• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implements C++ name mangling according to the Itanium C++ ABI,
11 // which is used in GCC 3.2 and newer (and many compilers that are
12 // ABI-compatible with GCC):
13 //
14 //   http://www.codesourcery.com/public/cxx-abi/abi.html
15 //
16 //===----------------------------------------------------------------------===//
17 #include "clang/AST/Mangle.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/TypeLoc.h"
26 #include "clang/Basic/ABI.h"
27 #include "clang/Basic/SourceManager.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Support/ErrorHandling.h"
32 
33 #define MANGLE_CHECKER 0
34 
35 #if MANGLE_CHECKER
36 #include <cxxabi.h>
37 #endif
38 
39 using namespace clang;
40 
41 namespace {
42 
43 /// \brief Retrieve the declaration context that should be used when mangling
44 /// the given declaration.
getEffectiveDeclContext(const Decl * D)45 static const DeclContext *getEffectiveDeclContext(const Decl *D) {
46   // The ABI assumes that lambda closure types that occur within
47   // default arguments live in the context of the function. However, due to
48   // the way in which Clang parses and creates function declarations, this is
49   // not the case: the lambda closure type ends up living in the context
50   // where the function itself resides, because the function declaration itself
51   // had not yet been created. Fix the context here.
52   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
53     if (RD->isLambda())
54       if (ParmVarDecl *ContextParam
55             = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
56         return ContextParam->getDeclContext();
57   }
58 
59   return D->getDeclContext();
60 }
61 
getEffectiveParentContext(const DeclContext * DC)62 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
63   return getEffectiveDeclContext(cast<Decl>(DC));
64 }
65 
GetLocalClassDecl(const NamedDecl * ND)66 static const CXXRecordDecl *GetLocalClassDecl(const NamedDecl *ND) {
67   const DeclContext *DC = dyn_cast<DeclContext>(ND);
68   if (!DC)
69     DC = getEffectiveDeclContext(ND);
70   while (!DC->isNamespace() && !DC->isTranslationUnit()) {
71     const DeclContext *Parent = getEffectiveDeclContext(cast<Decl>(DC));
72     if (isa<FunctionDecl>(Parent))
73       return dyn_cast<CXXRecordDecl>(DC);
74     DC = Parent;
75   }
76   return 0;
77 }
78 
getStructor(const FunctionDecl * fn)79 static const FunctionDecl *getStructor(const FunctionDecl *fn) {
80   if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
81     return ftd->getTemplatedDecl();
82 
83   return fn;
84 }
85 
getStructor(const NamedDecl * decl)86 static const NamedDecl *getStructor(const NamedDecl *decl) {
87   const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
88   return (fn ? getStructor(fn) : decl);
89 }
90 
91 static const unsigned UnknownArity = ~0U;
92 
93 class ItaniumMangleContext : public MangleContext {
94   llvm::DenseMap<const TagDecl *, uint64_t> AnonStructIds;
95   unsigned Discriminator;
96   llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
97 
98 public:
ItaniumMangleContext(ASTContext & Context,DiagnosticsEngine & Diags)99   explicit ItaniumMangleContext(ASTContext &Context,
100                                 DiagnosticsEngine &Diags)
101     : MangleContext(Context, Diags) { }
102 
getAnonymousStructId(const TagDecl * TD)103   uint64_t getAnonymousStructId(const TagDecl *TD) {
104     std::pair<llvm::DenseMap<const TagDecl *,
105       uint64_t>::iterator, bool> Result =
106       AnonStructIds.insert(std::make_pair(TD, AnonStructIds.size()));
107     return Result.first->second;
108   }
109 
startNewFunction()110   void startNewFunction() {
111     MangleContext::startNewFunction();
112     mangleInitDiscriminator();
113   }
114 
115   /// @name Mangler Entry Points
116   /// @{
117 
118   bool shouldMangleDeclName(const NamedDecl *D);
119   void mangleName(const NamedDecl *D, raw_ostream &);
120   void mangleThunk(const CXXMethodDecl *MD,
121                    const ThunkInfo &Thunk,
122                    raw_ostream &);
123   void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
124                           const ThisAdjustment &ThisAdjustment,
125                           raw_ostream &);
126   void mangleReferenceTemporary(const VarDecl *D,
127                                 raw_ostream &);
128   void mangleCXXVTable(const CXXRecordDecl *RD,
129                        raw_ostream &);
130   void mangleCXXVTT(const CXXRecordDecl *RD,
131                     raw_ostream &);
132   void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
133                            const CXXRecordDecl *Type,
134                            raw_ostream &);
135   void mangleCXXRTTI(QualType T, raw_ostream &);
136   void mangleCXXRTTIName(QualType T, raw_ostream &);
137   void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
138                      raw_ostream &);
139   void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
140                      raw_ostream &);
141 
142   void mangleItaniumGuardVariable(const VarDecl *D, raw_ostream &);
143 
mangleInitDiscriminator()144   void mangleInitDiscriminator() {
145     Discriminator = 0;
146   }
147 
getNextDiscriminator(const NamedDecl * ND,unsigned & disc)148   bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
149     // Lambda closure types with external linkage (indicated by a
150     // non-zero lambda mangling number) have their own numbering scheme, so
151     // they do not need a discriminator.
152     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(ND))
153       if (RD->isLambda() && RD->getLambdaManglingNumber() > 0)
154         return false;
155 
156     unsigned &discriminator = Uniquifier[ND];
157     if (!discriminator)
158       discriminator = ++Discriminator;
159     if (discriminator == 1)
160       return false;
161     disc = discriminator-2;
162     return true;
163   }
164   /// @}
165 };
166 
167 /// CXXNameMangler - Manage the mangling of a single name.
168 class CXXNameMangler {
169   ItaniumMangleContext &Context;
170   raw_ostream &Out;
171 
172   /// The "structor" is the top-level declaration being mangled, if
173   /// that's not a template specialization; otherwise it's the pattern
174   /// for that specialization.
175   const NamedDecl *Structor;
176   unsigned StructorType;
177 
178   /// SeqID - The next subsitution sequence number.
179   unsigned SeqID;
180 
181   class FunctionTypeDepthState {
182     unsigned Bits;
183 
184     enum { InResultTypeMask = 1 };
185 
186   public:
FunctionTypeDepthState()187     FunctionTypeDepthState() : Bits(0) {}
188 
189     /// The number of function types we're inside.
getDepth() const190     unsigned getDepth() const {
191       return Bits >> 1;
192     }
193 
194     /// True if we're in the return type of the innermost function type.
isInResultType() const195     bool isInResultType() const {
196       return Bits & InResultTypeMask;
197     }
198 
push()199     FunctionTypeDepthState push() {
200       FunctionTypeDepthState tmp = *this;
201       Bits = (Bits & ~InResultTypeMask) + 2;
202       return tmp;
203     }
204 
enterResultType()205     void enterResultType() {
206       Bits |= InResultTypeMask;
207     }
208 
leaveResultType()209     void leaveResultType() {
210       Bits &= ~InResultTypeMask;
211     }
212 
pop(FunctionTypeDepthState saved)213     void pop(FunctionTypeDepthState saved) {
214       assert(getDepth() == saved.getDepth() + 1);
215       Bits = saved.Bits;
216     }
217 
218   } FunctionTypeDepth;
219 
220   llvm::DenseMap<uintptr_t, unsigned> Substitutions;
221 
getASTContext() const222   ASTContext &getASTContext() const { return Context.getASTContext(); }
223 
224 public:
CXXNameMangler(ItaniumMangleContext & C,raw_ostream & Out_,const NamedDecl * D=0)225   CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
226                  const NamedDecl *D = 0)
227     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(0),
228       SeqID(0) {
229     // These can't be mangled without a ctor type or dtor type.
230     assert(!D || (!isa<CXXDestructorDecl>(D) &&
231                   !isa<CXXConstructorDecl>(D)));
232   }
CXXNameMangler(ItaniumMangleContext & C,raw_ostream & Out_,const CXXConstructorDecl * D,CXXCtorType Type)233   CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
234                  const CXXConstructorDecl *D, CXXCtorType Type)
235     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
236       SeqID(0) { }
CXXNameMangler(ItaniumMangleContext & C,raw_ostream & Out_,const CXXDestructorDecl * D,CXXDtorType Type)237   CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
238                  const CXXDestructorDecl *D, CXXDtorType Type)
239     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
240       SeqID(0) { }
241 
242 #if MANGLE_CHECKER
~CXXNameMangler()243   ~CXXNameMangler() {
244     if (Out.str()[0] == '\01')
245       return;
246 
247     int status = 0;
248     char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
249     assert(status == 0 && "Could not demangle mangled name!");
250     free(result);
251   }
252 #endif
getStream()253   raw_ostream &getStream() { return Out; }
254 
255   void mangle(const NamedDecl *D, StringRef Prefix = "_Z");
256   void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
257   void mangleNumber(const llvm::APSInt &I);
258   void mangleNumber(int64_t Number);
259   void mangleFloat(const llvm::APFloat &F);
260   void mangleFunctionEncoding(const FunctionDecl *FD);
261   void mangleName(const NamedDecl *ND);
262   void mangleType(QualType T);
263   void mangleNameOrStandardSubstitution(const NamedDecl *ND);
264 
265 private:
266   bool mangleSubstitution(const NamedDecl *ND);
267   bool mangleSubstitution(QualType T);
268   bool mangleSubstitution(TemplateName Template);
269   bool mangleSubstitution(uintptr_t Ptr);
270 
271   void mangleExistingSubstitution(QualType type);
272   void mangleExistingSubstitution(TemplateName name);
273 
274   bool mangleStandardSubstitution(const NamedDecl *ND);
275 
addSubstitution(const NamedDecl * ND)276   void addSubstitution(const NamedDecl *ND) {
277     ND = cast<NamedDecl>(ND->getCanonicalDecl());
278 
279     addSubstitution(reinterpret_cast<uintptr_t>(ND));
280   }
281   void addSubstitution(QualType T);
282   void addSubstitution(TemplateName Template);
283   void addSubstitution(uintptr_t Ptr);
284 
285   void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
286                               NamedDecl *firstQualifierLookup,
287                               bool recursive = false);
288   void mangleUnresolvedName(NestedNameSpecifier *qualifier,
289                             NamedDecl *firstQualifierLookup,
290                             DeclarationName name,
291                             unsigned KnownArity = UnknownArity);
292 
293   void mangleName(const TemplateDecl *TD,
294                   const TemplateArgument *TemplateArgs,
295                   unsigned NumTemplateArgs);
mangleUnqualifiedName(const NamedDecl * ND)296   void mangleUnqualifiedName(const NamedDecl *ND) {
297     mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
298   }
299   void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
300                              unsigned KnownArity);
301   void mangleUnscopedName(const NamedDecl *ND);
302   void mangleUnscopedTemplateName(const TemplateDecl *ND);
303   void mangleUnscopedTemplateName(TemplateName);
304   void mangleSourceName(const IdentifierInfo *II);
305   void mangleLocalName(const NamedDecl *ND);
306   void mangleLambda(const CXXRecordDecl *Lambda);
307   void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
308                         bool NoFunction=false);
309   void mangleNestedName(const TemplateDecl *TD,
310                         const TemplateArgument *TemplateArgs,
311                         unsigned NumTemplateArgs);
312   void manglePrefix(NestedNameSpecifier *qualifier);
313   void manglePrefix(const DeclContext *DC, bool NoFunction=false);
314   void manglePrefix(QualType type);
315   void mangleTemplatePrefix(const TemplateDecl *ND);
316   void mangleTemplatePrefix(TemplateName Template);
317   void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
318   void mangleQualifiers(Qualifiers Quals);
319   void mangleRefQualifier(RefQualifierKind RefQualifier);
320 
321   void mangleObjCMethodName(const ObjCMethodDecl *MD);
322 
323   // Declare manglers for every type class.
324 #define ABSTRACT_TYPE(CLASS, PARENT)
325 #define NON_CANONICAL_TYPE(CLASS, PARENT)
326 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
327 #include "clang/AST/TypeNodes.def"
328 
329   void mangleType(const TagType*);
330   void mangleType(TemplateName);
331   void mangleBareFunctionType(const FunctionType *T,
332                               bool MangleReturnType);
333   void mangleNeonVectorType(const VectorType *T);
334 
335   void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
336   void mangleMemberExpr(const Expr *base, bool isArrow,
337                         NestedNameSpecifier *qualifier,
338                         NamedDecl *firstQualifierLookup,
339                         DeclarationName name,
340                         unsigned knownArity);
341   void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
342   void mangleCXXCtorType(CXXCtorType T);
343   void mangleCXXDtorType(CXXDtorType T);
344 
345   void mangleTemplateArgs(const ASTTemplateArgumentListInfo &TemplateArgs);
346   void mangleTemplateArgs(TemplateName Template,
347                           const TemplateArgument *TemplateArgs,
348                           unsigned NumTemplateArgs);
349   void mangleTemplateArgs(const TemplateParameterList &PL,
350                           const TemplateArgument *TemplateArgs,
351                           unsigned NumTemplateArgs);
352   void mangleTemplateArgs(const TemplateParameterList &PL,
353                           const TemplateArgumentList &AL);
354   void mangleTemplateArg(const NamedDecl *P, TemplateArgument A);
355   void mangleUnresolvedTemplateArgs(const TemplateArgument *args,
356                                     unsigned numArgs);
357 
358   void mangleTemplateParameter(unsigned Index);
359 
360   void mangleFunctionParam(const ParmVarDecl *parm);
361 };
362 
363 }
364 
isInCLinkageSpecification(const Decl * D)365 static bool isInCLinkageSpecification(const Decl *D) {
366   D = D->getCanonicalDecl();
367   for (const DeclContext *DC = getEffectiveDeclContext(D);
368        !DC->isTranslationUnit(); DC = getEffectiveParentContext(DC)) {
369     if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC))
370       return Linkage->getLanguage() == LinkageSpecDecl::lang_c;
371   }
372 
373   return false;
374 }
375 
shouldMangleDeclName(const NamedDecl * D)376 bool ItaniumMangleContext::shouldMangleDeclName(const NamedDecl *D) {
377   // In C, functions with no attributes never need to be mangled. Fastpath them.
378   if (!getASTContext().getLangOpts().CPlusPlus && !D->hasAttrs())
379     return false;
380 
381   // Any decl can be declared with __asm("foo") on it, and this takes precedence
382   // over all other naming in the .o file.
383   if (D->hasAttr<AsmLabelAttr>())
384     return true;
385 
386   // Clang's "overloadable" attribute extension to C/C++ implies name mangling
387   // (always) as does passing a C++ member function and a function
388   // whose name is not a simple identifier.
389   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
390   if (FD && (FD->hasAttr<OverloadableAttr>() || isa<CXXMethodDecl>(FD) ||
391              !FD->getDeclName().isIdentifier()))
392     return true;
393 
394   // Otherwise, no mangling is done outside C++ mode.
395   if (!getASTContext().getLangOpts().CPlusPlus)
396     return false;
397 
398   // Variables at global scope with non-internal linkage are not mangled
399   if (!FD) {
400     const DeclContext *DC = getEffectiveDeclContext(D);
401     // Check for extern variable declared locally.
402     if (DC->isFunctionOrMethod() && D->hasLinkage())
403       while (!DC->isNamespace() && !DC->isTranslationUnit())
404         DC = getEffectiveParentContext(DC);
405     if (DC->isTranslationUnit() && D->getLinkage() != InternalLinkage)
406       return false;
407   }
408 
409   // Class members are always mangled.
410   if (getEffectiveDeclContext(D)->isRecord())
411     return true;
412 
413   // C functions and "main" are not mangled.
414   if ((FD && FD->isMain()) || isInCLinkageSpecification(D))
415     return false;
416 
417   return true;
418 }
419 
mangle(const NamedDecl * D,StringRef Prefix)420 void CXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
421   // Any decl can be declared with __asm("foo") on it, and this takes precedence
422   // over all other naming in the .o file.
423   if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
424     // If we have an asm name, then we use it as the mangling.
425 
426     // Adding the prefix can cause problems when one file has a "foo" and
427     // another has a "\01foo". That is known to happen on ELF with the
428     // tricks normally used for producing aliases (PR9177). Fortunately the
429     // llvm mangler on ELF is a nop, so we can just avoid adding the \01
430     // marker.  We also avoid adding the marker if this is an alias for an
431     // LLVM intrinsic.
432     StringRef UserLabelPrefix =
433       getASTContext().getTargetInfo().getUserLabelPrefix();
434     if (!UserLabelPrefix.empty() && !ALA->getLabel().startswith("llvm."))
435       Out << '\01';  // LLVM IR Marker for __asm("foo")
436 
437     Out << ALA->getLabel();
438     return;
439   }
440 
441   // <mangled-name> ::= _Z <encoding>
442   //            ::= <data name>
443   //            ::= <special-name>
444   Out << Prefix;
445   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
446     mangleFunctionEncoding(FD);
447   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
448     mangleName(VD);
449   else
450     mangleName(cast<FieldDecl>(D));
451 }
452 
mangleFunctionEncoding(const FunctionDecl * FD)453 void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
454   // <encoding> ::= <function name> <bare-function-type>
455   mangleName(FD);
456 
457   // Don't mangle in the type if this isn't a decl we should typically mangle.
458   if (!Context.shouldMangleDeclName(FD))
459     return;
460 
461   // Whether the mangling of a function type includes the return type depends on
462   // the context and the nature of the function. The rules for deciding whether
463   // the return type is included are:
464   //
465   //   1. Template functions (names or types) have return types encoded, with
466   //   the exceptions listed below.
467   //   2. Function types not appearing as part of a function name mangling,
468   //   e.g. parameters, pointer types, etc., have return type encoded, with the
469   //   exceptions listed below.
470   //   3. Non-template function names do not have return types encoded.
471   //
472   // The exceptions mentioned in (1) and (2) above, for which the return type is
473   // never included, are
474   //   1. Constructors.
475   //   2. Destructors.
476   //   3. Conversion operator functions, e.g. operator int.
477   bool MangleReturnType = false;
478   if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
479     if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
480           isa<CXXConversionDecl>(FD)))
481       MangleReturnType = true;
482 
483     // Mangle the type of the primary template.
484     FD = PrimaryTemplate->getTemplatedDecl();
485   }
486 
487   mangleBareFunctionType(FD->getType()->getAs<FunctionType>(),
488                          MangleReturnType);
489 }
490 
IgnoreLinkageSpecDecls(const DeclContext * DC)491 static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
492   while (isa<LinkageSpecDecl>(DC)) {
493     DC = getEffectiveParentContext(DC);
494   }
495 
496   return DC;
497 }
498 
499 /// isStd - Return whether a given namespace is the 'std' namespace.
isStd(const NamespaceDecl * NS)500 static bool isStd(const NamespaceDecl *NS) {
501   if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
502                                 ->isTranslationUnit())
503     return false;
504 
505   const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
506   return II && II->isStr("std");
507 }
508 
509 // isStdNamespace - Return whether a given decl context is a toplevel 'std'
510 // namespace.
isStdNamespace(const DeclContext * DC)511 static bool isStdNamespace(const DeclContext *DC) {
512   if (!DC->isNamespace())
513     return false;
514 
515   return isStd(cast<NamespaceDecl>(DC));
516 }
517 
518 static const TemplateDecl *
isTemplate(const NamedDecl * ND,const TemplateArgumentList * & TemplateArgs)519 isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
520   // Check if we have a function template.
521   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
522     if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
523       TemplateArgs = FD->getTemplateSpecializationArgs();
524       return TD;
525     }
526   }
527 
528   // Check if we have a class template.
529   if (const ClassTemplateSpecializationDecl *Spec =
530         dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
531     TemplateArgs = &Spec->getTemplateArgs();
532     return Spec->getSpecializedTemplate();
533   }
534 
535   return 0;
536 }
537 
isLambda(const NamedDecl * ND)538 static bool isLambda(const NamedDecl *ND) {
539   const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
540   if (!Record)
541     return false;
542 
543   return Record->isLambda();
544 }
545 
mangleName(const NamedDecl * ND)546 void CXXNameMangler::mangleName(const NamedDecl *ND) {
547   //  <name> ::= <nested-name>
548   //         ::= <unscoped-name>
549   //         ::= <unscoped-template-name> <template-args>
550   //         ::= <local-name>
551   //
552   const DeclContext *DC = getEffectiveDeclContext(ND);
553 
554   // If this is an extern variable declared locally, the relevant DeclContext
555   // is that of the containing namespace, or the translation unit.
556   // FIXME: This is a hack; extern variables declared locally should have
557   // a proper semantic declaration context!
558   if (isa<FunctionDecl>(DC) && ND->hasLinkage() && !isLambda(ND))
559     while (!DC->isNamespace() && !DC->isTranslationUnit())
560       DC = getEffectiveParentContext(DC);
561   else if (GetLocalClassDecl(ND)) {
562     mangleLocalName(ND);
563     return;
564   }
565 
566   DC = IgnoreLinkageSpecDecls(DC);
567 
568   if (DC->isTranslationUnit() || isStdNamespace(DC)) {
569     // Check if we have a template.
570     const TemplateArgumentList *TemplateArgs = 0;
571     if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
572       mangleUnscopedTemplateName(TD);
573       TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
574       mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
575       return;
576     }
577 
578     mangleUnscopedName(ND);
579     return;
580   }
581 
582   if (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)) {
583     mangleLocalName(ND);
584     return;
585   }
586 
587   mangleNestedName(ND, DC);
588 }
mangleName(const TemplateDecl * TD,const TemplateArgument * TemplateArgs,unsigned NumTemplateArgs)589 void CXXNameMangler::mangleName(const TemplateDecl *TD,
590                                 const TemplateArgument *TemplateArgs,
591                                 unsigned NumTemplateArgs) {
592   const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
593 
594   if (DC->isTranslationUnit() || isStdNamespace(DC)) {
595     mangleUnscopedTemplateName(TD);
596     TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
597     mangleTemplateArgs(*TemplateParameters, TemplateArgs, NumTemplateArgs);
598   } else {
599     mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
600   }
601 }
602 
mangleUnscopedName(const NamedDecl * ND)603 void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
604   //  <unscoped-name> ::= <unqualified-name>
605   //                  ::= St <unqualified-name>   # ::std::
606 
607   if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
608     Out << "St";
609 
610   mangleUnqualifiedName(ND);
611 }
612 
mangleUnscopedTemplateName(const TemplateDecl * ND)613 void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
614   //     <unscoped-template-name> ::= <unscoped-name>
615   //                              ::= <substitution>
616   if (mangleSubstitution(ND))
617     return;
618 
619   // <template-template-param> ::= <template-param>
620   if (const TemplateTemplateParmDecl *TTP
621                                      = dyn_cast<TemplateTemplateParmDecl>(ND)) {
622     mangleTemplateParameter(TTP->getIndex());
623     return;
624   }
625 
626   mangleUnscopedName(ND->getTemplatedDecl());
627   addSubstitution(ND);
628 }
629 
mangleUnscopedTemplateName(TemplateName Template)630 void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
631   //     <unscoped-template-name> ::= <unscoped-name>
632   //                              ::= <substitution>
633   if (TemplateDecl *TD = Template.getAsTemplateDecl())
634     return mangleUnscopedTemplateName(TD);
635 
636   if (mangleSubstitution(Template))
637     return;
638 
639   DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
640   assert(Dependent && "Not a dependent template name?");
641   if (const IdentifierInfo *Id = Dependent->getIdentifier())
642     mangleSourceName(Id);
643   else
644     mangleOperatorName(Dependent->getOperator(), UnknownArity);
645 
646   addSubstitution(Template);
647 }
648 
mangleFloat(const llvm::APFloat & f)649 void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
650   // ABI:
651   //   Floating-point literals are encoded using a fixed-length
652   //   lowercase hexadecimal string corresponding to the internal
653   //   representation (IEEE on Itanium), high-order bytes first,
654   //   without leading zeroes. For example: "Lf bf800000 E" is -1.0f
655   //   on Itanium.
656   // The 'without leading zeroes' thing seems to be an editorial
657   // mistake; see the discussion on cxx-abi-dev beginning on
658   // 2012-01-16.
659 
660   // Our requirements here are just barely weird enough to justify
661   // using a custom algorithm instead of post-processing APInt::toString().
662 
663   llvm::APInt valueBits = f.bitcastToAPInt();
664   unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
665   assert(numCharacters != 0);
666 
667   // Allocate a buffer of the right number of characters.
668   llvm::SmallVector<char, 20> buffer;
669   buffer.set_size(numCharacters);
670 
671   // Fill the buffer left-to-right.
672   for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
673     // The bit-index of the next hex digit.
674     unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
675 
676     // Project out 4 bits starting at 'digitIndex'.
677     llvm::integerPart hexDigit
678       = valueBits.getRawData()[digitBitIndex / llvm::integerPartWidth];
679     hexDigit >>= (digitBitIndex % llvm::integerPartWidth);
680     hexDigit &= 0xF;
681 
682     // Map that over to a lowercase hex digit.
683     static const char charForHex[16] = {
684       '0', '1', '2', '3', '4', '5', '6', '7',
685       '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
686     };
687     buffer[stringIndex] = charForHex[hexDigit];
688   }
689 
690   Out.write(buffer.data(), numCharacters);
691 }
692 
mangleNumber(const llvm::APSInt & Value)693 void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
694   if (Value.isSigned() && Value.isNegative()) {
695     Out << 'n';
696     Value.abs().print(Out, /*signed*/ false);
697   } else {
698     Value.print(Out, /*signed*/ false);
699   }
700 }
701 
mangleNumber(int64_t Number)702 void CXXNameMangler::mangleNumber(int64_t Number) {
703   //  <number> ::= [n] <non-negative decimal integer>
704   if (Number < 0) {
705     Out << 'n';
706     Number = -Number;
707   }
708 
709   Out << Number;
710 }
711 
mangleCallOffset(int64_t NonVirtual,int64_t Virtual)712 void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
713   //  <call-offset>  ::= h <nv-offset> _
714   //                 ::= v <v-offset> _
715   //  <nv-offset>    ::= <offset number>        # non-virtual base override
716   //  <v-offset>     ::= <offset number> _ <virtual offset number>
717   //                      # virtual base override, with vcall offset
718   if (!Virtual) {
719     Out << 'h';
720     mangleNumber(NonVirtual);
721     Out << '_';
722     return;
723   }
724 
725   Out << 'v';
726   mangleNumber(NonVirtual);
727   Out << '_';
728   mangleNumber(Virtual);
729   Out << '_';
730 }
731 
manglePrefix(QualType type)732 void CXXNameMangler::manglePrefix(QualType type) {
733   if (const TemplateSpecializationType *TST =
734         type->getAs<TemplateSpecializationType>()) {
735     if (!mangleSubstitution(QualType(TST, 0))) {
736       mangleTemplatePrefix(TST->getTemplateName());
737 
738       // FIXME: GCC does not appear to mangle the template arguments when
739       // the template in question is a dependent template name. Should we
740       // emulate that badness?
741       mangleTemplateArgs(TST->getTemplateName(), TST->getArgs(),
742                          TST->getNumArgs());
743       addSubstitution(QualType(TST, 0));
744     }
745   } else if (const DependentTemplateSpecializationType *DTST
746                = type->getAs<DependentTemplateSpecializationType>()) {
747     TemplateName Template
748       = getASTContext().getDependentTemplateName(DTST->getQualifier(),
749                                                  DTST->getIdentifier());
750     mangleTemplatePrefix(Template);
751 
752     // FIXME: GCC does not appear to mangle the template arguments when
753     // the template in question is a dependent template name. Should we
754     // emulate that badness?
755     mangleTemplateArgs(Template, DTST->getArgs(), DTST->getNumArgs());
756   } else {
757     // We use the QualType mangle type variant here because it handles
758     // substitutions.
759     mangleType(type);
760   }
761 }
762 
763 /// Mangle everything prior to the base-unresolved-name in an unresolved-name.
764 ///
765 /// \param firstQualifierLookup - the entity found by unqualified lookup
766 ///   for the first name in the qualifier, if this is for a member expression
767 /// \param recursive - true if this is being called recursively,
768 ///   i.e. if there is more prefix "to the right".
mangleUnresolvedPrefix(NestedNameSpecifier * qualifier,NamedDecl * firstQualifierLookup,bool recursive)769 void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
770                                             NamedDecl *firstQualifierLookup,
771                                             bool recursive) {
772 
773   // x, ::x
774   // <unresolved-name> ::= [gs] <base-unresolved-name>
775 
776   // T::x / decltype(p)::x
777   // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
778 
779   // T::N::x /decltype(p)::N::x
780   // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
781   //                       <base-unresolved-name>
782 
783   // A::x, N::y, A<T>::z; "gs" means leading "::"
784   // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
785   //                       <base-unresolved-name>
786 
787   switch (qualifier->getKind()) {
788   case NestedNameSpecifier::Global:
789     Out << "gs";
790 
791     // We want an 'sr' unless this is the entire NNS.
792     if (recursive)
793       Out << "sr";
794 
795     // We never want an 'E' here.
796     return;
797 
798   case NestedNameSpecifier::Namespace:
799     if (qualifier->getPrefix())
800       mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
801                              /*recursive*/ true);
802     else
803       Out << "sr";
804     mangleSourceName(qualifier->getAsNamespace()->getIdentifier());
805     break;
806   case NestedNameSpecifier::NamespaceAlias:
807     if (qualifier->getPrefix())
808       mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
809                              /*recursive*/ true);
810     else
811       Out << "sr";
812     mangleSourceName(qualifier->getAsNamespaceAlias()->getIdentifier());
813     break;
814 
815   case NestedNameSpecifier::TypeSpec:
816   case NestedNameSpecifier::TypeSpecWithTemplate: {
817     const Type *type = qualifier->getAsType();
818 
819     // We only want to use an unresolved-type encoding if this is one of:
820     //   - a decltype
821     //   - a template type parameter
822     //   - a template template parameter with arguments
823     // In all of these cases, we should have no prefix.
824     if (qualifier->getPrefix()) {
825       mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
826                              /*recursive*/ true);
827     } else {
828       // Otherwise, all the cases want this.
829       Out << "sr";
830     }
831 
832     // Only certain other types are valid as prefixes;  enumerate them.
833     switch (type->getTypeClass()) {
834     case Type::Builtin:
835     case Type::Complex:
836     case Type::Pointer:
837     case Type::BlockPointer:
838     case Type::LValueReference:
839     case Type::RValueReference:
840     case Type::MemberPointer:
841     case Type::ConstantArray:
842     case Type::IncompleteArray:
843     case Type::VariableArray:
844     case Type::DependentSizedArray:
845     case Type::DependentSizedExtVector:
846     case Type::Vector:
847     case Type::ExtVector:
848     case Type::FunctionProto:
849     case Type::FunctionNoProto:
850     case Type::Enum:
851     case Type::Paren:
852     case Type::Elaborated:
853     case Type::Attributed:
854     case Type::Auto:
855     case Type::PackExpansion:
856     case Type::ObjCObject:
857     case Type::ObjCInterface:
858     case Type::ObjCObjectPointer:
859     case Type::Atomic:
860       llvm_unreachable("type is illegal as a nested name specifier");
861 
862     case Type::SubstTemplateTypeParmPack:
863       // FIXME: not clear how to mangle this!
864       // template <class T...> class A {
865       //   template <class U...> void foo(decltype(T::foo(U())) x...);
866       // };
867       Out << "_SUBSTPACK_";
868       break;
869 
870     // <unresolved-type> ::= <template-param>
871     //                   ::= <decltype>
872     //                   ::= <template-template-param> <template-args>
873     // (this last is not official yet)
874     case Type::TypeOfExpr:
875     case Type::TypeOf:
876     case Type::Decltype:
877     case Type::TemplateTypeParm:
878     case Type::UnaryTransform:
879     case Type::SubstTemplateTypeParm:
880     unresolvedType:
881       assert(!qualifier->getPrefix());
882 
883       // We only get here recursively if we're followed by identifiers.
884       if (recursive) Out << 'N';
885 
886       // This seems to do everything we want.  It's not really
887       // sanctioned for a substituted template parameter, though.
888       mangleType(QualType(type, 0));
889 
890       // We never want to print 'E' directly after an unresolved-type,
891       // so we return directly.
892       return;
893 
894     case Type::Typedef:
895       mangleSourceName(cast<TypedefType>(type)->getDecl()->getIdentifier());
896       break;
897 
898     case Type::UnresolvedUsing:
899       mangleSourceName(cast<UnresolvedUsingType>(type)->getDecl()
900                          ->getIdentifier());
901       break;
902 
903     case Type::Record:
904       mangleSourceName(cast<RecordType>(type)->getDecl()->getIdentifier());
905       break;
906 
907     case Type::TemplateSpecialization: {
908       const TemplateSpecializationType *tst
909         = cast<TemplateSpecializationType>(type);
910       TemplateName name = tst->getTemplateName();
911       switch (name.getKind()) {
912       case TemplateName::Template:
913       case TemplateName::QualifiedTemplate: {
914         TemplateDecl *temp = name.getAsTemplateDecl();
915 
916         // If the base is a template template parameter, this is an
917         // unresolved type.
918         assert(temp && "no template for template specialization type");
919         if (isa<TemplateTemplateParmDecl>(temp)) goto unresolvedType;
920 
921         mangleSourceName(temp->getIdentifier());
922         break;
923       }
924 
925       case TemplateName::OverloadedTemplate:
926       case TemplateName::DependentTemplate:
927         llvm_unreachable("invalid base for a template specialization type");
928 
929       case TemplateName::SubstTemplateTemplateParm: {
930         SubstTemplateTemplateParmStorage *subst
931           = name.getAsSubstTemplateTemplateParm();
932         mangleExistingSubstitution(subst->getReplacement());
933         break;
934       }
935 
936       case TemplateName::SubstTemplateTemplateParmPack: {
937         // FIXME: not clear how to mangle this!
938         // template <template <class U> class T...> class A {
939         //   template <class U...> void foo(decltype(T<U>::foo) x...);
940         // };
941         Out << "_SUBSTPACK_";
942         break;
943       }
944       }
945 
946       mangleUnresolvedTemplateArgs(tst->getArgs(), tst->getNumArgs());
947       break;
948     }
949 
950     case Type::InjectedClassName:
951       mangleSourceName(cast<InjectedClassNameType>(type)->getDecl()
952                          ->getIdentifier());
953       break;
954 
955     case Type::DependentName:
956       mangleSourceName(cast<DependentNameType>(type)->getIdentifier());
957       break;
958 
959     case Type::DependentTemplateSpecialization: {
960       const DependentTemplateSpecializationType *tst
961         = cast<DependentTemplateSpecializationType>(type);
962       mangleSourceName(tst->getIdentifier());
963       mangleUnresolvedTemplateArgs(tst->getArgs(), tst->getNumArgs());
964       break;
965     }
966     }
967     break;
968   }
969 
970   case NestedNameSpecifier::Identifier:
971     // Member expressions can have these without prefixes.
972     if (qualifier->getPrefix()) {
973       mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
974                              /*recursive*/ true);
975     } else if (firstQualifierLookup) {
976 
977       // Try to make a proper qualifier out of the lookup result, and
978       // then just recurse on that.
979       NestedNameSpecifier *newQualifier;
980       if (TypeDecl *typeDecl = dyn_cast<TypeDecl>(firstQualifierLookup)) {
981         QualType type = getASTContext().getTypeDeclType(typeDecl);
982 
983         // Pretend we had a different nested name specifier.
984         newQualifier = NestedNameSpecifier::Create(getASTContext(),
985                                                    /*prefix*/ 0,
986                                                    /*template*/ false,
987                                                    type.getTypePtr());
988       } else if (NamespaceDecl *nspace =
989                    dyn_cast<NamespaceDecl>(firstQualifierLookup)) {
990         newQualifier = NestedNameSpecifier::Create(getASTContext(),
991                                                    /*prefix*/ 0,
992                                                    nspace);
993       } else if (NamespaceAliasDecl *alias =
994                    dyn_cast<NamespaceAliasDecl>(firstQualifierLookup)) {
995         newQualifier = NestedNameSpecifier::Create(getASTContext(),
996                                                    /*prefix*/ 0,
997                                                    alias);
998       } else {
999         // No sensible mangling to do here.
1000         newQualifier = 0;
1001       }
1002 
1003       if (newQualifier)
1004         return mangleUnresolvedPrefix(newQualifier, /*lookup*/ 0, recursive);
1005 
1006     } else {
1007       Out << "sr";
1008     }
1009 
1010     mangleSourceName(qualifier->getAsIdentifier());
1011     break;
1012   }
1013 
1014   // If this was the innermost part of the NNS, and we fell out to
1015   // here, append an 'E'.
1016   if (!recursive)
1017     Out << 'E';
1018 }
1019 
1020 /// Mangle an unresolved-name, which is generally used for names which
1021 /// weren't resolved to specific entities.
mangleUnresolvedName(NestedNameSpecifier * qualifier,NamedDecl * firstQualifierLookup,DeclarationName name,unsigned knownArity)1022 void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *qualifier,
1023                                           NamedDecl *firstQualifierLookup,
1024                                           DeclarationName name,
1025                                           unsigned knownArity) {
1026   if (qualifier) mangleUnresolvedPrefix(qualifier, firstQualifierLookup);
1027   mangleUnqualifiedName(0, name, knownArity);
1028 }
1029 
FindFirstNamedDataMember(const RecordDecl * RD)1030 static const FieldDecl *FindFirstNamedDataMember(const RecordDecl *RD) {
1031   assert(RD->isAnonymousStructOrUnion() &&
1032          "Expected anonymous struct or union!");
1033 
1034   for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
1035        I != E; ++I) {
1036     if (I->getIdentifier())
1037       return *I;
1038 
1039     if (const RecordType *RT = I->getType()->getAs<RecordType>())
1040       if (const FieldDecl *NamedDataMember =
1041           FindFirstNamedDataMember(RT->getDecl()))
1042         return NamedDataMember;
1043     }
1044 
1045   // We didn't find a named data member.
1046   return 0;
1047 }
1048 
mangleUnqualifiedName(const NamedDecl * ND,DeclarationName Name,unsigned KnownArity)1049 void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
1050                                            DeclarationName Name,
1051                                            unsigned KnownArity) {
1052   //  <unqualified-name> ::= <operator-name>
1053   //                     ::= <ctor-dtor-name>
1054   //                     ::= <source-name>
1055   switch (Name.getNameKind()) {
1056   case DeclarationName::Identifier: {
1057     if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
1058       // We must avoid conflicts between internally- and externally-
1059       // linked variable and function declaration names in the same TU:
1060       //   void test() { extern void foo(); }
1061       //   static void foo();
1062       // This naming convention is the same as that followed by GCC,
1063       // though it shouldn't actually matter.
1064       if (ND && ND->getLinkage() == InternalLinkage &&
1065           getEffectiveDeclContext(ND)->isFileContext())
1066         Out << 'L';
1067 
1068       mangleSourceName(II);
1069       break;
1070     }
1071 
1072     // Otherwise, an anonymous entity.  We must have a declaration.
1073     assert(ND && "mangling empty name without declaration");
1074 
1075     if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1076       if (NS->isAnonymousNamespace()) {
1077         // This is how gcc mangles these names.
1078         Out << "12_GLOBAL__N_1";
1079         break;
1080       }
1081     }
1082 
1083     if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1084       // We must have an anonymous union or struct declaration.
1085       const RecordDecl *RD =
1086         cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
1087 
1088       // Itanium C++ ABI 5.1.2:
1089       //
1090       //   For the purposes of mangling, the name of an anonymous union is
1091       //   considered to be the name of the first named data member found by a
1092       //   pre-order, depth-first, declaration-order walk of the data members of
1093       //   the anonymous union. If there is no such data member (i.e., if all of
1094       //   the data members in the union are unnamed), then there is no way for
1095       //   a program to refer to the anonymous union, and there is therefore no
1096       //   need to mangle its name.
1097       const FieldDecl *FD = FindFirstNamedDataMember(RD);
1098 
1099       // It's actually possible for various reasons for us to get here
1100       // with an empty anonymous struct / union.  Fortunately, it
1101       // doesn't really matter what name we generate.
1102       if (!FD) break;
1103       assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1104 
1105       mangleSourceName(FD->getIdentifier());
1106       break;
1107     }
1108 
1109     // We must have an anonymous struct.
1110     const TagDecl *TD = cast<TagDecl>(ND);
1111     if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1112       assert(TD->getDeclContext() == D->getDeclContext() &&
1113              "Typedef should not be in another decl context!");
1114       assert(D->getDeclName().getAsIdentifierInfo() &&
1115              "Typedef was not named!");
1116       mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1117       break;
1118     }
1119 
1120     // <unnamed-type-name> ::= <closure-type-name>
1121     //
1122     // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1123     // <lambda-sig> ::= <parameter-type>+   # Parameter types or 'v' for 'void'.
1124     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1125       if (Record->isLambda() && Record->getLambdaManglingNumber()) {
1126         mangleLambda(Record);
1127         break;
1128       }
1129     }
1130 
1131     // Get a unique id for the anonymous struct.
1132     uint64_t AnonStructId = Context.getAnonymousStructId(TD);
1133 
1134     // Mangle it as a source name in the form
1135     // [n] $_<id>
1136     // where n is the length of the string.
1137     SmallString<8> Str;
1138     Str += "$_";
1139     Str += llvm::utostr(AnonStructId);
1140 
1141     Out << Str.size();
1142     Out << Str.str();
1143     break;
1144   }
1145 
1146   case DeclarationName::ObjCZeroArgSelector:
1147   case DeclarationName::ObjCOneArgSelector:
1148   case DeclarationName::ObjCMultiArgSelector:
1149     llvm_unreachable("Can't mangle Objective-C selector names here!");
1150 
1151   case DeclarationName::CXXConstructorName:
1152     if (ND == Structor)
1153       // If the named decl is the C++ constructor we're mangling, use the type
1154       // we were given.
1155       mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
1156     else
1157       // Otherwise, use the complete constructor name. This is relevant if a
1158       // class with a constructor is declared within a constructor.
1159       mangleCXXCtorType(Ctor_Complete);
1160     break;
1161 
1162   case DeclarationName::CXXDestructorName:
1163     if (ND == Structor)
1164       // If the named decl is the C++ destructor we're mangling, use the type we
1165       // were given.
1166       mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1167     else
1168       // Otherwise, use the complete destructor name. This is relevant if a
1169       // class with a destructor is declared within a destructor.
1170       mangleCXXDtorType(Dtor_Complete);
1171     break;
1172 
1173   case DeclarationName::CXXConversionFunctionName:
1174     // <operator-name> ::= cv <type>    # (cast)
1175     Out << "cv";
1176     mangleType(Name.getCXXNameType());
1177     break;
1178 
1179   case DeclarationName::CXXOperatorName: {
1180     unsigned Arity;
1181     if (ND) {
1182       Arity = cast<FunctionDecl>(ND)->getNumParams();
1183 
1184       // If we have a C++ member function, we need to include the 'this' pointer.
1185       // FIXME: This does not make sense for operators that are static, but their
1186       // names stay the same regardless of the arity (operator new for instance).
1187       if (isa<CXXMethodDecl>(ND))
1188         Arity++;
1189     } else
1190       Arity = KnownArity;
1191 
1192     mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
1193     break;
1194   }
1195 
1196   case DeclarationName::CXXLiteralOperatorName:
1197     // FIXME: This mangling is not yet official.
1198     Out << "li";
1199     mangleSourceName(Name.getCXXLiteralIdentifier());
1200     break;
1201 
1202   case DeclarationName::CXXUsingDirective:
1203     llvm_unreachable("Can't mangle a using directive name!");
1204   }
1205 }
1206 
mangleSourceName(const IdentifierInfo * II)1207 void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1208   // <source-name> ::= <positive length number> <identifier>
1209   // <number> ::= [n] <non-negative decimal integer>
1210   // <identifier> ::= <unqualified source code identifier>
1211   Out << II->getLength() << II->getName();
1212 }
1213 
mangleNestedName(const NamedDecl * ND,const DeclContext * DC,bool NoFunction)1214 void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
1215                                       const DeclContext *DC,
1216                                       bool NoFunction) {
1217   // <nested-name>
1218   //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1219   //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1220   //       <template-args> E
1221 
1222   Out << 'N';
1223   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1224     mangleQualifiers(Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
1225     mangleRefQualifier(Method->getRefQualifier());
1226   }
1227 
1228   // Check if we have a template.
1229   const TemplateArgumentList *TemplateArgs = 0;
1230   if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1231     mangleTemplatePrefix(TD);
1232     TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
1233     mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
1234   }
1235   else {
1236     manglePrefix(DC, NoFunction);
1237     mangleUnqualifiedName(ND);
1238   }
1239 
1240   Out << 'E';
1241 }
mangleNestedName(const TemplateDecl * TD,const TemplateArgument * TemplateArgs,unsigned NumTemplateArgs)1242 void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1243                                       const TemplateArgument *TemplateArgs,
1244                                       unsigned NumTemplateArgs) {
1245   // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1246 
1247   Out << 'N';
1248 
1249   mangleTemplatePrefix(TD);
1250   TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
1251   mangleTemplateArgs(*TemplateParameters, TemplateArgs, NumTemplateArgs);
1252 
1253   Out << 'E';
1254 }
1255 
mangleLocalName(const NamedDecl * ND)1256 void CXXNameMangler::mangleLocalName(const NamedDecl *ND) {
1257   // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1258   //              := Z <function encoding> E s [<discriminator>]
1259   // <local-name> := Z <function encoding> E d [ <parameter number> ]
1260   //                 _ <entity name>
1261   // <discriminator> := _ <non-negative number>
1262   const DeclContext *DC = getEffectiveDeclContext(ND);
1263   if (isa<ObjCMethodDecl>(DC) && isa<FunctionDecl>(ND)) {
1264     // Don't add objc method name mangling to locally declared function
1265     mangleUnqualifiedName(ND);
1266     return;
1267   }
1268 
1269   Out << 'Z';
1270 
1271   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC)) {
1272    mangleObjCMethodName(MD);
1273   } else if (const CXXRecordDecl *RD = GetLocalClassDecl(ND)) {
1274     mangleFunctionEncoding(cast<FunctionDecl>(getEffectiveDeclContext(RD)));
1275     Out << 'E';
1276 
1277     // The parameter number is omitted for the last parameter, 0 for the
1278     // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1279     // <entity name> will of course contain a <closure-type-name>: Its
1280     // numbering will be local to the particular argument in which it appears
1281     // -- other default arguments do not affect its encoding.
1282     bool SkipDiscriminator = false;
1283     if (RD->isLambda()) {
1284       if (const ParmVarDecl *Parm
1285                  = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl())) {
1286         if (const FunctionDecl *Func
1287               = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1288           Out << 'd';
1289           unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1290           if (Num > 1)
1291             mangleNumber(Num - 2);
1292           Out << '_';
1293           SkipDiscriminator = true;
1294         }
1295       }
1296     }
1297 
1298     // Mangle the name relative to the closest enclosing function.
1299     if (ND == RD) // equality ok because RD derived from ND above
1300       mangleUnqualifiedName(ND);
1301     else
1302       mangleNestedName(ND, DC, true /*NoFunction*/);
1303 
1304     if (!SkipDiscriminator) {
1305       unsigned disc;
1306       if (Context.getNextDiscriminator(RD, disc)) {
1307         if (disc < 10)
1308           Out << '_' << disc;
1309         else
1310           Out << "__" << disc << '_';
1311       }
1312     }
1313 
1314     return;
1315   }
1316   else
1317     mangleFunctionEncoding(cast<FunctionDecl>(DC));
1318 
1319   Out << 'E';
1320   mangleUnqualifiedName(ND);
1321 }
1322 
mangleLambda(const CXXRecordDecl * Lambda)1323 void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1324   // If the context of a closure type is an initializer for a class member
1325   // (static or nonstatic), it is encoded in a qualified name with a final
1326   // <prefix> of the form:
1327   //
1328   //   <data-member-prefix> := <member source-name> M
1329   //
1330   // Technically, the data-member-prefix is part of the <prefix>. However,
1331   // since a closure type will always be mangled with a prefix, it's easier
1332   // to emit that last part of the prefix here.
1333   if (Decl *Context = Lambda->getLambdaContextDecl()) {
1334     if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1335         Context->getDeclContext()->isRecord()) {
1336       if (const IdentifierInfo *Name
1337             = cast<NamedDecl>(Context)->getIdentifier()) {
1338         mangleSourceName(Name);
1339         Out << 'M';
1340       }
1341     }
1342   }
1343 
1344   Out << "Ul";
1345   DeclarationName Name
1346     = getASTContext().DeclarationNames.getCXXOperatorName(OO_Call);
1347   const FunctionProtoType *Proto
1348     = cast<CXXMethodDecl>(*Lambda->lookup(Name).first)->getType()->
1349         getAs<FunctionProtoType>();
1350   mangleBareFunctionType(Proto, /*MangleReturnType=*/false);
1351   Out << "E";
1352 
1353   // The number is omitted for the first closure type with a given
1354   // <lambda-sig> in a given context; it is n-2 for the nth closure type
1355   // (in lexical order) with that same <lambda-sig> and context.
1356   //
1357   // The AST keeps track of the number for us.
1358   unsigned Number = Lambda->getLambdaManglingNumber();
1359   assert(Number > 0 && "Lambda should be mangled as an unnamed class");
1360   if (Number > 1)
1361     mangleNumber(Number - 2);
1362   Out << '_';
1363 }
1364 
manglePrefix(NestedNameSpecifier * qualifier)1365 void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1366   switch (qualifier->getKind()) {
1367   case NestedNameSpecifier::Global:
1368     // nothing
1369     return;
1370 
1371   case NestedNameSpecifier::Namespace:
1372     mangleName(qualifier->getAsNamespace());
1373     return;
1374 
1375   case NestedNameSpecifier::NamespaceAlias:
1376     mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
1377     return;
1378 
1379   case NestedNameSpecifier::TypeSpec:
1380   case NestedNameSpecifier::TypeSpecWithTemplate:
1381     manglePrefix(QualType(qualifier->getAsType(), 0));
1382     return;
1383 
1384   case NestedNameSpecifier::Identifier:
1385     // Member expressions can have these without prefixes, but that
1386     // should end up in mangleUnresolvedPrefix instead.
1387     assert(qualifier->getPrefix());
1388     manglePrefix(qualifier->getPrefix());
1389 
1390     mangleSourceName(qualifier->getAsIdentifier());
1391     return;
1392   }
1393 
1394   llvm_unreachable("unexpected nested name specifier");
1395 }
1396 
manglePrefix(const DeclContext * DC,bool NoFunction)1397 void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
1398   //  <prefix> ::= <prefix> <unqualified-name>
1399   //           ::= <template-prefix> <template-args>
1400   //           ::= <template-param>
1401   //           ::= # empty
1402   //           ::= <substitution>
1403 
1404   DC = IgnoreLinkageSpecDecls(DC);
1405 
1406   if (DC->isTranslationUnit())
1407     return;
1408 
1409   if (const BlockDecl *Block = dyn_cast<BlockDecl>(DC)) {
1410     manglePrefix(getEffectiveParentContext(DC), NoFunction);
1411     SmallString<64> Name;
1412     llvm::raw_svector_ostream NameStream(Name);
1413     Context.mangleBlock(Block, NameStream);
1414     NameStream.flush();
1415     Out << Name.size() << Name;
1416     return;
1417   }
1418 
1419   const NamedDecl *ND = cast<NamedDecl>(DC);
1420   if (mangleSubstitution(ND))
1421     return;
1422 
1423   // Check if we have a template.
1424   const TemplateArgumentList *TemplateArgs = 0;
1425   if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1426     mangleTemplatePrefix(TD);
1427     TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
1428     mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
1429   }
1430   else if(NoFunction && (isa<FunctionDecl>(ND) || isa<ObjCMethodDecl>(ND)))
1431     return;
1432   else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(ND))
1433     mangleObjCMethodName(Method);
1434   else {
1435     manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1436     mangleUnqualifiedName(ND);
1437   }
1438 
1439   addSubstitution(ND);
1440 }
1441 
mangleTemplatePrefix(TemplateName Template)1442 void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
1443   // <template-prefix> ::= <prefix> <template unqualified-name>
1444   //                   ::= <template-param>
1445   //                   ::= <substitution>
1446   if (TemplateDecl *TD = Template.getAsTemplateDecl())
1447     return mangleTemplatePrefix(TD);
1448 
1449   if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
1450     manglePrefix(Qualified->getQualifier());
1451 
1452   if (OverloadedTemplateStorage *Overloaded
1453                                       = Template.getAsOverloadedTemplate()) {
1454     mangleUnqualifiedName(0, (*Overloaded->begin())->getDeclName(),
1455                           UnknownArity);
1456     return;
1457   }
1458 
1459   DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1460   assert(Dependent && "Unknown template name kind?");
1461   manglePrefix(Dependent->getQualifier());
1462   mangleUnscopedTemplateName(Template);
1463 }
1464 
mangleTemplatePrefix(const TemplateDecl * ND)1465 void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND) {
1466   // <template-prefix> ::= <prefix> <template unqualified-name>
1467   //                   ::= <template-param>
1468   //                   ::= <substitution>
1469   // <template-template-param> ::= <template-param>
1470   //                               <substitution>
1471 
1472   if (mangleSubstitution(ND))
1473     return;
1474 
1475   // <template-template-param> ::= <template-param>
1476   if (const TemplateTemplateParmDecl *TTP
1477                                      = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1478     mangleTemplateParameter(TTP->getIndex());
1479     return;
1480   }
1481 
1482   manglePrefix(getEffectiveDeclContext(ND));
1483   mangleUnqualifiedName(ND->getTemplatedDecl());
1484   addSubstitution(ND);
1485 }
1486 
1487 /// Mangles a template name under the production <type>.  Required for
1488 /// template template arguments.
1489 ///   <type> ::= <class-enum-type>
1490 ///          ::= <template-param>
1491 ///          ::= <substitution>
mangleType(TemplateName TN)1492 void CXXNameMangler::mangleType(TemplateName TN) {
1493   if (mangleSubstitution(TN))
1494     return;
1495 
1496   TemplateDecl *TD = 0;
1497 
1498   switch (TN.getKind()) {
1499   case TemplateName::QualifiedTemplate:
1500     TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
1501     goto HaveDecl;
1502 
1503   case TemplateName::Template:
1504     TD = TN.getAsTemplateDecl();
1505     goto HaveDecl;
1506 
1507   HaveDecl:
1508     if (isa<TemplateTemplateParmDecl>(TD))
1509       mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
1510     else
1511       mangleName(TD);
1512     break;
1513 
1514   case TemplateName::OverloadedTemplate:
1515     llvm_unreachable("can't mangle an overloaded template name as a <type>");
1516 
1517   case TemplateName::DependentTemplate: {
1518     const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
1519     assert(Dependent->isIdentifier());
1520 
1521     // <class-enum-type> ::= <name>
1522     // <name> ::= <nested-name>
1523     mangleUnresolvedPrefix(Dependent->getQualifier(), 0);
1524     mangleSourceName(Dependent->getIdentifier());
1525     break;
1526   }
1527 
1528   case TemplateName::SubstTemplateTemplateParm: {
1529     // Substituted template parameters are mangled as the substituted
1530     // template.  This will check for the substitution twice, which is
1531     // fine, but we have to return early so that we don't try to *add*
1532     // the substitution twice.
1533     SubstTemplateTemplateParmStorage *subst
1534       = TN.getAsSubstTemplateTemplateParm();
1535     mangleType(subst->getReplacement());
1536     return;
1537   }
1538 
1539   case TemplateName::SubstTemplateTemplateParmPack: {
1540     // FIXME: not clear how to mangle this!
1541     // template <template <class> class T...> class A {
1542     //   template <template <class> class U...> void foo(B<T,U> x...);
1543     // };
1544     Out << "_SUBSTPACK_";
1545     break;
1546   }
1547   }
1548 
1549   addSubstitution(TN);
1550 }
1551 
1552 void
mangleOperatorName(OverloadedOperatorKind OO,unsigned Arity)1553 CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
1554   switch (OO) {
1555   // <operator-name> ::= nw     # new
1556   case OO_New: Out << "nw"; break;
1557   //              ::= na        # new[]
1558   case OO_Array_New: Out << "na"; break;
1559   //              ::= dl        # delete
1560   case OO_Delete: Out << "dl"; break;
1561   //              ::= da        # delete[]
1562   case OO_Array_Delete: Out << "da"; break;
1563   //              ::= ps        # + (unary)
1564   //              ::= pl        # + (binary or unknown)
1565   case OO_Plus:
1566     Out << (Arity == 1? "ps" : "pl"); break;
1567   //              ::= ng        # - (unary)
1568   //              ::= mi        # - (binary or unknown)
1569   case OO_Minus:
1570     Out << (Arity == 1? "ng" : "mi"); break;
1571   //              ::= ad        # & (unary)
1572   //              ::= an        # & (binary or unknown)
1573   case OO_Amp:
1574     Out << (Arity == 1? "ad" : "an"); break;
1575   //              ::= de        # * (unary)
1576   //              ::= ml        # * (binary or unknown)
1577   case OO_Star:
1578     // Use binary when unknown.
1579     Out << (Arity == 1? "de" : "ml"); break;
1580   //              ::= co        # ~
1581   case OO_Tilde: Out << "co"; break;
1582   //              ::= dv        # /
1583   case OO_Slash: Out << "dv"; break;
1584   //              ::= rm        # %
1585   case OO_Percent: Out << "rm"; break;
1586   //              ::= or        # |
1587   case OO_Pipe: Out << "or"; break;
1588   //              ::= eo        # ^
1589   case OO_Caret: Out << "eo"; break;
1590   //              ::= aS        # =
1591   case OO_Equal: Out << "aS"; break;
1592   //              ::= pL        # +=
1593   case OO_PlusEqual: Out << "pL"; break;
1594   //              ::= mI        # -=
1595   case OO_MinusEqual: Out << "mI"; break;
1596   //              ::= mL        # *=
1597   case OO_StarEqual: Out << "mL"; break;
1598   //              ::= dV        # /=
1599   case OO_SlashEqual: Out << "dV"; break;
1600   //              ::= rM        # %=
1601   case OO_PercentEqual: Out << "rM"; break;
1602   //              ::= aN        # &=
1603   case OO_AmpEqual: Out << "aN"; break;
1604   //              ::= oR        # |=
1605   case OO_PipeEqual: Out << "oR"; break;
1606   //              ::= eO        # ^=
1607   case OO_CaretEqual: Out << "eO"; break;
1608   //              ::= ls        # <<
1609   case OO_LessLess: Out << "ls"; break;
1610   //              ::= rs        # >>
1611   case OO_GreaterGreater: Out << "rs"; break;
1612   //              ::= lS        # <<=
1613   case OO_LessLessEqual: Out << "lS"; break;
1614   //              ::= rS        # >>=
1615   case OO_GreaterGreaterEqual: Out << "rS"; break;
1616   //              ::= eq        # ==
1617   case OO_EqualEqual: Out << "eq"; break;
1618   //              ::= ne        # !=
1619   case OO_ExclaimEqual: Out << "ne"; break;
1620   //              ::= lt        # <
1621   case OO_Less: Out << "lt"; break;
1622   //              ::= gt        # >
1623   case OO_Greater: Out << "gt"; break;
1624   //              ::= le        # <=
1625   case OO_LessEqual: Out << "le"; break;
1626   //              ::= ge        # >=
1627   case OO_GreaterEqual: Out << "ge"; break;
1628   //              ::= nt        # !
1629   case OO_Exclaim: Out << "nt"; break;
1630   //              ::= aa        # &&
1631   case OO_AmpAmp: Out << "aa"; break;
1632   //              ::= oo        # ||
1633   case OO_PipePipe: Out << "oo"; break;
1634   //              ::= pp        # ++
1635   case OO_PlusPlus: Out << "pp"; break;
1636   //              ::= mm        # --
1637   case OO_MinusMinus: Out << "mm"; break;
1638   //              ::= cm        # ,
1639   case OO_Comma: Out << "cm"; break;
1640   //              ::= pm        # ->*
1641   case OO_ArrowStar: Out << "pm"; break;
1642   //              ::= pt        # ->
1643   case OO_Arrow: Out << "pt"; break;
1644   //              ::= cl        # ()
1645   case OO_Call: Out << "cl"; break;
1646   //              ::= ix        # []
1647   case OO_Subscript: Out << "ix"; break;
1648 
1649   //              ::= qu        # ?
1650   // The conditional operator can't be overloaded, but we still handle it when
1651   // mangling expressions.
1652   case OO_Conditional: Out << "qu"; break;
1653 
1654   case OO_None:
1655   case NUM_OVERLOADED_OPERATORS:
1656     llvm_unreachable("Not an overloaded operator");
1657   }
1658 }
1659 
mangleQualifiers(Qualifiers Quals)1660 void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
1661   // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
1662   if (Quals.hasRestrict())
1663     Out << 'r';
1664   if (Quals.hasVolatile())
1665     Out << 'V';
1666   if (Quals.hasConst())
1667     Out << 'K';
1668 
1669   if (Quals.hasAddressSpace()) {
1670     // Extension:
1671     //
1672     //   <type> ::= U <address-space-number>
1673     //
1674     // where <address-space-number> is a source name consisting of 'AS'
1675     // followed by the address space <number>.
1676     SmallString<64> ASString;
1677     ASString = "AS" + llvm::utostr_32(Quals.getAddressSpace());
1678     Out << 'U' << ASString.size() << ASString;
1679   }
1680 
1681   StringRef LifetimeName;
1682   switch (Quals.getObjCLifetime()) {
1683   // Objective-C ARC Extension:
1684   //
1685   //   <type> ::= U "__strong"
1686   //   <type> ::= U "__weak"
1687   //   <type> ::= U "__autoreleasing"
1688   case Qualifiers::OCL_None:
1689     break;
1690 
1691   case Qualifiers::OCL_Weak:
1692     LifetimeName = "__weak";
1693     break;
1694 
1695   case Qualifiers::OCL_Strong:
1696     LifetimeName = "__strong";
1697     break;
1698 
1699   case Qualifiers::OCL_Autoreleasing:
1700     LifetimeName = "__autoreleasing";
1701     break;
1702 
1703   case Qualifiers::OCL_ExplicitNone:
1704     // The __unsafe_unretained qualifier is *not* mangled, so that
1705     // __unsafe_unretained types in ARC produce the same manglings as the
1706     // equivalent (but, naturally, unqualified) types in non-ARC, providing
1707     // better ABI compatibility.
1708     //
1709     // It's safe to do this because unqualified 'id' won't show up
1710     // in any type signatures that need to be mangled.
1711     break;
1712   }
1713   if (!LifetimeName.empty())
1714     Out << 'U' << LifetimeName.size() << LifetimeName;
1715 }
1716 
mangleRefQualifier(RefQualifierKind RefQualifier)1717 void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1718   // <ref-qualifier> ::= R                # lvalue reference
1719   //                 ::= O                # rvalue-reference
1720   // Proposal to Itanium C++ ABI list on 1/26/11
1721   switch (RefQualifier) {
1722   case RQ_None:
1723     break;
1724 
1725   case RQ_LValue:
1726     Out << 'R';
1727     break;
1728 
1729   case RQ_RValue:
1730     Out << 'O';
1731     break;
1732   }
1733 }
1734 
mangleObjCMethodName(const ObjCMethodDecl * MD)1735 void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1736   Context.mangleObjCMethodName(MD, Out);
1737 }
1738 
mangleType(QualType T)1739 void CXXNameMangler::mangleType(QualType T) {
1740   // If our type is instantiation-dependent but not dependent, we mangle
1741   // it as it was written in the source, removing any top-level sugar.
1742   // Otherwise, use the canonical type.
1743   //
1744   // FIXME: This is an approximation of the instantiation-dependent name
1745   // mangling rules, since we should really be using the type as written and
1746   // augmented via semantic analysis (i.e., with implicit conversions and
1747   // default template arguments) for any instantiation-dependent type.
1748   // Unfortunately, that requires several changes to our AST:
1749   //   - Instantiation-dependent TemplateSpecializationTypes will need to be
1750   //     uniqued, so that we can handle substitutions properly
1751   //   - Default template arguments will need to be represented in the
1752   //     TemplateSpecializationType, since they need to be mangled even though
1753   //     they aren't written.
1754   //   - Conversions on non-type template arguments need to be expressed, since
1755   //     they can affect the mangling of sizeof/alignof.
1756   if (!T->isInstantiationDependentType() || T->isDependentType())
1757     T = T.getCanonicalType();
1758   else {
1759     // Desugar any types that are purely sugar.
1760     do {
1761       // Don't desugar through template specialization types that aren't
1762       // type aliases. We need to mangle the template arguments as written.
1763       if (const TemplateSpecializationType *TST
1764                                       = dyn_cast<TemplateSpecializationType>(T))
1765         if (!TST->isTypeAlias())
1766           break;
1767 
1768       QualType Desugared
1769         = T.getSingleStepDesugaredType(Context.getASTContext());
1770       if (Desugared == T)
1771         break;
1772 
1773       T = Desugared;
1774     } while (true);
1775   }
1776   SplitQualType split = T.split();
1777   Qualifiers quals = split.Quals;
1778   const Type *ty = split.Ty;
1779 
1780   bool isSubstitutable = quals || !isa<BuiltinType>(T);
1781   if (isSubstitutable && mangleSubstitution(T))
1782     return;
1783 
1784   // If we're mangling a qualified array type, push the qualifiers to
1785   // the element type.
1786   if (quals && isa<ArrayType>(T)) {
1787     ty = Context.getASTContext().getAsArrayType(T);
1788     quals = Qualifiers();
1789 
1790     // Note that we don't update T: we want to add the
1791     // substitution at the original type.
1792   }
1793 
1794   if (quals) {
1795     mangleQualifiers(quals);
1796     // Recurse:  even if the qualified type isn't yet substitutable,
1797     // the unqualified type might be.
1798     mangleType(QualType(ty, 0));
1799   } else {
1800     switch (ty->getTypeClass()) {
1801 #define ABSTRACT_TYPE(CLASS, PARENT)
1802 #define NON_CANONICAL_TYPE(CLASS, PARENT) \
1803     case Type::CLASS: \
1804       llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1805       return;
1806 #define TYPE(CLASS, PARENT) \
1807     case Type::CLASS: \
1808       mangleType(static_cast<const CLASS##Type*>(ty)); \
1809       break;
1810 #include "clang/AST/TypeNodes.def"
1811     }
1812   }
1813 
1814   // Add the substitution.
1815   if (isSubstitutable)
1816     addSubstitution(T);
1817 }
1818 
mangleNameOrStandardSubstitution(const NamedDecl * ND)1819 void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
1820   if (!mangleStandardSubstitution(ND))
1821     mangleName(ND);
1822 }
1823 
mangleType(const BuiltinType * T)1824 void CXXNameMangler::mangleType(const BuiltinType *T) {
1825   //  <type>         ::= <builtin-type>
1826   //  <builtin-type> ::= v  # void
1827   //                 ::= w  # wchar_t
1828   //                 ::= b  # bool
1829   //                 ::= c  # char
1830   //                 ::= a  # signed char
1831   //                 ::= h  # unsigned char
1832   //                 ::= s  # short
1833   //                 ::= t  # unsigned short
1834   //                 ::= i  # int
1835   //                 ::= j  # unsigned int
1836   //                 ::= l  # long
1837   //                 ::= m  # unsigned long
1838   //                 ::= x  # long long, __int64
1839   //                 ::= y  # unsigned long long, __int64
1840   //                 ::= n  # __int128
1841   // UNSUPPORTED:    ::= o  # unsigned __int128
1842   //                 ::= f  # float
1843   //                 ::= d  # double
1844   //                 ::= e  # long double, __float80
1845   // UNSUPPORTED:    ::= g  # __float128
1846   // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
1847   // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
1848   // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
1849   //                 ::= Dh # IEEE 754r half-precision floating point (16 bits)
1850   //                 ::= Di # char32_t
1851   //                 ::= Ds # char16_t
1852   //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
1853   //                 ::= u <source-name>    # vendor extended type
1854   switch (T->getKind()) {
1855   case BuiltinType::Void: Out << 'v'; break;
1856   case BuiltinType::Bool: Out << 'b'; break;
1857   case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
1858   case BuiltinType::UChar: Out << 'h'; break;
1859   case BuiltinType::UShort: Out << 't'; break;
1860   case BuiltinType::UInt: Out << 'j'; break;
1861   case BuiltinType::ULong: Out << 'm'; break;
1862   case BuiltinType::ULongLong: Out << 'y'; break;
1863   case BuiltinType::UInt128: Out << 'o'; break;
1864   case BuiltinType::SChar: Out << 'a'; break;
1865   case BuiltinType::WChar_S:
1866   case BuiltinType::WChar_U: Out << 'w'; break;
1867   case BuiltinType::Char16: Out << "Ds"; break;
1868   case BuiltinType::Char32: Out << "Di"; break;
1869   case BuiltinType::Short: Out << 's'; break;
1870   case BuiltinType::Int: Out << 'i'; break;
1871   case BuiltinType::Long: Out << 'l'; break;
1872   case BuiltinType::LongLong: Out << 'x'; break;
1873   case BuiltinType::Int128: Out << 'n'; break;
1874   case BuiltinType::Half: Out << "Dh"; break;
1875   case BuiltinType::Float: Out << 'f'; break;
1876   case BuiltinType::Double: Out << 'd'; break;
1877   case BuiltinType::LongDouble: Out << 'e'; break;
1878   case BuiltinType::NullPtr: Out << "Dn"; break;
1879 
1880 #define BUILTIN_TYPE(Id, SingletonId)
1881 #define PLACEHOLDER_TYPE(Id, SingletonId) \
1882   case BuiltinType::Id:
1883 #include "clang/AST/BuiltinTypes.def"
1884   case BuiltinType::Dependent:
1885     llvm_unreachable("mangling a placeholder type");
1886   case BuiltinType::ObjCId: Out << "11objc_object"; break;
1887   case BuiltinType::ObjCClass: Out << "10objc_class"; break;
1888   case BuiltinType::ObjCSel: Out << "13objc_selector"; break;
1889   }
1890 }
1891 
1892 // <type>          ::= <function-type>
1893 // <function-type> ::= [<CV-qualifiers>] F [Y]
1894 //                      <bare-function-type> [<ref-qualifier>] E
1895 // (Proposal to cxx-abi-dev, 2012-05-11)
mangleType(const FunctionProtoType * T)1896 void CXXNameMangler::mangleType(const FunctionProtoType *T) {
1897   // Mangle CV-qualifiers, if present.  These are 'this' qualifiers,
1898   // e.g. "const" in "int (A::*)() const".
1899   mangleQualifiers(Qualifiers::fromCVRMask(T->getTypeQuals()));
1900 
1901   Out << 'F';
1902 
1903   // FIXME: We don't have enough information in the AST to produce the 'Y'
1904   // encoding for extern "C" function types.
1905   mangleBareFunctionType(T, /*MangleReturnType=*/true);
1906 
1907   // Mangle the ref-qualifier, if present.
1908   mangleRefQualifier(T->getRefQualifier());
1909 
1910   Out << 'E';
1911 }
mangleType(const FunctionNoProtoType * T)1912 void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
1913   llvm_unreachable("Can't mangle K&R function prototypes");
1914 }
mangleBareFunctionType(const FunctionType * T,bool MangleReturnType)1915 void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
1916                                             bool MangleReturnType) {
1917   // We should never be mangling something without a prototype.
1918   const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
1919 
1920   // Record that we're in a function type.  See mangleFunctionParam
1921   // for details on what we're trying to achieve here.
1922   FunctionTypeDepthState saved = FunctionTypeDepth.push();
1923 
1924   // <bare-function-type> ::= <signature type>+
1925   if (MangleReturnType) {
1926     FunctionTypeDepth.enterResultType();
1927     mangleType(Proto->getResultType());
1928     FunctionTypeDepth.leaveResultType();
1929   }
1930 
1931   if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
1932     //   <builtin-type> ::= v   # void
1933     Out << 'v';
1934 
1935     FunctionTypeDepth.pop(saved);
1936     return;
1937   }
1938 
1939   for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
1940                                          ArgEnd = Proto->arg_type_end();
1941        Arg != ArgEnd; ++Arg)
1942     mangleType(Context.getASTContext().getSignatureParameterType(*Arg));
1943 
1944   FunctionTypeDepth.pop(saved);
1945 
1946   // <builtin-type>      ::= z  # ellipsis
1947   if (Proto->isVariadic())
1948     Out << 'z';
1949 }
1950 
1951 // <type>            ::= <class-enum-type>
1952 // <class-enum-type> ::= <name>
mangleType(const UnresolvedUsingType * T)1953 void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
1954   mangleName(T->getDecl());
1955 }
1956 
1957 // <type>            ::= <class-enum-type>
1958 // <class-enum-type> ::= <name>
mangleType(const EnumType * T)1959 void CXXNameMangler::mangleType(const EnumType *T) {
1960   mangleType(static_cast<const TagType*>(T));
1961 }
mangleType(const RecordType * T)1962 void CXXNameMangler::mangleType(const RecordType *T) {
1963   mangleType(static_cast<const TagType*>(T));
1964 }
mangleType(const TagType * T)1965 void CXXNameMangler::mangleType(const TagType *T) {
1966   mangleName(T->getDecl());
1967 }
1968 
1969 // <type>       ::= <array-type>
1970 // <array-type> ::= A <positive dimension number> _ <element type>
1971 //              ::= A [<dimension expression>] _ <element type>
mangleType(const ConstantArrayType * T)1972 void CXXNameMangler::mangleType(const ConstantArrayType *T) {
1973   Out << 'A' << T->getSize() << '_';
1974   mangleType(T->getElementType());
1975 }
mangleType(const VariableArrayType * T)1976 void CXXNameMangler::mangleType(const VariableArrayType *T) {
1977   Out << 'A';
1978   // decayed vla types (size 0) will just be skipped.
1979   if (T->getSizeExpr())
1980     mangleExpression(T->getSizeExpr());
1981   Out << '_';
1982   mangleType(T->getElementType());
1983 }
mangleType(const DependentSizedArrayType * T)1984 void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
1985   Out << 'A';
1986   mangleExpression(T->getSizeExpr());
1987   Out << '_';
1988   mangleType(T->getElementType());
1989 }
mangleType(const IncompleteArrayType * T)1990 void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
1991   Out << "A_";
1992   mangleType(T->getElementType());
1993 }
1994 
1995 // <type>                   ::= <pointer-to-member-type>
1996 // <pointer-to-member-type> ::= M <class type> <member type>
mangleType(const MemberPointerType * T)1997 void CXXNameMangler::mangleType(const MemberPointerType *T) {
1998   Out << 'M';
1999   mangleType(QualType(T->getClass(), 0));
2000   QualType PointeeType = T->getPointeeType();
2001   if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
2002     mangleType(FPT);
2003 
2004     // Itanium C++ ABI 5.1.8:
2005     //
2006     //   The type of a non-static member function is considered to be different,
2007     //   for the purposes of substitution, from the type of a namespace-scope or
2008     //   static member function whose type appears similar. The types of two
2009     //   non-static member functions are considered to be different, for the
2010     //   purposes of substitution, if the functions are members of different
2011     //   classes. In other words, for the purposes of substitution, the class of
2012     //   which the function is a member is considered part of the type of
2013     //   function.
2014 
2015     // Given that we already substitute member function pointers as a
2016     // whole, the net effect of this rule is just to unconditionally
2017     // suppress substitution on the function type in a member pointer.
2018     // We increment the SeqID here to emulate adding an entry to the
2019     // substitution table.
2020     ++SeqID;
2021   } else
2022     mangleType(PointeeType);
2023 }
2024 
2025 // <type>           ::= <template-param>
mangleType(const TemplateTypeParmType * T)2026 void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
2027   mangleTemplateParameter(T->getIndex());
2028 }
2029 
2030 // <type>           ::= <template-param>
mangleType(const SubstTemplateTypeParmPackType * T)2031 void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
2032   // FIXME: not clear how to mangle this!
2033   // template <class T...> class A {
2034   //   template <class U...> void foo(T(*)(U) x...);
2035   // };
2036   Out << "_SUBSTPACK_";
2037 }
2038 
2039 // <type> ::= P <type>   # pointer-to
mangleType(const PointerType * T)2040 void CXXNameMangler::mangleType(const PointerType *T) {
2041   Out << 'P';
2042   mangleType(T->getPointeeType());
2043 }
mangleType(const ObjCObjectPointerType * T)2044 void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
2045   Out << 'P';
2046   mangleType(T->getPointeeType());
2047 }
2048 
2049 // <type> ::= R <type>   # reference-to
mangleType(const LValueReferenceType * T)2050 void CXXNameMangler::mangleType(const LValueReferenceType *T) {
2051   Out << 'R';
2052   mangleType(T->getPointeeType());
2053 }
2054 
2055 // <type> ::= O <type>   # rvalue reference-to (C++0x)
mangleType(const RValueReferenceType * T)2056 void CXXNameMangler::mangleType(const RValueReferenceType *T) {
2057   Out << 'O';
2058   mangleType(T->getPointeeType());
2059 }
2060 
2061 // <type> ::= C <type>   # complex pair (C 2000)
mangleType(const ComplexType * T)2062 void CXXNameMangler::mangleType(const ComplexType *T) {
2063   Out << 'C';
2064   mangleType(T->getElementType());
2065 }
2066 
2067 // ARM's ABI for Neon vector types specifies that they should be mangled as
2068 // if they are structs (to match ARM's initial implementation).  The
2069 // vector type must be one of the special types predefined by ARM.
mangleNeonVectorType(const VectorType * T)2070 void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
2071   QualType EltType = T->getElementType();
2072   assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2073   const char *EltName = 0;
2074   if (T->getVectorKind() == VectorType::NeonPolyVector) {
2075     switch (cast<BuiltinType>(EltType)->getKind()) {
2076     case BuiltinType::SChar:     EltName = "poly8_t"; break;
2077     case BuiltinType::Short:     EltName = "poly16_t"; break;
2078     default: llvm_unreachable("unexpected Neon polynomial vector element type");
2079     }
2080   } else {
2081     switch (cast<BuiltinType>(EltType)->getKind()) {
2082     case BuiltinType::SChar:     EltName = "int8_t"; break;
2083     case BuiltinType::UChar:     EltName = "uint8_t"; break;
2084     case BuiltinType::Short:     EltName = "int16_t"; break;
2085     case BuiltinType::UShort:    EltName = "uint16_t"; break;
2086     case BuiltinType::Int:       EltName = "int32_t"; break;
2087     case BuiltinType::UInt:      EltName = "uint32_t"; break;
2088     case BuiltinType::LongLong:  EltName = "int64_t"; break;
2089     case BuiltinType::ULongLong: EltName = "uint64_t"; break;
2090     case BuiltinType::Float:     EltName = "float32_t"; break;
2091     default: llvm_unreachable("unexpected Neon vector element type");
2092     }
2093   }
2094   const char *BaseName = 0;
2095   unsigned BitSize = (T->getNumElements() *
2096                       getASTContext().getTypeSize(EltType));
2097   if (BitSize == 64)
2098     BaseName = "__simd64_";
2099   else {
2100     assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
2101     BaseName = "__simd128_";
2102   }
2103   Out << strlen(BaseName) + strlen(EltName);
2104   Out << BaseName << EltName;
2105 }
2106 
2107 // GNU extension: vector types
2108 // <type>                  ::= <vector-type>
2109 // <vector-type>           ::= Dv <positive dimension number> _
2110 //                                    <extended element type>
2111 //                         ::= Dv [<dimension expression>] _ <element type>
2112 // <extended element type> ::= <element type>
2113 //                         ::= p # AltiVec vector pixel
mangleType(const VectorType * T)2114 void CXXNameMangler::mangleType(const VectorType *T) {
2115   if ((T->getVectorKind() == VectorType::NeonVector ||
2116        T->getVectorKind() == VectorType::NeonPolyVector)) {
2117     mangleNeonVectorType(T);
2118     return;
2119   }
2120   Out << "Dv" << T->getNumElements() << '_';
2121   if (T->getVectorKind() == VectorType::AltiVecPixel)
2122     Out << 'p';
2123   else if (T->getVectorKind() == VectorType::AltiVecBool)
2124     Out << 'b';
2125   else
2126     mangleType(T->getElementType());
2127 }
mangleType(const ExtVectorType * T)2128 void CXXNameMangler::mangleType(const ExtVectorType *T) {
2129   mangleType(static_cast<const VectorType*>(T));
2130 }
mangleType(const DependentSizedExtVectorType * T)2131 void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
2132   Out << "Dv";
2133   mangleExpression(T->getSizeExpr());
2134   Out << '_';
2135   mangleType(T->getElementType());
2136 }
2137 
mangleType(const PackExpansionType * T)2138 void CXXNameMangler::mangleType(const PackExpansionType *T) {
2139   // <type>  ::= Dp <type>          # pack expansion (C++0x)
2140   Out << "Dp";
2141   mangleType(T->getPattern());
2142 }
2143 
mangleType(const ObjCInterfaceType * T)2144 void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
2145   mangleSourceName(T->getDecl()->getIdentifier());
2146 }
2147 
mangleType(const ObjCObjectType * T)2148 void CXXNameMangler::mangleType(const ObjCObjectType *T) {
2149   // We don't allow overloading by different protocol qualification,
2150   // so mangling them isn't necessary.
2151   mangleType(T->getBaseType());
2152 }
2153 
mangleType(const BlockPointerType * T)2154 void CXXNameMangler::mangleType(const BlockPointerType *T) {
2155   Out << "U13block_pointer";
2156   mangleType(T->getPointeeType());
2157 }
2158 
mangleType(const InjectedClassNameType * T)2159 void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
2160   // Mangle injected class name types as if the user had written the
2161   // specialization out fully.  It may not actually be possible to see
2162   // this mangling, though.
2163   mangleType(T->getInjectedSpecializationType());
2164 }
2165 
mangleType(const TemplateSpecializationType * T)2166 void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
2167   if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
2168     mangleName(TD, T->getArgs(), T->getNumArgs());
2169   } else {
2170     if (mangleSubstitution(QualType(T, 0)))
2171       return;
2172 
2173     mangleTemplatePrefix(T->getTemplateName());
2174 
2175     // FIXME: GCC does not appear to mangle the template arguments when
2176     // the template in question is a dependent template name. Should we
2177     // emulate that badness?
2178     mangleTemplateArgs(T->getTemplateName(), T->getArgs(), T->getNumArgs());
2179     addSubstitution(QualType(T, 0));
2180   }
2181 }
2182 
mangleType(const DependentNameType * T)2183 void CXXNameMangler::mangleType(const DependentNameType *T) {
2184   // Typename types are always nested
2185   Out << 'N';
2186   manglePrefix(T->getQualifier());
2187   mangleSourceName(T->getIdentifier());
2188   Out << 'E';
2189 }
2190 
mangleType(const DependentTemplateSpecializationType * T)2191 void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
2192   // Dependently-scoped template types are nested if they have a prefix.
2193   Out << 'N';
2194 
2195   // TODO: avoid making this TemplateName.
2196   TemplateName Prefix =
2197     getASTContext().getDependentTemplateName(T->getQualifier(),
2198                                              T->getIdentifier());
2199   mangleTemplatePrefix(Prefix);
2200 
2201   // FIXME: GCC does not appear to mangle the template arguments when
2202   // the template in question is a dependent template name. Should we
2203   // emulate that badness?
2204   mangleTemplateArgs(Prefix, T->getArgs(), T->getNumArgs());
2205   Out << 'E';
2206 }
2207 
mangleType(const TypeOfType * T)2208 void CXXNameMangler::mangleType(const TypeOfType *T) {
2209   // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2210   // "extension with parameters" mangling.
2211   Out << "u6typeof";
2212 }
2213 
mangleType(const TypeOfExprType * T)2214 void CXXNameMangler::mangleType(const TypeOfExprType *T) {
2215   // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2216   // "extension with parameters" mangling.
2217   Out << "u6typeof";
2218 }
2219 
mangleType(const DecltypeType * T)2220 void CXXNameMangler::mangleType(const DecltypeType *T) {
2221   Expr *E = T->getUnderlyingExpr();
2222 
2223   // type ::= Dt <expression> E  # decltype of an id-expression
2224   //                             #   or class member access
2225   //      ::= DT <expression> E  # decltype of an expression
2226 
2227   // This purports to be an exhaustive list of id-expressions and
2228   // class member accesses.  Note that we do not ignore parentheses;
2229   // parentheses change the semantics of decltype for these
2230   // expressions (and cause the mangler to use the other form).
2231   if (isa<DeclRefExpr>(E) ||
2232       isa<MemberExpr>(E) ||
2233       isa<UnresolvedLookupExpr>(E) ||
2234       isa<DependentScopeDeclRefExpr>(E) ||
2235       isa<CXXDependentScopeMemberExpr>(E) ||
2236       isa<UnresolvedMemberExpr>(E))
2237     Out << "Dt";
2238   else
2239     Out << "DT";
2240   mangleExpression(E);
2241   Out << 'E';
2242 }
2243 
mangleType(const UnaryTransformType * T)2244 void CXXNameMangler::mangleType(const UnaryTransformType *T) {
2245   // If this is dependent, we need to record that. If not, we simply
2246   // mangle it as the underlying type since they are equivalent.
2247   if (T->isDependentType()) {
2248     Out << 'U';
2249 
2250     switch (T->getUTTKind()) {
2251       case UnaryTransformType::EnumUnderlyingType:
2252         Out << "3eut";
2253         break;
2254     }
2255   }
2256 
2257   mangleType(T->getUnderlyingType());
2258 }
2259 
mangleType(const AutoType * T)2260 void CXXNameMangler::mangleType(const AutoType *T) {
2261   QualType D = T->getDeducedType();
2262   // <builtin-type> ::= Da  # dependent auto
2263   if (D.isNull())
2264     Out << "Da";
2265   else
2266     mangleType(D);
2267 }
2268 
mangleType(const AtomicType * T)2269 void CXXNameMangler::mangleType(const AtomicType *T) {
2270   // <type> ::= U <source-name> <type>	# vendor extended type qualifier
2271   // (Until there's a standardized mangling...)
2272   Out << "U7_Atomic";
2273   mangleType(T->getValueType());
2274 }
2275 
mangleIntegerLiteral(QualType T,const llvm::APSInt & Value)2276 void CXXNameMangler::mangleIntegerLiteral(QualType T,
2277                                           const llvm::APSInt &Value) {
2278   //  <expr-primary> ::= L <type> <value number> E # integer literal
2279   Out << 'L';
2280 
2281   mangleType(T);
2282   if (T->isBooleanType()) {
2283     // Boolean values are encoded as 0/1.
2284     Out << (Value.getBoolValue() ? '1' : '0');
2285   } else {
2286     mangleNumber(Value);
2287   }
2288   Out << 'E';
2289 
2290 }
2291 
2292 /// Mangles a member expression.
mangleMemberExpr(const Expr * base,bool isArrow,NestedNameSpecifier * qualifier,NamedDecl * firstQualifierLookup,DeclarationName member,unsigned arity)2293 void CXXNameMangler::mangleMemberExpr(const Expr *base,
2294                                       bool isArrow,
2295                                       NestedNameSpecifier *qualifier,
2296                                       NamedDecl *firstQualifierLookup,
2297                                       DeclarationName member,
2298                                       unsigned arity) {
2299   // <expression> ::= dt <expression> <unresolved-name>
2300   //              ::= pt <expression> <unresolved-name>
2301   if (base) {
2302     if (base->isImplicitCXXThis()) {
2303       // Note: GCC mangles member expressions to the implicit 'this' as
2304       // *this., whereas we represent them as this->. The Itanium C++ ABI
2305       // does not specify anything here, so we follow GCC.
2306       Out << "dtdefpT";
2307     } else {
2308       Out << (isArrow ? "pt" : "dt");
2309       mangleExpression(base);
2310     }
2311   }
2312   mangleUnresolvedName(qualifier, firstQualifierLookup, member, arity);
2313 }
2314 
2315 /// Look at the callee of the given call expression and determine if
2316 /// it's a parenthesized id-expression which would have triggered ADL
2317 /// otherwise.
isParenthesizedADLCallee(const CallExpr * call)2318 static bool isParenthesizedADLCallee(const CallExpr *call) {
2319   const Expr *callee = call->getCallee();
2320   const Expr *fn = callee->IgnoreParens();
2321 
2322   // Must be parenthesized.  IgnoreParens() skips __extension__ nodes,
2323   // too, but for those to appear in the callee, it would have to be
2324   // parenthesized.
2325   if (callee == fn) return false;
2326 
2327   // Must be an unresolved lookup.
2328   const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
2329   if (!lookup) return false;
2330 
2331   assert(!lookup->requiresADL());
2332 
2333   // Must be an unqualified lookup.
2334   if (lookup->getQualifier()) return false;
2335 
2336   // Must not have found a class member.  Note that if one is a class
2337   // member, they're all class members.
2338   if (lookup->getNumDecls() > 0 &&
2339       (*lookup->decls_begin())->isCXXClassMember())
2340     return false;
2341 
2342   // Otherwise, ADL would have been triggered.
2343   return true;
2344 }
2345 
mangleExpression(const Expr * E,unsigned Arity)2346 void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
2347   // <expression> ::= <unary operator-name> <expression>
2348   //              ::= <binary operator-name> <expression> <expression>
2349   //              ::= <trinary operator-name> <expression> <expression> <expression>
2350   //              ::= cv <type> expression           # conversion with one argument
2351   //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
2352   //              ::= st <type>                      # sizeof (a type)
2353   //              ::= at <type>                      # alignof (a type)
2354   //              ::= <template-param>
2355   //              ::= <function-param>
2356   //              ::= sr <type> <unqualified-name>                   # dependent name
2357   //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
2358   //              ::= ds <expression> <expression>                   # expr.*expr
2359   //              ::= sZ <template-param>                            # size of a parameter pack
2360   //              ::= sZ <function-param>    # size of a function parameter pack
2361   //              ::= <expr-primary>
2362   // <expr-primary> ::= L <type> <value number> E    # integer literal
2363   //                ::= L <type <value float> E      # floating literal
2364   //                ::= L <mangled-name> E           # external name
2365   //                ::= fpT                          # 'this' expression
2366   QualType ImplicitlyConvertedToType;
2367 
2368 recurse:
2369   switch (E->getStmtClass()) {
2370   case Expr::NoStmtClass:
2371 #define ABSTRACT_STMT(Type)
2372 #define EXPR(Type, Base)
2373 #define STMT(Type, Base) \
2374   case Expr::Type##Class:
2375 #include "clang/AST/StmtNodes.inc"
2376     // fallthrough
2377 
2378   // These all can only appear in local or variable-initialization
2379   // contexts and so should never appear in a mangling.
2380   case Expr::AddrLabelExprClass:
2381   case Expr::DesignatedInitExprClass:
2382   case Expr::ImplicitValueInitExprClass:
2383   case Expr::ParenListExprClass:
2384   case Expr::LambdaExprClass:
2385     llvm_unreachable("unexpected statement kind");
2386 
2387   // FIXME: invent manglings for all these.
2388   case Expr::BlockExprClass:
2389   case Expr::CXXPseudoDestructorExprClass:
2390   case Expr::ChooseExprClass:
2391   case Expr::CompoundLiteralExprClass:
2392   case Expr::ExtVectorElementExprClass:
2393   case Expr::GenericSelectionExprClass:
2394   case Expr::ObjCEncodeExprClass:
2395   case Expr::ObjCIsaExprClass:
2396   case Expr::ObjCIvarRefExprClass:
2397   case Expr::ObjCMessageExprClass:
2398   case Expr::ObjCPropertyRefExprClass:
2399   case Expr::ObjCProtocolExprClass:
2400   case Expr::ObjCSelectorExprClass:
2401   case Expr::ObjCStringLiteralClass:
2402   case Expr::ObjCBoxedExprClass:
2403   case Expr::ObjCArrayLiteralClass:
2404   case Expr::ObjCDictionaryLiteralClass:
2405   case Expr::ObjCSubscriptRefExprClass:
2406   case Expr::ObjCIndirectCopyRestoreExprClass:
2407   case Expr::OffsetOfExprClass:
2408   case Expr::PredefinedExprClass:
2409   case Expr::ShuffleVectorExprClass:
2410   case Expr::StmtExprClass:
2411   case Expr::UnaryTypeTraitExprClass:
2412   case Expr::BinaryTypeTraitExprClass:
2413   case Expr::TypeTraitExprClass:
2414   case Expr::ArrayTypeTraitExprClass:
2415   case Expr::ExpressionTraitExprClass:
2416   case Expr::VAArgExprClass:
2417   case Expr::CXXUuidofExprClass:
2418   case Expr::CXXNoexceptExprClass:
2419   case Expr::CUDAKernelCallExprClass:
2420   case Expr::AsTypeExprClass:
2421   case Expr::PseudoObjectExprClass:
2422   case Expr::AtomicExprClass:
2423   {
2424     // As bad as this diagnostic is, it's better than crashing.
2425     DiagnosticsEngine &Diags = Context.getDiags();
2426     unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2427                                      "cannot yet mangle expression type %0");
2428     Diags.Report(E->getExprLoc(), DiagID)
2429       << E->getStmtClassName() << E->getSourceRange();
2430     break;
2431   }
2432 
2433   // Even gcc-4.5 doesn't mangle this.
2434   case Expr::BinaryConditionalOperatorClass: {
2435     DiagnosticsEngine &Diags = Context.getDiags();
2436     unsigned DiagID =
2437       Diags.getCustomDiagID(DiagnosticsEngine::Error,
2438                 "?: operator with omitted middle operand cannot be mangled");
2439     Diags.Report(E->getExprLoc(), DiagID)
2440       << E->getStmtClassName() << E->getSourceRange();
2441     break;
2442   }
2443 
2444   // These are used for internal purposes and cannot be meaningfully mangled.
2445   case Expr::OpaqueValueExprClass:
2446     llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
2447 
2448   case Expr::InitListExprClass: {
2449     // Proposal by Jason Merrill, 2012-01-03
2450     Out << "il";
2451     const InitListExpr *InitList = cast<InitListExpr>(E);
2452     for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2453       mangleExpression(InitList->getInit(i));
2454     Out << "E";
2455     break;
2456   }
2457 
2458   case Expr::CXXDefaultArgExprClass:
2459     mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
2460     break;
2461 
2462   case Expr::SubstNonTypeTemplateParmExprClass:
2463     mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
2464                      Arity);
2465     break;
2466 
2467   case Expr::UserDefinedLiteralClass:
2468     // We follow g++'s approach of mangling a UDL as a call to the literal
2469     // operator.
2470   case Expr::CXXMemberCallExprClass: // fallthrough
2471   case Expr::CallExprClass: {
2472     const CallExpr *CE = cast<CallExpr>(E);
2473 
2474     // <expression> ::= cp <simple-id> <expression>* E
2475     // We use this mangling only when the call would use ADL except
2476     // for being parenthesized.  Per discussion with David
2477     // Vandervoorde, 2011.04.25.
2478     if (isParenthesizedADLCallee(CE)) {
2479       Out << "cp";
2480       // The callee here is a parenthesized UnresolvedLookupExpr with
2481       // no qualifier and should always get mangled as a <simple-id>
2482       // anyway.
2483 
2484     // <expression> ::= cl <expression>* E
2485     } else {
2486       Out << "cl";
2487     }
2488 
2489     mangleExpression(CE->getCallee(), CE->getNumArgs());
2490     for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I)
2491       mangleExpression(CE->getArg(I));
2492     Out << 'E';
2493     break;
2494   }
2495 
2496   case Expr::CXXNewExprClass: {
2497     const CXXNewExpr *New = cast<CXXNewExpr>(E);
2498     if (New->isGlobalNew()) Out << "gs";
2499     Out << (New->isArray() ? "na" : "nw");
2500     for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
2501            E = New->placement_arg_end(); I != E; ++I)
2502       mangleExpression(*I);
2503     Out << '_';
2504     mangleType(New->getAllocatedType());
2505     if (New->hasInitializer()) {
2506       // Proposal by Jason Merrill, 2012-01-03
2507       if (New->getInitializationStyle() == CXXNewExpr::ListInit)
2508         Out << "il";
2509       else
2510         Out << "pi";
2511       const Expr *Init = New->getInitializer();
2512       if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
2513         // Directly inline the initializers.
2514         for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
2515                                                   E = CCE->arg_end();
2516              I != E; ++I)
2517           mangleExpression(*I);
2518       } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
2519         for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
2520           mangleExpression(PLE->getExpr(i));
2521       } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
2522                  isa<InitListExpr>(Init)) {
2523         // Only take InitListExprs apart for list-initialization.
2524         const InitListExpr *InitList = cast<InitListExpr>(Init);
2525         for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2526           mangleExpression(InitList->getInit(i));
2527       } else
2528         mangleExpression(Init);
2529     }
2530     Out << 'E';
2531     break;
2532   }
2533 
2534   case Expr::MemberExprClass: {
2535     const MemberExpr *ME = cast<MemberExpr>(E);
2536     mangleMemberExpr(ME->getBase(), ME->isArrow(),
2537                      ME->getQualifier(), 0, ME->getMemberDecl()->getDeclName(),
2538                      Arity);
2539     break;
2540   }
2541 
2542   case Expr::UnresolvedMemberExprClass: {
2543     const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
2544     mangleMemberExpr(ME->getBase(), ME->isArrow(),
2545                      ME->getQualifier(), 0, ME->getMemberName(),
2546                      Arity);
2547     if (ME->hasExplicitTemplateArgs())
2548       mangleTemplateArgs(ME->getExplicitTemplateArgs());
2549     break;
2550   }
2551 
2552   case Expr::CXXDependentScopeMemberExprClass: {
2553     const CXXDependentScopeMemberExpr *ME
2554       = cast<CXXDependentScopeMemberExpr>(E);
2555     mangleMemberExpr(ME->getBase(), ME->isArrow(),
2556                      ME->getQualifier(), ME->getFirstQualifierFoundInScope(),
2557                      ME->getMember(), Arity);
2558     if (ME->hasExplicitTemplateArgs())
2559       mangleTemplateArgs(ME->getExplicitTemplateArgs());
2560     break;
2561   }
2562 
2563   case Expr::UnresolvedLookupExprClass: {
2564     const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
2565     mangleUnresolvedName(ULE->getQualifier(), 0, ULE->getName(), Arity);
2566 
2567     // All the <unresolved-name> productions end in a
2568     // base-unresolved-name, where <template-args> are just tacked
2569     // onto the end.
2570     if (ULE->hasExplicitTemplateArgs())
2571       mangleTemplateArgs(ULE->getExplicitTemplateArgs());
2572     break;
2573   }
2574 
2575   case Expr::CXXUnresolvedConstructExprClass: {
2576     const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
2577     unsigned N = CE->arg_size();
2578 
2579     Out << "cv";
2580     mangleType(CE->getType());
2581     if (N != 1) Out << '_';
2582     for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2583     if (N != 1) Out << 'E';
2584     break;
2585   }
2586 
2587   case Expr::CXXTemporaryObjectExprClass:
2588   case Expr::CXXConstructExprClass: {
2589     const CXXConstructExpr *CE = cast<CXXConstructExpr>(E);
2590     unsigned N = CE->getNumArgs();
2591 
2592     // Proposal by Jason Merrill, 2012-01-03
2593     if (CE->isListInitialization())
2594       Out << "tl";
2595     else
2596       Out << "cv";
2597     mangleType(CE->getType());
2598     if (N != 1) Out << '_';
2599     for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2600     if (N != 1) Out << 'E';
2601     break;
2602   }
2603 
2604   case Expr::CXXScalarValueInitExprClass:
2605     Out <<"cv";
2606     mangleType(E->getType());
2607     Out <<"_E";
2608     break;
2609 
2610   case Expr::UnaryExprOrTypeTraitExprClass: {
2611     const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
2612 
2613     if (!SAE->isInstantiationDependent()) {
2614       // Itanium C++ ABI:
2615       //   If the operand of a sizeof or alignof operator is not
2616       //   instantiation-dependent it is encoded as an integer literal
2617       //   reflecting the result of the operator.
2618       //
2619       //   If the result of the operator is implicitly converted to a known
2620       //   integer type, that type is used for the literal; otherwise, the type
2621       //   of std::size_t or std::ptrdiff_t is used.
2622       QualType T = (ImplicitlyConvertedToType.isNull() ||
2623                     !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
2624                                                     : ImplicitlyConvertedToType;
2625       llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
2626       mangleIntegerLiteral(T, V);
2627       break;
2628     }
2629 
2630     switch(SAE->getKind()) {
2631     case UETT_SizeOf:
2632       Out << 's';
2633       break;
2634     case UETT_AlignOf:
2635       Out << 'a';
2636       break;
2637     case UETT_VecStep:
2638       DiagnosticsEngine &Diags = Context.getDiags();
2639       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2640                                      "cannot yet mangle vec_step expression");
2641       Diags.Report(DiagID);
2642       return;
2643     }
2644     if (SAE->isArgumentType()) {
2645       Out << 't';
2646       mangleType(SAE->getArgumentType());
2647     } else {
2648       Out << 'z';
2649       mangleExpression(SAE->getArgumentExpr());
2650     }
2651     break;
2652   }
2653 
2654   case Expr::CXXThrowExprClass: {
2655     const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
2656 
2657     // Proposal from David Vandervoorde, 2010.06.30
2658     if (TE->getSubExpr()) {
2659       Out << "tw";
2660       mangleExpression(TE->getSubExpr());
2661     } else {
2662       Out << "tr";
2663     }
2664     break;
2665   }
2666 
2667   case Expr::CXXTypeidExprClass: {
2668     const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
2669 
2670     // Proposal from David Vandervoorde, 2010.06.30
2671     if (TIE->isTypeOperand()) {
2672       Out << "ti";
2673       mangleType(TIE->getTypeOperand());
2674     } else {
2675       Out << "te";
2676       mangleExpression(TIE->getExprOperand());
2677     }
2678     break;
2679   }
2680 
2681   case Expr::CXXDeleteExprClass: {
2682     const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
2683 
2684     // Proposal from David Vandervoorde, 2010.06.30
2685     if (DE->isGlobalDelete()) Out << "gs";
2686     Out << (DE->isArrayForm() ? "da" : "dl");
2687     mangleExpression(DE->getArgument());
2688     break;
2689   }
2690 
2691   case Expr::UnaryOperatorClass: {
2692     const UnaryOperator *UO = cast<UnaryOperator>(E);
2693     mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
2694                        /*Arity=*/1);
2695     mangleExpression(UO->getSubExpr());
2696     break;
2697   }
2698 
2699   case Expr::ArraySubscriptExprClass: {
2700     const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
2701 
2702     // Array subscript is treated as a syntactically weird form of
2703     // binary operator.
2704     Out << "ix";
2705     mangleExpression(AE->getLHS());
2706     mangleExpression(AE->getRHS());
2707     break;
2708   }
2709 
2710   case Expr::CompoundAssignOperatorClass: // fallthrough
2711   case Expr::BinaryOperatorClass: {
2712     const BinaryOperator *BO = cast<BinaryOperator>(E);
2713     if (BO->getOpcode() == BO_PtrMemD)
2714       Out << "ds";
2715     else
2716       mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
2717                          /*Arity=*/2);
2718     mangleExpression(BO->getLHS());
2719     mangleExpression(BO->getRHS());
2720     break;
2721   }
2722 
2723   case Expr::ConditionalOperatorClass: {
2724     const ConditionalOperator *CO = cast<ConditionalOperator>(E);
2725     mangleOperatorName(OO_Conditional, /*Arity=*/3);
2726     mangleExpression(CO->getCond());
2727     mangleExpression(CO->getLHS(), Arity);
2728     mangleExpression(CO->getRHS(), Arity);
2729     break;
2730   }
2731 
2732   case Expr::ImplicitCastExprClass: {
2733     ImplicitlyConvertedToType = E->getType();
2734     E = cast<ImplicitCastExpr>(E)->getSubExpr();
2735     goto recurse;
2736   }
2737 
2738   case Expr::ObjCBridgedCastExprClass: {
2739     // Mangle ownership casts as a vendor extended operator __bridge,
2740     // __bridge_transfer, or __bridge_retain.
2741     StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
2742     Out << "v1U" << Kind.size() << Kind;
2743   }
2744   // Fall through to mangle the cast itself.
2745 
2746   case Expr::CStyleCastExprClass:
2747   case Expr::CXXStaticCastExprClass:
2748   case Expr::CXXDynamicCastExprClass:
2749   case Expr::CXXReinterpretCastExprClass:
2750   case Expr::CXXConstCastExprClass:
2751   case Expr::CXXFunctionalCastExprClass: {
2752     const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
2753     Out << "cv";
2754     mangleType(ECE->getType());
2755     mangleExpression(ECE->getSubExpr());
2756     break;
2757   }
2758 
2759   case Expr::CXXOperatorCallExprClass: {
2760     const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
2761     unsigned NumArgs = CE->getNumArgs();
2762     mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
2763     // Mangle the arguments.
2764     for (unsigned i = 0; i != NumArgs; ++i)
2765       mangleExpression(CE->getArg(i));
2766     break;
2767   }
2768 
2769   case Expr::ParenExprClass:
2770     mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
2771     break;
2772 
2773   case Expr::DeclRefExprClass: {
2774     const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
2775 
2776     switch (D->getKind()) {
2777     default:
2778       //  <expr-primary> ::= L <mangled-name> E # external name
2779       Out << 'L';
2780       mangle(D, "_Z");
2781       Out << 'E';
2782       break;
2783 
2784     case Decl::ParmVar:
2785       mangleFunctionParam(cast<ParmVarDecl>(D));
2786       break;
2787 
2788     case Decl::EnumConstant: {
2789       const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
2790       mangleIntegerLiteral(ED->getType(), ED->getInitVal());
2791       break;
2792     }
2793 
2794     case Decl::NonTypeTemplateParm: {
2795       const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
2796       mangleTemplateParameter(PD->getIndex());
2797       break;
2798     }
2799 
2800     }
2801 
2802     break;
2803   }
2804 
2805   case Expr::SubstNonTypeTemplateParmPackExprClass:
2806     // FIXME: not clear how to mangle this!
2807     // template <unsigned N...> class A {
2808     //   template <class U...> void foo(U (&x)[N]...);
2809     // };
2810     Out << "_SUBSTPACK_";
2811     break;
2812 
2813   case Expr::DependentScopeDeclRefExprClass: {
2814     const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
2815     mangleUnresolvedName(DRE->getQualifier(), 0, DRE->getDeclName(), Arity);
2816 
2817     // All the <unresolved-name> productions end in a
2818     // base-unresolved-name, where <template-args> are just tacked
2819     // onto the end.
2820     if (DRE->hasExplicitTemplateArgs())
2821       mangleTemplateArgs(DRE->getExplicitTemplateArgs());
2822     break;
2823   }
2824 
2825   case Expr::CXXBindTemporaryExprClass:
2826     mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
2827     break;
2828 
2829   case Expr::ExprWithCleanupsClass:
2830     mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
2831     break;
2832 
2833   case Expr::FloatingLiteralClass: {
2834     const FloatingLiteral *FL = cast<FloatingLiteral>(E);
2835     Out << 'L';
2836     mangleType(FL->getType());
2837     mangleFloat(FL->getValue());
2838     Out << 'E';
2839     break;
2840   }
2841 
2842   case Expr::CharacterLiteralClass:
2843     Out << 'L';
2844     mangleType(E->getType());
2845     Out << cast<CharacterLiteral>(E)->getValue();
2846     Out << 'E';
2847     break;
2848 
2849   // FIXME. __objc_yes/__objc_no are mangled same as true/false
2850   case Expr::ObjCBoolLiteralExprClass:
2851     Out << "Lb";
2852     Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
2853     Out << 'E';
2854     break;
2855 
2856   case Expr::CXXBoolLiteralExprClass:
2857     Out << "Lb";
2858     Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
2859     Out << 'E';
2860     break;
2861 
2862   case Expr::IntegerLiteralClass: {
2863     llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
2864     if (E->getType()->isSignedIntegerType())
2865       Value.setIsSigned(true);
2866     mangleIntegerLiteral(E->getType(), Value);
2867     break;
2868   }
2869 
2870   case Expr::ImaginaryLiteralClass: {
2871     const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
2872     // Mangle as if a complex literal.
2873     // Proposal from David Vandevoorde, 2010.06.30.
2874     Out << 'L';
2875     mangleType(E->getType());
2876     if (const FloatingLiteral *Imag =
2877           dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
2878       // Mangle a floating-point zero of the appropriate type.
2879       mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
2880       Out << '_';
2881       mangleFloat(Imag->getValue());
2882     } else {
2883       Out << "0_";
2884       llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
2885       if (IE->getSubExpr()->getType()->isSignedIntegerType())
2886         Value.setIsSigned(true);
2887       mangleNumber(Value);
2888     }
2889     Out << 'E';
2890     break;
2891   }
2892 
2893   case Expr::StringLiteralClass: {
2894     // Revised proposal from David Vandervoorde, 2010.07.15.
2895     Out << 'L';
2896     assert(isa<ConstantArrayType>(E->getType()));
2897     mangleType(E->getType());
2898     Out << 'E';
2899     break;
2900   }
2901 
2902   case Expr::GNUNullExprClass:
2903     // FIXME: should this really be mangled the same as nullptr?
2904     // fallthrough
2905 
2906   case Expr::CXXNullPtrLiteralExprClass: {
2907     // Proposal from David Vandervoorde, 2010.06.30, as
2908     // modified by ABI list discussion.
2909     Out << "LDnE";
2910     break;
2911   }
2912 
2913   case Expr::PackExpansionExprClass:
2914     Out << "sp";
2915     mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
2916     break;
2917 
2918   case Expr::SizeOfPackExprClass: {
2919     Out << "sZ";
2920     const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack();
2921     if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
2922       mangleTemplateParameter(TTP->getIndex());
2923     else if (const NonTypeTemplateParmDecl *NTTP
2924                 = dyn_cast<NonTypeTemplateParmDecl>(Pack))
2925       mangleTemplateParameter(NTTP->getIndex());
2926     else if (const TemplateTemplateParmDecl *TempTP
2927                                     = dyn_cast<TemplateTemplateParmDecl>(Pack))
2928       mangleTemplateParameter(TempTP->getIndex());
2929     else
2930       mangleFunctionParam(cast<ParmVarDecl>(Pack));
2931     break;
2932   }
2933 
2934   case Expr::MaterializeTemporaryExprClass: {
2935     mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
2936     break;
2937   }
2938 
2939   case Expr::CXXThisExprClass:
2940     Out << "fpT";
2941     break;
2942   }
2943 }
2944 
2945 /// Mangle an expression which refers to a parameter variable.
2946 ///
2947 /// <expression>     ::= <function-param>
2948 /// <function-param> ::= fp <top-level CV-qualifiers> _      # L == 0, I == 0
2949 /// <function-param> ::= fp <top-level CV-qualifiers>
2950 ///                      <parameter-2 non-negative number> _ # L == 0, I > 0
2951 /// <function-param> ::= fL <L-1 non-negative number>
2952 ///                      p <top-level CV-qualifiers> _       # L > 0, I == 0
2953 /// <function-param> ::= fL <L-1 non-negative number>
2954 ///                      p <top-level CV-qualifiers>
2955 ///                      <I-1 non-negative number> _         # L > 0, I > 0
2956 ///
2957 /// L is the nesting depth of the parameter, defined as 1 if the
2958 /// parameter comes from the innermost function prototype scope
2959 /// enclosing the current context, 2 if from the next enclosing
2960 /// function prototype scope, and so on, with one special case: if
2961 /// we've processed the full parameter clause for the innermost
2962 /// function type, then L is one less.  This definition conveniently
2963 /// makes it irrelevant whether a function's result type was written
2964 /// trailing or leading, but is otherwise overly complicated; the
2965 /// numbering was first designed without considering references to
2966 /// parameter in locations other than return types, and then the
2967 /// mangling had to be generalized without changing the existing
2968 /// manglings.
2969 ///
2970 /// I is the zero-based index of the parameter within its parameter
2971 /// declaration clause.  Note that the original ABI document describes
2972 /// this using 1-based ordinals.
mangleFunctionParam(const ParmVarDecl * parm)2973 void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
2974   unsigned parmDepth = parm->getFunctionScopeDepth();
2975   unsigned parmIndex = parm->getFunctionScopeIndex();
2976 
2977   // Compute 'L'.
2978   // parmDepth does not include the declaring function prototype.
2979   // FunctionTypeDepth does account for that.
2980   assert(parmDepth < FunctionTypeDepth.getDepth());
2981   unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
2982   if (FunctionTypeDepth.isInResultType())
2983     nestingDepth--;
2984 
2985   if (nestingDepth == 0) {
2986     Out << "fp";
2987   } else {
2988     Out << "fL" << (nestingDepth - 1) << 'p';
2989   }
2990 
2991   // Top-level qualifiers.  We don't have to worry about arrays here,
2992   // because parameters declared as arrays should already have been
2993   // transformed to have pointer type. FIXME: apparently these don't
2994   // get mangled if used as an rvalue of a known non-class type?
2995   assert(!parm->getType()->isArrayType()
2996          && "parameter's type is still an array type?");
2997   mangleQualifiers(parm->getType().getQualifiers());
2998 
2999   // Parameter index.
3000   if (parmIndex != 0) {
3001     Out << (parmIndex - 1);
3002   }
3003   Out << '_';
3004 }
3005 
mangleCXXCtorType(CXXCtorType T)3006 void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
3007   // <ctor-dtor-name> ::= C1  # complete object constructor
3008   //                  ::= C2  # base object constructor
3009   //                  ::= C3  # complete object allocating constructor
3010   //
3011   switch (T) {
3012   case Ctor_Complete:
3013     Out << "C1";
3014     break;
3015   case Ctor_Base:
3016     Out << "C2";
3017     break;
3018   case Ctor_CompleteAllocating:
3019     Out << "C3";
3020     break;
3021   }
3022 }
3023 
mangleCXXDtorType(CXXDtorType T)3024 void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
3025   // <ctor-dtor-name> ::= D0  # deleting destructor
3026   //                  ::= D1  # complete object destructor
3027   //                  ::= D2  # base object destructor
3028   //
3029   switch (T) {
3030   case Dtor_Deleting:
3031     Out << "D0";
3032     break;
3033   case Dtor_Complete:
3034     Out << "D1";
3035     break;
3036   case Dtor_Base:
3037     Out << "D2";
3038     break;
3039   }
3040 }
3041 
mangleTemplateArgs(const ASTTemplateArgumentListInfo & TemplateArgs)3042 void CXXNameMangler::mangleTemplateArgs(
3043                           const ASTTemplateArgumentListInfo &TemplateArgs) {
3044   // <template-args> ::= I <template-arg>+ E
3045   Out << 'I';
3046   for (unsigned i = 0, e = TemplateArgs.NumTemplateArgs; i != e; ++i)
3047     mangleTemplateArg(0, TemplateArgs.getTemplateArgs()[i].getArgument());
3048   Out << 'E';
3049 }
3050 
mangleTemplateArgs(TemplateName Template,const TemplateArgument * TemplateArgs,unsigned NumTemplateArgs)3051 void CXXNameMangler::mangleTemplateArgs(TemplateName Template,
3052                                         const TemplateArgument *TemplateArgs,
3053                                         unsigned NumTemplateArgs) {
3054   if (TemplateDecl *TD = Template.getAsTemplateDecl())
3055     return mangleTemplateArgs(*TD->getTemplateParameters(), TemplateArgs,
3056                               NumTemplateArgs);
3057 
3058   mangleUnresolvedTemplateArgs(TemplateArgs, NumTemplateArgs);
3059 }
3060 
mangleUnresolvedTemplateArgs(const TemplateArgument * args,unsigned numArgs)3061 void CXXNameMangler::mangleUnresolvedTemplateArgs(const TemplateArgument *args,
3062                                                   unsigned numArgs) {
3063   // <template-args> ::= I <template-arg>+ E
3064   Out << 'I';
3065   for (unsigned i = 0; i != numArgs; ++i)
3066     mangleTemplateArg(0, args[i]);
3067   Out << 'E';
3068 }
3069 
mangleTemplateArgs(const TemplateParameterList & PL,const TemplateArgumentList & AL)3070 void CXXNameMangler::mangleTemplateArgs(const TemplateParameterList &PL,
3071                                         const TemplateArgumentList &AL) {
3072   // <template-args> ::= I <template-arg>+ E
3073   Out << 'I';
3074   for (unsigned i = 0, e = AL.size(); i != e; ++i)
3075     mangleTemplateArg(PL.getParam(i), AL[i]);
3076   Out << 'E';
3077 }
3078 
mangleTemplateArgs(const TemplateParameterList & PL,const TemplateArgument * TemplateArgs,unsigned NumTemplateArgs)3079 void CXXNameMangler::mangleTemplateArgs(const TemplateParameterList &PL,
3080                                         const TemplateArgument *TemplateArgs,
3081                                         unsigned NumTemplateArgs) {
3082   // <template-args> ::= I <template-arg>+ E
3083   Out << 'I';
3084   for (unsigned i = 0; i != NumTemplateArgs; ++i)
3085     mangleTemplateArg(PL.getParam(i), TemplateArgs[i]);
3086   Out << 'E';
3087 }
3088 
mangleTemplateArg(const NamedDecl * P,TemplateArgument A)3089 void CXXNameMangler::mangleTemplateArg(const NamedDecl *P,
3090                                        TemplateArgument A) {
3091   // <template-arg> ::= <type>              # type or template
3092   //                ::= X <expression> E    # expression
3093   //                ::= <expr-primary>      # simple expressions
3094   //                ::= J <template-arg>* E # argument pack
3095   //                ::= sp <expression>     # pack expansion of (C++0x)
3096   if (!A.isInstantiationDependent() || A.isDependent())
3097     A = Context.getASTContext().getCanonicalTemplateArgument(A);
3098 
3099   switch (A.getKind()) {
3100   case TemplateArgument::Null:
3101     llvm_unreachable("Cannot mangle NULL template argument");
3102 
3103   case TemplateArgument::Type:
3104     mangleType(A.getAsType());
3105     break;
3106   case TemplateArgument::Template:
3107     // This is mangled as <type>.
3108     mangleType(A.getAsTemplate());
3109     break;
3110   case TemplateArgument::TemplateExpansion:
3111     // <type>  ::= Dp <type>          # pack expansion (C++0x)
3112     Out << "Dp";
3113     mangleType(A.getAsTemplateOrTemplatePattern());
3114     break;
3115   case TemplateArgument::Expression: {
3116     // It's possible to end up with a DeclRefExpr here in certain
3117     // dependent cases, in which case we should mangle as a
3118     // declaration.
3119     const Expr *E = A.getAsExpr()->IgnoreParens();
3120     if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
3121       const ValueDecl *D = DRE->getDecl();
3122       if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
3123         Out << "L";
3124         mangle(D, "_Z");
3125         Out << 'E';
3126         break;
3127       }
3128     }
3129 
3130     Out << 'X';
3131     mangleExpression(E);
3132     Out << 'E';
3133     break;
3134   }
3135   case TemplateArgument::Integral:
3136     mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
3137     break;
3138   case TemplateArgument::Declaration: {
3139     assert(P && "Missing template parameter for declaration argument");
3140     //  <expr-primary> ::= L <mangled-name> E # external name
3141     //  <expr-primary> ::= L <type> 0 E
3142     // Clang produces AST's where pointer-to-member-function expressions
3143     // and pointer-to-function expressions are represented as a declaration not
3144     // an expression. We compensate for it here to produce the correct mangling.
3145     const NonTypeTemplateParmDecl *Parameter = cast<NonTypeTemplateParmDecl>(P);
3146 
3147     // Handle NULL pointer arguments.
3148     if (!A.getAsDecl()) {
3149       Out << "L";
3150       mangleType(Parameter->getType());
3151       Out << "0E";
3152       break;
3153     }
3154 
3155 
3156     NamedDecl *D = cast<NamedDecl>(A.getAsDecl());
3157     bool compensateMangling = !Parameter->getType()->isReferenceType();
3158     if (compensateMangling) {
3159       Out << 'X';
3160       mangleOperatorName(OO_Amp, 1);
3161     }
3162 
3163     Out << 'L';
3164     // References to external entities use the mangled name; if the name would
3165     // not normally be manged then mangle it as unqualified.
3166     //
3167     // FIXME: The ABI specifies that external names here should have _Z, but
3168     // gcc leaves this off.
3169     if (compensateMangling)
3170       mangle(D, "_Z");
3171     else
3172       mangle(D, "Z");
3173     Out << 'E';
3174 
3175     if (compensateMangling)
3176       Out << 'E';
3177 
3178     break;
3179   }
3180 
3181   case TemplateArgument::Pack: {
3182     // Note: proposal by Mike Herrick on 12/20/10
3183     Out << 'J';
3184     for (TemplateArgument::pack_iterator PA = A.pack_begin(),
3185                                       PAEnd = A.pack_end();
3186          PA != PAEnd; ++PA)
3187       mangleTemplateArg(P, *PA);
3188     Out << 'E';
3189   }
3190   }
3191 }
3192 
mangleTemplateParameter(unsigned Index)3193 void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
3194   // <template-param> ::= T_    # first template parameter
3195   //                  ::= T <parameter-2 non-negative number> _
3196   if (Index == 0)
3197     Out << "T_";
3198   else
3199     Out << 'T' << (Index - 1) << '_';
3200 }
3201 
mangleExistingSubstitution(QualType type)3202 void CXXNameMangler::mangleExistingSubstitution(QualType type) {
3203   bool result = mangleSubstitution(type);
3204   assert(result && "no existing substitution for type");
3205   (void) result;
3206 }
3207 
mangleExistingSubstitution(TemplateName tname)3208 void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
3209   bool result = mangleSubstitution(tname);
3210   assert(result && "no existing substitution for template name");
3211   (void) result;
3212 }
3213 
3214 // <substitution> ::= S <seq-id> _
3215 //                ::= S_
mangleSubstitution(const NamedDecl * ND)3216 bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
3217   // Try one of the standard substitutions first.
3218   if (mangleStandardSubstitution(ND))
3219     return true;
3220 
3221   ND = cast<NamedDecl>(ND->getCanonicalDecl());
3222   return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
3223 }
3224 
3225 /// \brief Determine whether the given type has any qualifiers that are
3226 /// relevant for substitutions.
hasMangledSubstitutionQualifiers(QualType T)3227 static bool hasMangledSubstitutionQualifiers(QualType T) {
3228   Qualifiers Qs = T.getQualifiers();
3229   return Qs.getCVRQualifiers() || Qs.hasAddressSpace();
3230 }
3231 
mangleSubstitution(QualType T)3232 bool CXXNameMangler::mangleSubstitution(QualType T) {
3233   if (!hasMangledSubstitutionQualifiers(T)) {
3234     if (const RecordType *RT = T->getAs<RecordType>())
3235       return mangleSubstitution(RT->getDecl());
3236   }
3237 
3238   uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3239 
3240   return mangleSubstitution(TypePtr);
3241 }
3242 
mangleSubstitution(TemplateName Template)3243 bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
3244   if (TemplateDecl *TD = Template.getAsTemplateDecl())
3245     return mangleSubstitution(TD);
3246 
3247   Template = Context.getASTContext().getCanonicalTemplateName(Template);
3248   return mangleSubstitution(
3249                       reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3250 }
3251 
mangleSubstitution(uintptr_t Ptr)3252 bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
3253   llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
3254   if (I == Substitutions.end())
3255     return false;
3256 
3257   unsigned SeqID = I->second;
3258   if (SeqID == 0)
3259     Out << "S_";
3260   else {
3261     SeqID--;
3262 
3263     // <seq-id> is encoded in base-36, using digits and upper case letters.
3264     char Buffer[10];
3265     char *BufferPtr = llvm::array_endof(Buffer);
3266 
3267     if (SeqID == 0) *--BufferPtr = '0';
3268 
3269     while (SeqID) {
3270       assert(BufferPtr > Buffer && "Buffer overflow!");
3271 
3272       char c = static_cast<char>(SeqID % 36);
3273 
3274       *--BufferPtr =  (c < 10 ? '0' + c : 'A' + c - 10);
3275       SeqID /= 36;
3276     }
3277 
3278     Out << 'S'
3279         << StringRef(BufferPtr, llvm::array_endof(Buffer)-BufferPtr)
3280         << '_';
3281   }
3282 
3283   return true;
3284 }
3285 
isCharType(QualType T)3286 static bool isCharType(QualType T) {
3287   if (T.isNull())
3288     return false;
3289 
3290   return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
3291     T->isSpecificBuiltinType(BuiltinType::Char_U);
3292 }
3293 
3294 /// isCharSpecialization - Returns whether a given type is a template
3295 /// specialization of a given name with a single argument of type char.
isCharSpecialization(QualType T,const char * Name)3296 static bool isCharSpecialization(QualType T, const char *Name) {
3297   if (T.isNull())
3298     return false;
3299 
3300   const RecordType *RT = T->getAs<RecordType>();
3301   if (!RT)
3302     return false;
3303 
3304   const ClassTemplateSpecializationDecl *SD =
3305     dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
3306   if (!SD)
3307     return false;
3308 
3309   if (!isStdNamespace(getEffectiveDeclContext(SD)))
3310     return false;
3311 
3312   const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3313   if (TemplateArgs.size() != 1)
3314     return false;
3315 
3316   if (!isCharType(TemplateArgs[0].getAsType()))
3317     return false;
3318 
3319   return SD->getIdentifier()->getName() == Name;
3320 }
3321 
3322 template <std::size_t StrLen>
isStreamCharSpecialization(const ClassTemplateSpecializationDecl * SD,const char (& Str)[StrLen])3323 static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
3324                                        const char (&Str)[StrLen]) {
3325   if (!SD->getIdentifier()->isStr(Str))
3326     return false;
3327 
3328   const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3329   if (TemplateArgs.size() != 2)
3330     return false;
3331 
3332   if (!isCharType(TemplateArgs[0].getAsType()))
3333     return false;
3334 
3335   if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3336     return false;
3337 
3338   return true;
3339 }
3340 
mangleStandardSubstitution(const NamedDecl * ND)3341 bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
3342   // <substitution> ::= St # ::std::
3343   if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
3344     if (isStd(NS)) {
3345       Out << "St";
3346       return true;
3347     }
3348   }
3349 
3350   if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
3351     if (!isStdNamespace(getEffectiveDeclContext(TD)))
3352       return false;
3353 
3354     // <substitution> ::= Sa # ::std::allocator
3355     if (TD->getIdentifier()->isStr("allocator")) {
3356       Out << "Sa";
3357       return true;
3358     }
3359 
3360     // <<substitution> ::= Sb # ::std::basic_string
3361     if (TD->getIdentifier()->isStr("basic_string")) {
3362       Out << "Sb";
3363       return true;
3364     }
3365   }
3366 
3367   if (const ClassTemplateSpecializationDecl *SD =
3368         dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
3369     if (!isStdNamespace(getEffectiveDeclContext(SD)))
3370       return false;
3371 
3372     //    <substitution> ::= Ss # ::std::basic_string<char,
3373     //                            ::std::char_traits<char>,
3374     //                            ::std::allocator<char> >
3375     if (SD->getIdentifier()->isStr("basic_string")) {
3376       const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3377 
3378       if (TemplateArgs.size() != 3)
3379         return false;
3380 
3381       if (!isCharType(TemplateArgs[0].getAsType()))
3382         return false;
3383 
3384       if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3385         return false;
3386 
3387       if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
3388         return false;
3389 
3390       Out << "Ss";
3391       return true;
3392     }
3393 
3394     //    <substitution> ::= Si # ::std::basic_istream<char,
3395     //                            ::std::char_traits<char> >
3396     if (isStreamCharSpecialization(SD, "basic_istream")) {
3397       Out << "Si";
3398       return true;
3399     }
3400 
3401     //    <substitution> ::= So # ::std::basic_ostream<char,
3402     //                            ::std::char_traits<char> >
3403     if (isStreamCharSpecialization(SD, "basic_ostream")) {
3404       Out << "So";
3405       return true;
3406     }
3407 
3408     //    <substitution> ::= Sd # ::std::basic_iostream<char,
3409     //                            ::std::char_traits<char> >
3410     if (isStreamCharSpecialization(SD, "basic_iostream")) {
3411       Out << "Sd";
3412       return true;
3413     }
3414   }
3415   return false;
3416 }
3417 
addSubstitution(QualType T)3418 void CXXNameMangler::addSubstitution(QualType T) {
3419   if (!hasMangledSubstitutionQualifiers(T)) {
3420     if (const RecordType *RT = T->getAs<RecordType>()) {
3421       addSubstitution(RT->getDecl());
3422       return;
3423     }
3424   }
3425 
3426   uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3427   addSubstitution(TypePtr);
3428 }
3429 
addSubstitution(TemplateName Template)3430 void CXXNameMangler::addSubstitution(TemplateName Template) {
3431   if (TemplateDecl *TD = Template.getAsTemplateDecl())
3432     return addSubstitution(TD);
3433 
3434   Template = Context.getASTContext().getCanonicalTemplateName(Template);
3435   addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3436 }
3437 
addSubstitution(uintptr_t Ptr)3438 void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
3439   assert(!Substitutions.count(Ptr) && "Substitution already exists!");
3440   Substitutions[Ptr] = SeqID++;
3441 }
3442 
3443 //
3444 
3445 /// \brief Mangles the name of the declaration D and emits that name to the
3446 /// given output stream.
3447 ///
3448 /// If the declaration D requires a mangled name, this routine will emit that
3449 /// mangled name to \p os and return true. Otherwise, \p os will be unchanged
3450 /// and this routine will return false. In this case, the caller should just
3451 /// emit the identifier of the declaration (\c D->getIdentifier()) as its
3452 /// name.
mangleName(const NamedDecl * D,raw_ostream & Out)3453 void ItaniumMangleContext::mangleName(const NamedDecl *D,
3454                                       raw_ostream &Out) {
3455   assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
3456           "Invalid mangleName() call, argument is not a variable or function!");
3457   assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
3458          "Invalid mangleName() call on 'structor decl!");
3459 
3460   PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
3461                                  getASTContext().getSourceManager(),
3462                                  "Mangling declaration");
3463 
3464   CXXNameMangler Mangler(*this, Out, D);
3465   return Mangler.mangle(D);
3466 }
3467 
mangleCXXCtor(const CXXConstructorDecl * D,CXXCtorType Type,raw_ostream & Out)3468 void ItaniumMangleContext::mangleCXXCtor(const CXXConstructorDecl *D,
3469                                          CXXCtorType Type,
3470                                          raw_ostream &Out) {
3471   CXXNameMangler Mangler(*this, Out, D, Type);
3472   Mangler.mangle(D);
3473 }
3474 
mangleCXXDtor(const CXXDestructorDecl * D,CXXDtorType Type,raw_ostream & Out)3475 void ItaniumMangleContext::mangleCXXDtor(const CXXDestructorDecl *D,
3476                                          CXXDtorType Type,
3477                                          raw_ostream &Out) {
3478   CXXNameMangler Mangler(*this, Out, D, Type);
3479   Mangler.mangle(D);
3480 }
3481 
mangleThunk(const CXXMethodDecl * MD,const ThunkInfo & Thunk,raw_ostream & Out)3482 void ItaniumMangleContext::mangleThunk(const CXXMethodDecl *MD,
3483                                        const ThunkInfo &Thunk,
3484                                        raw_ostream &Out) {
3485   //  <special-name> ::= T <call-offset> <base encoding>
3486   //                      # base is the nominal target function of thunk
3487   //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
3488   //                      # base is the nominal target function of thunk
3489   //                      # first call-offset is 'this' adjustment
3490   //                      # second call-offset is result adjustment
3491 
3492   assert(!isa<CXXDestructorDecl>(MD) &&
3493          "Use mangleCXXDtor for destructor decls!");
3494   CXXNameMangler Mangler(*this, Out);
3495   Mangler.getStream() << "_ZT";
3496   if (!Thunk.Return.isEmpty())
3497     Mangler.getStream() << 'c';
3498 
3499   // Mangle the 'this' pointer adjustment.
3500   Mangler.mangleCallOffset(Thunk.This.NonVirtual, Thunk.This.VCallOffsetOffset);
3501 
3502   // Mangle the return pointer adjustment if there is one.
3503   if (!Thunk.Return.isEmpty())
3504     Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
3505                              Thunk.Return.VBaseOffsetOffset);
3506 
3507   Mangler.mangleFunctionEncoding(MD);
3508 }
3509 
3510 void
mangleCXXDtorThunk(const CXXDestructorDecl * DD,CXXDtorType Type,const ThisAdjustment & ThisAdjustment,raw_ostream & Out)3511 ItaniumMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD,
3512                                          CXXDtorType Type,
3513                                          const ThisAdjustment &ThisAdjustment,
3514                                          raw_ostream &Out) {
3515   //  <special-name> ::= T <call-offset> <base encoding>
3516   //                      # base is the nominal target function of thunk
3517   CXXNameMangler Mangler(*this, Out, DD, Type);
3518   Mangler.getStream() << "_ZT";
3519 
3520   // Mangle the 'this' pointer adjustment.
3521   Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
3522                            ThisAdjustment.VCallOffsetOffset);
3523 
3524   Mangler.mangleFunctionEncoding(DD);
3525 }
3526 
3527 /// mangleGuardVariable - Returns the mangled name for a guard variable
3528 /// for the passed in VarDecl.
mangleItaniumGuardVariable(const VarDecl * D,raw_ostream & Out)3529 void ItaniumMangleContext::mangleItaniumGuardVariable(const VarDecl *D,
3530                                                       raw_ostream &Out) {
3531   //  <special-name> ::= GV <object name>       # Guard variable for one-time
3532   //                                            # initialization
3533   CXXNameMangler Mangler(*this, Out);
3534   Mangler.getStream() << "_ZGV";
3535   Mangler.mangleName(D);
3536 }
3537 
mangleReferenceTemporary(const VarDecl * D,raw_ostream & Out)3538 void ItaniumMangleContext::mangleReferenceTemporary(const VarDecl *D,
3539                                                     raw_ostream &Out) {
3540   // We match the GCC mangling here.
3541   //  <special-name> ::= GR <object name>
3542   CXXNameMangler Mangler(*this, Out);
3543   Mangler.getStream() << "_ZGR";
3544   Mangler.mangleName(D);
3545 }
3546 
mangleCXXVTable(const CXXRecordDecl * RD,raw_ostream & Out)3547 void ItaniumMangleContext::mangleCXXVTable(const CXXRecordDecl *RD,
3548                                            raw_ostream &Out) {
3549   // <special-name> ::= TV <type>  # virtual table
3550   CXXNameMangler Mangler(*this, Out);
3551   Mangler.getStream() << "_ZTV";
3552   Mangler.mangleNameOrStandardSubstitution(RD);
3553 }
3554 
mangleCXXVTT(const CXXRecordDecl * RD,raw_ostream & Out)3555 void ItaniumMangleContext::mangleCXXVTT(const CXXRecordDecl *RD,
3556                                         raw_ostream &Out) {
3557   // <special-name> ::= TT <type>  # VTT structure
3558   CXXNameMangler Mangler(*this, Out);
3559   Mangler.getStream() << "_ZTT";
3560   Mangler.mangleNameOrStandardSubstitution(RD);
3561 }
3562 
mangleCXXCtorVTable(const CXXRecordDecl * RD,int64_t Offset,const CXXRecordDecl * Type,raw_ostream & Out)3563 void ItaniumMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD,
3564                                                int64_t Offset,
3565                                                const CXXRecordDecl *Type,
3566                                                raw_ostream &Out) {
3567   // <special-name> ::= TC <type> <offset number> _ <base type>
3568   CXXNameMangler Mangler(*this, Out);
3569   Mangler.getStream() << "_ZTC";
3570   Mangler.mangleNameOrStandardSubstitution(RD);
3571   Mangler.getStream() << Offset;
3572   Mangler.getStream() << '_';
3573   Mangler.mangleNameOrStandardSubstitution(Type);
3574 }
3575 
mangleCXXRTTI(QualType Ty,raw_ostream & Out)3576 void ItaniumMangleContext::mangleCXXRTTI(QualType Ty,
3577                                          raw_ostream &Out) {
3578   // <special-name> ::= TI <type>  # typeinfo structure
3579   assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
3580   CXXNameMangler Mangler(*this, Out);
3581   Mangler.getStream() << "_ZTI";
3582   Mangler.mangleType(Ty);
3583 }
3584 
mangleCXXRTTIName(QualType Ty,raw_ostream & Out)3585 void ItaniumMangleContext::mangleCXXRTTIName(QualType Ty,
3586                                              raw_ostream &Out) {
3587   // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
3588   CXXNameMangler Mangler(*this, Out);
3589   Mangler.getStream() << "_ZTS";
3590   Mangler.mangleType(Ty);
3591 }
3592 
createItaniumMangleContext(ASTContext & Context,DiagnosticsEngine & Diags)3593 MangleContext *clang::createItaniumMangleContext(ASTContext &Context,
3594                                                  DiagnosticsEngine &Diags) {
3595   return new ItaniumMangleContext(Context, Diags);
3596 }
3597