tsan_defs.h"
22 #include "tsan_platform.h"
23 #include "tsan_rtl.h"
24 #include "tsan_mman.h"
25 #include "tsan_suppressions.h"
26 
27 volatile int __tsan_resumed = 0;
28 
__tsan_resume()29 extern "C" void __tsan_resume() {
30   __tsan_resumed = 1;
31 }
32 
33 namespace __tsan {
34 
35 #ifndef TSAN_GO
36 THREADLOCAL char cur_thread_placeholder[sizeof(ThreadState)] ALIGNED(64);
37 #endif
38 static char ctx_placeholder[sizeof(Context)] ALIGNED(64);
39 
40 static Context *ctx;
CTX()41 Context *CTX() {
42   return ctx;
43 }
44 
Context()45 Context::Context()
46   : initialized()
47   , report_mtx(MutexTypeReport, StatMtxReport)
48   , nreported()
49   , nmissed_expected()
50   , thread_mtx(MutexTypeThreads, StatMtxThreads)
51   , racy_stacks(MBlockRacyStacks)
52   , racy_addresses(MBlockRacyAddresses) {
53 }
54 
55 // The objects are allocated in TLS, so one may rely on zero-initialization.
ThreadState(Context * ctx,int tid,int unique_id,u64 epoch,uptr stk_addr,uptr stk_size,uptr tls_addr,uptr tls_size)56 ThreadState::ThreadState(Context *ctx, int tid, int unique_id, u64 epoch,
57                          uptr stk_addr, uptr stk_size,
58                          uptr tls_addr, uptr tls_size)
59   : fast_state(tid, epoch)
60   // Do not touch these, rely on zero initialization,
61   // they may be accessed before the ctor.
62   // , fast_ignore_reads()
63   // , fast_ignore_writes()
64   // , in_rtl()
65   , shadow_stack_pos(&shadow_stack[0])
66   , tid(tid)
67   , unique_id(unique_id)
68   , stk_addr(stk_addr)
69   , stk_size(stk_size)
70   , tls_addr(tls_addr)
71   , tls_size(tls_size) {
72 }
73 
ThreadContext(int tid)74 ThreadContext::ThreadContext(int tid)
75   : tid(tid)
76   , unique_id()
77   , user_id()
78   , thr()
79   , status(ThreadStatusInvalid)
80   , detached()
81   , reuse_count()
82   , epoch0()
83   , epoch1()
84   , dead_info()
85   , dead_next() {
86 }
87 
WriteMemoryProfile(char * buf,uptr buf_size,int num)88 static void WriteMemoryProfile(char *buf, uptr buf_size, int num) {
89   uptr shadow = GetShadowMemoryConsumption();
90 
91   int nthread = 0;
92   int nlivethread = 0;
93   uptr threadmem = 0;
94   {
95     Lock l(&ctx->thread_mtx);
96     for (unsigned i = 0; i < kMaxTid; i++) {
97       ThreadContext *tctx = ctx->threads[i];
98       if (tctx == 0)
99         continue;
100       nthread += 1;
101       threadmem += sizeof(ThreadContext);
102       if (tctx->status != ThreadStatusRunning)
103         continue;
104       nlivethread += 1;
105       threadmem += sizeof(ThreadState);
106     }
107   }
108 
109   uptr nsync = 0;
110   uptr syncmem = CTX()->synctab.GetMemoryConsumption(&nsync);
111 
112   internal_snprintf(buf, buf_size, "%d: shadow=%zuMB"
113                                    " thread=%zuMB(total=%d/live=%d)"
114                                    " sync=%zuMB(cnt=%zu)\n",
115     num,
116     shadow >> 20,
117     threadmem >> 20, nthread, nlivethread,
118     syncmem >> 20, nsync);
119 }
120 
MemoryProfileThread(void * arg)121 static void MemoryProfileThread(void *arg) {
122   ScopedInRtl in_rtl;
123   fd_t fd = (fd_t)(uptr)arg;
124   for (int i = 0; ; i++) {
125     InternalScopedBuffer<char> buf(4096);
126     WriteMemoryProfile(buf.data(), buf.size(), i);
127     internal_write(fd, buf.data(), internal_strlen(buf.data()));
128     SleepForSeconds(1);
129   }
130 }
131 
InitializeMemoryProfile()132 static void InitializeMemoryProfile() {
133   if (flags()->profile_memory == 0 || flags()->profile_memory[0] == 0)
134     return;
135   InternalScopedBuffer<char> filename(4096);
136   internal_snprintf(filename.data(), filename.size(), "%s.%d",
137       flags()->profile_memory, GetPid());
138   fd_t fd = internal_open(filename.data(), true);
139   if (fd == kInvalidFd) {
140     TsanPrintf("Failed to open memory profile file '%s'\n", &filename[0]);
141     Die();
142   }
143   internal_start_thread(&MemoryProfileThread, (void*)(uptr)fd);
144 }
145 
MemoryFlushThread(void * arg)146 static void MemoryFlushThread(void *arg) {
147   ScopedInRtl in_rtl;
148   for (int i = 0; ; i++) {
149     SleepForMillis(flags()->flush_memory_ms);
150     FlushShadowMemory();
151   }
152 }
153 
InitializeMemoryFlush()154 static void InitializeMemoryFlush() {
155   if (flags()->flush_memory_ms == 0)
156     return;
157   if (flags()->flush_memory_ms < 100)
158     flags()->flush_memory_ms = 100;
159   internal_start_thread(&MemoryFlushThread, 0);
160 }
161 
Initialize(ThreadState * thr)162 void Initialize(ThreadState *thr) {
163   // Thread safe because done before all threads exist.
164   static bool is_initialized = false;
165   if (is_initialized)
166     return;
167   is_initialized = true;
168   ScopedInRtl in_rtl;
169 #ifndef TSAN_GO
170   InitializeAllocator();
171 #endif
172   InitializeInterceptors();
173   const char *env = InitializePlatform();
174   InitializeMutex();
175   InitializeDynamicAnnotations();
176   ctx = new(ctx_placeholder) Context;
177   InitializeShadowMemory();
178   ctx->dead_list_size = 0;
179   ctx->dead_list_head = 0;
180   ctx->dead_list_tail = 0;
181   InitializeFlags(&ctx->flags, env);
182   InitializeSuppressions();
183   InitializeMemoryProfile();
184   InitializeMemoryFlush();
185 
186   const char *external_symbolizer = flags()->external_symbolizer_path;
187   if (external_symbolizer != 0 && external_symbolizer[0] != '\0') {
188     InitializeExternalSymbolizer(external_symbolizer);
189   }
190 
191   if (ctx->flags.verbosity)
192     TsanPrintf("***** Running under ThreadSanitizer v2 (pid %d) *****\n",
193                GetPid());
194 
195   // Initialize thread 0.
196   ctx->thread_seq = 0;
197   int tid = ThreadCreate(thr, 0, 0, true);
198   CHECK_EQ(tid, 0);
199   ThreadStart(thr, tid);
200   CHECK_EQ(thr->in_rtl, 1);
201   ctx->initialized = true;
202 
203   if (flags()->stop_on_start) {
204     TsanPrintf("ThreadSanitizer is suspended at startup (pid %d)."
205            " Call __tsan_resume().\n",
206            GetPid());
207     while (__tsan_resumed == 0);
208   }
209 }
210 
Finalize(ThreadState * thr)211 int Finalize(ThreadState *thr) {
212   ScopedInRtl in_rtl;
213   Context *ctx = __tsan::ctx;
214   bool failed = false;
215 
216   ThreadFinalize(thr);
217 
218   if (ctx->nreported) {
219     failed = true;
220     TsanPrintf("ThreadSanitizer: reported %d warnings\n", ctx->nreported);
221   }
222 
223   if (ctx->nmissed_expected) {
224     failed = true;
225     TsanPrintf("ThreadSanitizer: missed %d expected races\n",
226         ctx->nmissed_expected);
227   }
228 
229   StatOutput(ctx->stat);
230   return failed ? flags()->exitcode : 0;
231 }
232 
233 #ifndef TSAN_GO
CurrentStackId(ThreadState * thr,uptr pc)234 u32 CurrentStackId(ThreadState *thr, uptr pc) {
235   if (thr->shadow_stack_pos == 0)  // May happen during bootstrap.
236     return 0;
237   if (pc) {
238     thr->shadow_stack_pos[0] = pc;
239     thr->shadow_stack_pos++;
240   }
241   u32 id = StackDepotPut(thr->shadow_stack,
242                          thr->shadow_stack_pos - thr->shadow_stack);
243   if (pc)
244     thr->shadow_stack_pos--;
245   return id;
246 }
247 #endif
248 
TraceSwitch(ThreadState * thr)249 void TraceSwitch(ThreadState *thr) {
250   thr->nomalloc++;
251   ScopedInRtl in_rtl;
252   Lock l(&thr->trace.mtx);
253   unsigned trace = (thr->fast_state.epoch() / kTracePartSize) % kTraceParts;
254   TraceHeader *hdr = &thr->trace.headers[trace];
255   hdr->epoch0 = thr->fast_state.epoch();
256   hdr->stack0.ObtainCurrent(thr, 0);
257   thr->nomalloc--;
258 }
259 
260 #ifndef TSAN_GO
__tsan_trace_switch()261 extern "C" void __tsan_trace_switch() {
262   TraceSwitch(cur_thread());
263 }
264 
__tsan_report_race()265 extern "C" void __tsan_report_race() {
266   ReportRace(cur_thread());
267 }
268 #endif
269 
270 ALWAYS_INLINE
LoadShadow(u64 * p)271 static Shadow LoadShadow(u64 *p) {
272   u64 raw = atomic_load((atomic_uint64_t*)p, memory_order_relaxed);
273   return Shadow(raw);
274 }
275 
276 ALWAYS_INLINE
StoreShadow(u64 * sp,u64 s)277 static void StoreShadow(u64 *sp, u64 s) {
278   atomic_store((atomic_uint64_t*)sp, s, memory_order_relaxed);
279 }
280 
281 ALWAYS_INLINE
StoreIfNotYetStored(u64 * sp,u64 * s)282 static void StoreIfNotYetStored(u64 *sp, u64 *s) {
283   StoreShadow(sp, *s);
284   *s = 0;
285 }
286 
HandleRace(ThreadState * thr,u64 * shadow_mem,Shadow cur,Shadow old)287 static inline void HandleRace(ThreadState *thr, u64 *shadow_mem,
288                               Shadow cur, Shadow old) {
289   thr->racy_state[0] = cur.raw();
290   thr->racy_state[1] = old.raw();
291   thr->racy_shadow_addr = shadow_mem;
292 #ifndef TSAN_GO
293   HACKY_CALL(__tsan_report_race);
294 #else
295   ReportRace(thr);
296 #endif
297 }
298 
BothReads(Shadow s,int kAccessIsWrite)299 static inline bool BothReads(Shadow s, int kAccessIsWrite) {
300   return !kAccessIsWrite && !s.is_write();
301 }
302 
OldIsRWStronger(Shadow old,int kAccessIsWrite)303 static inline bool OldIsRWStronger(Shadow old, int kAccessIsWrite) {
304   return old.is_write() || !kAccessIsWrite;
305 }
306 
OldIsRWWeaker(Shadow old,int kAccessIsWrite)307 static inline bool OldIsRWWeaker(Shadow old, int kAccessIsWrite) {
308   return !old.is_write() || kAccessIsWrite;
309 }
310 
OldIsInSameSynchEpoch(Shadow old,ThreadState * thr)311 static inline bool OldIsInSameSynchEpoch(Shadow old, ThreadState *thr) {
312   return old.epoch() >= thr->fast_synch_epoch;
313 }
314 
HappensBefore(Shadow old,ThreadState * thr)315 static inline bool HappensBefore(Shadow old, ThreadState *thr) {
316   return thr->clock.get(old.tid()) >= old.epoch();
317 }
318 
319 ALWAYS_INLINE
MemoryAccessImpl(ThreadState * thr,uptr addr,int kAccessSizeLog,bool kAccessIsWrite,FastState fast_state,u64 * shadow_mem,Shadow cur)320 void MemoryAccessImpl(ThreadState *thr, uptr addr,
321     int kAccessSizeLog, bool kAccessIsWrite, FastState fast_state,
322     u64 *shadow_mem, Shadow cur) {
323   StatInc(thr, StatMop);
324   StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
325   StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
326 
327   // This potentially can live in an MMX/SSE scratch register.
328   // The required intrinsics are:
329   // __m128i _mm_move_epi64(__m128i*);
330   // _mm_storel_epi64(u64*, __m128i);
331   u64 store_word = cur.raw();
332 
333   // scan all the shadow values and dispatch to 4 categories:
334   // same, replace, candidate and race (see comments below).
335   // we consider only 3 cases regarding access sizes:
336   // equal, intersect and not intersect. initially I considered
337   // larger and smaller as well, it allowed to replace some
338   // 'candidates' with 'same' or 'replace', but I think
339   // it's just not worth it (performance- and complexity-wise).
340 
341   Shadow old(0);
342   if (kShadowCnt == 1) {
343     int idx = 0;
344 #include "tsan_update_shadow_word_inl.h"
345   } else if (kShadowCnt == 2) {
346     int idx = 0;
347 #include "tsan_update_shadow_word_inl.h"
348     idx = 1;
349 #include "tsan_update_shadow_word_inl.h"
350   } else if (kShadowCnt == 4) {
351     int idx = 0;
352 #include "tsan_update_shadow_word_inl.h"
353     idx = 1;
354 #include "tsan_update_shadow_word_inl.h"
355     idx = 2;
356 #include "tsan_update_shadow_word_inl.h"
357     idx = 3;
358 #include "tsan_update_shadow_word_inl.h"
359   } else if (kShadowCnt == 8) {
360     int idx = 0;
361 #include "tsan_update_shadow_word_inl.h"
362     idx = 1;
363 #include "tsan_update_shadow_word_inl.h"
364     idx = 2;
365 #include "tsan_update_shadow_word_inl.h"
366     idx = 3;
367 #include "tsan_update_shadow_word_inl.h"
368     idx = 4;
369 #include "tsan_update_shadow_word_inl.h"
370     idx = 5;
371 #include "tsan_update_shadow_word_inl.h"
372     idx = 6;
373 #include "tsan_update_shadow_word_inl.h"
374     idx = 7;
375 #include "tsan_update_shadow_word_inl.h"
376   } else {
377     CHECK(false);
378   }
379 
380   // we did not find any races and had already stored
381   // the current access info, so we are done
382   if (LIKELY(store_word == 0))
383     return;
384   // choose a random candidate slot and replace it
385   StoreShadow(shadow_mem + (cur.epoch() % kShadowCnt), store_word);
386   StatInc(thr, StatShadowReplace);
387   return;
388  RACE:
389   HandleRace(thr, shadow_mem, cur, old);
390   return;
391 }
392 
393 ALWAYS_INLINE
MemoryAccess(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog,bool kAccessIsWrite)394 void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
395     int kAccessSizeLog, bool kAccessIsWrite) {
396   u64 *shadow_mem = (u64*)MemToShadow(addr);
397   DPrintf2("#%d: tsan::OnMemoryAccess: @%p %p size=%d"
398       " is_write=%d shadow_mem=%p {%zx, %zx, %zx, %zx}\n",
399       (int)thr->fast_state.tid(), (void*)pc, (void*)addr,
400       (int)(1 << kAccessSizeLog), kAccessIsWrite, shadow_mem,
401       (uptr)shadow_mem[0], (uptr)shadow_mem[1],
402       (uptr)shadow_mem[2], (uptr)shadow_mem[3]);
403 #if TSAN_DEBUG
404   if (!IsAppMem(addr)) {
405     TsanPrintf("Access to non app mem %zx\n", addr);
406     DCHECK(IsAppMem(addr));
407   }
408   if (!IsShadowMem((uptr)shadow_mem)) {
409     TsanPrintf("Bad shadow addr %p (%zx)\n", shadow_mem, addr);
410     DCHECK(IsShadowMem((uptr)shadow_mem));
411   }
412 #endif
413 
414   FastState fast_state = thr->fast_state;
415   if (fast_state.GetIgnoreBit())
416     return;
417   fast_state.IncrementEpoch();
418   thr->fast_state = fast_state;
419   Shadow cur(fast_state);
420   cur.SetAddr0AndSizeLog(addr & 7, kAccessSizeLog);
421   cur.SetWrite(kAccessIsWrite);
422 
423   // We must not store to the trace if we do not store to the shadow.
424   // That is, this call must be moved somewhere below.
425   TraceAddEvent(thr, fast_state.epoch(), EventTypeMop, pc);
426 
427   MemoryAccessImpl(thr, addr, kAccessSizeLog, kAccessIsWrite, fast_state,
428       shadow_mem, cur);
429 }
430 
MemoryRangeSet(ThreadState * thr,uptr pc,uptr addr,uptr size,u64 val)431 static void MemoryRangeSet(ThreadState *thr, uptr pc, uptr addr, uptr size,
432                            u64 val) {
433   if (size == 0)
434     return;
435   // FIXME: fix me.
436   uptr offset = addr % kShadowCell;
437   if (offset) {
438     offset = kShadowCell - offset;
439     if (size <= offset)
440       return;
441     addr += offset;
442     size -= offset;
443   }
444   DCHECK_EQ(addr % 8, 0);
445   // If a user passes some insane arguments (memset(0)),
446   // let it just crash as usual.
447   if (!IsAppMem(addr) || !IsAppMem(addr + size - 1))
448     return;
449   (void)thr;
450   (void)pc;
451   // Some programs mmap like hundreds of GBs but actually used a small part.
452   // So, it's better to report a false positive on the memory
453   // then to hang here senselessly.
454   const uptr kMaxResetSize = 1024*1024*1024;
455   if (size > kMaxResetSize)
456     size = kMaxResetSize;
457   size = (size + (kShadowCell - 1)) & ~(kShadowCell - 1);
458   u64 *p = (u64*)MemToShadow(addr);
459   CHECK(IsShadowMem((uptr)p));
460   CHECK(IsShadowMem((uptr)(p + size * kShadowCnt / kShadowCell - 1)));
461   // FIXME: may overwrite a part outside the region
462   for (uptr i = 0; i < size * kShadowCnt / kShadowCell;) {
463     p[i++] = val;
464     for (uptr j = 1; j < kShadowCnt; j++)
465       p[i++] = 0;
466   }
467 }
468 
MemoryResetRange(ThreadState * thr,uptr pc,uptr addr,uptr size)469 void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size) {
470   MemoryRangeSet(thr, pc, addr, size, 0);
471 }
472 
MemoryRangeFreed(ThreadState * thr,uptr pc,uptr addr,uptr size)473 void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size) {
474   MemoryAccessRange(thr, pc, addr, size, true);
475   Shadow s(thr->fast_state);
476   s.MarkAsFreed();
477   s.SetWrite(true);
478   s.SetAddr0AndSizeLog(0, 3);
479   MemoryRangeSet(thr, pc, addr, size, s.raw());
480 }
481 
MemoryRangeImitateWrite(ThreadState * thr,uptr pc,uptr addr,uptr size)482 void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size) {
483   Shadow s(thr->fast_state);
484   s.SetWrite(true);
485   s.SetAddr0AndSizeLog(0, 3);
486   MemoryRangeSet(thr, pc, addr, size, s.raw());
487 }
488 
FuncEntry(ThreadState * thr,uptr pc)489 void FuncEntry(ThreadState *thr, uptr pc) {
490   DCHECK_EQ(thr->in_rtl, 0);
491   StatInc(thr, StatFuncEnter);
492   DPrintf2("#%d: FuncEntry %p\n", (int)thr->fast_state.tid(), (void*)pc);
493   thr->fast_state.IncrementEpoch();
494   TraceAddEvent(thr, thr->fast_state.epoch(), EventTypeFuncEnter, pc);
495 
496   // Shadow stack maintenance can be replaced with
497   // stack unwinding during trace switch (which presumably must be faster).
498   DCHECK_GE(thr->shadow_stack_pos, &thr->shadow_stack[0]);
499 #ifndef TSAN_GO
500   DCHECK_LT(thr->shadow_stack_pos, &thr->shadow_stack[kShadowStackSize]);
501 #else
502   if (thr->shadow_stack_pos == thr->shadow_stack_end) {
503     const int sz = thr->shadow_stack_end - thr->shadow_stack;
504     const int newsz = 2 * sz;
505     uptr *newstack = (uptr*)internal_alloc(MBlockShadowStack,
506         newsz * sizeof(uptr));
507     internal_memcpy(newstack, thr->shadow_stack, sz * sizeof(uptr));
508     internal_free(thr->shadow_stack);
509     thr->shadow_stack = newstack;
510     thr->shadow_stack_pos = newstack + sz;
511     thr->shadow_stack_end = newstack + newsz;
512   }
513 #endif
514   thr->shadow_stack_pos[0] = pc;
515   thr->shadow_stack_pos++;
516 }
517 
FuncExit(ThreadState * thr)518 void FuncExit(ThreadState *thr) {
519   DCHECK_EQ(thr->in_rtl, 0);
520   StatInc(thr, StatFuncExit);
521   DPrintf2("#%d: FuncExit\n", (int)thr->fast_state.tid());
522   thr->fast_state.IncrementEpoch();
523   TraceAddEvent(thr, thr->fast_state.epoch(), EventTypeFuncExit, 0);
524 
525   DCHECK_GT(thr->shadow_stack_pos, &thr->shadow_stack[0]);
526 #ifndef TSAN_GO
527   DCHECK_LT(thr->shadow_stack_pos, &thr->shadow_stack[kShadowStackSize]);
528 #endif
529   thr->shadow_stack_pos--;
530 }
531 
IgnoreCtl(ThreadState * thr,bool write,bool begin)532 void IgnoreCtl(ThreadState *thr, bool write, bool begin) {
533   DPrintf("#%d: IgnoreCtl(%d, %d)\n", thr->tid, write, begin);
534   thr->ignore_reads_and_writes += begin ? 1 : -1;
535   CHECK_GE(thr->ignore_reads_and_writes, 0);
536   if (thr->ignore_reads_and_writes)
537     thr->fast_state.SetIgnoreBit();
538   else
539     thr->fast_state.ClearIgnoreBit();
540 }
541 
operator ==(const MD5Hash & other) const542 bool MD5Hash::operator==(const MD5Hash &other) const {
543   return hash[0] == other.hash[0] && hash[1] == other.hash[1];
544 }
545 
546 #if TSAN_DEBUG
build_consistency_debug()547 void build_consistency_debug() {}
548 #else
build_consistency_release()549 void build_consistency_release() {}
550 #endif
551 
552 #if TSAN_COLLECT_STATS
build_consistency_stats()553 void build_consistency_stats() {}
554 #else
build_consistency_nostats()555 void build_consistency_nostats() {}
556 #endif
557 
558 #if TSAN_SHADOW_COUNT == 1
build_consistency_shadow1()559 void build_consistency_shadow1() {}
560 #elif TSAN_SHADOW_COUNT == 2
build_consistency_shadow2()561 void build_consistency_shadow2() {}
562 #elif TSAN_SHADOW_COUNT == 4
build_consistency_shadow4()563 void build_consistency_shadow4() {}
564 #else
build_consistency_shadow8()565 void build_consistency_shadow8() {}
566 #endif
567 
568 }  // namespace __tsan
569 
570 #ifndef TSAN_GO
571 // Must be included in this file to make sure everything is inlined.
572 #include "tsan_interface_inl.h"
573 #endif
574