1 //===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implements C++ name mangling according to the Itanium C++ ABI,
11 // which is used in GCC 3.2 and newer (and many compilers that are
12 // ABI-compatible with GCC):
13 //
14 // http://www.codesourcery.com/public/cxx-abi/abi.html
15 //
16 //===----------------------------------------------------------------------===//
17 #include "clang/AST/Mangle.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/TypeLoc.h"
26 #include "clang/Basic/ABI.h"
27 #include "clang/Basic/SourceManager.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Support/ErrorHandling.h"
32
33 #define MANGLE_CHECKER 0
34
35 #if MANGLE_CHECKER
36 #include <cxxabi.h>
37 #endif
38
39 using namespace clang;
40
41 namespace {
42
43 /// \brief Retrieve the declaration context that should be used when mangling
44 /// the given declaration.
getEffectiveDeclContext(const Decl * D)45 static const DeclContext *getEffectiveDeclContext(const Decl *D) {
46 // The ABI assumes that lambda closure types that occur within
47 // default arguments live in the context of the function. However, due to
48 // the way in which Clang parses and creates function declarations, this is
49 // not the case: the lambda closure type ends up living in the context
50 // where the function itself resides, because the function declaration itself
51 // had not yet been created. Fix the context here.
52 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
53 if (RD->isLambda())
54 if (ParmVarDecl *ContextParam
55 = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
56 return ContextParam->getDeclContext();
57 }
58
59 return D->getDeclContext();
60 }
61
getEffectiveParentContext(const DeclContext * DC)62 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
63 return getEffectiveDeclContext(cast<Decl>(DC));
64 }
65
GetLocalClassDecl(const NamedDecl * ND)66 static const CXXRecordDecl *GetLocalClassDecl(const NamedDecl *ND) {
67 const DeclContext *DC = dyn_cast<DeclContext>(ND);
68 if (!DC)
69 DC = getEffectiveDeclContext(ND);
70 while (!DC->isNamespace() && !DC->isTranslationUnit()) {
71 const DeclContext *Parent = getEffectiveDeclContext(cast<Decl>(DC));
72 if (isa<FunctionDecl>(Parent))
73 return dyn_cast<CXXRecordDecl>(DC);
74 DC = Parent;
75 }
76 return 0;
77 }
78
getStructor(const FunctionDecl * fn)79 static const FunctionDecl *getStructor(const FunctionDecl *fn) {
80 if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
81 return ftd->getTemplatedDecl();
82
83 return fn;
84 }
85
getStructor(const NamedDecl * decl)86 static const NamedDecl *getStructor(const NamedDecl *decl) {
87 const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
88 return (fn ? getStructor(fn) : decl);
89 }
90
91 static const unsigned UnknownArity = ~0U;
92
93 class ItaniumMangleContext : public MangleContext {
94 llvm::DenseMap<const TagDecl *, uint64_t> AnonStructIds;
95 unsigned Discriminator;
96 llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
97
98 public:
ItaniumMangleContext(ASTContext & Context,DiagnosticsEngine & Diags)99 explicit ItaniumMangleContext(ASTContext &Context,
100 DiagnosticsEngine &Diags)
101 : MangleContext(Context, Diags) { }
102
getAnonymousStructId(const TagDecl * TD)103 uint64_t getAnonymousStructId(const TagDecl *TD) {
104 std::pair<llvm::DenseMap<const TagDecl *,
105 uint64_t>::iterator, bool> Result =
106 AnonStructIds.insert(std::make_pair(TD, AnonStructIds.size()));
107 return Result.first->second;
108 }
109
startNewFunction()110 void startNewFunction() {
111 MangleContext::startNewFunction();
112 mangleInitDiscriminator();
113 }
114
115 /// @name Mangler Entry Points
116 /// @{
117
118 bool shouldMangleDeclName(const NamedDecl *D);
119 void mangleName(const NamedDecl *D, raw_ostream &);
120 void mangleThunk(const CXXMethodDecl *MD,
121 const ThunkInfo &Thunk,
122 raw_ostream &);
123 void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
124 const ThisAdjustment &ThisAdjustment,
125 raw_ostream &);
126 void mangleReferenceTemporary(const VarDecl *D,
127 raw_ostream &);
128 void mangleCXXVTable(const CXXRecordDecl *RD,
129 raw_ostream &);
130 void mangleCXXVTT(const CXXRecordDecl *RD,
131 raw_ostream &);
132 void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
133 const CXXRecordDecl *Type,
134 raw_ostream &);
135 void mangleCXXRTTI(QualType T, raw_ostream &);
136 void mangleCXXRTTIName(QualType T, raw_ostream &);
137 void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
138 raw_ostream &);
139 void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
140 raw_ostream &);
141
142 void mangleItaniumGuardVariable(const VarDecl *D, raw_ostream &);
143
mangleInitDiscriminator()144 void mangleInitDiscriminator() {
145 Discriminator = 0;
146 }
147
getNextDiscriminator(const NamedDecl * ND,unsigned & disc)148 bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
149 // Lambda closure types with external linkage (indicated by a
150 // non-zero lambda mangling number) have their own numbering scheme, so
151 // they do not need a discriminator.
152 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(ND))
153 if (RD->isLambda() && RD->getLambdaManglingNumber() > 0)
154 return false;
155
156 unsigned &discriminator = Uniquifier[ND];
157 if (!discriminator)
158 discriminator = ++Discriminator;
159 if (discriminator == 1)
160 return false;
161 disc = discriminator-2;
162 return true;
163 }
164 /// @}
165 };
166
167 /// CXXNameMangler - Manage the mangling of a single name.
168 class CXXNameMangler {
169 ItaniumMangleContext &Context;
170 raw_ostream &Out;
171
172 /// The "structor" is the top-level declaration being mangled, if
173 /// that's not a template specialization; otherwise it's the pattern
174 /// for that specialization.
175 const NamedDecl *Structor;
176 unsigned StructorType;
177
178 /// SeqID - The next subsitution sequence number.
179 unsigned SeqID;
180
181 class FunctionTypeDepthState {
182 unsigned Bits;
183
184 enum { InResultTypeMask = 1 };
185
186 public:
FunctionTypeDepthState()187 FunctionTypeDepthState() : Bits(0) {}
188
189 /// The number of function types we're inside.
getDepth() const190 unsigned getDepth() const {
191 return Bits >> 1;
192 }
193
194 /// True if we're in the return type of the innermost function type.
isInResultType() const195 bool isInResultType() const {
196 return Bits & InResultTypeMask;
197 }
198
push()199 FunctionTypeDepthState push() {
200 FunctionTypeDepthState tmp = *this;
201 Bits = (Bits & ~InResultTypeMask) + 2;
202 return tmp;
203 }
204
enterResultType()205 void enterResultType() {
206 Bits |= InResultTypeMask;
207 }
208
leaveResultType()209 void leaveResultType() {
210 Bits &= ~InResultTypeMask;
211 }
212
pop(FunctionTypeDepthState saved)213 void pop(FunctionTypeDepthState saved) {
214 assert(getDepth() == saved.getDepth() + 1);
215 Bits = saved.Bits;
216 }
217
218 } FunctionTypeDepth;
219
220 llvm::DenseMap<uintptr_t, unsigned> Substitutions;
221
getASTContext() const222 ASTContext &getASTContext() const { return Context.getASTContext(); }
223
224 public:
CXXNameMangler(ItaniumMangleContext & C,raw_ostream & Out_,const NamedDecl * D=0)225 CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
226 const NamedDecl *D = 0)
227 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(0),
228 SeqID(0) {
229 // These can't be mangled without a ctor type or dtor type.
230 assert(!D || (!isa<CXXDestructorDecl>(D) &&
231 !isa<CXXConstructorDecl>(D)));
232 }
CXXNameMangler(ItaniumMangleContext & C,raw_ostream & Out_,const CXXConstructorDecl * D,CXXCtorType Type)233 CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
234 const CXXConstructorDecl *D, CXXCtorType Type)
235 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
236 SeqID(0) { }
CXXNameMangler(ItaniumMangleContext & C,raw_ostream & Out_,const CXXDestructorDecl * D,CXXDtorType Type)237 CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
238 const CXXDestructorDecl *D, CXXDtorType Type)
239 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
240 SeqID(0) { }
241
242 #if MANGLE_CHECKER
~CXXNameMangler()243 ~CXXNameMangler() {
244 if (Out.str()[0] == '\01')
245 return;
246
247 int status = 0;
248 char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
249 assert(status == 0 && "Could not demangle mangled name!");
250 free(result);
251 }
252 #endif
getStream()253 raw_ostream &getStream() { return Out; }
254
255 void mangle(const NamedDecl *D, StringRef Prefix = "_Z");
256 void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
257 void mangleNumber(const llvm::APSInt &I);
258 void mangleNumber(int64_t Number);
259 void mangleFloat(const llvm::APFloat &F);
260 void mangleFunctionEncoding(const FunctionDecl *FD);
261 void mangleName(const NamedDecl *ND);
262 void mangleType(QualType T);
263 void mangleNameOrStandardSubstitution(const NamedDecl *ND);
264
265 private:
266 bool mangleSubstitution(const NamedDecl *ND);
267 bool mangleSubstitution(QualType T);
268 bool mangleSubstitution(TemplateName Template);
269 bool mangleSubstitution(uintptr_t Ptr);
270
271 void mangleExistingSubstitution(QualType type);
272 void mangleExistingSubstitution(TemplateName name);
273
274 bool mangleStandardSubstitution(const NamedDecl *ND);
275
addSubstitution(const NamedDecl * ND)276 void addSubstitution(const NamedDecl *ND) {
277 ND = cast<NamedDecl>(ND->getCanonicalDecl());
278
279 addSubstitution(reinterpret_cast<uintptr_t>(ND));
280 }
281 void addSubstitution(QualType T);
282 void addSubstitution(TemplateName Template);
283 void addSubstitution(uintptr_t Ptr);
284
285 void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
286 NamedDecl *firstQualifierLookup,
287 bool recursive = false);
288 void mangleUnresolvedName(NestedNameSpecifier *qualifier,
289 NamedDecl *firstQualifierLookup,
290 DeclarationName name,
291 unsigned KnownArity = UnknownArity);
292
293 void mangleName(const TemplateDecl *TD,
294 const TemplateArgument *TemplateArgs,
295 unsigned NumTemplateArgs);
mangleUnqualifiedName(const NamedDecl * ND)296 void mangleUnqualifiedName(const NamedDecl *ND) {
297 mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
298 }
299 void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
300 unsigned KnownArity);
301 void mangleUnscopedName(const NamedDecl *ND);
302 void mangleUnscopedTemplateName(const TemplateDecl *ND);
303 void mangleUnscopedTemplateName(TemplateName);
304 void mangleSourceName(const IdentifierInfo *II);
305 void mangleLocalName(const NamedDecl *ND);
306 void mangleLambda(const CXXRecordDecl *Lambda);
307 void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
308 bool NoFunction=false);
309 void mangleNestedName(const TemplateDecl *TD,
310 const TemplateArgument *TemplateArgs,
311 unsigned NumTemplateArgs);
312 void manglePrefix(NestedNameSpecifier *qualifier);
313 void manglePrefix(const DeclContext *DC, bool NoFunction=false);
314 void manglePrefix(QualType type);
315 void mangleTemplatePrefix(const TemplateDecl *ND);
316 void mangleTemplatePrefix(TemplateName Template);
317 void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
318 void mangleQualifiers(Qualifiers Quals);
319 void mangleRefQualifier(RefQualifierKind RefQualifier);
320
321 void mangleObjCMethodName(const ObjCMethodDecl *MD);
322
323 // Declare manglers for every type class.
324 #define ABSTRACT_TYPE(CLASS, PARENT)
325 #define NON_CANONICAL_TYPE(CLASS, PARENT)
326 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
327 #include "clang/AST/TypeNodes.def"
328
329 void mangleType(const TagType*);
330 void mangleType(TemplateName);
331 void mangleBareFunctionType(const FunctionType *T,
332 bool MangleReturnType);
333 void mangleNeonVectorType(const VectorType *T);
334
335 void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
336 void mangleMemberExpr(const Expr *base, bool isArrow,
337 NestedNameSpecifier *qualifier,
338 NamedDecl *firstQualifierLookup,
339 DeclarationName name,
340 unsigned knownArity);
341 void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
342 void mangleCXXCtorType(CXXCtorType T);
343 void mangleCXXDtorType(CXXDtorType T);
344
345 void mangleTemplateArgs(const ASTTemplateArgumentListInfo &TemplateArgs);
346 void mangleTemplateArgs(TemplateName Template,
347 const TemplateArgument *TemplateArgs,
348 unsigned NumTemplateArgs);
349 void mangleTemplateArgs(const TemplateParameterList &PL,
350 const TemplateArgument *TemplateArgs,
351 unsigned NumTemplateArgs);
352 void mangleTemplateArgs(const TemplateParameterList &PL,
353 const TemplateArgumentList &AL);
354 void mangleTemplateArg(const NamedDecl *P, TemplateArgument A);
355 void mangleUnresolvedTemplateArgs(const TemplateArgument *args,
356 unsigned numArgs);
357
358 void mangleTemplateParameter(unsigned Index);
359
360 void mangleFunctionParam(const ParmVarDecl *parm);
361 };
362
363 }
364
isInCLinkageSpecification(const Decl * D)365 static bool isInCLinkageSpecification(const Decl *D) {
366 D = D->getCanonicalDecl();
367 for (const DeclContext *DC = getEffectiveDeclContext(D);
368 !DC->isTranslationUnit(); DC = getEffectiveParentContext(DC)) {
369 if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC))
370 return Linkage->getLanguage() == LinkageSpecDecl::lang_c;
371 }
372
373 return false;
374 }
375
shouldMangleDeclName(const NamedDecl * D)376 bool ItaniumMangleContext::shouldMangleDeclName(const NamedDecl *D) {
377 // In C, functions with no attributes never need to be mangled. Fastpath them.
378 if (!getASTContext().getLangOpts().CPlusPlus && !D->hasAttrs())
379 return false;
380
381 // Any decl can be declared with __asm("foo") on it, and this takes precedence
382 // over all other naming in the .o file.
383 if (D->hasAttr<AsmLabelAttr>())
384 return true;
385
386 // Clang's "overloadable" attribute extension to C/C++ implies name mangling
387 // (always) as does passing a C++ member function and a function
388 // whose name is not a simple identifier.
389 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
390 if (FD && (FD->hasAttr<OverloadableAttr>() || isa<CXXMethodDecl>(FD) ||
391 !FD->getDeclName().isIdentifier()))
392 return true;
393
394 // Otherwise, no mangling is done outside C++ mode.
395 if (!getASTContext().getLangOpts().CPlusPlus)
396 return false;
397
398 // Variables at global scope with non-internal linkage are not mangled
399 if (!FD) {
400 const DeclContext *DC = getEffectiveDeclContext(D);
401 // Check for extern variable declared locally.
402 if (DC->isFunctionOrMethod() && D->hasLinkage())
403 while (!DC->isNamespace() && !DC->isTranslationUnit())
404 DC = getEffectiveParentContext(DC);
405 if (DC->isTranslationUnit() && D->getLinkage() != InternalLinkage)
406 return false;
407 }
408
409 // Class members are always mangled.
410 if (getEffectiveDeclContext(D)->isRecord())
411 return true;
412
413 // C functions and "main" are not mangled.
414 if ((FD && FD->isMain()) || isInCLinkageSpecification(D))
415 return false;
416
417 return true;
418 }
419
mangle(const NamedDecl * D,StringRef Prefix)420 void CXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
421 // Any decl can be declared with __asm("foo") on it, and this takes precedence
422 // over all other naming in the .o file.
423 if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
424 // If we have an asm name, then we use it as the mangling.
425
426 // Adding the prefix can cause problems when one file has a "foo" and
427 // another has a "\01foo". That is known to happen on ELF with the
428 // tricks normally used for producing aliases (PR9177). Fortunately the
429 // llvm mangler on ELF is a nop, so we can just avoid adding the \01
430 // marker. We also avoid adding the marker if this is an alias for an
431 // LLVM intrinsic.
432 StringRef UserLabelPrefix =
433 getASTContext().getTargetInfo().getUserLabelPrefix();
434 if (!UserLabelPrefix.empty() && !ALA->getLabel().startswith("llvm."))
435 Out << '\01'; // LLVM IR Marker for __asm("foo")
436
437 Out << ALA->getLabel();
438 return;
439 }
440
441 // <mangled-name> ::= _Z <encoding>
442 // ::= <data name>
443 // ::= <special-name>
444 Out << Prefix;
445 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
446 mangleFunctionEncoding(FD);
447 else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
448 mangleName(VD);
449 else
450 mangleName(cast<FieldDecl>(D));
451 }
452
mangleFunctionEncoding(const FunctionDecl * FD)453 void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
454 // <encoding> ::= <function name> <bare-function-type>
455 mangleName(FD);
456
457 // Don't mangle in the type if this isn't a decl we should typically mangle.
458 if (!Context.shouldMangleDeclName(FD))
459 return;
460
461 // Whether the mangling of a function type includes the return type depends on
462 // the context and the nature of the function. The rules for deciding whether
463 // the return type is included are:
464 //
465 // 1. Template functions (names or types) have return types encoded, with
466 // the exceptions listed below.
467 // 2. Function types not appearing as part of a function name mangling,
468 // e.g. parameters, pointer types, etc., have return type encoded, with the
469 // exceptions listed below.
470 // 3. Non-template function names do not have return types encoded.
471 //
472 // The exceptions mentioned in (1) and (2) above, for which the return type is
473 // never included, are
474 // 1. Constructors.
475 // 2. Destructors.
476 // 3. Conversion operator functions, e.g. operator int.
477 bool MangleReturnType = false;
478 if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
479 if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
480 isa<CXXConversionDecl>(FD)))
481 MangleReturnType = true;
482
483 // Mangle the type of the primary template.
484 FD = PrimaryTemplate->getTemplatedDecl();
485 }
486
487 mangleBareFunctionType(FD->getType()->getAs<FunctionType>(),
488 MangleReturnType);
489 }
490
IgnoreLinkageSpecDecls(const DeclContext * DC)491 static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
492 while (isa<LinkageSpecDecl>(DC)) {
493 DC = getEffectiveParentContext(DC);
494 }
495
496 return DC;
497 }
498
499 /// isStd - Return whether a given namespace is the 'std' namespace.
isStd(const NamespaceDecl * NS)500 static bool isStd(const NamespaceDecl *NS) {
501 if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
502 ->isTranslationUnit())
503 return false;
504
505 const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
506 return II && II->isStr("std");
507 }
508
509 // isStdNamespace - Return whether a given decl context is a toplevel 'std'
510 // namespace.
isStdNamespace(const DeclContext * DC)511 static bool isStdNamespace(const DeclContext *DC) {
512 if (!DC->isNamespace())
513 return false;
514
515 return isStd(cast<NamespaceDecl>(DC));
516 }
517
518 static const TemplateDecl *
isTemplate(const NamedDecl * ND,const TemplateArgumentList * & TemplateArgs)519 isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
520 // Check if we have a function template.
521 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
522 if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
523 TemplateArgs = FD->getTemplateSpecializationArgs();
524 return TD;
525 }
526 }
527
528 // Check if we have a class template.
529 if (const ClassTemplateSpecializationDecl *Spec =
530 dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
531 TemplateArgs = &Spec->getTemplateArgs();
532 return Spec->getSpecializedTemplate();
533 }
534
535 return 0;
536 }
537
isLambda(const NamedDecl * ND)538 static bool isLambda(const NamedDecl *ND) {
539 const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
540 if (!Record)
541 return false;
542
543 return Record->isLambda();
544 }
545
mangleName(const NamedDecl * ND)546 void CXXNameMangler::mangleName(const NamedDecl *ND) {
547 // <name> ::= <nested-name>
548 // ::= <unscoped-name>
549 // ::= <unscoped-template-name> <template-args>
550 // ::= <local-name>
551 //
552 const DeclContext *DC = getEffectiveDeclContext(ND);
553
554 // If this is an extern variable declared locally, the relevant DeclContext
555 // is that of the containing namespace, or the translation unit.
556 // FIXME: This is a hack; extern variables declared locally should have
557 // a proper semantic declaration context!
558 if (isa<FunctionDecl>(DC) && ND->hasLinkage() && !isLambda(ND))
559 while (!DC->isNamespace() && !DC->isTranslationUnit())
560 DC = getEffectiveParentContext(DC);
561 else if (GetLocalClassDecl(ND)) {
562 mangleLocalName(ND);
563 return;
564 }
565
566 DC = IgnoreLinkageSpecDecls(DC);
567
568 if (DC->isTranslationUnit() || isStdNamespace(DC)) {
569 // Check if we have a template.
570 const TemplateArgumentList *TemplateArgs = 0;
571 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
572 mangleUnscopedTemplateName(TD);
573 TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
574 mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
575 return;
576 }
577
578 mangleUnscopedName(ND);
579 return;
580 }
581
582 if (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)) {
583 mangleLocalName(ND);
584 return;
585 }
586
587 mangleNestedName(ND, DC);
588 }
mangleName(const TemplateDecl * TD,const TemplateArgument * TemplateArgs,unsigned NumTemplateArgs)589 void CXXNameMangler::mangleName(const TemplateDecl *TD,
590 const TemplateArgument *TemplateArgs,
591 unsigned NumTemplateArgs) {
592 const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
593
594 if (DC->isTranslationUnit() || isStdNamespace(DC)) {
595 mangleUnscopedTemplateName(TD);
596 TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
597 mangleTemplateArgs(*TemplateParameters, TemplateArgs, NumTemplateArgs);
598 } else {
599 mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
600 }
601 }
602
mangleUnscopedName(const NamedDecl * ND)603 void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
604 // <unscoped-name> ::= <unqualified-name>
605 // ::= St <unqualified-name> # ::std::
606
607 if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
608 Out << "St";
609
610 mangleUnqualifiedName(ND);
611 }
612
mangleUnscopedTemplateName(const TemplateDecl * ND)613 void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
614 // <unscoped-template-name> ::= <unscoped-name>
615 // ::= <substitution>
616 if (mangleSubstitution(ND))
617 return;
618
619 // <template-template-param> ::= <template-param>
620 if (const TemplateTemplateParmDecl *TTP
621 = dyn_cast<TemplateTemplateParmDecl>(ND)) {
622 mangleTemplateParameter(TTP->getIndex());
623 return;
624 }
625
626 mangleUnscopedName(ND->getTemplatedDecl());
627 addSubstitution(ND);
628 }
629
mangleUnscopedTemplateName(TemplateName Template)630 void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
631 // <unscoped-template-name> ::= <unscoped-name>
632 // ::= <substitution>
633 if (TemplateDecl *TD = Template.getAsTemplateDecl())
634 return mangleUnscopedTemplateName(TD);
635
636 if (mangleSubstitution(Template))
637 return;
638
639 DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
640 assert(Dependent && "Not a dependent template name?");
641 if (const IdentifierInfo *Id = Dependent->getIdentifier())
642 mangleSourceName(Id);
643 else
644 mangleOperatorName(Dependent->getOperator(), UnknownArity);
645
646 addSubstitution(Template);
647 }
648
mangleFloat(const llvm::APFloat & f)649 void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
650 // ABI:
651 // Floating-point literals are encoded using a fixed-length
652 // lowercase hexadecimal string corresponding to the internal
653 // representation (IEEE on Itanium), high-order bytes first,
654 // without leading zeroes. For example: "Lf bf800000 E" is -1.0f
655 // on Itanium.
656 // The 'without leading zeroes' thing seems to be an editorial
657 // mistake; see the discussion on cxx-abi-dev beginning on
658 // 2012-01-16.
659
660 // Our requirements here are just barely weird enough to justify
661 // using a custom algorithm instead of post-processing APInt::toString().
662
663 llvm::APInt valueBits = f.bitcastToAPInt();
664 unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
665 assert(numCharacters != 0);
666
667 // Allocate a buffer of the right number of characters.
668 llvm::SmallVector<char, 20> buffer;
669 buffer.set_size(numCharacters);
670
671 // Fill the buffer left-to-right.
672 for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
673 // The bit-index of the next hex digit.
674 unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
675
676 // Project out 4 bits starting at 'digitIndex'.
677 llvm::integerPart hexDigit
678 = valueBits.getRawData()[digitBitIndex / llvm::integerPartWidth];
679 hexDigit >>= (digitBitIndex % llvm::integerPartWidth);
680 hexDigit &= 0xF;
681
682 // Map that over to a lowercase hex digit.
683 static const char charForHex[16] = {
684 '0', '1', '2', '3', '4', '5', '6', '7',
685 '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
686 };
687 buffer[stringIndex] = charForHex[hexDigit];
688 }
689
690 Out.write(buffer.data(), numCharacters);
691 }
692
mangleNumber(const llvm::APSInt & Value)693 void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
694 if (Value.isSigned() && Value.isNegative()) {
695 Out << 'n';
696 Value.abs().print(Out, /*signed*/ false);
697 } else {
698 Value.print(Out, /*signed*/ false);
699 }
700 }
701
mangleNumber(int64_t Number)702 void CXXNameMangler::mangleNumber(int64_t Number) {
703 // <number> ::= [n] <non-negative decimal integer>
704 if (Number < 0) {
705 Out << 'n';
706 Number = -Number;
707 }
708
709 Out << Number;
710 }
711
mangleCallOffset(int64_t NonVirtual,int64_t Virtual)712 void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
713 // <call-offset> ::= h <nv-offset> _
714 // ::= v <v-offset> _
715 // <nv-offset> ::= <offset number> # non-virtual base override
716 // <v-offset> ::= <offset number> _ <virtual offset number>
717 // # virtual base override, with vcall offset
718 if (!Virtual) {
719 Out << 'h';
720 mangleNumber(NonVirtual);
721 Out << '_';
722 return;
723 }
724
725 Out << 'v';
726 mangleNumber(NonVirtual);
727 Out << '_';
728 mangleNumber(Virtual);
729 Out << '_';
730 }
731
manglePrefix(QualType type)732 void CXXNameMangler::manglePrefix(QualType type) {
733 if (const TemplateSpecializationType *TST =
734 type->getAs<TemplateSpecializationType>()) {
735 if (!mangleSubstitution(QualType(TST, 0))) {
736 mangleTemplatePrefix(TST->getTemplateName());
737
738 // FIXME: GCC does not appear to mangle the template arguments when
739 // the template in question is a dependent template name. Should we
740 // emulate that badness?
741 mangleTemplateArgs(TST->getTemplateName(), TST->getArgs(),
742 TST->getNumArgs());
743 addSubstitution(QualType(TST, 0));
744 }
745 } else if (const DependentTemplateSpecializationType *DTST
746 = type->getAs<DependentTemplateSpecializationType>()) {
747 TemplateName Template
748 = getASTContext().getDependentTemplateName(DTST->getQualifier(),
749 DTST->getIdentifier());
750 mangleTemplatePrefix(Template);
751
752 // FIXME: GCC does not appear to mangle the template arguments when
753 // the template in question is a dependent template name. Should we
754 // emulate that badness?
755 mangleTemplateArgs(Template, DTST->getArgs(), DTST->getNumArgs());
756 } else {
757 // We use the QualType mangle type variant here because it handles
758 // substitutions.
759 mangleType(type);
760 }
761 }
762
763 /// Mangle everything prior to the base-unresolved-name in an unresolved-name.
764 ///
765 /// \param firstQualifierLookup - the entity found by unqualified lookup
766 /// for the first name in the qualifier, if this is for a member expression
767 /// \param recursive - true if this is being called recursively,
768 /// i.e. if there is more prefix "to the right".
mangleUnresolvedPrefix(NestedNameSpecifier * qualifier,NamedDecl * firstQualifierLookup,bool recursive)769 void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
770 NamedDecl *firstQualifierLookup,
771 bool recursive) {
772
773 // x, ::x
774 // <unresolved-name> ::= [gs] <base-unresolved-name>
775
776 // T::x / decltype(p)::x
777 // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
778
779 // T::N::x /decltype(p)::N::x
780 // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
781 // <base-unresolved-name>
782
783 // A::x, N::y, A<T>::z; "gs" means leading "::"
784 // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
785 // <base-unresolved-name>
786
787 switch (qualifier->getKind()) {
788 case NestedNameSpecifier::Global:
789 Out << "gs";
790
791 // We want an 'sr' unless this is the entire NNS.
792 if (recursive)
793 Out << "sr";
794
795 // We never want an 'E' here.
796 return;
797
798 case NestedNameSpecifier::Namespace:
799 if (qualifier->getPrefix())
800 mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
801 /*recursive*/ true);
802 else
803 Out << "sr";
804 mangleSourceName(qualifier->getAsNamespace()->getIdentifier());
805 break;
806 case NestedNameSpecifier::NamespaceAlias:
807 if (qualifier->getPrefix())
808 mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
809 /*recursive*/ true);
810 else
811 Out << "sr";
812 mangleSourceName(qualifier->getAsNamespaceAlias()->getIdentifier());
813 break;
814
815 case NestedNameSpecifier::TypeSpec:
816 case NestedNameSpecifier::TypeSpecWithTemplate: {
817 const Type *type = qualifier->getAsType();
818
819 // We only want to use an unresolved-type encoding if this is one of:
820 // - a decltype
821 // - a template type parameter
822 // - a template template parameter with arguments
823 // In all of these cases, we should have no prefix.
824 if (qualifier->getPrefix()) {
825 mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
826 /*recursive*/ true);
827 } else {
828 // Otherwise, all the cases want this.
829 Out << "sr";
830 }
831
832 // Only certain other types are valid as prefixes; enumerate them.
833 switch (type->getTypeClass()) {
834 case Type::Builtin:
835 case Type::Complex:
836 case Type::Pointer:
837 case Type::BlockPointer:
838 case Type::LValueReference:
839 case Type::RValueReference:
840 case Type::MemberPointer:
841 case Type::ConstantArray:
842 case Type::IncompleteArray:
843 case Type::VariableArray:
844 case Type::DependentSizedArray:
845 case Type::DependentSizedExtVector:
846 case Type::Vector:
847 case Type::ExtVector:
848 case Type::FunctionProto:
849 case Type::FunctionNoProto:
850 case Type::Enum:
851 case Type::Paren:
852 case Type::Elaborated:
853 case Type::Attributed:
854 case Type::Auto:
855 case Type::PackExpansion:
856 case Type::ObjCObject:
857 case Type::ObjCInterface:
858 case Type::ObjCObjectPointer:
859 case Type::Atomic:
860 llvm_unreachable("type is illegal as a nested name specifier");
861
862 case Type::SubstTemplateTypeParmPack:
863 // FIXME: not clear how to mangle this!
864 // template <class T...> class A {
865 // template <class U...> void foo(decltype(T::foo(U())) x...);
866 // };
867 Out << "_SUBSTPACK_";
868 break;
869
870 // <unresolved-type> ::= <template-param>
871 // ::= <decltype>
872 // ::= <template-template-param> <template-args>
873 // (this last is not official yet)
874 case Type::TypeOfExpr:
875 case Type::TypeOf:
876 case Type::Decltype:
877 case Type::TemplateTypeParm:
878 case Type::UnaryTransform:
879 case Type::SubstTemplateTypeParm:
880 unresolvedType:
881 assert(!qualifier->getPrefix());
882
883 // We only get here recursively if we're followed by identifiers.
884 if (recursive) Out << 'N';
885
886 // This seems to do everything we want. It's not really
887 // sanctioned for a substituted template parameter, though.
888 mangleType(QualType(type, 0));
889
890 // We never want to print 'E' directly after an unresolved-type,
891 // so we return directly.
892 return;
893
894 case Type::Typedef:
895 mangleSourceName(cast<TypedefType>(type)->getDecl()->getIdentifier());
896 break;
897
898 case Type::UnresolvedUsing:
899 mangleSourceName(cast<UnresolvedUsingType>(type)->getDecl()
900 ->getIdentifier());
901 break;
902
903 case Type::Record:
904 mangleSourceName(cast<RecordType>(type)->getDecl()->getIdentifier());
905 break;
906
907 case Type::TemplateSpecialization: {
908 const TemplateSpecializationType *tst
909 = cast<TemplateSpecializationType>(type);
910 TemplateName name = tst->getTemplateName();
911 switch (name.getKind()) {
912 case TemplateName::Template:
913 case TemplateName::QualifiedTemplate: {
914 TemplateDecl *temp = name.getAsTemplateDecl();
915
916 // If the base is a template template parameter, this is an
917 // unresolved type.
918 assert(temp && "no template for template specialization type");
919 if (isa<TemplateTemplateParmDecl>(temp)) goto unresolvedType;
920
921 mangleSourceName(temp->getIdentifier());
922 break;
923 }
924
925 case TemplateName::OverloadedTemplate:
926 case TemplateName::DependentTemplate:
927 llvm_unreachable("invalid base for a template specialization type");
928
929 case TemplateName::SubstTemplateTemplateParm: {
930 SubstTemplateTemplateParmStorage *subst
931 = name.getAsSubstTemplateTemplateParm();
932 mangleExistingSubstitution(subst->getReplacement());
933 break;
934 }
935
936 case TemplateName::SubstTemplateTemplateParmPack: {
937 // FIXME: not clear how to mangle this!
938 // template <template <class U> class T...> class A {
939 // template <class U...> void foo(decltype(T<U>::foo) x...);
940 // };
941 Out << "_SUBSTPACK_";
942 break;
943 }
944 }
945
946 mangleUnresolvedTemplateArgs(tst->getArgs(), tst->getNumArgs());
947 break;
948 }
949
950 case Type::InjectedClassName:
951 mangleSourceName(cast<InjectedClassNameType>(type)->getDecl()
952 ->getIdentifier());
953 break;
954
955 case Type::DependentName:
956 mangleSourceName(cast<DependentNameType>(type)->getIdentifier());
957 break;
958
959 case Type::DependentTemplateSpecialization: {
960 const DependentTemplateSpecializationType *tst
961 = cast<DependentTemplateSpecializationType>(type);
962 mangleSourceName(tst->getIdentifier());
963 mangleUnresolvedTemplateArgs(tst->getArgs(), tst->getNumArgs());
964 break;
965 }
966 }
967 break;
968 }
969
970 case NestedNameSpecifier::Identifier:
971 // Member expressions can have these without prefixes.
972 if (qualifier->getPrefix()) {
973 mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
974 /*recursive*/ true);
975 } else if (firstQualifierLookup) {
976
977 // Try to make a proper qualifier out of the lookup result, and
978 // then just recurse on that.
979 NestedNameSpecifier *newQualifier;
980 if (TypeDecl *typeDecl = dyn_cast<TypeDecl>(firstQualifierLookup)) {
981 QualType type = getASTContext().getTypeDeclType(typeDecl);
982
983 // Pretend we had a different nested name specifier.
984 newQualifier = NestedNameSpecifier::Create(getASTContext(),
985 /*prefix*/ 0,
986 /*template*/ false,
987 type.getTypePtr());
988 } else if (NamespaceDecl *nspace =
989 dyn_cast<NamespaceDecl>(firstQualifierLookup)) {
990 newQualifier = NestedNameSpecifier::Create(getASTContext(),
991 /*prefix*/ 0,
992 nspace);
993 } else if (NamespaceAliasDecl *alias =
994 dyn_cast<NamespaceAliasDecl>(firstQualifierLookup)) {
995 newQualifier = NestedNameSpecifier::Create(getASTContext(),
996 /*prefix*/ 0,
997 alias);
998 } else {
999 // No sensible mangling to do here.
1000 newQualifier = 0;
1001 }
1002
1003 if (newQualifier)
1004 return mangleUnresolvedPrefix(newQualifier, /*lookup*/ 0, recursive);
1005
1006 } else {
1007 Out << "sr";
1008 }
1009
1010 mangleSourceName(qualifier->getAsIdentifier());
1011 break;
1012 }
1013
1014 // If this was the innermost part of the NNS, and we fell out to
1015 // here, append an 'E'.
1016 if (!recursive)
1017 Out << 'E';
1018 }
1019
1020 /// Mangle an unresolved-name, which is generally used for names which
1021 /// weren't resolved to specific entities.
mangleUnresolvedName(NestedNameSpecifier * qualifier,NamedDecl * firstQualifierLookup,DeclarationName name,unsigned knownArity)1022 void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *qualifier,
1023 NamedDecl *firstQualifierLookup,
1024 DeclarationName name,
1025 unsigned knownArity) {
1026 if (qualifier) mangleUnresolvedPrefix(qualifier, firstQualifierLookup);
1027 mangleUnqualifiedName(0, name, knownArity);
1028 }
1029
FindFirstNamedDataMember(const RecordDecl * RD)1030 static const FieldDecl *FindFirstNamedDataMember(const RecordDecl *RD) {
1031 assert(RD->isAnonymousStructOrUnion() &&
1032 "Expected anonymous struct or union!");
1033
1034 for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
1035 I != E; ++I) {
1036 if (I->getIdentifier())
1037 return *I;
1038
1039 if (const RecordType *RT = I->getType()->getAs<RecordType>())
1040 if (const FieldDecl *NamedDataMember =
1041 FindFirstNamedDataMember(RT->getDecl()))
1042 return NamedDataMember;
1043 }
1044
1045 // We didn't find a named data member.
1046 return 0;
1047 }
1048
mangleUnqualifiedName(const NamedDecl * ND,DeclarationName Name,unsigned KnownArity)1049 void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
1050 DeclarationName Name,
1051 unsigned KnownArity) {
1052 // <unqualified-name> ::= <operator-name>
1053 // ::= <ctor-dtor-name>
1054 // ::= <source-name>
1055 switch (Name.getNameKind()) {
1056 case DeclarationName::Identifier: {
1057 if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
1058 // We must avoid conflicts between internally- and externally-
1059 // linked variable and function declaration names in the same TU:
1060 // void test() { extern void foo(); }
1061 // static void foo();
1062 // This naming convention is the same as that followed by GCC,
1063 // though it shouldn't actually matter.
1064 if (ND && ND->getLinkage() == InternalLinkage &&
1065 getEffectiveDeclContext(ND)->isFileContext())
1066 Out << 'L';
1067
1068 mangleSourceName(II);
1069 break;
1070 }
1071
1072 // Otherwise, an anonymous entity. We must have a declaration.
1073 assert(ND && "mangling empty name without declaration");
1074
1075 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1076 if (NS->isAnonymousNamespace()) {
1077 // This is how gcc mangles these names.
1078 Out << "12_GLOBAL__N_1";
1079 break;
1080 }
1081 }
1082
1083 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1084 // We must have an anonymous union or struct declaration.
1085 const RecordDecl *RD =
1086 cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
1087
1088 // Itanium C++ ABI 5.1.2:
1089 //
1090 // For the purposes of mangling, the name of an anonymous union is
1091 // considered to be the name of the first named data member found by a
1092 // pre-order, depth-first, declaration-order walk of the data members of
1093 // the anonymous union. If there is no such data member (i.e., if all of
1094 // the data members in the union are unnamed), then there is no way for
1095 // a program to refer to the anonymous union, and there is therefore no
1096 // need to mangle its name.
1097 const FieldDecl *FD = FindFirstNamedDataMember(RD);
1098
1099 // It's actually possible for various reasons for us to get here
1100 // with an empty anonymous struct / union. Fortunately, it
1101 // doesn't really matter what name we generate.
1102 if (!FD) break;
1103 assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1104
1105 mangleSourceName(FD->getIdentifier());
1106 break;
1107 }
1108
1109 // We must have an anonymous struct.
1110 const TagDecl *TD = cast<TagDecl>(ND);
1111 if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1112 assert(TD->getDeclContext() == D->getDeclContext() &&
1113 "Typedef should not be in another decl context!");
1114 assert(D->getDeclName().getAsIdentifierInfo() &&
1115 "Typedef was not named!");
1116 mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1117 break;
1118 }
1119
1120 // <unnamed-type-name> ::= <closure-type-name>
1121 //
1122 // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1123 // <lambda-sig> ::= <parameter-type>+ # Parameter types or 'v' for 'void'.
1124 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1125 if (Record->isLambda() && Record->getLambdaManglingNumber()) {
1126 mangleLambda(Record);
1127 break;
1128 }
1129 }
1130
1131 // Get a unique id for the anonymous struct.
1132 uint64_t AnonStructId = Context.getAnonymousStructId(TD);
1133
1134 // Mangle it as a source name in the form
1135 // [n] $_<id>
1136 // where n is the length of the string.
1137 SmallString<8> Str;
1138 Str += "$_";
1139 Str += llvm::utostr(AnonStructId);
1140
1141 Out << Str.size();
1142 Out << Str.str();
1143 break;
1144 }
1145
1146 case DeclarationName::ObjCZeroArgSelector:
1147 case DeclarationName::ObjCOneArgSelector:
1148 case DeclarationName::ObjCMultiArgSelector:
1149 llvm_unreachable("Can't mangle Objective-C selector names here!");
1150
1151 case DeclarationName::CXXConstructorName:
1152 if (ND == Structor)
1153 // If the named decl is the C++ constructor we're mangling, use the type
1154 // we were given.
1155 mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
1156 else
1157 // Otherwise, use the complete constructor name. This is relevant if a
1158 // class with a constructor is declared within a constructor.
1159 mangleCXXCtorType(Ctor_Complete);
1160 break;
1161
1162 case DeclarationName::CXXDestructorName:
1163 if (ND == Structor)
1164 // If the named decl is the C++ destructor we're mangling, use the type we
1165 // were given.
1166 mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1167 else
1168 // Otherwise, use the complete destructor name. This is relevant if a
1169 // class with a destructor is declared within a destructor.
1170 mangleCXXDtorType(Dtor_Complete);
1171 break;
1172
1173 case DeclarationName::CXXConversionFunctionName:
1174 // <operator-name> ::= cv <type> # (cast)
1175 Out << "cv";
1176 mangleType(Name.getCXXNameType());
1177 break;
1178
1179 case DeclarationName::CXXOperatorName: {
1180 unsigned Arity;
1181 if (ND) {
1182 Arity = cast<FunctionDecl>(ND)->getNumParams();
1183
1184 // If we have a C++ member function, we need to include the 'this' pointer.
1185 // FIXME: This does not make sense for operators that are static, but their
1186 // names stay the same regardless of the arity (operator new for instance).
1187 if (isa<CXXMethodDecl>(ND))
1188 Arity++;
1189 } else
1190 Arity = KnownArity;
1191
1192 mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
1193 break;
1194 }
1195
1196 case DeclarationName::CXXLiteralOperatorName:
1197 // FIXME: This mangling is not yet official.
1198 Out << "li";
1199 mangleSourceName(Name.getCXXLiteralIdentifier());
1200 break;
1201
1202 case DeclarationName::CXXUsingDirective:
1203 llvm_unreachable("Can't mangle a using directive name!");
1204 }
1205 }
1206
mangleSourceName(const IdentifierInfo * II)1207 void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1208 // <source-name> ::= <positive length number> <identifier>
1209 // <number> ::= [n] <non-negative decimal integer>
1210 // <identifier> ::= <unqualified source code identifier>
1211 Out << II->getLength() << II->getName();
1212 }
1213
mangleNestedName(const NamedDecl * ND,const DeclContext * DC,bool NoFunction)1214 void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
1215 const DeclContext *DC,
1216 bool NoFunction) {
1217 // <nested-name>
1218 // ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1219 // ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1220 // <template-args> E
1221
1222 Out << 'N';
1223 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1224 mangleQualifiers(Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
1225 mangleRefQualifier(Method->getRefQualifier());
1226 }
1227
1228 // Check if we have a template.
1229 const TemplateArgumentList *TemplateArgs = 0;
1230 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1231 mangleTemplatePrefix(TD);
1232 TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
1233 mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
1234 }
1235 else {
1236 manglePrefix(DC, NoFunction);
1237 mangleUnqualifiedName(ND);
1238 }
1239
1240 Out << 'E';
1241 }
mangleNestedName(const TemplateDecl * TD,const TemplateArgument * TemplateArgs,unsigned NumTemplateArgs)1242 void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1243 const TemplateArgument *TemplateArgs,
1244 unsigned NumTemplateArgs) {
1245 // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1246
1247 Out << 'N';
1248
1249 mangleTemplatePrefix(TD);
1250 TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
1251 mangleTemplateArgs(*TemplateParameters, TemplateArgs, NumTemplateArgs);
1252
1253 Out << 'E';
1254 }
1255
mangleLocalName(const NamedDecl * ND)1256 void CXXNameMangler::mangleLocalName(const NamedDecl *ND) {
1257 // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1258 // := Z <function encoding> E s [<discriminator>]
1259 // <local-name> := Z <function encoding> E d [ <parameter number> ]
1260 // _ <entity name>
1261 // <discriminator> := _ <non-negative number>
1262 const DeclContext *DC = getEffectiveDeclContext(ND);
1263 if (isa<ObjCMethodDecl>(DC) && isa<FunctionDecl>(ND)) {
1264 // Don't add objc method name mangling to locally declared function
1265 mangleUnqualifiedName(ND);
1266 return;
1267 }
1268
1269 Out << 'Z';
1270
1271 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC)) {
1272 mangleObjCMethodName(MD);
1273 } else if (const CXXRecordDecl *RD = GetLocalClassDecl(ND)) {
1274 mangleFunctionEncoding(cast<FunctionDecl>(getEffectiveDeclContext(RD)));
1275 Out << 'E';
1276
1277 // The parameter number is omitted for the last parameter, 0 for the
1278 // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1279 // <entity name> will of course contain a <closure-type-name>: Its
1280 // numbering will be local to the particular argument in which it appears
1281 // -- other default arguments do not affect its encoding.
1282 bool SkipDiscriminator = false;
1283 if (RD->isLambda()) {
1284 if (const ParmVarDecl *Parm
1285 = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl())) {
1286 if (const FunctionDecl *Func
1287 = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1288 Out << 'd';
1289 unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1290 if (Num > 1)
1291 mangleNumber(Num - 2);
1292 Out << '_';
1293 SkipDiscriminator = true;
1294 }
1295 }
1296 }
1297
1298 // Mangle the name relative to the closest enclosing function.
1299 if (ND == RD) // equality ok because RD derived from ND above
1300 mangleUnqualifiedName(ND);
1301 else
1302 mangleNestedName(ND, DC, true /*NoFunction*/);
1303
1304 if (!SkipDiscriminator) {
1305 unsigned disc;
1306 if (Context.getNextDiscriminator(RD, disc)) {
1307 if (disc < 10)
1308 Out << '_' << disc;
1309 else
1310 Out << "__" << disc << '_';
1311 }
1312 }
1313
1314 return;
1315 }
1316 else
1317 mangleFunctionEncoding(cast<FunctionDecl>(DC));
1318
1319 Out << 'E';
1320 mangleUnqualifiedName(ND);
1321 }
1322
mangleLambda(const CXXRecordDecl * Lambda)1323 void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1324 // If the context of a closure type is an initializer for a class member
1325 // (static or nonstatic), it is encoded in a qualified name with a final
1326 // <prefix> of the form:
1327 //
1328 // <data-member-prefix> := <member source-name> M
1329 //
1330 // Technically, the data-member-prefix is part of the <prefix>. However,
1331 // since a closure type will always be mangled with a prefix, it's easier
1332 // to emit that last part of the prefix here.
1333 if (Decl *Context = Lambda->getLambdaContextDecl()) {
1334 if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1335 Context->getDeclContext()->isRecord()) {
1336 if (const IdentifierInfo *Name
1337 = cast<NamedDecl>(Context)->getIdentifier()) {
1338 mangleSourceName(Name);
1339 Out << 'M';
1340 }
1341 }
1342 }
1343
1344 Out << "Ul";
1345 DeclarationName Name
1346 = getASTContext().DeclarationNames.getCXXOperatorName(OO_Call);
1347 const FunctionProtoType *Proto
1348 = cast<CXXMethodDecl>(*Lambda->lookup(Name).first)->getType()->
1349 getAs<FunctionProtoType>();
1350 mangleBareFunctionType(Proto, /*MangleReturnType=*/false);
1351 Out << "E";
1352
1353 // The number is omitted for the first closure type with a given
1354 // <lambda-sig> in a given context; it is n-2 for the nth closure type
1355 // (in lexical order) with that same <lambda-sig> and context.
1356 //
1357 // The AST keeps track of the number for us.
1358 unsigned Number = Lambda->getLambdaManglingNumber();
1359 assert(Number > 0 && "Lambda should be mangled as an unnamed class");
1360 if (Number > 1)
1361 mangleNumber(Number - 2);
1362 Out << '_';
1363 }
1364
manglePrefix(NestedNameSpecifier * qualifier)1365 void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1366 switch (qualifier->getKind()) {
1367 case NestedNameSpecifier::Global:
1368 // nothing
1369 return;
1370
1371 case NestedNameSpecifier::Namespace:
1372 mangleName(qualifier->getAsNamespace());
1373 return;
1374
1375 case NestedNameSpecifier::NamespaceAlias:
1376 mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
1377 return;
1378
1379 case NestedNameSpecifier::TypeSpec:
1380 case NestedNameSpecifier::TypeSpecWithTemplate:
1381 manglePrefix(QualType(qualifier->getAsType(), 0));
1382 return;
1383
1384 case NestedNameSpecifier::Identifier:
1385 // Member expressions can have these without prefixes, but that
1386 // should end up in mangleUnresolvedPrefix instead.
1387 assert(qualifier->getPrefix());
1388 manglePrefix(qualifier->getPrefix());
1389
1390 mangleSourceName(qualifier->getAsIdentifier());
1391 return;
1392 }
1393
1394 llvm_unreachable("unexpected nested name specifier");
1395 }
1396
manglePrefix(const DeclContext * DC,bool NoFunction)1397 void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
1398 // <prefix> ::= <prefix> <unqualified-name>
1399 // ::= <template-prefix> <template-args>
1400 // ::= <template-param>
1401 // ::= # empty
1402 // ::= <substitution>
1403
1404 DC = IgnoreLinkageSpecDecls(DC);
1405
1406 if (DC->isTranslationUnit())
1407 return;
1408
1409 if (const BlockDecl *Block = dyn_cast<BlockDecl>(DC)) {
1410 manglePrefix(getEffectiveParentContext(DC), NoFunction);
1411 SmallString<64> Name;
1412 llvm::raw_svector_ostream NameStream(Name);
1413 Context.mangleBlock(Block, NameStream);
1414 NameStream.flush();
1415 Out << Name.size() << Name;
1416 return;
1417 }
1418
1419 const NamedDecl *ND = cast<NamedDecl>(DC);
1420 if (mangleSubstitution(ND))
1421 return;
1422
1423 // Check if we have a template.
1424 const TemplateArgumentList *TemplateArgs = 0;
1425 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1426 mangleTemplatePrefix(TD);
1427 TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
1428 mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
1429 }
1430 else if(NoFunction && (isa<FunctionDecl>(ND) || isa<ObjCMethodDecl>(ND)))
1431 return;
1432 else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(ND))
1433 mangleObjCMethodName(Method);
1434 else {
1435 manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1436 mangleUnqualifiedName(ND);
1437 }
1438
1439 addSubstitution(ND);
1440 }
1441
mangleTemplatePrefix(TemplateName Template)1442 void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
1443 // <template-prefix> ::= <prefix> <template unqualified-name>
1444 // ::= <template-param>
1445 // ::= <substitution>
1446 if (TemplateDecl *TD = Template.getAsTemplateDecl())
1447 return mangleTemplatePrefix(TD);
1448
1449 if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
1450 manglePrefix(Qualified->getQualifier());
1451
1452 if (OverloadedTemplateStorage *Overloaded
1453 = Template.getAsOverloadedTemplate()) {
1454 mangleUnqualifiedName(0, (*Overloaded->begin())->getDeclName(),
1455 UnknownArity);
1456 return;
1457 }
1458
1459 DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1460 assert(Dependent && "Unknown template name kind?");
1461 manglePrefix(Dependent->getQualifier());
1462 mangleUnscopedTemplateName(Template);
1463 }
1464
mangleTemplatePrefix(const TemplateDecl * ND)1465 void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND) {
1466 // <template-prefix> ::= <prefix> <template unqualified-name>
1467 // ::= <template-param>
1468 // ::= <substitution>
1469 // <template-template-param> ::= <template-param>
1470 // <substitution>
1471
1472 if (mangleSubstitution(ND))
1473 return;
1474
1475 // <template-template-param> ::= <template-param>
1476 if (const TemplateTemplateParmDecl *TTP
1477 = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1478 mangleTemplateParameter(TTP->getIndex());
1479 return;
1480 }
1481
1482 manglePrefix(getEffectiveDeclContext(ND));
1483 mangleUnqualifiedName(ND->getTemplatedDecl());
1484 addSubstitution(ND);
1485 }
1486
1487 /// Mangles a template name under the production <type>. Required for
1488 /// template template arguments.
1489 /// <type> ::= <class-enum-type>
1490 /// ::= <template-param>
1491 /// ::= <substitution>
mangleType(TemplateName TN)1492 void CXXNameMangler::mangleType(TemplateName TN) {
1493 if (mangleSubstitution(TN))
1494 return;
1495
1496 TemplateDecl *TD = 0;
1497
1498 switch (TN.getKind()) {
1499 case TemplateName::QualifiedTemplate:
1500 TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
1501 goto HaveDecl;
1502
1503 case TemplateName::Template:
1504 TD = TN.getAsTemplateDecl();
1505 goto HaveDecl;
1506
1507 HaveDecl:
1508 if (isa<TemplateTemplateParmDecl>(TD))
1509 mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
1510 else
1511 mangleName(TD);
1512 break;
1513
1514 case TemplateName::OverloadedTemplate:
1515 llvm_unreachable("can't mangle an overloaded template name as a <type>");
1516
1517 case TemplateName::DependentTemplate: {
1518 const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
1519 assert(Dependent->isIdentifier());
1520
1521 // <class-enum-type> ::= <name>
1522 // <name> ::= <nested-name>
1523 mangleUnresolvedPrefix(Dependent->getQualifier(), 0);
1524 mangleSourceName(Dependent->getIdentifier());
1525 break;
1526 }
1527
1528 case TemplateName::SubstTemplateTemplateParm: {
1529 // Substituted template parameters are mangled as the substituted
1530 // template. This will check for the substitution twice, which is
1531 // fine, but we have to return early so that we don't try to *add*
1532 // the substitution twice.
1533 SubstTemplateTemplateParmStorage *subst
1534 = TN.getAsSubstTemplateTemplateParm();
1535 mangleType(subst->getReplacement());
1536 return;
1537 }
1538
1539 case TemplateName::SubstTemplateTemplateParmPack: {
1540 // FIXME: not clear how to mangle this!
1541 // template <template <class> class T...> class A {
1542 // template <template <class> class U...> void foo(B<T,U> x...);
1543 // };
1544 Out << "_SUBSTPACK_";
1545 break;
1546 }
1547 }
1548
1549 addSubstitution(TN);
1550 }
1551
1552 void
mangleOperatorName(OverloadedOperatorKind OO,unsigned Arity)1553 CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
1554 switch (OO) {
1555 // <operator-name> ::= nw # new
1556 case OO_New: Out << "nw"; break;
1557 // ::= na # new[]
1558 case OO_Array_New: Out << "na"; break;
1559 // ::= dl # delete
1560 case OO_Delete: Out << "dl"; break;
1561 // ::= da # delete[]
1562 case OO_Array_Delete: Out << "da"; break;
1563 // ::= ps # + (unary)
1564 // ::= pl # + (binary or unknown)
1565 case OO_Plus:
1566 Out << (Arity == 1? "ps" : "pl"); break;
1567 // ::= ng # - (unary)
1568 // ::= mi # - (binary or unknown)
1569 case OO_Minus:
1570 Out << (Arity == 1? "ng" : "mi"); break;
1571 // ::= ad # & (unary)
1572 // ::= an # & (binary or unknown)
1573 case OO_Amp:
1574 Out << (Arity == 1? "ad" : "an"); break;
1575 // ::= de # * (unary)
1576 // ::= ml # * (binary or unknown)
1577 case OO_Star:
1578 // Use binary when unknown.
1579 Out << (Arity == 1? "de" : "ml"); break;
1580 // ::= co # ~
1581 case OO_Tilde: Out << "co"; break;
1582 // ::= dv # /
1583 case OO_Slash: Out << "dv"; break;
1584 // ::= rm # %
1585 case OO_Percent: Out << "rm"; break;
1586 // ::= or # |
1587 case OO_Pipe: Out << "or"; break;
1588 // ::= eo # ^
1589 case OO_Caret: Out << "eo"; break;
1590 // ::= aS # =
1591 case OO_Equal: Out << "aS"; break;
1592 // ::= pL # +=
1593 case OO_PlusEqual: Out << "pL"; break;
1594 // ::= mI # -=
1595 case OO_MinusEqual: Out << "mI"; break;
1596 // ::= mL # *=
1597 case OO_StarEqual: Out << "mL"; break;
1598 // ::= dV # /=
1599 case OO_SlashEqual: Out << "dV"; break;
1600 // ::= rM # %=
1601 case OO_PercentEqual: Out << "rM"; break;
1602 // ::= aN # &=
1603 case OO_AmpEqual: Out << "aN"; break;
1604 // ::= oR # |=
1605 case OO_PipeEqual: Out << "oR"; break;
1606 // ::= eO # ^=
1607 case OO_CaretEqual: Out << "eO"; break;
1608 // ::= ls # <<
1609 case OO_LessLess: Out << "ls"; break;
1610 // ::= rs # >>
1611 case OO_GreaterGreater: Out << "rs"; break;
1612 // ::= lS # <<=
1613 case OO_LessLessEqual: Out << "lS"; break;
1614 // ::= rS # >>=
1615 case OO_GreaterGreaterEqual: Out << "rS"; break;
1616 // ::= eq # ==
1617 case OO_EqualEqual: Out << "eq"; break;
1618 // ::= ne # !=
1619 case OO_ExclaimEqual: Out << "ne"; break;
1620 // ::= lt # <
1621 case OO_Less: Out << "lt"; break;
1622 // ::= gt # >
1623 case OO_Greater: Out << "gt"; break;
1624 // ::= le # <=
1625 case OO_LessEqual: Out << "le"; break;
1626 // ::= ge # >=
1627 case OO_GreaterEqual: Out << "ge"; break;
1628 // ::= nt # !
1629 case OO_Exclaim: Out << "nt"; break;
1630 // ::= aa # &&
1631 case OO_AmpAmp: Out << "aa"; break;
1632 // ::= oo # ||
1633 case OO_PipePipe: Out << "oo"; break;
1634 // ::= pp # ++
1635 case OO_PlusPlus: Out << "pp"; break;
1636 // ::= mm # --
1637 case OO_MinusMinus: Out << "mm"; break;
1638 // ::= cm # ,
1639 case OO_Comma: Out << "cm"; break;
1640 // ::= pm # ->*
1641 case OO_ArrowStar: Out << "pm"; break;
1642 // ::= pt # ->
1643 case OO_Arrow: Out << "pt"; break;
1644 // ::= cl # ()
1645 case OO_Call: Out << "cl"; break;
1646 // ::= ix # []
1647 case OO_Subscript: Out << "ix"; break;
1648
1649 // ::= qu # ?
1650 // The conditional operator can't be overloaded, but we still handle it when
1651 // mangling expressions.
1652 case OO_Conditional: Out << "qu"; break;
1653
1654 case OO_None:
1655 case NUM_OVERLOADED_OPERATORS:
1656 llvm_unreachable("Not an overloaded operator");
1657 }
1658 }
1659
mangleQualifiers(Qualifiers Quals)1660 void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
1661 // <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const
1662 if (Quals.hasRestrict())
1663 Out << 'r';
1664 if (Quals.hasVolatile())
1665 Out << 'V';
1666 if (Quals.hasConst())
1667 Out << 'K';
1668
1669 if (Quals.hasAddressSpace()) {
1670 // Extension:
1671 //
1672 // <type> ::= U <address-space-number>
1673 //
1674 // where <address-space-number> is a source name consisting of 'AS'
1675 // followed by the address space <number>.
1676 SmallString<64> ASString;
1677 ASString = "AS" + llvm::utostr_32(Quals.getAddressSpace());
1678 Out << 'U' << ASString.size() << ASString;
1679 }
1680
1681 StringRef LifetimeName;
1682 switch (Quals.getObjCLifetime()) {
1683 // Objective-C ARC Extension:
1684 //
1685 // <type> ::= U "__strong"
1686 // <type> ::= U "__weak"
1687 // <type> ::= U "__autoreleasing"
1688 case Qualifiers::OCL_None:
1689 break;
1690
1691 case Qualifiers::OCL_Weak:
1692 LifetimeName = "__weak";
1693 break;
1694
1695 case Qualifiers::OCL_Strong:
1696 LifetimeName = "__strong";
1697 break;
1698
1699 case Qualifiers::OCL_Autoreleasing:
1700 LifetimeName = "__autoreleasing";
1701 break;
1702
1703 case Qualifiers::OCL_ExplicitNone:
1704 // The __unsafe_unretained qualifier is *not* mangled, so that
1705 // __unsafe_unretained types in ARC produce the same manglings as the
1706 // equivalent (but, naturally, unqualified) types in non-ARC, providing
1707 // better ABI compatibility.
1708 //
1709 // It's safe to do this because unqualified 'id' won't show up
1710 // in any type signatures that need to be mangled.
1711 break;
1712 }
1713 if (!LifetimeName.empty())
1714 Out << 'U' << LifetimeName.size() << LifetimeName;
1715 }
1716
mangleRefQualifier(RefQualifierKind RefQualifier)1717 void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1718 // <ref-qualifier> ::= R # lvalue reference
1719 // ::= O # rvalue-reference
1720 // Proposal to Itanium C++ ABI list on 1/26/11
1721 switch (RefQualifier) {
1722 case RQ_None:
1723 break;
1724
1725 case RQ_LValue:
1726 Out << 'R';
1727 break;
1728
1729 case RQ_RValue:
1730 Out << 'O';
1731 break;
1732 }
1733 }
1734
mangleObjCMethodName(const ObjCMethodDecl * MD)1735 void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1736 Context.mangleObjCMethodName(MD, Out);
1737 }
1738
mangleType(QualType T)1739 void CXXNameMangler::mangleType(QualType T) {
1740 // If our type is instantiation-dependent but not dependent, we mangle
1741 // it as it was written in the source, removing any top-level sugar.
1742 // Otherwise, use the canonical type.
1743 //
1744 // FIXME: This is an approximation of the instantiation-dependent name
1745 // mangling rules, since we should really be using the type as written and
1746 // augmented via semantic analysis (i.e., with implicit conversions and
1747 // default template arguments) for any instantiation-dependent type.
1748 // Unfortunately, that requires several changes to our AST:
1749 // - Instantiation-dependent TemplateSpecializationTypes will need to be
1750 // uniqued, so that we can handle substitutions properly
1751 // - Default template arguments will need to be represented in the
1752 // TemplateSpecializationType, since they need to be mangled even though
1753 // they aren't written.
1754 // - Conversions on non-type template arguments need to be expressed, since
1755 // they can affect the mangling of sizeof/alignof.
1756 if (!T->isInstantiationDependentType() || T->isDependentType())
1757 T = T.getCanonicalType();
1758 else {
1759 // Desugar any types that are purely sugar.
1760 do {
1761 // Don't desugar through template specialization types that aren't
1762 // type aliases. We need to mangle the template arguments as written.
1763 if (const TemplateSpecializationType *TST
1764 = dyn_cast<TemplateSpecializationType>(T))
1765 if (!TST->isTypeAlias())
1766 break;
1767
1768 QualType Desugared
1769 = T.getSingleStepDesugaredType(Context.getASTContext());
1770 if (Desugared == T)
1771 break;
1772
1773 T = Desugared;
1774 } while (true);
1775 }
1776 SplitQualType split = T.split();
1777 Qualifiers quals = split.Quals;
1778 const Type *ty = split.Ty;
1779
1780 bool isSubstitutable = quals || !isa<BuiltinType>(T);
1781 if (isSubstitutable && mangleSubstitution(T))
1782 return;
1783
1784 // If we're mangling a qualified array type, push the qualifiers to
1785 // the element type.
1786 if (quals && isa<ArrayType>(T)) {
1787 ty = Context.getASTContext().getAsArrayType(T);
1788 quals = Qualifiers();
1789
1790 // Note that we don't update T: we want to add the
1791 // substitution at the original type.
1792 }
1793
1794 if (quals) {
1795 mangleQualifiers(quals);
1796 // Recurse: even if the qualified type isn't yet substitutable,
1797 // the unqualified type might be.
1798 mangleType(QualType(ty, 0));
1799 } else {
1800 switch (ty->getTypeClass()) {
1801 #define ABSTRACT_TYPE(CLASS, PARENT)
1802 #define NON_CANONICAL_TYPE(CLASS, PARENT) \
1803 case Type::CLASS: \
1804 llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1805 return;
1806 #define TYPE(CLASS, PARENT) \
1807 case Type::CLASS: \
1808 mangleType(static_cast<const CLASS##Type*>(ty)); \
1809 break;
1810 #include "clang/AST/TypeNodes.def"
1811 }
1812 }
1813
1814 // Add the substitution.
1815 if (isSubstitutable)
1816 addSubstitution(T);
1817 }
1818
mangleNameOrStandardSubstitution(const NamedDecl * ND)1819 void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
1820 if (!mangleStandardSubstitution(ND))
1821 mangleName(ND);
1822 }
1823
mangleType(const BuiltinType * T)1824 void CXXNameMangler::mangleType(const BuiltinType *T) {
1825 // <type> ::= <builtin-type>
1826 // <builtin-type> ::= v # void
1827 // ::= w # wchar_t
1828 // ::= b # bool
1829 // ::= c # char
1830 // ::= a # signed char
1831 // ::= h # unsigned char
1832 // ::= s # short
1833 // ::= t # unsigned short
1834 // ::= i # int
1835 // ::= j # unsigned int
1836 // ::= l # long
1837 // ::= m # unsigned long
1838 // ::= x # long long, __int64
1839 // ::= y # unsigned long long, __int64
1840 // ::= n # __int128
1841 // UNSUPPORTED: ::= o # unsigned __int128
1842 // ::= f # float
1843 // ::= d # double
1844 // ::= e # long double, __float80
1845 // UNSUPPORTED: ::= g # __float128
1846 // UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits)
1847 // UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits)
1848 // UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits)
1849 // ::= Dh # IEEE 754r half-precision floating point (16 bits)
1850 // ::= Di # char32_t
1851 // ::= Ds # char16_t
1852 // ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
1853 // ::= u <source-name> # vendor extended type
1854 switch (T->getKind()) {
1855 case BuiltinType::Void: Out << 'v'; break;
1856 case BuiltinType::Bool: Out << 'b'; break;
1857 case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
1858 case BuiltinType::UChar: Out << 'h'; break;
1859 case BuiltinType::UShort: Out << 't'; break;
1860 case BuiltinType::UInt: Out << 'j'; break;
1861 case BuiltinType::ULong: Out << 'm'; break;
1862 case BuiltinType::ULongLong: Out << 'y'; break;
1863 case BuiltinType::UInt128: Out << 'o'; break;
1864 case BuiltinType::SChar: Out << 'a'; break;
1865 case BuiltinType::WChar_S:
1866 case BuiltinType::WChar_U: Out << 'w'; break;
1867 case BuiltinType::Char16: Out << "Ds"; break;
1868 case BuiltinType::Char32: Out << "Di"; break;
1869 case BuiltinType::Short: Out << 's'; break;
1870 case BuiltinType::Int: Out << 'i'; break;
1871 case BuiltinType::Long: Out << 'l'; break;
1872 case BuiltinType::LongLong: Out << 'x'; break;
1873 case BuiltinType::Int128: Out << 'n'; break;
1874 case BuiltinType::Half: Out << "Dh"; break;
1875 case BuiltinType::Float: Out << 'f'; break;
1876 case BuiltinType::Double: Out << 'd'; break;
1877 case BuiltinType::LongDouble: Out << 'e'; break;
1878 case BuiltinType::NullPtr: Out << "Dn"; break;
1879
1880 #define BUILTIN_TYPE(Id, SingletonId)
1881 #define PLACEHOLDER_TYPE(Id, SingletonId) \
1882 case BuiltinType::Id:
1883 #include "clang/AST/BuiltinTypes.def"
1884 case BuiltinType::Dependent:
1885 llvm_unreachable("mangling a placeholder type");
1886 case BuiltinType::ObjCId: Out << "11objc_object"; break;
1887 case BuiltinType::ObjCClass: Out << "10objc_class"; break;
1888 case BuiltinType::ObjCSel: Out << "13objc_selector"; break;
1889 }
1890 }
1891
1892 // <type> ::= <function-type>
1893 // <function-type> ::= [<CV-qualifiers>] F [Y]
1894 // <bare-function-type> [<ref-qualifier>] E
1895 // (Proposal to cxx-abi-dev, 2012-05-11)
mangleType(const FunctionProtoType * T)1896 void CXXNameMangler::mangleType(const FunctionProtoType *T) {
1897 // Mangle CV-qualifiers, if present. These are 'this' qualifiers,
1898 // e.g. "const" in "int (A::*)() const".
1899 mangleQualifiers(Qualifiers::fromCVRMask(T->getTypeQuals()));
1900
1901 Out << 'F';
1902
1903 // FIXME: We don't have enough information in the AST to produce the 'Y'
1904 // encoding for extern "C" function types.
1905 mangleBareFunctionType(T, /*MangleReturnType=*/true);
1906
1907 // Mangle the ref-qualifier, if present.
1908 mangleRefQualifier(T->getRefQualifier());
1909
1910 Out << 'E';
1911 }
mangleType(const FunctionNoProtoType * T)1912 void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
1913 llvm_unreachable("Can't mangle K&R function prototypes");
1914 }
mangleBareFunctionType(const FunctionType * T,bool MangleReturnType)1915 void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
1916 bool MangleReturnType) {
1917 // We should never be mangling something without a prototype.
1918 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
1919
1920 // Record that we're in a function type. See mangleFunctionParam
1921 // for details on what we're trying to achieve here.
1922 FunctionTypeDepthState saved = FunctionTypeDepth.push();
1923
1924 // <bare-function-type> ::= <signature type>+
1925 if (MangleReturnType) {
1926 FunctionTypeDepth.enterResultType();
1927 mangleType(Proto->getResultType());
1928 FunctionTypeDepth.leaveResultType();
1929 }
1930
1931 if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
1932 // <builtin-type> ::= v # void
1933 Out << 'v';
1934
1935 FunctionTypeDepth.pop(saved);
1936 return;
1937 }
1938
1939 for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
1940 ArgEnd = Proto->arg_type_end();
1941 Arg != ArgEnd; ++Arg)
1942 mangleType(Context.getASTContext().getSignatureParameterType(*Arg));
1943
1944 FunctionTypeDepth.pop(saved);
1945
1946 // <builtin-type> ::= z # ellipsis
1947 if (Proto->isVariadic())
1948 Out << 'z';
1949 }
1950
1951 // <type> ::= <class-enum-type>
1952 // <class-enum-type> ::= <name>
mangleType(const UnresolvedUsingType * T)1953 void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
1954 mangleName(T->getDecl());
1955 }
1956
1957 // <type> ::= <class-enum-type>
1958 // <class-enum-type> ::= <name>
mangleType(const EnumType * T)1959 void CXXNameMangler::mangleType(const EnumType *T) {
1960 mangleType(static_cast<const TagType*>(T));
1961 }
mangleType(const RecordType * T)1962 void CXXNameMangler::mangleType(const RecordType *T) {
1963 mangleType(static_cast<const TagType*>(T));
1964 }
mangleType(const TagType * T)1965 void CXXNameMangler::mangleType(const TagType *T) {
1966 mangleName(T->getDecl());
1967 }
1968
1969 // <type> ::= <array-type>
1970 // <array-type> ::= A <positive dimension number> _ <element type>
1971 // ::= A [<dimension expression>] _ <element type>
mangleType(const ConstantArrayType * T)1972 void CXXNameMangler::mangleType(const ConstantArrayType *T) {
1973 Out << 'A' << T->getSize() << '_';
1974 mangleType(T->getElementType());
1975 }
mangleType(const VariableArrayType * T)1976 void CXXNameMangler::mangleType(const VariableArrayType *T) {
1977 Out << 'A';
1978 // decayed vla types (size 0) will just be skipped.
1979 if (T->getSizeExpr())
1980 mangleExpression(T->getSizeExpr());
1981 Out << '_';
1982 mangleType(T->getElementType());
1983 }
mangleType(const DependentSizedArrayType * T)1984 void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
1985 Out << 'A';
1986 mangleExpression(T->getSizeExpr());
1987 Out << '_';
1988 mangleType(T->getElementType());
1989 }
mangleType(const IncompleteArrayType * T)1990 void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
1991 Out << "A_";
1992 mangleType(T->getElementType());
1993 }
1994
1995 // <type> ::= <pointer-to-member-type>
1996 // <pointer-to-member-type> ::= M <class type> <member type>
mangleType(const MemberPointerType * T)1997 void CXXNameMangler::mangleType(const MemberPointerType *T) {
1998 Out << 'M';
1999 mangleType(QualType(T->getClass(), 0));
2000 QualType PointeeType = T->getPointeeType();
2001 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
2002 mangleType(FPT);
2003
2004 // Itanium C++ ABI 5.1.8:
2005 //
2006 // The type of a non-static member function is considered to be different,
2007 // for the purposes of substitution, from the type of a namespace-scope or
2008 // static member function whose type appears similar. The types of two
2009 // non-static member functions are considered to be different, for the
2010 // purposes of substitution, if the functions are members of different
2011 // classes. In other words, for the purposes of substitution, the class of
2012 // which the function is a member is considered part of the type of
2013 // function.
2014
2015 // Given that we already substitute member function pointers as a
2016 // whole, the net effect of this rule is just to unconditionally
2017 // suppress substitution on the function type in a member pointer.
2018 // We increment the SeqID here to emulate adding an entry to the
2019 // substitution table.
2020 ++SeqID;
2021 } else
2022 mangleType(PointeeType);
2023 }
2024
2025 // <type> ::= <template-param>
mangleType(const TemplateTypeParmType * T)2026 void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
2027 mangleTemplateParameter(T->getIndex());
2028 }
2029
2030 // <type> ::= <template-param>
mangleType(const SubstTemplateTypeParmPackType * T)2031 void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
2032 // FIXME: not clear how to mangle this!
2033 // template <class T...> class A {
2034 // template <class U...> void foo(T(*)(U) x...);
2035 // };
2036 Out << "_SUBSTPACK_";
2037 }
2038
2039 // <type> ::= P <type> # pointer-to
mangleType(const PointerType * T)2040 void CXXNameMangler::mangleType(const PointerType *T) {
2041 Out << 'P';
2042 mangleType(T->getPointeeType());
2043 }
mangleType(const ObjCObjectPointerType * T)2044 void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
2045 Out << 'P';
2046 mangleType(T->getPointeeType());
2047 }
2048
2049 // <type> ::= R <type> # reference-to
mangleType(const LValueReferenceType * T)2050 void CXXNameMangler::mangleType(const LValueReferenceType *T) {
2051 Out << 'R';
2052 mangleType(T->getPointeeType());
2053 }
2054
2055 // <type> ::= O <type> # rvalue reference-to (C++0x)
mangleType(const RValueReferenceType * T)2056 void CXXNameMangler::mangleType(const RValueReferenceType *T) {
2057 Out << 'O';
2058 mangleType(T->getPointeeType());
2059 }
2060
2061 // <type> ::= C <type> # complex pair (C 2000)
mangleType(const ComplexType * T)2062 void CXXNameMangler::mangleType(const ComplexType *T) {
2063 Out << 'C';
2064 mangleType(T->getElementType());
2065 }
2066
2067 // ARM's ABI for Neon vector types specifies that they should be mangled as
2068 // if they are structs (to match ARM's initial implementation). The
2069 // vector type must be one of the special types predefined by ARM.
mangleNeonVectorType(const VectorType * T)2070 void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
2071 QualType EltType = T->getElementType();
2072 assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2073 const char *EltName = 0;
2074 if (T->getVectorKind() == VectorType::NeonPolyVector) {
2075 switch (cast<BuiltinType>(EltType)->getKind()) {
2076 case BuiltinType::SChar: EltName = "poly8_t"; break;
2077 case BuiltinType::Short: EltName = "poly16_t"; break;
2078 default: llvm_unreachable("unexpected Neon polynomial vector element type");
2079 }
2080 } else {
2081 switch (cast<BuiltinType>(EltType)->getKind()) {
2082 case BuiltinType::SChar: EltName = "int8_t"; break;
2083 case BuiltinType::UChar: EltName = "uint8_t"; break;
2084 case BuiltinType::Short: EltName = "int16_t"; break;
2085 case BuiltinType::UShort: EltName = "uint16_t"; break;
2086 case BuiltinType::Int: EltName = "int32_t"; break;
2087 case BuiltinType::UInt: EltName = "uint32_t"; break;
2088 case BuiltinType::LongLong: EltName = "int64_t"; break;
2089 case BuiltinType::ULongLong: EltName = "uint64_t"; break;
2090 case BuiltinType::Float: EltName = "float32_t"; break;
2091 default: llvm_unreachable("unexpected Neon vector element type");
2092 }
2093 }
2094 const char *BaseName = 0;
2095 unsigned BitSize = (T->getNumElements() *
2096 getASTContext().getTypeSize(EltType));
2097 if (BitSize == 64)
2098 BaseName = "__simd64_";
2099 else {
2100 assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
2101 BaseName = "__simd128_";
2102 }
2103 Out << strlen(BaseName) + strlen(EltName);
2104 Out << BaseName << EltName;
2105 }
2106
2107 // GNU extension: vector types
2108 // <type> ::= <vector-type>
2109 // <vector-type> ::= Dv <positive dimension number> _
2110 // <extended element type>
2111 // ::= Dv [<dimension expression>] _ <element type>
2112 // <extended element type> ::= <element type>
2113 // ::= p # AltiVec vector pixel
mangleType(const VectorType * T)2114 void CXXNameMangler::mangleType(const VectorType *T) {
2115 if ((T->getVectorKind() == VectorType::NeonVector ||
2116 T->getVectorKind() == VectorType::NeonPolyVector)) {
2117 mangleNeonVectorType(T);
2118 return;
2119 }
2120 Out << "Dv" << T->getNumElements() << '_';
2121 if (T->getVectorKind() == VectorType::AltiVecPixel)
2122 Out << 'p';
2123 else if (T->getVectorKind() == VectorType::AltiVecBool)
2124 Out << 'b';
2125 else
2126 mangleType(T->getElementType());
2127 }
mangleType(const ExtVectorType * T)2128 void CXXNameMangler::mangleType(const ExtVectorType *T) {
2129 mangleType(static_cast<const VectorType*>(T));
2130 }
mangleType(const DependentSizedExtVectorType * T)2131 void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
2132 Out << "Dv";
2133 mangleExpression(T->getSizeExpr());
2134 Out << '_';
2135 mangleType(T->getElementType());
2136 }
2137
mangleType(const PackExpansionType * T)2138 void CXXNameMangler::mangleType(const PackExpansionType *T) {
2139 // <type> ::= Dp <type> # pack expansion (C++0x)
2140 Out << "Dp";
2141 mangleType(T->getPattern());
2142 }
2143
mangleType(const ObjCInterfaceType * T)2144 void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
2145 mangleSourceName(T->getDecl()->getIdentifier());
2146 }
2147
mangleType(const ObjCObjectType * T)2148 void CXXNameMangler::mangleType(const ObjCObjectType *T) {
2149 // We don't allow overloading by different protocol qualification,
2150 // so mangling them isn't necessary.
2151 mangleType(T->getBaseType());
2152 }
2153
mangleType(const BlockPointerType * T)2154 void CXXNameMangler::mangleType(const BlockPointerType *T) {
2155 Out << "U13block_pointer";
2156 mangleType(T->getPointeeType());
2157 }
2158
mangleType(const InjectedClassNameType * T)2159 void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
2160 // Mangle injected class name types as if the user had written the
2161 // specialization out fully. It may not actually be possible to see
2162 // this mangling, though.
2163 mangleType(T->getInjectedSpecializationType());
2164 }
2165
mangleType(const TemplateSpecializationType * T)2166 void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
2167 if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
2168 mangleName(TD, T->getArgs(), T->getNumArgs());
2169 } else {
2170 if (mangleSubstitution(QualType(T, 0)))
2171 return;
2172
2173 mangleTemplatePrefix(T->getTemplateName());
2174
2175 // FIXME: GCC does not appear to mangle the template arguments when
2176 // the template in question is a dependent template name. Should we
2177 // emulate that badness?
2178 mangleTemplateArgs(T->getTemplateName(), T->getArgs(), T->getNumArgs());
2179 addSubstitution(QualType(T, 0));
2180 }
2181 }
2182
mangleType(const DependentNameType * T)2183 void CXXNameMangler::mangleType(const DependentNameType *T) {
2184 // Typename types are always nested
2185 Out << 'N';
2186 manglePrefix(T->getQualifier());
2187 mangleSourceName(T->getIdentifier());
2188 Out << 'E';
2189 }
2190
mangleType(const DependentTemplateSpecializationType * T)2191 void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
2192 // Dependently-scoped template types are nested if they have a prefix.
2193 Out << 'N';
2194
2195 // TODO: avoid making this TemplateName.
2196 TemplateName Prefix =
2197 getASTContext().getDependentTemplateName(T->getQualifier(),
2198 T->getIdentifier());
2199 mangleTemplatePrefix(Prefix);
2200
2201 // FIXME: GCC does not appear to mangle the template arguments when
2202 // the template in question is a dependent template name. Should we
2203 // emulate that badness?
2204 mangleTemplateArgs(Prefix, T->getArgs(), T->getNumArgs());
2205 Out << 'E';
2206 }
2207
mangleType(const TypeOfType * T)2208 void CXXNameMangler::mangleType(const TypeOfType *T) {
2209 // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2210 // "extension with parameters" mangling.
2211 Out << "u6typeof";
2212 }
2213
mangleType(const TypeOfExprType * T)2214 void CXXNameMangler::mangleType(const TypeOfExprType *T) {
2215 // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2216 // "extension with parameters" mangling.
2217 Out << "u6typeof";
2218 }
2219
mangleType(const DecltypeType * T)2220 void CXXNameMangler::mangleType(const DecltypeType *T) {
2221 Expr *E = T->getUnderlyingExpr();
2222
2223 // type ::= Dt <expression> E # decltype of an id-expression
2224 // # or class member access
2225 // ::= DT <expression> E # decltype of an expression
2226
2227 // This purports to be an exhaustive list of id-expressions and
2228 // class member accesses. Note that we do not ignore parentheses;
2229 // parentheses change the semantics of decltype for these
2230 // expressions (and cause the mangler to use the other form).
2231 if (isa<DeclRefExpr>(E) ||
2232 isa<MemberExpr>(E) ||
2233 isa<UnresolvedLookupExpr>(E) ||
2234 isa<DependentScopeDeclRefExpr>(E) ||
2235 isa<CXXDependentScopeMemberExpr>(E) ||
2236 isa<UnresolvedMemberExpr>(E))
2237 Out << "Dt";
2238 else
2239 Out << "DT";
2240 mangleExpression(E);
2241 Out << 'E';
2242 }
2243
mangleType(const UnaryTransformType * T)2244 void CXXNameMangler::mangleType(const UnaryTransformType *T) {
2245 // If this is dependent, we need to record that. If not, we simply
2246 // mangle it as the underlying type since they are equivalent.
2247 if (T->isDependentType()) {
2248 Out << 'U';
2249
2250 switch (T->getUTTKind()) {
2251 case UnaryTransformType::EnumUnderlyingType:
2252 Out << "3eut";
2253 break;
2254 }
2255 }
2256
2257 mangleType(T->getUnderlyingType());
2258 }
2259
mangleType(const AutoType * T)2260 void CXXNameMangler::mangleType(const AutoType *T) {
2261 QualType D = T->getDeducedType();
2262 // <builtin-type> ::= Da # dependent auto
2263 if (D.isNull())
2264 Out << "Da";
2265 else
2266 mangleType(D);
2267 }
2268
mangleType(const AtomicType * T)2269 void CXXNameMangler::mangleType(const AtomicType *T) {
2270 // <type> ::= U <source-name> <type> # vendor extended type qualifier
2271 // (Until there's a standardized mangling...)
2272 Out << "U7_Atomic";
2273 mangleType(T->getValueType());
2274 }
2275
mangleIntegerLiteral(QualType T,const llvm::APSInt & Value)2276 void CXXNameMangler::mangleIntegerLiteral(QualType T,
2277 const llvm::APSInt &Value) {
2278 // <expr-primary> ::= L <type> <value number> E # integer literal
2279 Out << 'L';
2280
2281 mangleType(T);
2282 if (T->isBooleanType()) {
2283 // Boolean values are encoded as 0/1.
2284 Out << (Value.getBoolValue() ? '1' : '0');
2285 } else {
2286 mangleNumber(Value);
2287 }
2288 Out << 'E';
2289
2290 }
2291
2292 /// Mangles a member expression.
mangleMemberExpr(const Expr * base,bool isArrow,NestedNameSpecifier * qualifier,NamedDecl * firstQualifierLookup,DeclarationName member,unsigned arity)2293 void CXXNameMangler::mangleMemberExpr(const Expr *base,
2294 bool isArrow,
2295 NestedNameSpecifier *qualifier,
2296 NamedDecl *firstQualifierLookup,
2297 DeclarationName member,
2298 unsigned arity) {
2299 // <expression> ::= dt <expression> <unresolved-name>
2300 // ::= pt <expression> <unresolved-name>
2301 if (base) {
2302 if (base->isImplicitCXXThis()) {
2303 // Note: GCC mangles member expressions to the implicit 'this' as
2304 // *this., whereas we represent them as this->. The Itanium C++ ABI
2305 // does not specify anything here, so we follow GCC.
2306 Out << "dtdefpT";
2307 } else {
2308 Out << (isArrow ? "pt" : "dt");
2309 mangleExpression(base);
2310 }
2311 }
2312 mangleUnresolvedName(qualifier, firstQualifierLookup, member, arity);
2313 }
2314
2315 /// Look at the callee of the given call expression and determine if
2316 /// it's a parenthesized id-expression which would have triggered ADL
2317 /// otherwise.
isParenthesizedADLCallee(const CallExpr * call)2318 static bool isParenthesizedADLCallee(const CallExpr *call) {
2319 const Expr *callee = call->getCallee();
2320 const Expr *fn = callee->IgnoreParens();
2321
2322 // Must be parenthesized. IgnoreParens() skips __extension__ nodes,
2323 // too, but for those to appear in the callee, it would have to be
2324 // parenthesized.
2325 if (callee == fn) return false;
2326
2327 // Must be an unresolved lookup.
2328 const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
2329 if (!lookup) return false;
2330
2331 assert(!lookup->requiresADL());
2332
2333 // Must be an unqualified lookup.
2334 if (lookup->getQualifier()) return false;
2335
2336 // Must not have found a class member. Note that if one is a class
2337 // member, they're all class members.
2338 if (lookup->getNumDecls() > 0 &&
2339 (*lookup->decls_begin())->isCXXClassMember())
2340 return false;
2341
2342 // Otherwise, ADL would have been triggered.
2343 return true;
2344 }
2345
mangleExpression(const Expr * E,unsigned Arity)2346 void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
2347 // <expression> ::= <unary operator-name> <expression>
2348 // ::= <binary operator-name> <expression> <expression>
2349 // ::= <trinary operator-name> <expression> <expression> <expression>
2350 // ::= cv <type> expression # conversion with one argument
2351 // ::= cv <type> _ <expression>* E # conversion with a different number of arguments
2352 // ::= st <type> # sizeof (a type)
2353 // ::= at <type> # alignof (a type)
2354 // ::= <template-param>
2355 // ::= <function-param>
2356 // ::= sr <type> <unqualified-name> # dependent name
2357 // ::= sr <type> <unqualified-name> <template-args> # dependent template-id
2358 // ::= ds <expression> <expression> # expr.*expr
2359 // ::= sZ <template-param> # size of a parameter pack
2360 // ::= sZ <function-param> # size of a function parameter pack
2361 // ::= <expr-primary>
2362 // <expr-primary> ::= L <type> <value number> E # integer literal
2363 // ::= L <type <value float> E # floating literal
2364 // ::= L <mangled-name> E # external name
2365 // ::= fpT # 'this' expression
2366 QualType ImplicitlyConvertedToType;
2367
2368 recurse:
2369 switch (E->getStmtClass()) {
2370 case Expr::NoStmtClass:
2371 #define ABSTRACT_STMT(Type)
2372 #define EXPR(Type, Base)
2373 #define STMT(Type, Base) \
2374 case Expr::Type##Class:
2375 #include "clang/AST/StmtNodes.inc"
2376 // fallthrough
2377
2378 // These all can only appear in local or variable-initialization
2379 // contexts and so should never appear in a mangling.
2380 case Expr::AddrLabelExprClass:
2381 case Expr::DesignatedInitExprClass:
2382 case Expr::ImplicitValueInitExprClass:
2383 case Expr::ParenListExprClass:
2384 case Expr::LambdaExprClass:
2385 llvm_unreachable("unexpected statement kind");
2386
2387 // FIXME: invent manglings for all these.
2388 case Expr::BlockExprClass:
2389 case Expr::CXXPseudoDestructorExprClass:
2390 case Expr::ChooseExprClass:
2391 case Expr::CompoundLiteralExprClass:
2392 case Expr::ExtVectorElementExprClass:
2393 case Expr::GenericSelectionExprClass:
2394 case Expr::ObjCEncodeExprClass:
2395 case Expr::ObjCIsaExprClass:
2396 case Expr::ObjCIvarRefExprClass:
2397 case Expr::ObjCMessageExprClass:
2398 case Expr::ObjCPropertyRefExprClass:
2399 case Expr::ObjCProtocolExprClass:
2400 case Expr::ObjCSelectorExprClass:
2401 case Expr::ObjCStringLiteralClass:
2402 case Expr::ObjCBoxedExprClass:
2403 case Expr::ObjCArrayLiteralClass:
2404 case Expr::ObjCDictionaryLiteralClass:
2405 case Expr::ObjCSubscriptRefExprClass:
2406 case Expr::ObjCIndirectCopyRestoreExprClass:
2407 case Expr::OffsetOfExprClass:
2408 case Expr::PredefinedExprClass:
2409 case Expr::ShuffleVectorExprClass:
2410 case Expr::StmtExprClass:
2411 case Expr::UnaryTypeTraitExprClass:
2412 case Expr::BinaryTypeTraitExprClass:
2413 case Expr::TypeTraitExprClass:
2414 case Expr::ArrayTypeTraitExprClass:
2415 case Expr::ExpressionTraitExprClass:
2416 case Expr::VAArgExprClass:
2417 case Expr::CXXUuidofExprClass:
2418 case Expr::CXXNoexceptExprClass:
2419 case Expr::CUDAKernelCallExprClass:
2420 case Expr::AsTypeExprClass:
2421 case Expr::PseudoObjectExprClass:
2422 case Expr::AtomicExprClass:
2423 {
2424 // As bad as this diagnostic is, it's better than crashing.
2425 DiagnosticsEngine &Diags = Context.getDiags();
2426 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2427 "cannot yet mangle expression type %0");
2428 Diags.Report(E->getExprLoc(), DiagID)
2429 << E->getStmtClassName() << E->getSourceRange();
2430 break;
2431 }
2432
2433 // Even gcc-4.5 doesn't mangle this.
2434 case Expr::BinaryConditionalOperatorClass: {
2435 DiagnosticsEngine &Diags = Context.getDiags();
2436 unsigned DiagID =
2437 Diags.getCustomDiagID(DiagnosticsEngine::Error,
2438 "?: operator with omitted middle operand cannot be mangled");
2439 Diags.Report(E->getExprLoc(), DiagID)
2440 << E->getStmtClassName() << E->getSourceRange();
2441 break;
2442 }
2443
2444 // These are used for internal purposes and cannot be meaningfully mangled.
2445 case Expr::OpaqueValueExprClass:
2446 llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
2447
2448 case Expr::InitListExprClass: {
2449 // Proposal by Jason Merrill, 2012-01-03
2450 Out << "il";
2451 const InitListExpr *InitList = cast<InitListExpr>(E);
2452 for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2453 mangleExpression(InitList->getInit(i));
2454 Out << "E";
2455 break;
2456 }
2457
2458 case Expr::CXXDefaultArgExprClass:
2459 mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
2460 break;
2461
2462 case Expr::SubstNonTypeTemplateParmExprClass:
2463 mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
2464 Arity);
2465 break;
2466
2467 case Expr::UserDefinedLiteralClass:
2468 // We follow g++'s approach of mangling a UDL as a call to the literal
2469 // operator.
2470 case Expr::CXXMemberCallExprClass: // fallthrough
2471 case Expr::CallExprClass: {
2472 const CallExpr *CE = cast<CallExpr>(E);
2473
2474 // <expression> ::= cp <simple-id> <expression>* E
2475 // We use this mangling only when the call would use ADL except
2476 // for being parenthesized. Per discussion with David
2477 // Vandervoorde, 2011.04.25.
2478 if (isParenthesizedADLCallee(CE)) {
2479 Out << "cp";
2480 // The callee here is a parenthesized UnresolvedLookupExpr with
2481 // no qualifier and should always get mangled as a <simple-id>
2482 // anyway.
2483
2484 // <expression> ::= cl <expression>* E
2485 } else {
2486 Out << "cl";
2487 }
2488
2489 mangleExpression(CE->getCallee(), CE->getNumArgs());
2490 for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I)
2491 mangleExpression(CE->getArg(I));
2492 Out << 'E';
2493 break;
2494 }
2495
2496 case Expr::CXXNewExprClass: {
2497 const CXXNewExpr *New = cast<CXXNewExpr>(E);
2498 if (New->isGlobalNew()) Out << "gs";
2499 Out << (New->isArray() ? "na" : "nw");
2500 for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
2501 E = New->placement_arg_end(); I != E; ++I)
2502 mangleExpression(*I);
2503 Out << '_';
2504 mangleType(New->getAllocatedType());
2505 if (New->hasInitializer()) {
2506 // Proposal by Jason Merrill, 2012-01-03
2507 if (New->getInitializationStyle() == CXXNewExpr::ListInit)
2508 Out << "il";
2509 else
2510 Out << "pi";
2511 const Expr *Init = New->getInitializer();
2512 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
2513 // Directly inline the initializers.
2514 for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
2515 E = CCE->arg_end();
2516 I != E; ++I)
2517 mangleExpression(*I);
2518 } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
2519 for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
2520 mangleExpression(PLE->getExpr(i));
2521 } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
2522 isa<InitListExpr>(Init)) {
2523 // Only take InitListExprs apart for list-initialization.
2524 const InitListExpr *InitList = cast<InitListExpr>(Init);
2525 for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2526 mangleExpression(InitList->getInit(i));
2527 } else
2528 mangleExpression(Init);
2529 }
2530 Out << 'E';
2531 break;
2532 }
2533
2534 case Expr::MemberExprClass: {
2535 const MemberExpr *ME = cast<MemberExpr>(E);
2536 mangleMemberExpr(ME->getBase(), ME->isArrow(),
2537 ME->getQualifier(), 0, ME->getMemberDecl()->getDeclName(),
2538 Arity);
2539 break;
2540 }
2541
2542 case Expr::UnresolvedMemberExprClass: {
2543 const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
2544 mangleMemberExpr(ME->getBase(), ME->isArrow(),
2545 ME->getQualifier(), 0, ME->getMemberName(),
2546 Arity);
2547 if (ME->hasExplicitTemplateArgs())
2548 mangleTemplateArgs(ME->getExplicitTemplateArgs());
2549 break;
2550 }
2551
2552 case Expr::CXXDependentScopeMemberExprClass: {
2553 const CXXDependentScopeMemberExpr *ME
2554 = cast<CXXDependentScopeMemberExpr>(E);
2555 mangleMemberExpr(ME->getBase(), ME->isArrow(),
2556 ME->getQualifier(), ME->getFirstQualifierFoundInScope(),
2557 ME->getMember(), Arity);
2558 if (ME->hasExplicitTemplateArgs())
2559 mangleTemplateArgs(ME->getExplicitTemplateArgs());
2560 break;
2561 }
2562
2563 case Expr::UnresolvedLookupExprClass: {
2564 const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
2565 mangleUnresolvedName(ULE->getQualifier(), 0, ULE->getName(), Arity);
2566
2567 // All the <unresolved-name> productions end in a
2568 // base-unresolved-name, where <template-args> are just tacked
2569 // onto the end.
2570 if (ULE->hasExplicitTemplateArgs())
2571 mangleTemplateArgs(ULE->getExplicitTemplateArgs());
2572 break;
2573 }
2574
2575 case Expr::CXXUnresolvedConstructExprClass: {
2576 const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
2577 unsigned N = CE->arg_size();
2578
2579 Out << "cv";
2580 mangleType(CE->getType());
2581 if (N != 1) Out << '_';
2582 for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2583 if (N != 1) Out << 'E';
2584 break;
2585 }
2586
2587 case Expr::CXXTemporaryObjectExprClass:
2588 case Expr::CXXConstructExprClass: {
2589 const CXXConstructExpr *CE = cast<CXXConstructExpr>(E);
2590 unsigned N = CE->getNumArgs();
2591
2592 // Proposal by Jason Merrill, 2012-01-03
2593 if (CE->isListInitialization())
2594 Out << "tl";
2595 else
2596 Out << "cv";
2597 mangleType(CE->getType());
2598 if (N != 1) Out << '_';
2599 for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2600 if (N != 1) Out << 'E';
2601 break;
2602 }
2603
2604 case Expr::CXXScalarValueInitExprClass:
2605 Out <<"cv";
2606 mangleType(E->getType());
2607 Out <<"_E";
2608 break;
2609
2610 case Expr::UnaryExprOrTypeTraitExprClass: {
2611 const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
2612
2613 if (!SAE->isInstantiationDependent()) {
2614 // Itanium C++ ABI:
2615 // If the operand of a sizeof or alignof operator is not
2616 // instantiation-dependent it is encoded as an integer literal
2617 // reflecting the result of the operator.
2618 //
2619 // If the result of the operator is implicitly converted to a known
2620 // integer type, that type is used for the literal; otherwise, the type
2621 // of std::size_t or std::ptrdiff_t is used.
2622 QualType T = (ImplicitlyConvertedToType.isNull() ||
2623 !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
2624 : ImplicitlyConvertedToType;
2625 llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
2626 mangleIntegerLiteral(T, V);
2627 break;
2628 }
2629
2630 switch(SAE->getKind()) {
2631 case UETT_SizeOf:
2632 Out << 's';
2633 break;
2634 case UETT_AlignOf:
2635 Out << 'a';
2636 break;
2637 case UETT_VecStep:
2638 DiagnosticsEngine &Diags = Context.getDiags();
2639 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2640 "cannot yet mangle vec_step expression");
2641 Diags.Report(DiagID);
2642 return;
2643 }
2644 if (SAE->isArgumentType()) {
2645 Out << 't';
2646 mangleType(SAE->getArgumentType());
2647 } else {
2648 Out << 'z';
2649 mangleExpression(SAE->getArgumentExpr());
2650 }
2651 break;
2652 }
2653
2654 case Expr::CXXThrowExprClass: {
2655 const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
2656
2657 // Proposal from David Vandervoorde, 2010.06.30
2658 if (TE->getSubExpr()) {
2659 Out << "tw";
2660 mangleExpression(TE->getSubExpr());
2661 } else {
2662 Out << "tr";
2663 }
2664 break;
2665 }
2666
2667 case Expr::CXXTypeidExprClass: {
2668 const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
2669
2670 // Proposal from David Vandervoorde, 2010.06.30
2671 if (TIE->isTypeOperand()) {
2672 Out << "ti";
2673 mangleType(TIE->getTypeOperand());
2674 } else {
2675 Out << "te";
2676 mangleExpression(TIE->getExprOperand());
2677 }
2678 break;
2679 }
2680
2681 case Expr::CXXDeleteExprClass: {
2682 const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
2683
2684 // Proposal from David Vandervoorde, 2010.06.30
2685 if (DE->isGlobalDelete()) Out << "gs";
2686 Out << (DE->isArrayForm() ? "da" : "dl");
2687 mangleExpression(DE->getArgument());
2688 break;
2689 }
2690
2691 case Expr::UnaryOperatorClass: {
2692 const UnaryOperator *UO = cast<UnaryOperator>(E);
2693 mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
2694 /*Arity=*/1);
2695 mangleExpression(UO->getSubExpr());
2696 break;
2697 }
2698
2699 case Expr::ArraySubscriptExprClass: {
2700 const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
2701
2702 // Array subscript is treated as a syntactically weird form of
2703 // binary operator.
2704 Out << "ix";
2705 mangleExpression(AE->getLHS());
2706 mangleExpression(AE->getRHS());
2707 break;
2708 }
2709
2710 case Expr::CompoundAssignOperatorClass: // fallthrough
2711 case Expr::BinaryOperatorClass: {
2712 const BinaryOperator *BO = cast<BinaryOperator>(E);
2713 if (BO->getOpcode() == BO_PtrMemD)
2714 Out << "ds";
2715 else
2716 mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
2717 /*Arity=*/2);
2718 mangleExpression(BO->getLHS());
2719 mangleExpression(BO->getRHS());
2720 break;
2721 }
2722
2723 case Expr::ConditionalOperatorClass: {
2724 const ConditionalOperator *CO = cast<ConditionalOperator>(E);
2725 mangleOperatorName(OO_Conditional, /*Arity=*/3);
2726 mangleExpression(CO->getCond());
2727 mangleExpression(CO->getLHS(), Arity);
2728 mangleExpression(CO->getRHS(), Arity);
2729 break;
2730 }
2731
2732 case Expr::ImplicitCastExprClass: {
2733 ImplicitlyConvertedToType = E->getType();
2734 E = cast<ImplicitCastExpr>(E)->getSubExpr();
2735 goto recurse;
2736 }
2737
2738 case Expr::ObjCBridgedCastExprClass: {
2739 // Mangle ownership casts as a vendor extended operator __bridge,
2740 // __bridge_transfer, or __bridge_retain.
2741 StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
2742 Out << "v1U" << Kind.size() << Kind;
2743 }
2744 // Fall through to mangle the cast itself.
2745
2746 case Expr::CStyleCastExprClass:
2747 case Expr::CXXStaticCastExprClass:
2748 case Expr::CXXDynamicCastExprClass:
2749 case Expr::CXXReinterpretCastExprClass:
2750 case Expr::CXXConstCastExprClass:
2751 case Expr::CXXFunctionalCastExprClass: {
2752 const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
2753 Out << "cv";
2754 mangleType(ECE->getType());
2755 mangleExpression(ECE->getSubExpr());
2756 break;
2757 }
2758
2759 case Expr::CXXOperatorCallExprClass: {
2760 const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
2761 unsigned NumArgs = CE->getNumArgs();
2762 mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
2763 // Mangle the arguments.
2764 for (unsigned i = 0; i != NumArgs; ++i)
2765 mangleExpression(CE->getArg(i));
2766 break;
2767 }
2768
2769 case Expr::ParenExprClass:
2770 mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
2771 break;
2772
2773 case Expr::DeclRefExprClass: {
2774 const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
2775
2776 switch (D->getKind()) {
2777 default:
2778 // <expr-primary> ::= L <mangled-name> E # external name
2779 Out << 'L';
2780 mangle(D, "_Z");
2781 Out << 'E';
2782 break;
2783
2784 case Decl::ParmVar:
2785 mangleFunctionParam(cast<ParmVarDecl>(D));
2786 break;
2787
2788 case Decl::EnumConstant: {
2789 const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
2790 mangleIntegerLiteral(ED->getType(), ED->getInitVal());
2791 break;
2792 }
2793
2794 case Decl::NonTypeTemplateParm: {
2795 const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
2796 mangleTemplateParameter(PD->getIndex());
2797 break;
2798 }
2799
2800 }
2801
2802 break;
2803 }
2804
2805 case Expr::SubstNonTypeTemplateParmPackExprClass:
2806 // FIXME: not clear how to mangle this!
2807 // template <unsigned N...> class A {
2808 // template <class U...> void foo(U (&x)[N]...);
2809 // };
2810 Out << "_SUBSTPACK_";
2811 break;
2812
2813 case Expr::DependentScopeDeclRefExprClass: {
2814 const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
2815 mangleUnresolvedName(DRE->getQualifier(), 0, DRE->getDeclName(), Arity);
2816
2817 // All the <unresolved-name> productions end in a
2818 // base-unresolved-name, where <template-args> are just tacked
2819 // onto the end.
2820 if (DRE->hasExplicitTemplateArgs())
2821 mangleTemplateArgs(DRE->getExplicitTemplateArgs());
2822 break;
2823 }
2824
2825 case Expr::CXXBindTemporaryExprClass:
2826 mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
2827 break;
2828
2829 case Expr::ExprWithCleanupsClass:
2830 mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
2831 break;
2832
2833 case Expr::FloatingLiteralClass: {
2834 const FloatingLiteral *FL = cast<FloatingLiteral>(E);
2835 Out << 'L';
2836 mangleType(FL->getType());
2837 mangleFloat(FL->getValue());
2838 Out << 'E';
2839 break;
2840 }
2841
2842 case Expr::CharacterLiteralClass:
2843 Out << 'L';
2844 mangleType(E->getType());
2845 Out << cast<CharacterLiteral>(E)->getValue();
2846 Out << 'E';
2847 break;
2848
2849 // FIXME. __objc_yes/__objc_no are mangled same as true/false
2850 case Expr::ObjCBoolLiteralExprClass:
2851 Out << "Lb";
2852 Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
2853 Out << 'E';
2854 break;
2855
2856 case Expr::CXXBoolLiteralExprClass:
2857 Out << "Lb";
2858 Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
2859 Out << 'E';
2860 break;
2861
2862 case Expr::IntegerLiteralClass: {
2863 llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
2864 if (E->getType()->isSignedIntegerType())
2865 Value.setIsSigned(true);
2866 mangleIntegerLiteral(E->getType(), Value);
2867 break;
2868 }
2869
2870 case Expr::ImaginaryLiteralClass: {
2871 const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
2872 // Mangle as if a complex literal.
2873 // Proposal from David Vandevoorde, 2010.06.30.
2874 Out << 'L';
2875 mangleType(E->getType());
2876 if (const FloatingLiteral *Imag =
2877 dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
2878 // Mangle a floating-point zero of the appropriate type.
2879 mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
2880 Out << '_';
2881 mangleFloat(Imag->getValue());
2882 } else {
2883 Out << "0_";
2884 llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
2885 if (IE->getSubExpr()->getType()->isSignedIntegerType())
2886 Value.setIsSigned(true);
2887 mangleNumber(Value);
2888 }
2889 Out << 'E';
2890 break;
2891 }
2892
2893 case Expr::StringLiteralClass: {
2894 // Revised proposal from David Vandervoorde, 2010.07.15.
2895 Out << 'L';
2896 assert(isa<ConstantArrayType>(E->getType()));
2897 mangleType(E->getType());
2898 Out << 'E';
2899 break;
2900 }
2901
2902 case Expr::GNUNullExprClass:
2903 // FIXME: should this really be mangled the same as nullptr?
2904 // fallthrough
2905
2906 case Expr::CXXNullPtrLiteralExprClass: {
2907 // Proposal from David Vandervoorde, 2010.06.30, as
2908 // modified by ABI list discussion.
2909 Out << "LDnE";
2910 break;
2911 }
2912
2913 case Expr::PackExpansionExprClass:
2914 Out << "sp";
2915 mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
2916 break;
2917
2918 case Expr::SizeOfPackExprClass: {
2919 Out << "sZ";
2920 const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack();
2921 if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
2922 mangleTemplateParameter(TTP->getIndex());
2923 else if (const NonTypeTemplateParmDecl *NTTP
2924 = dyn_cast<NonTypeTemplateParmDecl>(Pack))
2925 mangleTemplateParameter(NTTP->getIndex());
2926 else if (const TemplateTemplateParmDecl *TempTP
2927 = dyn_cast<TemplateTemplateParmDecl>(Pack))
2928 mangleTemplateParameter(TempTP->getIndex());
2929 else
2930 mangleFunctionParam(cast<ParmVarDecl>(Pack));
2931 break;
2932 }
2933
2934 case Expr::MaterializeTemporaryExprClass: {
2935 mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
2936 break;
2937 }
2938
2939 case Expr::CXXThisExprClass:
2940 Out << "fpT";
2941 break;
2942 }
2943 }
2944
2945 /// Mangle an expression which refers to a parameter variable.
2946 ///
2947 /// <expression> ::= <function-param>
2948 /// <function-param> ::= fp <top-level CV-qualifiers> _ # L == 0, I == 0
2949 /// <function-param> ::= fp <top-level CV-qualifiers>
2950 /// <parameter-2 non-negative number> _ # L == 0, I > 0
2951 /// <function-param> ::= fL <L-1 non-negative number>
2952 /// p <top-level CV-qualifiers> _ # L > 0, I == 0
2953 /// <function-param> ::= fL <L-1 non-negative number>
2954 /// p <top-level CV-qualifiers>
2955 /// <I-1 non-negative number> _ # L > 0, I > 0
2956 ///
2957 /// L is the nesting depth of the parameter, defined as 1 if the
2958 /// parameter comes from the innermost function prototype scope
2959 /// enclosing the current context, 2 if from the next enclosing
2960 /// function prototype scope, and so on, with one special case: if
2961 /// we've processed the full parameter clause for the innermost
2962 /// function type, then L is one less. This definition conveniently
2963 /// makes it irrelevant whether a function's result type was written
2964 /// trailing or leading, but is otherwise overly complicated; the
2965 /// numbering was first designed without considering references to
2966 /// parameter in locations other than return types, and then the
2967 /// mangling had to be generalized without changing the existing
2968 /// manglings.
2969 ///
2970 /// I is the zero-based index of the parameter within its parameter
2971 /// declaration clause. Note that the original ABI document describes
2972 /// this using 1-based ordinals.
mangleFunctionParam(const ParmVarDecl * parm)2973 void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
2974 unsigned parmDepth = parm->getFunctionScopeDepth();
2975 unsigned parmIndex = parm->getFunctionScopeIndex();
2976
2977 // Compute 'L'.
2978 // parmDepth does not include the declaring function prototype.
2979 // FunctionTypeDepth does account for that.
2980 assert(parmDepth < FunctionTypeDepth.getDepth());
2981 unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
2982 if (FunctionTypeDepth.isInResultType())
2983 nestingDepth--;
2984
2985 if (nestingDepth == 0) {
2986 Out << "fp";
2987 } else {
2988 Out << "fL" << (nestingDepth - 1) << 'p';
2989 }
2990
2991 // Top-level qualifiers. We don't have to worry about arrays here,
2992 // because parameters declared as arrays should already have been
2993 // transformed to have pointer type. FIXME: apparently these don't
2994 // get mangled if used as an rvalue of a known non-class type?
2995 assert(!parm->getType()->isArrayType()
2996 && "parameter's type is still an array type?");
2997 mangleQualifiers(parm->getType().getQualifiers());
2998
2999 // Parameter index.
3000 if (parmIndex != 0) {
3001 Out << (parmIndex - 1);
3002 }
3003 Out << '_';
3004 }
3005
mangleCXXCtorType(CXXCtorType T)3006 void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
3007 // <ctor-dtor-name> ::= C1 # complete object constructor
3008 // ::= C2 # base object constructor
3009 // ::= C3 # complete object allocating constructor
3010 //
3011 switch (T) {
3012 case Ctor_Complete:
3013 Out << "C1";
3014 break;
3015 case Ctor_Base:
3016 Out << "C2";
3017 break;
3018 case Ctor_CompleteAllocating:
3019 Out << "C3";
3020 break;
3021 }
3022 }
3023
mangleCXXDtorType(CXXDtorType T)3024 void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
3025 // <ctor-dtor-name> ::= D0 # deleting destructor
3026 // ::= D1 # complete object destructor
3027 // ::= D2 # base object destructor
3028 //
3029 switch (T) {
3030 case Dtor_Deleting:
3031 Out << "D0";
3032 break;
3033 case Dtor_Complete:
3034 Out << "D1";
3035 break;
3036 case Dtor_Base:
3037 Out << "D2";
3038 break;
3039 }
3040 }
3041
mangleTemplateArgs(const ASTTemplateArgumentListInfo & TemplateArgs)3042 void CXXNameMangler::mangleTemplateArgs(
3043 const ASTTemplateArgumentListInfo &TemplateArgs) {
3044 // <template-args> ::= I <template-arg>+ E
3045 Out << 'I';
3046 for (unsigned i = 0, e = TemplateArgs.NumTemplateArgs; i != e; ++i)
3047 mangleTemplateArg(0, TemplateArgs.getTemplateArgs()[i].getArgument());
3048 Out << 'E';
3049 }
3050
mangleTemplateArgs(TemplateName Template,const TemplateArgument * TemplateArgs,unsigned NumTemplateArgs)3051 void CXXNameMangler::mangleTemplateArgs(TemplateName Template,
3052 const TemplateArgument *TemplateArgs,
3053 unsigned NumTemplateArgs) {
3054 if (TemplateDecl *TD = Template.getAsTemplateDecl())
3055 return mangleTemplateArgs(*TD->getTemplateParameters(), TemplateArgs,
3056 NumTemplateArgs);
3057
3058 mangleUnresolvedTemplateArgs(TemplateArgs, NumTemplateArgs);
3059 }
3060
mangleUnresolvedTemplateArgs(const TemplateArgument * args,unsigned numArgs)3061 void CXXNameMangler::mangleUnresolvedTemplateArgs(const TemplateArgument *args,
3062 unsigned numArgs) {
3063 // <template-args> ::= I <template-arg>+ E
3064 Out << 'I';
3065 for (unsigned i = 0; i != numArgs; ++i)
3066 mangleTemplateArg(0, args[i]);
3067 Out << 'E';
3068 }
3069
mangleTemplateArgs(const TemplateParameterList & PL,const TemplateArgumentList & AL)3070 void CXXNameMangler::mangleTemplateArgs(const TemplateParameterList &PL,
3071 const TemplateArgumentList &AL) {
3072 // <template-args> ::= I <template-arg>+ E
3073 Out << 'I';
3074 for (unsigned i = 0, e = AL.size(); i != e; ++i)
3075 mangleTemplateArg(PL.getParam(i), AL[i]);
3076 Out << 'E';
3077 }
3078
mangleTemplateArgs(const TemplateParameterList & PL,const TemplateArgument * TemplateArgs,unsigned NumTemplateArgs)3079 void CXXNameMangler::mangleTemplateArgs(const TemplateParameterList &PL,
3080 const TemplateArgument *TemplateArgs,
3081 unsigned NumTemplateArgs) {
3082 // <template-args> ::= I <template-arg>+ E
3083 Out << 'I';
3084 for (unsigned i = 0; i != NumTemplateArgs; ++i)
3085 mangleTemplateArg(PL.getParam(i), TemplateArgs[i]);
3086 Out << 'E';
3087 }
3088
mangleTemplateArg(const NamedDecl * P,TemplateArgument A)3089 void CXXNameMangler::mangleTemplateArg(const NamedDecl *P,
3090 TemplateArgument A) {
3091 // <template-arg> ::= <type> # type or template
3092 // ::= X <expression> E # expression
3093 // ::= <expr-primary> # simple expressions
3094 // ::= J <template-arg>* E # argument pack
3095 // ::= sp <expression> # pack expansion of (C++0x)
3096 if (!A.isInstantiationDependent() || A.isDependent())
3097 A = Context.getASTContext().getCanonicalTemplateArgument(A);
3098
3099 switch (A.getKind()) {
3100 case TemplateArgument::Null:
3101 llvm_unreachable("Cannot mangle NULL template argument");
3102
3103 case TemplateArgument::Type:
3104 mangleType(A.getAsType());
3105 break;
3106 case TemplateArgument::Template:
3107 // This is mangled as <type>.
3108 mangleType(A.getAsTemplate());
3109 break;
3110 case TemplateArgument::TemplateExpansion:
3111 // <type> ::= Dp <type> # pack expansion (C++0x)
3112 Out << "Dp";
3113 mangleType(A.getAsTemplateOrTemplatePattern());
3114 break;
3115 case TemplateArgument::Expression: {
3116 // It's possible to end up with a DeclRefExpr here in certain
3117 // dependent cases, in which case we should mangle as a
3118 // declaration.
3119 const Expr *E = A.getAsExpr()->IgnoreParens();
3120 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
3121 const ValueDecl *D = DRE->getDecl();
3122 if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
3123 Out << "L";
3124 mangle(D, "_Z");
3125 Out << 'E';
3126 break;
3127 }
3128 }
3129
3130 Out << 'X';
3131 mangleExpression(E);
3132 Out << 'E';
3133 break;
3134 }
3135 case TemplateArgument::Integral:
3136 mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
3137 break;
3138 case TemplateArgument::Declaration: {
3139 assert(P && "Missing template parameter for declaration argument");
3140 // <expr-primary> ::= L <mangled-name> E # external name
3141 // <expr-primary> ::= L <type> 0 E
3142 // Clang produces AST's where pointer-to-member-function expressions
3143 // and pointer-to-function expressions are represented as a declaration not
3144 // an expression. We compensate for it here to produce the correct mangling.
3145 const NonTypeTemplateParmDecl *Parameter = cast<NonTypeTemplateParmDecl>(P);
3146
3147 // Handle NULL pointer arguments.
3148 if (!A.getAsDecl()) {
3149 Out << "L";
3150 mangleType(Parameter->getType());
3151 Out << "0E";
3152 break;
3153 }
3154
3155
3156 NamedDecl *D = cast<NamedDecl>(A.getAsDecl());
3157 bool compensateMangling = !Parameter->getType()->isReferenceType();
3158 if (compensateMangling) {
3159 Out << 'X';
3160 mangleOperatorName(OO_Amp, 1);
3161 }
3162
3163 Out << 'L';
3164 // References to external entities use the mangled name; if the name would
3165 // not normally be manged then mangle it as unqualified.
3166 //
3167 // FIXME: The ABI specifies that external names here should have _Z, but
3168 // gcc leaves this off.
3169 if (compensateMangling)
3170 mangle(D, "_Z");
3171 else
3172 mangle(D, "Z");
3173 Out << 'E';
3174
3175 if (compensateMangling)
3176 Out << 'E';
3177
3178 break;
3179 }
3180
3181 case TemplateArgument::Pack: {
3182 // Note: proposal by Mike Herrick on 12/20/10
3183 Out << 'J';
3184 for (TemplateArgument::pack_iterator PA = A.pack_begin(),
3185 PAEnd = A.pack_end();
3186 PA != PAEnd; ++PA)
3187 mangleTemplateArg(P, *PA);
3188 Out << 'E';
3189 }
3190 }
3191 }
3192
mangleTemplateParameter(unsigned Index)3193 void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
3194 // <template-param> ::= T_ # first template parameter
3195 // ::= T <parameter-2 non-negative number> _
3196 if (Index == 0)
3197 Out << "T_";
3198 else
3199 Out << 'T' << (Index - 1) << '_';
3200 }
3201
mangleExistingSubstitution(QualType type)3202 void CXXNameMangler::mangleExistingSubstitution(QualType type) {
3203 bool result = mangleSubstitution(type);
3204 assert(result && "no existing substitution for type");
3205 (void) result;
3206 }
3207
mangleExistingSubstitution(TemplateName tname)3208 void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
3209 bool result = mangleSubstitution(tname);
3210 assert(result && "no existing substitution for template name");
3211 (void) result;
3212 }
3213
3214 // <substitution> ::= S <seq-id> _
3215 // ::= S_
mangleSubstitution(const NamedDecl * ND)3216 bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
3217 // Try one of the standard substitutions first.
3218 if (mangleStandardSubstitution(ND))
3219 return true;
3220
3221 ND = cast<NamedDecl>(ND->getCanonicalDecl());
3222 return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
3223 }
3224
3225 /// \brief Determine whether the given type has any qualifiers that are
3226 /// relevant for substitutions.
hasMangledSubstitutionQualifiers(QualType T)3227 static bool hasMangledSubstitutionQualifiers(QualType T) {
3228 Qualifiers Qs = T.getQualifiers();
3229 return Qs.getCVRQualifiers() || Qs.hasAddressSpace();
3230 }
3231
mangleSubstitution(QualType T)3232 bool CXXNameMangler::mangleSubstitution(QualType T) {
3233 if (!hasMangledSubstitutionQualifiers(T)) {
3234 if (const RecordType *RT = T->getAs<RecordType>())
3235 return mangleSubstitution(RT->getDecl());
3236 }
3237
3238 uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3239
3240 return mangleSubstitution(TypePtr);
3241 }
3242
mangleSubstitution(TemplateName Template)3243 bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
3244 if (TemplateDecl *TD = Template.getAsTemplateDecl())
3245 return mangleSubstitution(TD);
3246
3247 Template = Context.getASTContext().getCanonicalTemplateName(Template);
3248 return mangleSubstitution(
3249 reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3250 }
3251
mangleSubstitution(uintptr_t Ptr)3252 bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
3253 llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
3254 if (I == Substitutions.end())
3255 return false;
3256
3257 unsigned SeqID = I->second;
3258 if (SeqID == 0)
3259 Out << "S_";
3260 else {
3261 SeqID--;
3262
3263 // <seq-id> is encoded in base-36, using digits and upper case letters.
3264 char Buffer[10];
3265 char *BufferPtr = llvm::array_endof(Buffer);
3266
3267 if (SeqID == 0) *--BufferPtr = '0';
3268
3269 while (SeqID) {
3270 assert(BufferPtr > Buffer && "Buffer overflow!");
3271
3272 char c = static_cast<char>(SeqID % 36);
3273
3274 *--BufferPtr = (c < 10 ? '0' + c : 'A' + c - 10);
3275 SeqID /= 36;
3276 }
3277
3278 Out << 'S'
3279 << StringRef(BufferPtr, llvm::array_endof(Buffer)-BufferPtr)
3280 << '_';
3281 }
3282
3283 return true;
3284 }
3285
isCharType(QualType T)3286 static bool isCharType(QualType T) {
3287 if (T.isNull())
3288 return false;
3289
3290 return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
3291 T->isSpecificBuiltinType(BuiltinType::Char_U);
3292 }
3293
3294 /// isCharSpecialization - Returns whether a given type is a template
3295 /// specialization of a given name with a single argument of type char.
isCharSpecialization(QualType T,const char * Name)3296 static bool isCharSpecialization(QualType T, const char *Name) {
3297 if (T.isNull())
3298 return false;
3299
3300 const RecordType *RT = T->getAs<RecordType>();
3301 if (!RT)
3302 return false;
3303
3304 const ClassTemplateSpecializationDecl *SD =
3305 dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
3306 if (!SD)
3307 return false;
3308
3309 if (!isStdNamespace(getEffectiveDeclContext(SD)))
3310 return false;
3311
3312 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3313 if (TemplateArgs.size() != 1)
3314 return false;
3315
3316 if (!isCharType(TemplateArgs[0].getAsType()))
3317 return false;
3318
3319 return SD->getIdentifier()->getName() == Name;
3320 }
3321
3322 template <std::size_t StrLen>
isStreamCharSpecialization(const ClassTemplateSpecializationDecl * SD,const char (& Str)[StrLen])3323 static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
3324 const char (&Str)[StrLen]) {
3325 if (!SD->getIdentifier()->isStr(Str))
3326 return false;
3327
3328 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3329 if (TemplateArgs.size() != 2)
3330 return false;
3331
3332 if (!isCharType(TemplateArgs[0].getAsType()))
3333 return false;
3334
3335 if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3336 return false;
3337
3338 return true;
3339 }
3340
mangleStandardSubstitution(const NamedDecl * ND)3341 bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
3342 // <substitution> ::= St # ::std::
3343 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
3344 if (isStd(NS)) {
3345 Out << "St";
3346 return true;
3347 }
3348 }
3349
3350 if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
3351 if (!isStdNamespace(getEffectiveDeclContext(TD)))
3352 return false;
3353
3354 // <substitution> ::= Sa # ::std::allocator
3355 if (TD->getIdentifier()->isStr("allocator")) {
3356 Out << "Sa";
3357 return true;
3358 }
3359
3360 // <<substitution> ::= Sb # ::std::basic_string
3361 if (TD->getIdentifier()->isStr("basic_string")) {
3362 Out << "Sb";
3363 return true;
3364 }
3365 }
3366
3367 if (const ClassTemplateSpecializationDecl *SD =
3368 dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
3369 if (!isStdNamespace(getEffectiveDeclContext(SD)))
3370 return false;
3371
3372 // <substitution> ::= Ss # ::std::basic_string<char,
3373 // ::std::char_traits<char>,
3374 // ::std::allocator<char> >
3375 if (SD->getIdentifier()->isStr("basic_string")) {
3376 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3377
3378 if (TemplateArgs.size() != 3)
3379 return false;
3380
3381 if (!isCharType(TemplateArgs[0].getAsType()))
3382 return false;
3383
3384 if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3385 return false;
3386
3387 if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
3388 return false;
3389
3390 Out << "Ss";
3391 return true;
3392 }
3393
3394 // <substitution> ::= Si # ::std::basic_istream<char,
3395 // ::std::char_traits<char> >
3396 if (isStreamCharSpecialization(SD, "basic_istream")) {
3397 Out << "Si";
3398 return true;
3399 }
3400
3401 // <substitution> ::= So # ::std::basic_ostream<char,
3402 // ::std::char_traits<char> >
3403 if (isStreamCharSpecialization(SD, "basic_ostream")) {
3404 Out << "So";
3405 return true;
3406 }
3407
3408 // <substitution> ::= Sd # ::std::basic_iostream<char,
3409 // ::std::char_traits<char> >
3410 if (isStreamCharSpecialization(SD, "basic_iostream")) {
3411 Out << "Sd";
3412 return true;
3413 }
3414 }
3415 return false;
3416 }
3417
addSubstitution(QualType T)3418 void CXXNameMangler::addSubstitution(QualType T) {
3419 if (!hasMangledSubstitutionQualifiers(T)) {
3420 if (const RecordType *RT = T->getAs<RecordType>()) {
3421 addSubstitution(RT->getDecl());
3422 return;
3423 }
3424 }
3425
3426 uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3427 addSubstitution(TypePtr);
3428 }
3429
addSubstitution(TemplateName Template)3430 void CXXNameMangler::addSubstitution(TemplateName Template) {
3431 if (TemplateDecl *TD = Template.getAsTemplateDecl())
3432 return addSubstitution(TD);
3433
3434 Template = Context.getASTContext().getCanonicalTemplateName(Template);
3435 addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3436 }
3437
addSubstitution(uintptr_t Ptr)3438 void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
3439 assert(!Substitutions.count(Ptr) && "Substitution already exists!");
3440 Substitutions[Ptr] = SeqID++;
3441 }
3442
3443 //
3444
3445 /// \brief Mangles the name of the declaration D and emits that name to the
3446 /// given output stream.
3447 ///
3448 /// If the declaration D requires a mangled name, this routine will emit that
3449 /// mangled name to \p os and return true. Otherwise, \p os will be unchanged
3450 /// and this routine will return false. In this case, the caller should just
3451 /// emit the identifier of the declaration (\c D->getIdentifier()) as its
3452 /// name.
mangleName(const NamedDecl * D,raw_ostream & Out)3453 void ItaniumMangleContext::mangleName(const NamedDecl *D,
3454 raw_ostream &Out) {
3455 assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
3456 "Invalid mangleName() call, argument is not a variable or function!");
3457 assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
3458 "Invalid mangleName() call on 'structor decl!");
3459
3460 PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
3461 getASTContext().getSourceManager(),
3462 "Mangling declaration");
3463
3464 CXXNameMangler Mangler(*this, Out, D);
3465 return Mangler.mangle(D);
3466 }
3467
mangleCXXCtor(const CXXConstructorDecl * D,CXXCtorType Type,raw_ostream & Out)3468 void ItaniumMangleContext::mangleCXXCtor(const CXXConstructorDecl *D,
3469 CXXCtorType Type,
3470 raw_ostream &Out) {
3471 CXXNameMangler Mangler(*this, Out, D, Type);
3472 Mangler.mangle(D);
3473 }
3474
mangleCXXDtor(const CXXDestructorDecl * D,CXXDtorType Type,raw_ostream & Out)3475 void ItaniumMangleContext::mangleCXXDtor(const CXXDestructorDecl *D,
3476 CXXDtorType Type,
3477 raw_ostream &Out) {
3478 CXXNameMangler Mangler(*this, Out, D, Type);
3479 Mangler.mangle(D);
3480 }
3481
mangleThunk(const CXXMethodDecl * MD,const ThunkInfo & Thunk,raw_ostream & Out)3482 void ItaniumMangleContext::mangleThunk(const CXXMethodDecl *MD,
3483 const ThunkInfo &Thunk,
3484 raw_ostream &Out) {
3485 // <special-name> ::= T <call-offset> <base encoding>
3486 // # base is the nominal target function of thunk
3487 // <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
3488 // # base is the nominal target function of thunk
3489 // # first call-offset is 'this' adjustment
3490 // # second call-offset is result adjustment
3491
3492 assert(!isa<CXXDestructorDecl>(MD) &&
3493 "Use mangleCXXDtor for destructor decls!");
3494 CXXNameMangler Mangler(*this, Out);
3495 Mangler.getStream() << "_ZT";
3496 if (!Thunk.Return.isEmpty())
3497 Mangler.getStream() << 'c';
3498
3499 // Mangle the 'this' pointer adjustment.
3500 Mangler.mangleCallOffset(Thunk.This.NonVirtual, Thunk.This.VCallOffsetOffset);
3501
3502 // Mangle the return pointer adjustment if there is one.
3503 if (!Thunk.Return.isEmpty())
3504 Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
3505 Thunk.Return.VBaseOffsetOffset);
3506
3507 Mangler.mangleFunctionEncoding(MD);
3508 }
3509
3510 void
mangleCXXDtorThunk(const CXXDestructorDecl * DD,CXXDtorType Type,const ThisAdjustment & ThisAdjustment,raw_ostream & Out)3511 ItaniumMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD,
3512 CXXDtorType Type,
3513 const ThisAdjustment &ThisAdjustment,
3514 raw_ostream &Out) {
3515 // <special-name> ::= T <call-offset> <base encoding>
3516 // # base is the nominal target function of thunk
3517 CXXNameMangler Mangler(*this, Out, DD, Type);
3518 Mangler.getStream() << "_ZT";
3519
3520 // Mangle the 'this' pointer adjustment.
3521 Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
3522 ThisAdjustment.VCallOffsetOffset);
3523
3524 Mangler.mangleFunctionEncoding(DD);
3525 }
3526
3527 /// mangleGuardVariable - Returns the mangled name for a guard variable
3528 /// for the passed in VarDecl.
mangleItaniumGuardVariable(const VarDecl * D,raw_ostream & Out)3529 void ItaniumMangleContext::mangleItaniumGuardVariable(const VarDecl *D,
3530 raw_ostream &Out) {
3531 // <special-name> ::= GV <object name> # Guard variable for one-time
3532 // # initialization
3533 CXXNameMangler Mangler(*this, Out);
3534 Mangler.getStream() << "_ZGV";
3535 Mangler.mangleName(D);
3536 }
3537
mangleReferenceTemporary(const VarDecl * D,raw_ostream & Out)3538 void ItaniumMangleContext::mangleReferenceTemporary(const VarDecl *D,
3539 raw_ostream &Out) {
3540 // We match the GCC mangling here.
3541 // <special-name> ::= GR <object name>
3542 CXXNameMangler Mangler(*this, Out);
3543 Mangler.getStream() << "_ZGR";
3544 Mangler.mangleName(D);
3545 }
3546
mangleCXXVTable(const CXXRecordDecl * RD,raw_ostream & Out)3547 void ItaniumMangleContext::mangleCXXVTable(const CXXRecordDecl *RD,
3548 raw_ostream &Out) {
3549 // <special-name> ::= TV <type> # virtual table
3550 CXXNameMangler Mangler(*this, Out);
3551 Mangler.getStream() << "_ZTV";
3552 Mangler.mangleNameOrStandardSubstitution(RD);
3553 }
3554
mangleCXXVTT(const CXXRecordDecl * RD,raw_ostream & Out)3555 void ItaniumMangleContext::mangleCXXVTT(const CXXRecordDecl *RD,
3556 raw_ostream &Out) {
3557 // <special-name> ::= TT <type> # VTT structure
3558 CXXNameMangler Mangler(*this, Out);
3559 Mangler.getStream() << "_ZTT";
3560 Mangler.mangleNameOrStandardSubstitution(RD);
3561 }
3562
mangleCXXCtorVTable(const CXXRecordDecl * RD,int64_t Offset,const CXXRecordDecl * Type,raw_ostream & Out)3563 void ItaniumMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD,
3564 int64_t Offset,
3565 const CXXRecordDecl *Type,
3566 raw_ostream &Out) {
3567 // <special-name> ::= TC <type> <offset number> _ <base type>
3568 CXXNameMangler Mangler(*this, Out);
3569 Mangler.getStream() << "_ZTC";
3570 Mangler.mangleNameOrStandardSubstitution(RD);
3571 Mangler.getStream() << Offset;
3572 Mangler.getStream() << '_';
3573 Mangler.mangleNameOrStandardSubstitution(Type);
3574 }
3575
mangleCXXRTTI(QualType Ty,raw_ostream & Out)3576 void ItaniumMangleContext::mangleCXXRTTI(QualType Ty,
3577 raw_ostream &Out) {
3578 // <special-name> ::= TI <type> # typeinfo structure
3579 assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
3580 CXXNameMangler Mangler(*this, Out);
3581 Mangler.getStream() << "_ZTI";
3582 Mangler.mangleType(Ty);
3583 }
3584
mangleCXXRTTIName(QualType Ty,raw_ostream & Out)3585 void ItaniumMangleContext::mangleCXXRTTIName(QualType Ty,
3586 raw_ostream &Out) {
3587 // <special-name> ::= TS <type> # typeinfo name (null terminated byte string)
3588 CXXNameMangler Mangler(*this, Out);
3589 Mangler.getStream() << "_ZTS";
3590 Mangler.mangleType(Ty);
3591 }
3592
createItaniumMangleContext(ASTContext & Context,DiagnosticsEngine & Diags)3593 MangleContext *clang::createItaniumMangleContext(ASTContext &Context,
3594 DiagnosticsEngine &Diags) {
3595 return new ItaniumMangleContext(Context, Diags);
3596 }
3597