1 /* Portions are Copyright (C) 2011 Google Inc */
2 /* ***** BEGIN LICENSE BLOCK *****
3 * Version: MPL 1.1/GPL 2.0/LGPL 2.1
4 *
5 * The contents of this file are subject to the Mozilla Public License Version
6 * 1.1 (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 * http://www.mozilla.org/MPL/
9 *
10 * Software distributed under the License is distributed on an "AS IS" basis,
11 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
12 * for the specific language governing rights and limitations under the
13 * License.
14 *
15 * The Original Code is the Netscape Portable Runtime (NSPR).
16 *
17 * The Initial Developer of the Original Code is
18 * Netscape Communications Corporation.
19 * Portions created by the Initial Developer are Copyright (C) 1998-2000
20 * the Initial Developer. All Rights Reserved.
21 *
22 * Contributor(s):
23 *
24 * Alternatively, the contents of this file may be used under the terms of
25 * either the GNU General Public License Version 2 or later (the "GPL"), or
26 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
27 * in which case the provisions of the GPL or the LGPL are applicable instead
28 * of those above. If you wish to allow use of your version of this file only
29 * under the terms of either the GPL or the LGPL, and not to allow others to
30 * use your version of this file under the terms of the MPL, indicate your
31 * decision by deleting the provisions above and replace them with the notice
32 * and other provisions required by the GPL or the LGPL. If you do not delete
33 * the provisions above, a recipient may use your version of this file under
34 * the terms of any one of the MPL, the GPL or the LGPL.
35 *
36 * ***** END LICENSE BLOCK ***** */
37
38 /*
39 * prtime.cc --
40 * NOTE: The original nspr file name is prtime.c
41 *
42 * NSPR date and time functions
43 *
44 * CVS revision 3.37
45 */
46
47 /*
48 * The following functions were copied from the NSPR prtime.c file.
49 * PR_ParseTimeString
50 * We inlined the new PR_ParseTimeStringToExplodedTime function to avoid
51 * copying PR_ExplodeTime and PR_LocalTimeParameters. (The PR_ExplodeTime
52 * and PR_ImplodeTime calls cancel each other out.)
53 * PR_NormalizeTime
54 * PR_GMTParameters
55 * PR_ImplodeTime
56 * This was modified to use the Win32 SYSTEMTIME/FILETIME structures
57 * and the timezone offsets are applied to the FILETIME structure.
58 * All types and macros are defined in the base/third_party/prtime.h file.
59 * These have been copied from the following nspr files. We have only copied
60 * over the types we need.
61 * 1. prtime.h
62 * 2. prtypes.h
63 * 3. prlong.h
64 */
65
66 #include "base/logging.h"
67 #include "base/third_party/nspr/prtime.h"
68 #include "build/build_config.h"
69
70 #if defined(OS_WIN)
71 #include <windows.h>
72 #elif defined(OS_MACOSX)
73 #include <CoreFoundation/CoreFoundation.h>
74 #endif
75 #include <errno.h> /* for EINVAL */
76 #include <time.h>
77
78 /* Implements the Unix localtime_r() function for windows */
79 #if defined(OS_WIN)
localtime_r(const time_t * secs,struct tm * time)80 static void localtime_r(const time_t* secs, struct tm* time) {
81 (void) localtime_s(time, secs);
82 }
83 #endif
84
85 /*
86 *------------------------------------------------------------------------
87 *
88 * PR_ImplodeTime --
89 *
90 * Cf. time_t mktime(struct tm *tp)
91 * Note that 1 year has < 2^25 seconds. So an PRInt32 is large enough.
92 *
93 *------------------------------------------------------------------------
94 */
95 PRTime
PR_ImplodeTime(const PRExplodedTime * exploded)96 PR_ImplodeTime(const PRExplodedTime *exploded)
97 {
98 // This is important, we want to make sure multiplications are
99 // done with the correct precision.
100 static const PRTime kSecondsToMicroseconds = static_cast<PRTime>(1000000);
101 #if defined(OS_WIN)
102 // Create the system struct representing our exploded time.
103 SYSTEMTIME st = {0};
104 FILETIME ft = {0};
105 ULARGE_INTEGER uli = {0};
106
107 st.wYear = exploded->tm_year;
108 st.wMonth = exploded->tm_month + 1;
109 st.wDayOfWeek = exploded->tm_wday;
110 st.wDay = exploded->tm_mday;
111 st.wHour = exploded->tm_hour;
112 st.wMinute = exploded->tm_min;
113 st.wSecond = exploded->tm_sec;
114 st.wMilliseconds = exploded->tm_usec/1000;
115 // Convert to FILETIME.
116 if (!SystemTimeToFileTime(&st, &ft)) {
117 NOTREACHED() << "Unable to convert time";
118 return 0;
119 }
120 // Apply offsets.
121 uli.LowPart = ft.dwLowDateTime;
122 uli.HighPart = ft.dwHighDateTime;
123 // Convert from Windows epoch to NSPR epoch, and 100-nanoseconds units
124 // to microsecond units.
125 PRTime result =
126 static_cast<PRTime>((uli.QuadPart / 10) - 11644473600000000i64);
127 // Adjust for time zone and dst. Convert from seconds to microseconds.
128 result -= (exploded->tm_params.tp_gmt_offset +
129 exploded->tm_params.tp_dst_offset) * kSecondsToMicroseconds;
130 return result;
131 #elif defined(OS_MACOSX)
132 // Create the system struct representing our exploded time.
133 CFGregorianDate gregorian_date;
134 gregorian_date.year = exploded->tm_year;
135 gregorian_date.month = exploded->tm_month + 1;
136 gregorian_date.day = exploded->tm_mday;
137 gregorian_date.hour = exploded->tm_hour;
138 gregorian_date.minute = exploded->tm_min;
139 gregorian_date.second = exploded->tm_sec;
140
141 // Compute |absolute_time| in seconds, correct for gmt and dst
142 // (note the combined offset will be negative when we need to add it), then
143 // convert to microseconds which is what PRTime expects.
144 CFAbsoluteTime absolute_time =
145 CFGregorianDateGetAbsoluteTime(gregorian_date, NULL);
146 PRTime result = static_cast<PRTime>(absolute_time);
147 result -= exploded->tm_params.tp_gmt_offset +
148 exploded->tm_params.tp_dst_offset;
149 result += kCFAbsoluteTimeIntervalSince1970; // PRTime epoch is 1970
150 result *= kSecondsToMicroseconds;
151 result += exploded->tm_usec;
152 return result;
153 #elif defined(OS_POSIX)
154 struct tm exp_tm = {0};
155 exp_tm.tm_sec = exploded->tm_sec;
156 exp_tm.tm_min = exploded->tm_min;
157 exp_tm.tm_hour = exploded->tm_hour;
158 exp_tm.tm_mday = exploded->tm_mday;
159 exp_tm.tm_mon = exploded->tm_month;
160 exp_tm.tm_year = exploded->tm_year - 1900;
161
162 time_t absolute_time = timegm(&exp_tm);
163
164 // If timegm returned -1. Since we don't pass it a time zone, the only
165 // valid case of returning -1 is 1 second before Epoch (Dec 31, 1969).
166 if (absolute_time == -1 &&
167 !(exploded->tm_year == 1969 && exploded->tm_month == 11 &&
168 exploded->tm_mday == 31 && exploded->tm_hour == 23 &&
169 exploded->tm_min == 59 && exploded->tm_sec == 59)) {
170 // If we get here, time_t must be 32 bits.
171 // Date was possibly too far in the future and would overflow. Return
172 // the most future date possible (year 2038).
173 if (exploded->tm_year >= 1970)
174 return INT_MAX * kSecondsToMicroseconds;
175 // Date was possibly too far in the past and would underflow. Return
176 // the most past date possible (year 1901).
177 return INT_MIN * kSecondsToMicroseconds;
178 }
179
180 PRTime result = static_cast<PRTime>(absolute_time);
181 result -= exploded->tm_params.tp_gmt_offset +
182 exploded->tm_params.tp_dst_offset;
183 result *= kSecondsToMicroseconds;
184 result += exploded->tm_usec;
185 return result;
186 #else
187 #error No PR_ImplodeTime implemented on your platform.
188 #endif
189 }
190
191 /*
192 * The COUNT_LEAPS macro counts the number of leap years passed by
193 * till the start of the given year Y. At the start of the year 4
194 * A.D. the number of leap years passed by is 0, while at the start of
195 * the year 5 A.D. this count is 1. The number of years divisible by
196 * 100 but not divisible by 400 (the non-leap years) is deducted from
197 * the count to get the correct number of leap years.
198 *
199 * The COUNT_DAYS macro counts the number of days since 01/01/01 till the
200 * start of the given year Y. The number of days at the start of the year
201 * 1 is 0 while the number of days at the start of the year 2 is 365
202 * (which is ((2)-1) * 365) and so on. The reference point is 01/01/01
203 * midnight 00:00:00.
204 */
205
206 #define COUNT_LEAPS(Y) ( ((Y)-1)/4 - ((Y)-1)/100 + ((Y)-1)/400 )
207 #define COUNT_DAYS(Y) ( ((Y)-1)*365 + COUNT_LEAPS(Y) )
208 #define DAYS_BETWEEN_YEARS(A, B) (COUNT_DAYS(B) - COUNT_DAYS(A))
209
210 /*
211 * Static variables used by functions in this file
212 */
213
214 /*
215 * The following array contains the day of year for the last day of
216 * each month, where index 1 is January, and day 0 is January 1.
217 */
218
219 static const int lastDayOfMonth[2][13] = {
220 {-1, 30, 58, 89, 119, 150, 180, 211, 242, 272, 303, 333, 364},
221 {-1, 30, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365}
222 };
223
224 /*
225 * The number of days in a month
226 */
227
228 static const PRInt8 nDays[2][12] = {
229 {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
230 {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}
231 };
232
233 /*
234 *-------------------------------------------------------------------------
235 *
236 * IsLeapYear --
237 *
238 * Returns 1 if the year is a leap year, 0 otherwise.
239 *
240 *-------------------------------------------------------------------------
241 */
242
IsLeapYear(PRInt16 year)243 static int IsLeapYear(PRInt16 year)
244 {
245 if ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0)
246 return 1;
247 else
248 return 0;
249 }
250
251 /*
252 * 'secOffset' should be less than 86400 (i.e., a day).
253 * 'time' should point to a normalized PRExplodedTime.
254 */
255
256 static void
ApplySecOffset(PRExplodedTime * time,PRInt32 secOffset)257 ApplySecOffset(PRExplodedTime *time, PRInt32 secOffset)
258 {
259 time->tm_sec += secOffset;
260
261 /* Note that in this implementation we do not count leap seconds */
262 if (time->tm_sec < 0 || time->tm_sec >= 60) {
263 time->tm_min += time->tm_sec / 60;
264 time->tm_sec %= 60;
265 if (time->tm_sec < 0) {
266 time->tm_sec += 60;
267 time->tm_min--;
268 }
269 }
270
271 if (time->tm_min < 0 || time->tm_min >= 60) {
272 time->tm_hour += time->tm_min / 60;
273 time->tm_min %= 60;
274 if (time->tm_min < 0) {
275 time->tm_min += 60;
276 time->tm_hour--;
277 }
278 }
279
280 if (time->tm_hour < 0) {
281 /* Decrement mday, yday, and wday */
282 time->tm_hour += 24;
283 time->tm_mday--;
284 time->tm_yday--;
285 if (time->tm_mday < 1) {
286 time->tm_month--;
287 if (time->tm_month < 0) {
288 time->tm_month = 11;
289 time->tm_year--;
290 if (IsLeapYear(time->tm_year))
291 time->tm_yday = 365;
292 else
293 time->tm_yday = 364;
294 }
295 time->tm_mday = nDays[IsLeapYear(time->tm_year)][time->tm_month];
296 }
297 time->tm_wday--;
298 if (time->tm_wday < 0)
299 time->tm_wday = 6;
300 } else if (time->tm_hour > 23) {
301 /* Increment mday, yday, and wday */
302 time->tm_hour -= 24;
303 time->tm_mday++;
304 time->tm_yday++;
305 if (time->tm_mday >
306 nDays[IsLeapYear(time->tm_year)][time->tm_month]) {
307 time->tm_mday = 1;
308 time->tm_month++;
309 if (time->tm_month > 11) {
310 time->tm_month = 0;
311 time->tm_year++;
312 time->tm_yday = 0;
313 }
314 }
315 time->tm_wday++;
316 if (time->tm_wday > 6)
317 time->tm_wday = 0;
318 }
319 }
320
321 void
PR_NormalizeTime(PRExplodedTime * time,PRTimeParamFn params)322 PR_NormalizeTime(PRExplodedTime *time, PRTimeParamFn params)
323 {
324 int daysInMonth;
325 PRInt32 numDays;
326
327 /* Get back to GMT */
328 time->tm_sec -= time->tm_params.tp_gmt_offset
329 + time->tm_params.tp_dst_offset;
330 time->tm_params.tp_gmt_offset = 0;
331 time->tm_params.tp_dst_offset = 0;
332
333 /* Now normalize GMT */
334
335 if (time->tm_usec < 0 || time->tm_usec >= 1000000) {
336 time->tm_sec += time->tm_usec / 1000000;
337 time->tm_usec %= 1000000;
338 if (time->tm_usec < 0) {
339 time->tm_usec += 1000000;
340 time->tm_sec--;
341 }
342 }
343
344 /* Note that we do not count leap seconds in this implementation */
345 if (time->tm_sec < 0 || time->tm_sec >= 60) {
346 time->tm_min += time->tm_sec / 60;
347 time->tm_sec %= 60;
348 if (time->tm_sec < 0) {
349 time->tm_sec += 60;
350 time->tm_min--;
351 }
352 }
353
354 if (time->tm_min < 0 || time->tm_min >= 60) {
355 time->tm_hour += time->tm_min / 60;
356 time->tm_min %= 60;
357 if (time->tm_min < 0) {
358 time->tm_min += 60;
359 time->tm_hour--;
360 }
361 }
362
363 if (time->tm_hour < 0 || time->tm_hour >= 24) {
364 time->tm_mday += time->tm_hour / 24;
365 time->tm_hour %= 24;
366 if (time->tm_hour < 0) {
367 time->tm_hour += 24;
368 time->tm_mday--;
369 }
370 }
371
372 /* Normalize month and year before mday */
373 if (time->tm_month < 0 || time->tm_month >= 12) {
374 time->tm_year += time->tm_month / 12;
375 time->tm_month %= 12;
376 if (time->tm_month < 0) {
377 time->tm_month += 12;
378 time->tm_year--;
379 }
380 }
381
382 /* Now that month and year are in proper range, normalize mday */
383
384 if (time->tm_mday < 1) {
385 /* mday too small */
386 do {
387 /* the previous month */
388 time->tm_month--;
389 if (time->tm_month < 0) {
390 time->tm_month = 11;
391 time->tm_year--;
392 }
393 time->tm_mday += nDays[IsLeapYear(time->tm_year)][time->tm_month];
394 } while (time->tm_mday < 1);
395 } else {
396 daysInMonth = nDays[IsLeapYear(time->tm_year)][time->tm_month];
397 while (time->tm_mday > daysInMonth) {
398 /* mday too large */
399 time->tm_mday -= daysInMonth;
400 time->tm_month++;
401 if (time->tm_month > 11) {
402 time->tm_month = 0;
403 time->tm_year++;
404 }
405 daysInMonth = nDays[IsLeapYear(time->tm_year)][time->tm_month];
406 }
407 }
408
409 /* Recompute yday and wday */
410 time->tm_yday = time->tm_mday +
411 lastDayOfMonth[IsLeapYear(time->tm_year)][time->tm_month];
412
413 numDays = DAYS_BETWEEN_YEARS(1970, time->tm_year) + time->tm_yday;
414 time->tm_wday = (numDays + 4) % 7;
415 if (time->tm_wday < 0) {
416 time->tm_wday += 7;
417 }
418
419 /* Recompute time parameters */
420
421 time->tm_params = params(time);
422
423 ApplySecOffset(time, time->tm_params.tp_gmt_offset
424 + time->tm_params.tp_dst_offset);
425 }
426
427 /*
428 *------------------------------------------------------------------------
429 *
430 * PR_GMTParameters --
431 *
432 * Returns the PRTimeParameters for Greenwich Mean Time.
433 * Trivially, both the tp_gmt_offset and tp_dst_offset fields are 0.
434 *
435 *------------------------------------------------------------------------
436 */
437
438 PRTimeParameters
PR_GMTParameters(const PRExplodedTime * gmt)439 PR_GMTParameters(const PRExplodedTime *gmt)
440 {
441 #if defined(XP_MAC)
442 #pragma unused (gmt)
443 #endif
444
445 PRTimeParameters retVal = { 0, 0 };
446 return retVal;
447 }
448
449 /*
450 * The following code implements PR_ParseTimeString(). It is based on
451 * ns/lib/xp/xp_time.c, revision 1.25, by Jamie Zawinski <jwz@netscape.com>.
452 */
453
454 /*
455 * We only recognize the abbreviations of a small subset of time zones
456 * in North America, Europe, and Japan.
457 *
458 * PST/PDT: Pacific Standard/Daylight Time
459 * MST/MDT: Mountain Standard/Daylight Time
460 * CST/CDT: Central Standard/Daylight Time
461 * EST/EDT: Eastern Standard/Daylight Time
462 * AST: Atlantic Standard Time
463 * NST: Newfoundland Standard Time
464 * GMT: Greenwich Mean Time
465 * BST: British Summer Time
466 * MET: Middle Europe Time
467 * EET: Eastern Europe Time
468 * JST: Japan Standard Time
469 */
470
471 typedef enum
472 {
473 TT_UNKNOWN,
474
475 TT_SUN, TT_MON, TT_TUE, TT_WED, TT_THU, TT_FRI, TT_SAT,
476
477 TT_JAN, TT_FEB, TT_MAR, TT_APR, TT_MAY, TT_JUN,
478 TT_JUL, TT_AUG, TT_SEP, TT_OCT, TT_NOV, TT_DEC,
479
480 TT_PST, TT_PDT, TT_MST, TT_MDT, TT_CST, TT_CDT, TT_EST, TT_EDT,
481 TT_AST, TT_NST, TT_GMT, TT_BST, TT_MET, TT_EET, TT_JST
482 } TIME_TOKEN;
483
484 /*
485 * This parses a time/date string into a PRTime
486 * (microseconds after "1-Jan-1970 00:00:00 GMT").
487 * It returns PR_SUCCESS on success, and PR_FAILURE
488 * if the time/date string can't be parsed.
489 *
490 * Many formats are handled, including:
491 *
492 * 14 Apr 89 03:20:12
493 * 14 Apr 89 03:20 GMT
494 * Fri, 17 Mar 89 4:01:33
495 * Fri, 17 Mar 89 4:01 GMT
496 * Mon Jan 16 16:12 PDT 1989
497 * Mon Jan 16 16:12 +0130 1989
498 * 6 May 1992 16:41-JST (Wednesday)
499 * 22-AUG-1993 10:59:12.82
500 * 22-AUG-1993 10:59pm
501 * 22-AUG-1993 12:59am
502 * 22-AUG-1993 12:59 PM
503 * Friday, August 04, 1995 3:54 PM
504 * 06/21/95 04:24:34 PM
505 * 20/06/95 21:07
506 * 95-06-08 19:32:48 EDT
507 *
508 * If the input string doesn't contain a description of the timezone,
509 * we consult the `default_to_gmt' to decide whether the string should
510 * be interpreted relative to the local time zone (PR_FALSE) or GMT (PR_TRUE).
511 * The correct value for this argument depends on what standard specified
512 * the time string which you are parsing.
513 */
514
515 PRStatus
PR_ParseTimeString(const char * string,PRBool default_to_gmt,PRTime * result_imploded)516 PR_ParseTimeString(
517 const char *string,
518 PRBool default_to_gmt,
519 PRTime *result_imploded)
520 {
521 PRExplodedTime tm;
522 PRExplodedTime *result = &tm;
523 TIME_TOKEN dotw = TT_UNKNOWN;
524 TIME_TOKEN month = TT_UNKNOWN;
525 TIME_TOKEN zone = TT_UNKNOWN;
526 int zone_offset = -1;
527 int dst_offset = 0;
528 int date = -1;
529 PRInt32 year = -1;
530 int hour = -1;
531 int min = -1;
532 int sec = -1;
533
534 const char *rest = string;
535
536 int iterations = 0;
537
538 PR_ASSERT(string && result);
539 if (!string || !result) return PR_FAILURE;
540
541 while (*rest)
542 {
543
544 if (iterations++ > 1000)
545 {
546 return PR_FAILURE;
547 }
548
549 switch (*rest)
550 {
551 case 'a': case 'A':
552 if (month == TT_UNKNOWN &&
553 (rest[1] == 'p' || rest[1] == 'P') &&
554 (rest[2] == 'r' || rest[2] == 'R'))
555 month = TT_APR;
556 else if (zone == TT_UNKNOWN &&
557 (rest[1] == 's' || rest[1] == 'S') &&
558 (rest[2] == 't' || rest[2] == 'T'))
559 zone = TT_AST;
560 else if (month == TT_UNKNOWN &&
561 (rest[1] == 'u' || rest[1] == 'U') &&
562 (rest[2] == 'g' || rest[2] == 'G'))
563 month = TT_AUG;
564 break;
565 case 'b': case 'B':
566 if (zone == TT_UNKNOWN &&
567 (rest[1] == 's' || rest[1] == 'S') &&
568 (rest[2] == 't' || rest[2] == 'T'))
569 zone = TT_BST;
570 break;
571 case 'c': case 'C':
572 if (zone == TT_UNKNOWN &&
573 (rest[1] == 'd' || rest[1] == 'D') &&
574 (rest[2] == 't' || rest[2] == 'T'))
575 zone = TT_CDT;
576 else if (zone == TT_UNKNOWN &&
577 (rest[1] == 's' || rest[1] == 'S') &&
578 (rest[2] == 't' || rest[2] == 'T'))
579 zone = TT_CST;
580 break;
581 case 'd': case 'D':
582 if (month == TT_UNKNOWN &&
583 (rest[1] == 'e' || rest[1] == 'E') &&
584 (rest[2] == 'c' || rest[2] == 'C'))
585 month = TT_DEC;
586 break;
587 case 'e': case 'E':
588 if (zone == TT_UNKNOWN &&
589 (rest[1] == 'd' || rest[1] == 'D') &&
590 (rest[2] == 't' || rest[2] == 'T'))
591 zone = TT_EDT;
592 else if (zone == TT_UNKNOWN &&
593 (rest[1] == 'e' || rest[1] == 'E') &&
594 (rest[2] == 't' || rest[2] == 'T'))
595 zone = TT_EET;
596 else if (zone == TT_UNKNOWN &&
597 (rest[1] == 's' || rest[1] == 'S') &&
598 (rest[2] == 't' || rest[2] == 'T'))
599 zone = TT_EST;
600 break;
601 case 'f': case 'F':
602 if (month == TT_UNKNOWN &&
603 (rest[1] == 'e' || rest[1] == 'E') &&
604 (rest[2] == 'b' || rest[2] == 'B'))
605 month = TT_FEB;
606 else if (dotw == TT_UNKNOWN &&
607 (rest[1] == 'r' || rest[1] == 'R') &&
608 (rest[2] == 'i' || rest[2] == 'I'))
609 dotw = TT_FRI;
610 break;
611 case 'g': case 'G':
612 if (zone == TT_UNKNOWN &&
613 (rest[1] == 'm' || rest[1] == 'M') &&
614 (rest[2] == 't' || rest[2] == 'T'))
615 zone = TT_GMT;
616 break;
617 case 'j': case 'J':
618 if (month == TT_UNKNOWN &&
619 (rest[1] == 'a' || rest[1] == 'A') &&
620 (rest[2] == 'n' || rest[2] == 'N'))
621 month = TT_JAN;
622 else if (zone == TT_UNKNOWN &&
623 (rest[1] == 's' || rest[1] == 'S') &&
624 (rest[2] == 't' || rest[2] == 'T'))
625 zone = TT_JST;
626 else if (month == TT_UNKNOWN &&
627 (rest[1] == 'u' || rest[1] == 'U') &&
628 (rest[2] == 'l' || rest[2] == 'L'))
629 month = TT_JUL;
630 else if (month == TT_UNKNOWN &&
631 (rest[1] == 'u' || rest[1] == 'U') &&
632 (rest[2] == 'n' || rest[2] == 'N'))
633 month = TT_JUN;
634 break;
635 case 'm': case 'M':
636 if (month == TT_UNKNOWN &&
637 (rest[1] == 'a' || rest[1] == 'A') &&
638 (rest[2] == 'r' || rest[2] == 'R'))
639 month = TT_MAR;
640 else if (month == TT_UNKNOWN &&
641 (rest[1] == 'a' || rest[1] == 'A') &&
642 (rest[2] == 'y' || rest[2] == 'Y'))
643 month = TT_MAY;
644 else if (zone == TT_UNKNOWN &&
645 (rest[1] == 'd' || rest[1] == 'D') &&
646 (rest[2] == 't' || rest[2] == 'T'))
647 zone = TT_MDT;
648 else if (zone == TT_UNKNOWN &&
649 (rest[1] == 'e' || rest[1] == 'E') &&
650 (rest[2] == 't' || rest[2] == 'T'))
651 zone = TT_MET;
652 else if (dotw == TT_UNKNOWN &&
653 (rest[1] == 'o' || rest[1] == 'O') &&
654 (rest[2] == 'n' || rest[2] == 'N'))
655 dotw = TT_MON;
656 else if (zone == TT_UNKNOWN &&
657 (rest[1] == 's' || rest[1] == 'S') &&
658 (rest[2] == 't' || rest[2] == 'T'))
659 zone = TT_MST;
660 break;
661 case 'n': case 'N':
662 if (month == TT_UNKNOWN &&
663 (rest[1] == 'o' || rest[1] == 'O') &&
664 (rest[2] == 'v' || rest[2] == 'V'))
665 month = TT_NOV;
666 else if (zone == TT_UNKNOWN &&
667 (rest[1] == 's' || rest[1] == 'S') &&
668 (rest[2] == 't' || rest[2] == 'T'))
669 zone = TT_NST;
670 break;
671 case 'o': case 'O':
672 if (month == TT_UNKNOWN &&
673 (rest[1] == 'c' || rest[1] == 'C') &&
674 (rest[2] == 't' || rest[2] == 'T'))
675 month = TT_OCT;
676 break;
677 case 'p': case 'P':
678 if (zone == TT_UNKNOWN &&
679 (rest[1] == 'd' || rest[1] == 'D') &&
680 (rest[2] == 't' || rest[2] == 'T'))
681 zone = TT_PDT;
682 else if (zone == TT_UNKNOWN &&
683 (rest[1] == 's' || rest[1] == 'S') &&
684 (rest[2] == 't' || rest[2] == 'T'))
685 zone = TT_PST;
686 break;
687 case 's': case 'S':
688 if (dotw == TT_UNKNOWN &&
689 (rest[1] == 'a' || rest[1] == 'A') &&
690 (rest[2] == 't' || rest[2] == 'T'))
691 dotw = TT_SAT;
692 else if (month == TT_UNKNOWN &&
693 (rest[1] == 'e' || rest[1] == 'E') &&
694 (rest[2] == 'p' || rest[2] == 'P'))
695 month = TT_SEP;
696 else if (dotw == TT_UNKNOWN &&
697 (rest[1] == 'u' || rest[1] == 'U') &&
698 (rest[2] == 'n' || rest[2] == 'N'))
699 dotw = TT_SUN;
700 break;
701 case 't': case 'T':
702 if (dotw == TT_UNKNOWN &&
703 (rest[1] == 'h' || rest[1] == 'H') &&
704 (rest[2] == 'u' || rest[2] == 'U'))
705 dotw = TT_THU;
706 else if (dotw == TT_UNKNOWN &&
707 (rest[1] == 'u' || rest[1] == 'U') &&
708 (rest[2] == 'e' || rest[2] == 'E'))
709 dotw = TT_TUE;
710 break;
711 case 'u': case 'U':
712 if (zone == TT_UNKNOWN &&
713 (rest[1] == 't' || rest[1] == 'T') &&
714 !(rest[2] >= 'A' && rest[2] <= 'Z') &&
715 !(rest[2] >= 'a' && rest[2] <= 'z'))
716 /* UT is the same as GMT but UTx is not. */
717 zone = TT_GMT;
718 break;
719 case 'w': case 'W':
720 if (dotw == TT_UNKNOWN &&
721 (rest[1] == 'e' || rest[1] == 'E') &&
722 (rest[2] == 'd' || rest[2] == 'D'))
723 dotw = TT_WED;
724 break;
725
726 case '+': case '-':
727 {
728 const char *end;
729 int sign;
730 if (zone_offset != -1)
731 {
732 /* already got one... */
733 rest++;
734 break;
735 }
736 if (zone != TT_UNKNOWN && zone != TT_GMT)
737 {
738 /* GMT+0300 is legal, but PST+0300 is not. */
739 rest++;
740 break;
741 }
742
743 sign = ((*rest == '+') ? 1 : -1);
744 rest++; /* move over sign */
745 end = rest;
746 while (*end >= '0' && *end <= '9')
747 end++;
748 if (rest == end) /* no digits here */
749 break;
750
751 if ((end - rest) == 4)
752 /* offset in HHMM */
753 zone_offset = (((((rest[0]-'0')*10) + (rest[1]-'0')) * 60) +
754 (((rest[2]-'0')*10) + (rest[3]-'0')));
755 else if ((end - rest) == 2)
756 /* offset in hours */
757 zone_offset = (((rest[0]-'0')*10) + (rest[1]-'0')) * 60;
758 else if ((end - rest) == 1)
759 /* offset in hours */
760 zone_offset = (rest[0]-'0') * 60;
761 else
762 /* 3 or >4 */
763 break;
764
765 zone_offset *= sign;
766 zone = TT_GMT;
767 break;
768 }
769
770 case '0': case '1': case '2': case '3': case '4':
771 case '5': case '6': case '7': case '8': case '9':
772 {
773 int tmp_hour = -1;
774 int tmp_min = -1;
775 int tmp_sec = -1;
776 const char *end = rest + 1;
777 while (*end >= '0' && *end <= '9')
778 end++;
779
780 /* end is now the first character after a range of digits. */
781
782 if (*end == ':')
783 {
784 if (hour >= 0 && min >= 0) /* already got it */
785 break;
786
787 /* We have seen "[0-9]+:", so this is probably HH:MM[:SS] */
788 if ((end - rest) > 2)
789 /* it is [0-9][0-9][0-9]+: */
790 break;
791 else if ((end - rest) == 2)
792 tmp_hour = ((rest[0]-'0')*10 +
793 (rest[1]-'0'));
794 else
795 tmp_hour = (rest[0]-'0');
796
797 /* move over the colon, and parse minutes */
798
799 rest = ++end;
800 while (*end >= '0' && *end <= '9')
801 end++;
802
803 if (end == rest)
804 /* no digits after first colon? */
805 break;
806 else if ((end - rest) > 2)
807 /* it is [0-9][0-9][0-9]+: */
808 break;
809 else if ((end - rest) == 2)
810 tmp_min = ((rest[0]-'0')*10 +
811 (rest[1]-'0'));
812 else
813 tmp_min = (rest[0]-'0');
814
815 /* now go for seconds */
816 rest = end;
817 if (*rest == ':')
818 rest++;
819 end = rest;
820 while (*end >= '0' && *end <= '9')
821 end++;
822
823 if (end == rest)
824 /* no digits after second colon - that's ok. */
825 ;
826 else if ((end - rest) > 2)
827 /* it is [0-9][0-9][0-9]+: */
828 break;
829 else if ((end - rest) == 2)
830 tmp_sec = ((rest[0]-'0')*10 +
831 (rest[1]-'0'));
832 else
833 tmp_sec = (rest[0]-'0');
834
835 /* If we made it here, we've parsed hour and min,
836 and possibly sec, so it worked as a unit. */
837
838 /* skip over whitespace and see if there's an AM or PM
839 directly following the time.
840 */
841 if (tmp_hour <= 12)
842 {
843 const char *s = end;
844 while (*s && (*s == ' ' || *s == '\t'))
845 s++;
846 if ((s[0] == 'p' || s[0] == 'P') &&
847 (s[1] == 'm' || s[1] == 'M'))
848 /* 10:05pm == 22:05, and 12:05pm == 12:05 */
849 tmp_hour = (tmp_hour == 12 ? 12 : tmp_hour + 12);
850 else if (tmp_hour == 12 &&
851 (s[0] == 'a' || s[0] == 'A') &&
852 (s[1] == 'm' || s[1] == 'M'))
853 /* 12:05am == 00:05 */
854 tmp_hour = 0;
855 }
856
857 hour = tmp_hour;
858 min = tmp_min;
859 sec = tmp_sec;
860 rest = end;
861 break;
862 }
863 else if ((*end == '/' || *end == '-') &&
864 end[1] >= '0' && end[1] <= '9')
865 {
866 /* Perhaps this is 6/16/95, 16/6/95, 6-16-95, or 16-6-95
867 or even 95-06-05...
868 #### But it doesn't handle 1995-06-22.
869 */
870 int n1, n2, n3;
871 const char *s;
872
873 if (month != TT_UNKNOWN)
874 /* if we saw a month name, this can't be. */
875 break;
876
877 s = rest;
878
879 n1 = (*s++ - '0'); /* first 1 or 2 digits */
880 if (*s >= '0' && *s <= '9')
881 n1 = n1*10 + (*s++ - '0');
882
883 if (*s != '/' && *s != '-') /* slash */
884 break;
885 s++;
886
887 if (*s < '0' || *s > '9') /* second 1 or 2 digits */
888 break;
889 n2 = (*s++ - '0');
890 if (*s >= '0' && *s <= '9')
891 n2 = n2*10 + (*s++ - '0');
892
893 if (*s != '/' && *s != '-') /* slash */
894 break;
895 s++;
896
897 if (*s < '0' || *s > '9') /* third 1, 2, 4, or 5 digits */
898 break;
899 n3 = (*s++ - '0');
900 if (*s >= '0' && *s <= '9')
901 n3 = n3*10 + (*s++ - '0');
902
903 if (*s >= '0' && *s <= '9') /* optional digits 3, 4, and 5 */
904 {
905 n3 = n3*10 + (*s++ - '0');
906 if (*s < '0' || *s > '9')
907 break;
908 n3 = n3*10 + (*s++ - '0');
909 if (*s >= '0' && *s <= '9')
910 n3 = n3*10 + (*s++ - '0');
911 }
912
913 if ((*s >= '0' && *s <= '9') || /* followed by non-alphanum */
914 (*s >= 'A' && *s <= 'Z') ||
915 (*s >= 'a' && *s <= 'z'))
916 break;
917
918 /* Ok, we parsed three 1-2 digit numbers, with / or -
919 between them. Now decide what the hell they are
920 (DD/MM/YY or MM/DD/YY or YY/MM/DD.)
921 */
922
923 if (n1 > 31 || n1 == 0) /* must be YY/MM/DD */
924 {
925 if (n2 > 12) break;
926 if (n3 > 31) break;
927 year = n1;
928 if (year < 70)
929 year += 2000;
930 else if (year < 100)
931 year += 1900;
932 month = (TIME_TOKEN)(n2 + ((int)TT_JAN) - 1);
933 date = n3;
934 rest = s;
935 break;
936 }
937
938 if (n1 > 12 && n2 > 12) /* illegal */
939 {
940 rest = s;
941 break;
942 }
943
944 if (n3 < 70)
945 n3 += 2000;
946 else if (n3 < 100)
947 n3 += 1900;
948
949 if (n1 > 12) /* must be DD/MM/YY */
950 {
951 date = n1;
952 month = (TIME_TOKEN)(n2 + ((int)TT_JAN) - 1);
953 year = n3;
954 }
955 else /* assume MM/DD/YY */
956 {
957 /* #### In the ambiguous case, should we consult the
958 locale to find out the local default? */
959 month = (TIME_TOKEN)(n1 + ((int)TT_JAN) - 1);
960 date = n2;
961 year = n3;
962 }
963 rest = s;
964 }
965 else if ((*end >= 'A' && *end <= 'Z') ||
966 (*end >= 'a' && *end <= 'z'))
967 /* Digits followed by non-punctuation - what's that? */
968 ;
969 else if ((end - rest) == 5) /* five digits is a year */
970 year = (year < 0
971 ? ((rest[0]-'0')*10000L +
972 (rest[1]-'0')*1000L +
973 (rest[2]-'0')*100L +
974 (rest[3]-'0')*10L +
975 (rest[4]-'0'))
976 : year);
977 else if ((end - rest) == 4) /* four digits is a year */
978 year = (year < 0
979 ? ((rest[0]-'0')*1000L +
980 (rest[1]-'0')*100L +
981 (rest[2]-'0')*10L +
982 (rest[3]-'0'))
983 : year);
984 else if ((end - rest) == 2) /* two digits - date or year */
985 {
986 int n = ((rest[0]-'0')*10 +
987 (rest[1]-'0'));
988 /* If we don't have a date (day of the month) and we see a number
989 less than 32, then assume that is the date.
990
991 Otherwise, if we have a date and not a year, assume this is the
992 year. If it is less than 70, then assume it refers to the 21st
993 century. If it is two digits (>= 70), assume it refers to this
994 century. Otherwise, assume it refers to an unambiguous year.
995
996 The world will surely end soon.
997 */
998 if (date < 0 && n < 32)
999 date = n;
1000 else if (year < 0)
1001 {
1002 if (n < 70)
1003 year = 2000 + n;
1004 else if (n < 100)
1005 year = 1900 + n;
1006 else
1007 year = n;
1008 }
1009 /* else what the hell is this. */
1010 }
1011 else if ((end - rest) == 1) /* one digit - date */
1012 date = (date < 0 ? (rest[0]-'0') : date);
1013 /* else, three or more than five digits - what's that? */
1014
1015 break;
1016 }
1017 }
1018
1019 /* Skip to the end of this token, whether we parsed it or not.
1020 Tokens are delimited by whitespace, or ,;-/
1021 But explicitly not :+-.
1022 */
1023 while (*rest &&
1024 *rest != ' ' && *rest != '\t' &&
1025 *rest != ',' && *rest != ';' &&
1026 *rest != '-' && *rest != '+' &&
1027 *rest != '/' &&
1028 *rest != '(' && *rest != ')' && *rest != '[' && *rest != ']')
1029 rest++;
1030 /* skip over uninteresting chars. */
1031 SKIP_MORE:
1032 while (*rest &&
1033 (*rest == ' ' || *rest == '\t' ||
1034 *rest == ',' || *rest == ';' || *rest == '/' ||
1035 *rest == '(' || *rest == ')' || *rest == '[' || *rest == ']'))
1036 rest++;
1037
1038 /* "-" is ignored at the beginning of a token if we have not yet
1039 parsed a year (e.g., the second "-" in "30-AUG-1966"), or if
1040 the character after the dash is not a digit. */
1041 if (*rest == '-' && ((rest > string && isalpha(rest[-1]) && year < 0)
1042 || rest[1] < '0' || rest[1] > '9'))
1043 {
1044 rest++;
1045 goto SKIP_MORE;
1046 }
1047
1048 }
1049
1050 if (zone != TT_UNKNOWN && zone_offset == -1)
1051 {
1052 switch (zone)
1053 {
1054 case TT_PST: zone_offset = -8 * 60; break;
1055 case TT_PDT: zone_offset = -8 * 60; dst_offset = 1 * 60; break;
1056 case TT_MST: zone_offset = -7 * 60; break;
1057 case TT_MDT: zone_offset = -7 * 60; dst_offset = 1 * 60; break;
1058 case TT_CST: zone_offset = -6 * 60; break;
1059 case TT_CDT: zone_offset = -6 * 60; dst_offset = 1 * 60; break;
1060 case TT_EST: zone_offset = -5 * 60; break;
1061 case TT_EDT: zone_offset = -5 * 60; dst_offset = 1 * 60; break;
1062 case TT_AST: zone_offset = -4 * 60; break;
1063 case TT_NST: zone_offset = -3 * 60 - 30; break;
1064 case TT_GMT: zone_offset = 0 * 60; break;
1065 case TT_BST: zone_offset = 0 * 60; dst_offset = 1 * 60; break;
1066 case TT_MET: zone_offset = 1 * 60; break;
1067 case TT_EET: zone_offset = 2 * 60; break;
1068 case TT_JST: zone_offset = 9 * 60; break;
1069 default:
1070 PR_ASSERT (0);
1071 break;
1072 }
1073 }
1074
1075 /* If we didn't find a year, month, or day-of-the-month, we can't
1076 possibly parse this, and in fact, mktime() will do something random
1077 (I'm seeing it return "Tue Feb 5 06:28:16 2036", which is no doubt
1078 a numerologically significant date... */
1079 if (month == TT_UNKNOWN || date == -1 || year == -1 || year > PR_INT16_MAX)
1080 return PR_FAILURE;
1081
1082 memset(result, 0, sizeof(*result));
1083 if (sec != -1)
1084 result->tm_sec = sec;
1085 if (min != -1)
1086 result->tm_min = min;
1087 if (hour != -1)
1088 result->tm_hour = hour;
1089 if (date != -1)
1090 result->tm_mday = date;
1091 if (month != TT_UNKNOWN)
1092 result->tm_month = (((int)month) - ((int)TT_JAN));
1093 if (year != -1)
1094 result->tm_year = year;
1095 if (dotw != TT_UNKNOWN)
1096 result->tm_wday = (((int)dotw) - ((int)TT_SUN));
1097 /*
1098 * Mainly to compute wday and yday, but normalized time is also required
1099 * by the check below that works around a Visual C++ 2005 mktime problem.
1100 */
1101 PR_NormalizeTime(result, PR_GMTParameters);
1102 /* The remaining work is to set the gmt and dst offsets in tm_params. */
1103
1104 if (zone == TT_UNKNOWN && default_to_gmt)
1105 {
1106 /* No zone was specified, so pretend the zone was GMT. */
1107 zone = TT_GMT;
1108 zone_offset = 0;
1109 }
1110
1111 if (zone_offset == -1)
1112 {
1113 /* no zone was specified, and we're to assume that everything
1114 is local. */
1115 struct tm localTime;
1116 time_t secs;
1117
1118 PR_ASSERT(result->tm_month > -1 &&
1119 result->tm_mday > 0 &&
1120 result->tm_hour > -1 &&
1121 result->tm_min > -1 &&
1122 result->tm_sec > -1);
1123
1124 /*
1125 * To obtain time_t from a tm structure representing the local
1126 * time, we call mktime(). However, we need to see if we are
1127 * on 1-Jan-1970 or before. If we are, we can't call mktime()
1128 * because mktime() will crash on win16. In that case, we
1129 * calculate zone_offset based on the zone offset at
1130 * 00:00:00, 2 Jan 1970 GMT, and subtract zone_offset from the
1131 * date we are parsing to transform the date to GMT. We also
1132 * do so if mktime() returns (time_t) -1 (time out of range).
1133 */
1134
1135 /* month, day, hours, mins and secs are always non-negative
1136 so we dont need to worry about them. */
1137 if(result->tm_year >= 1970)
1138 {
1139 PRInt64 usec_per_sec;
1140
1141 localTime.tm_sec = result->tm_sec;
1142 localTime.tm_min = result->tm_min;
1143 localTime.tm_hour = result->tm_hour;
1144 localTime.tm_mday = result->tm_mday;
1145 localTime.tm_mon = result->tm_month;
1146 localTime.tm_year = result->tm_year - 1900;
1147 /* Set this to -1 to tell mktime "I don't care". If you set
1148 it to 0 or 1, you are making assertions about whether the
1149 date you are handing it is in daylight savings mode or not;
1150 and if you're wrong, it will "fix" it for you. */
1151 localTime.tm_isdst = -1;
1152
1153 #if _MSC_VER == 1400 /* 1400 = Visual C++ 2005 (8.0) */
1154 /*
1155 * mktime will return (time_t) -1 if the input is a date
1156 * after 23:59:59, December 31, 3000, US Pacific Time (not
1157 * UTC as documented):
1158 * http://msdn.microsoft.com/en-us/library/d1y53h2a(VS.80).aspx
1159 * But if the year is 3001, mktime also invokes the invalid
1160 * parameter handler, causing the application to crash. This
1161 * problem has been reported in
1162 * http://connect.microsoft.com/VisualStudio/feedback/ViewFeedback.aspx?FeedbackID=266036.
1163 * We avoid this crash by not calling mktime if the date is
1164 * out of range. To use a simple test that works in any time
1165 * zone, we consider year 3000 out of range as well. (See
1166 * bug 480740.)
1167 */
1168 if (result->tm_year >= 3000) {
1169 /* Emulate what mktime would have done. */
1170 errno = EINVAL;
1171 secs = (time_t) -1;
1172 } else {
1173 secs = mktime(&localTime);
1174 }
1175 #else
1176 secs = mktime(&localTime);
1177 #endif
1178 if (secs != (time_t) -1)
1179 {
1180 PRTime usecs64;
1181 LL_I2L(usecs64, secs);
1182 LL_I2L(usec_per_sec, PR_USEC_PER_SEC);
1183 LL_MUL(usecs64, usecs64, usec_per_sec);
1184 *result_imploded = usecs64;
1185 return PR_SUCCESS;
1186 }
1187 }
1188
1189 /* So mktime() can't handle this case. We assume the
1190 zone_offset for the date we are parsing is the same as
1191 the zone offset on 00:00:00 2 Jan 1970 GMT. */
1192 secs = 86400;
1193 localtime_r(&secs, &localTime);
1194 zone_offset = localTime.tm_min
1195 + 60 * localTime.tm_hour
1196 + 1440 * (localTime.tm_mday - 2);
1197 }
1198
1199 result->tm_params.tp_gmt_offset = zone_offset * 60;
1200 result->tm_params.tp_dst_offset = dst_offset * 60;
1201
1202 *result_imploded = PR_ImplodeTime(result);
1203 return PR_SUCCESS;
1204 }
1205