1 //= ProgramState.cpp - Path-Sensitive "State" for tracking values --*- C++ -*--=
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements ProgramState and ProgramStateManager.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Analysis/CFG.h"
15 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
16 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
17 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
18 #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
19 #include "clang/StaticAnalyzer/Core/PathSensitive/TaintManager.h"
20 #include "llvm/Support/raw_ostream.h"
21
22 using namespace clang;
23 using namespace ento;
24
25 namespace clang { namespace ento {
26 /// Increments the number of times this state is referenced.
27
ProgramStateRetain(const ProgramState * state)28 void ProgramStateRetain(const ProgramState *state) {
29 ++const_cast<ProgramState*>(state)->refCount;
30 }
31
32 /// Decrement the number of times this state is referenced.
ProgramStateRelease(const ProgramState * state)33 void ProgramStateRelease(const ProgramState *state) {
34 assert(state->refCount > 0);
35 ProgramState *s = const_cast<ProgramState*>(state);
36 if (--s->refCount == 0) {
37 ProgramStateManager &Mgr = s->getStateManager();
38 Mgr.StateSet.RemoveNode(s);
39 s->~ProgramState();
40 Mgr.freeStates.push_back(s);
41 }
42 }
43 }}
44
ProgramState(ProgramStateManager * mgr,const Environment & env,StoreRef st,GenericDataMap gdm)45 ProgramState::ProgramState(ProgramStateManager *mgr, const Environment& env,
46 StoreRef st, GenericDataMap gdm)
47 : stateMgr(mgr),
48 Env(env),
49 store(st.getStore()),
50 GDM(gdm),
51 refCount(0) {
52 stateMgr->getStoreManager().incrementReferenceCount(store);
53 }
54
ProgramState(const ProgramState & RHS)55 ProgramState::ProgramState(const ProgramState &RHS)
56 : llvm::FoldingSetNode(),
57 stateMgr(RHS.stateMgr),
58 Env(RHS.Env),
59 store(RHS.store),
60 GDM(RHS.GDM),
61 refCount(0) {
62 stateMgr->getStoreManager().incrementReferenceCount(store);
63 }
64
~ProgramState()65 ProgramState::~ProgramState() {
66 if (store)
67 stateMgr->getStoreManager().decrementReferenceCount(store);
68 }
69
ProgramStateManager(ASTContext & Ctx,StoreManagerCreator CreateSMgr,ConstraintManagerCreator CreateCMgr,llvm::BumpPtrAllocator & alloc,SubEngine & SubEng)70 ProgramStateManager::ProgramStateManager(ASTContext &Ctx,
71 StoreManagerCreator CreateSMgr,
72 ConstraintManagerCreator CreateCMgr,
73 llvm::BumpPtrAllocator &alloc,
74 SubEngine &SubEng)
75 : Eng(&SubEng), EnvMgr(alloc), GDMFactory(alloc),
76 svalBuilder(createSimpleSValBuilder(alloc, Ctx, *this)),
77 CallEventMgr(new CallEventManager(alloc)), Alloc(alloc) {
78 StoreMgr.reset((*CreateSMgr)(*this));
79 ConstraintMgr.reset((*CreateCMgr)(*this, SubEng));
80 }
81
82
~ProgramStateManager()83 ProgramStateManager::~ProgramStateManager() {
84 for (GDMContextsTy::iterator I=GDMContexts.begin(), E=GDMContexts.end();
85 I!=E; ++I)
86 I->second.second(I->second.first);
87 }
88
89 ProgramStateRef
removeDeadBindings(ProgramStateRef state,const StackFrameContext * LCtx,SymbolReaper & SymReaper)90 ProgramStateManager::removeDeadBindings(ProgramStateRef state,
91 const StackFrameContext *LCtx,
92 SymbolReaper& SymReaper) {
93
94 // This code essentially performs a "mark-and-sweep" of the VariableBindings.
95 // The roots are any Block-level exprs and Decls that our liveness algorithm
96 // tells us are live. We then see what Decls they may reference, and keep
97 // those around. This code more than likely can be made faster, and the
98 // frequency of which this method is called should be experimented with
99 // for optimum performance.
100 ProgramState NewState = *state;
101
102 NewState.Env = EnvMgr.removeDeadBindings(NewState.Env, SymReaper, state);
103
104 // Clean up the store.
105 StoreRef newStore = StoreMgr->removeDeadBindings(NewState.getStore(), LCtx,
106 SymReaper);
107 NewState.setStore(newStore);
108 SymReaper.setReapedStore(newStore);
109
110 ProgramStateRef Result = getPersistentState(NewState);
111 return ConstraintMgr->removeDeadBindings(Result, SymReaper);
112 }
113
bindCompoundLiteral(const CompoundLiteralExpr * CL,const LocationContext * LC,SVal V) const114 ProgramStateRef ProgramState::bindCompoundLiteral(const CompoundLiteralExpr *CL,
115 const LocationContext *LC,
116 SVal V) const {
117 const StoreRef &newStore =
118 getStateManager().StoreMgr->bindCompoundLiteral(getStore(), CL, LC, V);
119 return makeWithStore(newStore);
120 }
121
bindLoc(Loc LV,SVal V,bool notifyChanges) const122 ProgramStateRef ProgramState::bindLoc(Loc LV, SVal V, bool notifyChanges) const {
123 ProgramStateManager &Mgr = getStateManager();
124 ProgramStateRef newState = makeWithStore(Mgr.StoreMgr->Bind(getStore(),
125 LV, V));
126 const MemRegion *MR = LV.getAsRegion();
127 if (MR && Mgr.getOwningEngine() && notifyChanges)
128 return Mgr.getOwningEngine()->processRegionChange(newState, MR);
129
130 return newState;
131 }
132
bindDefault(SVal loc,SVal V) const133 ProgramStateRef ProgramState::bindDefault(SVal loc, SVal V) const {
134 ProgramStateManager &Mgr = getStateManager();
135 const MemRegion *R = cast<loc::MemRegionVal>(loc).getRegion();
136 const StoreRef &newStore = Mgr.StoreMgr->BindDefault(getStore(), R, V);
137 ProgramStateRef new_state = makeWithStore(newStore);
138 return Mgr.getOwningEngine() ?
139 Mgr.getOwningEngine()->processRegionChange(new_state, R) :
140 new_state;
141 }
142
143 ProgramStateRef
invalidateRegions(ArrayRef<const MemRegion * > Regions,const Expr * E,unsigned Count,const LocationContext * LCtx,StoreManager::InvalidatedSymbols * IS,const CallEvent * Call) const144 ProgramState::invalidateRegions(ArrayRef<const MemRegion *> Regions,
145 const Expr *E, unsigned Count,
146 const LocationContext *LCtx,
147 StoreManager::InvalidatedSymbols *IS,
148 const CallEvent *Call) const {
149 if (!IS) {
150 StoreManager::InvalidatedSymbols invalidated;
151 return invalidateRegionsImpl(Regions, E, Count, LCtx,
152 invalidated, Call);
153 }
154 return invalidateRegionsImpl(Regions, E, Count, LCtx, *IS, Call);
155 }
156
157 ProgramStateRef
invalidateRegionsImpl(ArrayRef<const MemRegion * > Regions,const Expr * E,unsigned Count,const LocationContext * LCtx,StoreManager::InvalidatedSymbols & IS,const CallEvent * Call) const158 ProgramState::invalidateRegionsImpl(ArrayRef<const MemRegion *> Regions,
159 const Expr *E, unsigned Count,
160 const LocationContext *LCtx,
161 StoreManager::InvalidatedSymbols &IS,
162 const CallEvent *Call) const {
163 ProgramStateManager &Mgr = getStateManager();
164 SubEngine* Eng = Mgr.getOwningEngine();
165
166 if (Eng && Eng->wantsRegionChangeUpdate(this)) {
167 StoreManager::InvalidatedRegions Invalidated;
168 const StoreRef &newStore
169 = Mgr.StoreMgr->invalidateRegions(getStore(), Regions, E, Count, LCtx, IS,
170 Call, &Invalidated);
171 ProgramStateRef newState = makeWithStore(newStore);
172 return Eng->processRegionChanges(newState, &IS, Regions, Invalidated, Call);
173 }
174
175 const StoreRef &newStore =
176 Mgr.StoreMgr->invalidateRegions(getStore(), Regions, E, Count, LCtx, IS,
177 Call, NULL);
178 return makeWithStore(newStore);
179 }
180
killBinding(Loc LV) const181 ProgramStateRef ProgramState::killBinding(Loc LV) const {
182 assert(!isa<loc::MemRegionVal>(LV) && "Use invalidateRegion instead.");
183
184 Store OldStore = getStore();
185 const StoreRef &newStore =
186 getStateManager().StoreMgr->killBinding(OldStore, LV);
187
188 if (newStore.getStore() == OldStore)
189 return this;
190
191 return makeWithStore(newStore);
192 }
193
194 ProgramStateRef
enterStackFrame(const CallEvent & Call,const StackFrameContext * CalleeCtx) const195 ProgramState::enterStackFrame(const CallEvent &Call,
196 const StackFrameContext *CalleeCtx) const {
197 const StoreRef &NewStore =
198 getStateManager().StoreMgr->enterStackFrame(getStore(), Call, CalleeCtx);
199 return makeWithStore(NewStore);
200 }
201
getSValAsScalarOrLoc(const MemRegion * R) const202 SVal ProgramState::getSValAsScalarOrLoc(const MemRegion *R) const {
203 // We only want to do fetches from regions that we can actually bind
204 // values. For example, SymbolicRegions of type 'id<...>' cannot
205 // have direct bindings (but their can be bindings on their subregions).
206 if (!R->isBoundable())
207 return UnknownVal();
208
209 if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) {
210 QualType T = TR->getValueType();
211 if (Loc::isLocType(T) || T->isIntegerType())
212 return getSVal(R);
213 }
214
215 return UnknownVal();
216 }
217
getSVal(Loc location,QualType T) const218 SVal ProgramState::getSVal(Loc location, QualType T) const {
219 SVal V = getRawSVal(cast<Loc>(location), T);
220
221 // If 'V' is a symbolic value that is *perfectly* constrained to
222 // be a constant value, use that value instead to lessen the burden
223 // on later analysis stages (so we have less symbolic values to reason
224 // about).
225 if (!T.isNull()) {
226 if (SymbolRef sym = V.getAsSymbol()) {
227 if (const llvm::APSInt *Int = getStateManager()
228 .getConstraintManager()
229 .getSymVal(this, sym)) {
230 // FIXME: Because we don't correctly model (yet) sign-extension
231 // and truncation of symbolic values, we need to convert
232 // the integer value to the correct signedness and bitwidth.
233 //
234 // This shows up in the following:
235 //
236 // char foo();
237 // unsigned x = foo();
238 // if (x == 54)
239 // ...
240 //
241 // The symbolic value stored to 'x' is actually the conjured
242 // symbol for the call to foo(); the type of that symbol is 'char',
243 // not unsigned.
244 const llvm::APSInt &NewV = getBasicVals().Convert(T, *Int);
245
246 if (isa<Loc>(V))
247 return loc::ConcreteInt(NewV);
248 else
249 return nonloc::ConcreteInt(NewV);
250 }
251 }
252 }
253
254 return V;
255 }
256
BindExpr(const Stmt * S,const LocationContext * LCtx,SVal V,bool Invalidate) const257 ProgramStateRef ProgramState::BindExpr(const Stmt *S,
258 const LocationContext *LCtx,
259 SVal V, bool Invalidate) const{
260 Environment NewEnv =
261 getStateManager().EnvMgr.bindExpr(Env, EnvironmentEntry(S, LCtx), V,
262 Invalidate);
263 if (NewEnv == Env)
264 return this;
265
266 ProgramState NewSt = *this;
267 NewSt.Env = NewEnv;
268 return getStateManager().getPersistentState(NewSt);
269 }
270
271 ProgramStateRef
bindExprAndLocation(const Stmt * S,const LocationContext * LCtx,SVal location,SVal V) const272 ProgramState::bindExprAndLocation(const Stmt *S, const LocationContext *LCtx,
273 SVal location,
274 SVal V) const {
275 Environment NewEnv =
276 getStateManager().EnvMgr.bindExprAndLocation(Env,
277 EnvironmentEntry(S, LCtx),
278 location, V);
279
280 if (NewEnv == Env)
281 return this;
282
283 ProgramState NewSt = *this;
284 NewSt.Env = NewEnv;
285 return getStateManager().getPersistentState(NewSt);
286 }
287
assumeInBound(DefinedOrUnknownSVal Idx,DefinedOrUnknownSVal UpperBound,bool Assumption,QualType indexTy) const288 ProgramStateRef ProgramState::assumeInBound(DefinedOrUnknownSVal Idx,
289 DefinedOrUnknownSVal UpperBound,
290 bool Assumption,
291 QualType indexTy) const {
292 if (Idx.isUnknown() || UpperBound.isUnknown())
293 return this;
294
295 // Build an expression for 0 <= Idx < UpperBound.
296 // This is the same as Idx + MIN < UpperBound + MIN, if overflow is allowed.
297 // FIXME: This should probably be part of SValBuilder.
298 ProgramStateManager &SM = getStateManager();
299 SValBuilder &svalBuilder = SM.getSValBuilder();
300 ASTContext &Ctx = svalBuilder.getContext();
301
302 // Get the offset: the minimum value of the array index type.
303 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
304 // FIXME: This should be using ValueManager::ArrayindexTy...somehow.
305 if (indexTy.isNull())
306 indexTy = Ctx.IntTy;
307 nonloc::ConcreteInt Min(BVF.getMinValue(indexTy));
308
309 // Adjust the index.
310 SVal newIdx = svalBuilder.evalBinOpNN(this, BO_Add,
311 cast<NonLoc>(Idx), Min, indexTy);
312 if (newIdx.isUnknownOrUndef())
313 return this;
314
315 // Adjust the upper bound.
316 SVal newBound =
317 svalBuilder.evalBinOpNN(this, BO_Add, cast<NonLoc>(UpperBound),
318 Min, indexTy);
319
320 if (newBound.isUnknownOrUndef())
321 return this;
322
323 // Build the actual comparison.
324 SVal inBound = svalBuilder.evalBinOpNN(this, BO_LT,
325 cast<NonLoc>(newIdx), cast<NonLoc>(newBound),
326 Ctx.IntTy);
327 if (inBound.isUnknownOrUndef())
328 return this;
329
330 // Finally, let the constraint manager take care of it.
331 ConstraintManager &CM = SM.getConstraintManager();
332 return CM.assume(this, cast<DefinedSVal>(inBound), Assumption);
333 }
334
getInitialState(const LocationContext * InitLoc)335 ProgramStateRef ProgramStateManager::getInitialState(const LocationContext *InitLoc) {
336 ProgramState State(this,
337 EnvMgr.getInitialEnvironment(),
338 StoreMgr->getInitialStore(InitLoc),
339 GDMFactory.getEmptyMap());
340
341 return getPersistentState(State);
342 }
343
getPersistentStateWithGDM(ProgramStateRef FromState,ProgramStateRef GDMState)344 ProgramStateRef ProgramStateManager::getPersistentStateWithGDM(
345 ProgramStateRef FromState,
346 ProgramStateRef GDMState) {
347 ProgramState NewState(*FromState);
348 NewState.GDM = GDMState->GDM;
349 return getPersistentState(NewState);
350 }
351
getPersistentState(ProgramState & State)352 ProgramStateRef ProgramStateManager::getPersistentState(ProgramState &State) {
353
354 llvm::FoldingSetNodeID ID;
355 State.Profile(ID);
356 void *InsertPos;
357
358 if (ProgramState *I = StateSet.FindNodeOrInsertPos(ID, InsertPos))
359 return I;
360
361 ProgramState *newState = 0;
362 if (!freeStates.empty()) {
363 newState = freeStates.back();
364 freeStates.pop_back();
365 }
366 else {
367 newState = (ProgramState*) Alloc.Allocate<ProgramState>();
368 }
369 new (newState) ProgramState(State);
370 StateSet.InsertNode(newState, InsertPos);
371 return newState;
372 }
373
makeWithStore(const StoreRef & store) const374 ProgramStateRef ProgramState::makeWithStore(const StoreRef &store) const {
375 ProgramState NewSt(*this);
376 NewSt.setStore(store);
377 return getStateManager().getPersistentState(NewSt);
378 }
379
setStore(const StoreRef & newStore)380 void ProgramState::setStore(const StoreRef &newStore) {
381 Store newStoreStore = newStore.getStore();
382 if (newStoreStore)
383 stateMgr->getStoreManager().incrementReferenceCount(newStoreStore);
384 if (store)
385 stateMgr->getStoreManager().decrementReferenceCount(store);
386 store = newStoreStore;
387 }
388
389 //===----------------------------------------------------------------------===//
390 // State pretty-printing.
391 //===----------------------------------------------------------------------===//
392
print(raw_ostream & Out,const char * NL,const char * Sep) const393 void ProgramState::print(raw_ostream &Out,
394 const char *NL, const char *Sep) const {
395 // Print the store.
396 ProgramStateManager &Mgr = getStateManager();
397 Mgr.getStoreManager().print(getStore(), Out, NL, Sep);
398
399 // Print out the environment.
400 Env.print(Out, NL, Sep);
401
402 // Print out the constraints.
403 Mgr.getConstraintManager().print(this, Out, NL, Sep);
404
405 // Print checker-specific data.
406 Mgr.getOwningEngine()->printState(Out, this, NL, Sep);
407 }
408
printDOT(raw_ostream & Out) const409 void ProgramState::printDOT(raw_ostream &Out) const {
410 print(Out, "\\l", "\\|");
411 }
412
dump() const413 void ProgramState::dump() const {
414 print(llvm::errs());
415 }
416
printTaint(raw_ostream & Out,const char * NL,const char * Sep) const417 void ProgramState::printTaint(raw_ostream &Out,
418 const char *NL, const char *Sep) const {
419 TaintMapImpl TM = get<TaintMap>();
420
421 if (!TM.isEmpty())
422 Out <<"Tainted Symbols:" << NL;
423
424 for (TaintMapImpl::iterator I = TM.begin(), E = TM.end(); I != E; ++I) {
425 Out << I->first << " : " << I->second << NL;
426 }
427 }
428
dumpTaint() const429 void ProgramState::dumpTaint() const {
430 printTaint(llvm::errs());
431 }
432
433 //===----------------------------------------------------------------------===//
434 // Generic Data Map.
435 //===----------------------------------------------------------------------===//
436
FindGDM(void * K) const437 void *const* ProgramState::FindGDM(void *K) const {
438 return GDM.lookup(K);
439 }
440
441 void*
FindGDMContext(void * K,void * (* CreateContext)(llvm::BumpPtrAllocator &),void (* DeleteContext)(void *))442 ProgramStateManager::FindGDMContext(void *K,
443 void *(*CreateContext)(llvm::BumpPtrAllocator&),
444 void (*DeleteContext)(void*)) {
445
446 std::pair<void*, void (*)(void*)>& p = GDMContexts[K];
447 if (!p.first) {
448 p.first = CreateContext(Alloc);
449 p.second = DeleteContext;
450 }
451
452 return p.first;
453 }
454
addGDM(ProgramStateRef St,void * Key,void * Data)455 ProgramStateRef ProgramStateManager::addGDM(ProgramStateRef St, void *Key, void *Data){
456 ProgramState::GenericDataMap M1 = St->getGDM();
457 ProgramState::GenericDataMap M2 = GDMFactory.add(M1, Key, Data);
458
459 if (M1 == M2)
460 return St;
461
462 ProgramState NewSt = *St;
463 NewSt.GDM = M2;
464 return getPersistentState(NewSt);
465 }
466
removeGDM(ProgramStateRef state,void * Key)467 ProgramStateRef ProgramStateManager::removeGDM(ProgramStateRef state, void *Key) {
468 ProgramState::GenericDataMap OldM = state->getGDM();
469 ProgramState::GenericDataMap NewM = GDMFactory.remove(OldM, Key);
470
471 if (NewM == OldM)
472 return state;
473
474 ProgramState NewState = *state;
475 NewState.GDM = NewM;
476 return getPersistentState(NewState);
477 }
478
scan(nonloc::CompoundVal val)479 bool ScanReachableSymbols::scan(nonloc::CompoundVal val) {
480 for (nonloc::CompoundVal::iterator I=val.begin(), E=val.end(); I!=E; ++I)
481 if (!scan(*I))
482 return false;
483
484 return true;
485 }
486
scan(const SymExpr * sym)487 bool ScanReachableSymbols::scan(const SymExpr *sym) {
488 unsigned &isVisited = visited[sym];
489 if (isVisited)
490 return true;
491 isVisited = 1;
492
493 if (!visitor.VisitSymbol(sym))
494 return false;
495
496 // TODO: should be rewritten using SymExpr::symbol_iterator.
497 switch (sym->getKind()) {
498 case SymExpr::RegionValueKind:
499 case SymExpr::ConjuredKind:
500 case SymExpr::DerivedKind:
501 case SymExpr::ExtentKind:
502 case SymExpr::MetadataKind:
503 break;
504 case SymExpr::CastSymbolKind:
505 return scan(cast<SymbolCast>(sym)->getOperand());
506 case SymExpr::SymIntKind:
507 return scan(cast<SymIntExpr>(sym)->getLHS());
508 case SymExpr::IntSymKind:
509 return scan(cast<IntSymExpr>(sym)->getRHS());
510 case SymExpr::SymSymKind: {
511 const SymSymExpr *x = cast<SymSymExpr>(sym);
512 return scan(x->getLHS()) && scan(x->getRHS());
513 }
514 }
515 return true;
516 }
517
scan(SVal val)518 bool ScanReachableSymbols::scan(SVal val) {
519 if (loc::MemRegionVal *X = dyn_cast<loc::MemRegionVal>(&val))
520 return scan(X->getRegion());
521
522 if (nonloc::LazyCompoundVal *X = dyn_cast<nonloc::LazyCompoundVal>(&val))
523 return scan(X->getRegion());
524
525 if (nonloc::LocAsInteger *X = dyn_cast<nonloc::LocAsInteger>(&val))
526 return scan(X->getLoc());
527
528 if (SymbolRef Sym = val.getAsSymbol())
529 return scan(Sym);
530
531 if (const SymExpr *Sym = val.getAsSymbolicExpression())
532 return scan(Sym);
533
534 if (nonloc::CompoundVal *X = dyn_cast<nonloc::CompoundVal>(&val))
535 return scan(*X);
536
537 return true;
538 }
539
scan(const MemRegion * R)540 bool ScanReachableSymbols::scan(const MemRegion *R) {
541 if (isa<MemSpaceRegion>(R))
542 return true;
543
544 unsigned &isVisited = visited[R];
545 if (isVisited)
546 return true;
547 isVisited = 1;
548
549
550 if (!visitor.VisitMemRegion(R))
551 return false;
552
553 // If this is a symbolic region, visit the symbol for the region.
554 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
555 if (!visitor.VisitSymbol(SR->getSymbol()))
556 return false;
557
558 // If this is a subregion, also visit the parent regions.
559 if (const SubRegion *SR = dyn_cast<SubRegion>(R)) {
560 const MemRegion *Super = SR->getSuperRegion();
561 if (!scan(Super))
562 return false;
563
564 // When we reach the topmost region, scan all symbols in it.
565 if (isa<MemSpaceRegion>(Super)) {
566 StoreManager &StoreMgr = state->getStateManager().getStoreManager();
567 if (!StoreMgr.scanReachableSymbols(state->getStore(), SR, *this))
568 return false;
569 }
570 }
571
572 // Regions captured by a block are also implicitly reachable.
573 if (const BlockDataRegion *BDR = dyn_cast<BlockDataRegion>(R)) {
574 BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
575 E = BDR->referenced_vars_end();
576 for ( ; I != E; ++I) {
577 if (!scan(I.getCapturedRegion()))
578 return false;
579 }
580 }
581
582 return true;
583 }
584
scanReachableSymbols(SVal val,SymbolVisitor & visitor) const585 bool ProgramState::scanReachableSymbols(SVal val, SymbolVisitor& visitor) const {
586 ScanReachableSymbols S(this, visitor);
587 return S.scan(val);
588 }
589
scanReachableSymbols(const SVal * I,const SVal * E,SymbolVisitor & visitor) const590 bool ProgramState::scanReachableSymbols(const SVal *I, const SVal *E,
591 SymbolVisitor &visitor) const {
592 ScanReachableSymbols S(this, visitor);
593 for ( ; I != E; ++I) {
594 if (!S.scan(*I))
595 return false;
596 }
597 return true;
598 }
599
scanReachableSymbols(const MemRegion * const * I,const MemRegion * const * E,SymbolVisitor & visitor) const600 bool ProgramState::scanReachableSymbols(const MemRegion * const *I,
601 const MemRegion * const *E,
602 SymbolVisitor &visitor) const {
603 ScanReachableSymbols S(this, visitor);
604 for ( ; I != E; ++I) {
605 if (!S.scan(*I))
606 return false;
607 }
608 return true;
609 }
610
addTaint(const Stmt * S,const LocationContext * LCtx,TaintTagType Kind) const611 ProgramStateRef ProgramState::addTaint(const Stmt *S,
612 const LocationContext *LCtx,
613 TaintTagType Kind) const {
614 if (const Expr *E = dyn_cast_or_null<Expr>(S))
615 S = E->IgnoreParens();
616
617 SymbolRef Sym = getSVal(S, LCtx).getAsSymbol();
618 if (Sym)
619 return addTaint(Sym, Kind);
620
621 const MemRegion *R = getSVal(S, LCtx).getAsRegion();
622 addTaint(R, Kind);
623
624 // Cannot add taint, so just return the state.
625 return this;
626 }
627
addTaint(const MemRegion * R,TaintTagType Kind) const628 ProgramStateRef ProgramState::addTaint(const MemRegion *R,
629 TaintTagType Kind) const {
630 if (const SymbolicRegion *SR = dyn_cast_or_null<SymbolicRegion>(R))
631 return addTaint(SR->getSymbol(), Kind);
632 return this;
633 }
634
addTaint(SymbolRef Sym,TaintTagType Kind) const635 ProgramStateRef ProgramState::addTaint(SymbolRef Sym,
636 TaintTagType Kind) const {
637 // If this is a symbol cast, remove the cast before adding the taint. Taint
638 // is cast agnostic.
639 while (const SymbolCast *SC = dyn_cast<SymbolCast>(Sym))
640 Sym = SC->getOperand();
641
642 ProgramStateRef NewState = set<TaintMap>(Sym, Kind);
643 assert(NewState);
644 return NewState;
645 }
646
isTainted(const Stmt * S,const LocationContext * LCtx,TaintTagType Kind) const647 bool ProgramState::isTainted(const Stmt *S, const LocationContext *LCtx,
648 TaintTagType Kind) const {
649 if (const Expr *E = dyn_cast_or_null<Expr>(S))
650 S = E->IgnoreParens();
651
652 SVal val = getSVal(S, LCtx);
653 return isTainted(val, Kind);
654 }
655
isTainted(SVal V,TaintTagType Kind) const656 bool ProgramState::isTainted(SVal V, TaintTagType Kind) const {
657 if (const SymExpr *Sym = V.getAsSymExpr())
658 return isTainted(Sym, Kind);
659 if (const MemRegion *Reg = V.getAsRegion())
660 return isTainted(Reg, Kind);
661 return false;
662 }
663
isTainted(const MemRegion * Reg,TaintTagType K) const664 bool ProgramState::isTainted(const MemRegion *Reg, TaintTagType K) const {
665 if (!Reg)
666 return false;
667
668 // Element region (array element) is tainted if either the base or the offset
669 // are tainted.
670 if (const ElementRegion *ER = dyn_cast<ElementRegion>(Reg))
671 return isTainted(ER->getSuperRegion(), K) || isTainted(ER->getIndex(), K);
672
673 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(Reg))
674 return isTainted(SR->getSymbol(), K);
675
676 if (const SubRegion *ER = dyn_cast<SubRegion>(Reg))
677 return isTainted(ER->getSuperRegion(), K);
678
679 return false;
680 }
681
isTainted(SymbolRef Sym,TaintTagType Kind) const682 bool ProgramState::isTainted(SymbolRef Sym, TaintTagType Kind) const {
683 if (!Sym)
684 return false;
685
686 // Traverse all the symbols this symbol depends on to see if any are tainted.
687 bool Tainted = false;
688 for (SymExpr::symbol_iterator SI = Sym->symbol_begin(), SE =Sym->symbol_end();
689 SI != SE; ++SI) {
690 if (!isa<SymbolData>(*SI))
691 continue;
692
693 const TaintTagType *Tag = get<TaintMap>(*SI);
694 Tainted = (Tag && *Tag == Kind);
695
696 // If this is a SymbolDerived with a tainted parent, it's also tainted.
697 if (const SymbolDerived *SD = dyn_cast<SymbolDerived>(*SI))
698 Tainted = Tainted || isTainted(SD->getParentSymbol(), Kind);
699
700 // If memory region is tainted, data is also tainted.
701 if (const SymbolRegionValue *SRV = dyn_cast<SymbolRegionValue>(*SI))
702 Tainted = Tainted || isTainted(SRV->getRegion(), Kind);
703
704 // If If this is a SymbolCast from a tainted value, it's also tainted.
705 if (const SymbolCast *SC = dyn_cast<SymbolCast>(*SI))
706 Tainted = Tainted || isTainted(SC->getOperand(), Kind);
707
708 if (Tainted)
709 return true;
710 }
711
712 return Tainted;
713 }
714
715 /// The GDM component containing the dynamic type info. This is a map from a
716 /// symbol to it's most likely type.
717 namespace clang {
718 namespace ento {
719 typedef llvm::ImmutableMap<const MemRegion *, DynamicTypeInfo> DynamicTypeMap;
720 template<> struct ProgramStateTrait<DynamicTypeMap>
721 : public ProgramStatePartialTrait<DynamicTypeMap> {
GDMIndexclang::ento::ProgramStateTrait722 static void *GDMIndex() { static int index; return &index; }
723 };
724 }}
725
getDynamicTypeInfo(const MemRegion * Reg) const726 DynamicTypeInfo ProgramState::getDynamicTypeInfo(const MemRegion *Reg) const {
727 Reg = Reg->StripCasts();
728
729 // Look up the dynamic type in the GDM.
730 const DynamicTypeInfo *GDMType = get<DynamicTypeMap>(Reg);
731 if (GDMType)
732 return *GDMType;
733
734 // Otherwise, fall back to what we know about the region.
735 if (const TypedRegion *TR = dyn_cast<TypedRegion>(Reg))
736 return DynamicTypeInfo(TR->getLocationType(), /*CanBeSubclass=*/false);
737
738 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(Reg)) {
739 SymbolRef Sym = SR->getSymbol();
740 return DynamicTypeInfo(Sym->getType(getStateManager().getContext()));
741 }
742
743 return DynamicTypeInfo();
744 }
745
setDynamicTypeInfo(const MemRegion * Reg,DynamicTypeInfo NewTy) const746 ProgramStateRef ProgramState::setDynamicTypeInfo(const MemRegion *Reg,
747 DynamicTypeInfo NewTy) const {
748 Reg = Reg->StripCasts();
749 ProgramStateRef NewState = set<DynamicTypeMap>(Reg, NewTy);
750 assert(NewState);
751 return NewState;
752 }
753