1 //===-- ARMJITInfo.cpp - Implement the JIT interfaces for the ARM target --===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the JIT interfaces for the ARM target.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "jit"
15 #include "ARMJITInfo.h"
16 #include "ARM.h"
17 #include "ARMConstantPoolValue.h"
18 #include "ARMRelocations.h"
19 #include "ARMSubtarget.h"
20 #include "MCTargetDesc/ARMAddressingModes.h"
21 #include "llvm/Function.h"
22 #include "llvm/CodeGen/JITCodeEmitter.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/Support/Memory.h"
27 #include <cstdlib>
28 using namespace llvm;
29
replaceMachineCodeForFunction(void * Old,void * New)30 void ARMJITInfo::replaceMachineCodeForFunction(void *Old, void *New) {
31 report_fatal_error("ARMJITInfo::replaceMachineCodeForFunction");
32 }
33
34 /// JITCompilerFunction - This contains the address of the JIT function used to
35 /// compile a function lazily.
36 static TargetJITInfo::JITCompilerFn JITCompilerFunction;
37
38 // Get the ASMPREFIX for the current host. This is often '_'.
39 #ifndef __USER_LABEL_PREFIX__
40 #define __USER_LABEL_PREFIX__
41 #endif
42 #define GETASMPREFIX2(X) #X
43 #define GETASMPREFIX(X) GETASMPREFIX2(X)
44 #define ASMPREFIX GETASMPREFIX(__USER_LABEL_PREFIX__)
45
46 // CompilationCallback stub - We can't use a C function with inline assembly in
47 // it, because the prolog/epilog inserted by GCC won't work for us. (We need
48 // to preserve more context and manipulate the stack directly). Instead,
49 // write our own wrapper, which does things our way, so we have complete
50 // control over register saving and restoring.
51 extern "C" {
52 #if defined(__arm__) && !defined(ANDROID)
53 void ARMCompilationCallback();
54 asm(
55 ".text\n"
56 ".align 2\n"
57 ".globl " ASMPREFIX "ARMCompilationCallback\n"
58 ASMPREFIX "ARMCompilationCallback:\n"
59 // Save caller saved registers since they may contain stuff
60 // for the real target function right now. We have to act as if this
61 // whole compilation callback doesn't exist as far as the caller is
62 // concerned, so we can't just preserve the callee saved regs.
63 "stmdb sp!, {r0, r1, r2, r3, lr}\n"
64 #if (defined(__VFP_FP__) && !defined(__SOFTFP__))
65 "vstmdb sp!, {d0, d1, d2, d3, d4, d5, d6, d7}\n"
66 #endif
67 // The LR contains the address of the stub function on entry.
68 // pass it as the argument to the C part of the callback
69 "mov r0, lr\n"
70 "sub sp, sp, #4\n"
71 // Call the C portion of the callback
72 "bl " ASMPREFIX "ARMCompilationCallbackC\n"
73 "add sp, sp, #4\n"
74 // Restoring the LR to the return address of the function that invoked
75 // the stub and de-allocating the stack space for it requires us to
76 // swap the two saved LR values on the stack, as they're backwards
77 // for what we need since the pop instruction has a pre-determined
78 // order for the registers.
79 // +--------+
80 // 0 | LR | Original return address
81 // +--------+
82 // 1 | LR | Stub address (start of stub)
83 // 2-5 | R3..R0 | Saved registers (we need to preserve all regs)
84 // 6-20 | D0..D7 | Saved VFP registers
85 // +--------+
86 //
87 #if (defined(__VFP_FP__) && !defined(__SOFTFP__))
88 // Restore VFP caller-saved registers.
89 "vldmia sp!, {d0, d1, d2, d3, d4, d5, d6, d7}\n"
90 #endif
91 //
92 // We need to exchange the values in slots 0 and 1 so we can
93 // return to the address in slot 1 with the address in slot 0
94 // restored to the LR.
95 "ldr r0, [sp,#20]\n"
96 "ldr r1, [sp,#16]\n"
97 "str r1, [sp,#20]\n"
98 "str r0, [sp,#16]\n"
99 // Return to the (newly modified) stub to invoke the real function.
100 // The above twiddling of the saved return addresses allows us to
101 // deallocate everything, including the LR the stub saved, with two
102 // updating load instructions.
103 "ldmia sp!, {r0, r1, r2, r3, lr}\n"
104 "ldr pc, [sp], #4\n"
105 );
106 #else // Not an ARM host
107 void ARMCompilationCallback() {
108 llvm_unreachable("Cannot call ARMCompilationCallback() on a non-ARM arch!");
109 }
110 #endif
111 }
112
113 /// ARMCompilationCallbackC - This is the target-specific function invoked
114 /// by the function stub when we did not know the real target of a call.
115 /// This function must locate the start of the stub or call site and pass
116 /// it into the JIT compiler function.
ARMCompilationCallbackC(intptr_t StubAddr)117 extern "C" void ARMCompilationCallbackC(intptr_t StubAddr) {
118 // Get the address of the compiled code for this function.
119 intptr_t NewVal = (intptr_t)JITCompilerFunction((void*)StubAddr);
120
121 // Rewrite the call target... so that we don't end up here every time we
122 // execute the call. We're replacing the first two instructions of the
123 // stub with:
124 // ldr pc, [pc,#-4]
125 // <addr>
126 if (!sys::Memory::setRangeWritable((void*)StubAddr, 8)) {
127 llvm_unreachable("ERROR: Unable to mark stub writable");
128 }
129 *(intptr_t *)StubAddr = 0xe51ff004; // ldr pc, [pc, #-4]
130 *(intptr_t *)(StubAddr+4) = NewVal;
131 if (!sys::Memory::setRangeExecutable((void*)StubAddr, 8)) {
132 llvm_unreachable("ERROR: Unable to mark stub executable");
133 }
134 }
135
136 TargetJITInfo::LazyResolverFn
getLazyResolverFunction(JITCompilerFn F)137 ARMJITInfo::getLazyResolverFunction(JITCompilerFn F) {
138 JITCompilerFunction = F;
139 return ARMCompilationCallback;
140 }
141
emitGlobalValueIndirectSym(const GlobalValue * GV,void * Ptr,JITCodeEmitter & JCE)142 void *ARMJITInfo::emitGlobalValueIndirectSym(const GlobalValue *GV, void *Ptr,
143 JITCodeEmitter &JCE) {
144 uint8_t Buffer[4];
145 uint8_t *Cur = Buffer;
146 MachineCodeEmitter::emitWordLEInto(Cur, (intptr_t)Ptr);
147 void *PtrAddr = JCE.allocIndirectGV(
148 GV, Buffer, sizeof(Buffer), /*Alignment=*/4);
149 addIndirectSymAddr(Ptr, (intptr_t)PtrAddr);
150 return PtrAddr;
151 }
152
getStubLayout()153 TargetJITInfo::StubLayout ARMJITInfo::getStubLayout() {
154 // The stub contains up to 3 4-byte instructions, aligned at 4 bytes, and a
155 // 4-byte address. See emitFunctionStub for details.
156 StubLayout Result = {16, 4};
157 return Result;
158 }
159
emitFunctionStub(const Function * F,void * Fn,JITCodeEmitter & JCE)160 void *ARMJITInfo::emitFunctionStub(const Function* F, void *Fn,
161 JITCodeEmitter &JCE) {
162 void *Addr;
163 // If this is just a call to an external function, emit a branch instead of a
164 // call. The code is the same except for one bit of the last instruction.
165 if (Fn != (void*)(intptr_t)ARMCompilationCallback) {
166 // Branch to the corresponding function addr.
167 if (IsPIC) {
168 // The stub is 16-byte size and 4-aligned.
169 intptr_t LazyPtr = getIndirectSymAddr(Fn);
170 if (!LazyPtr) {
171 // In PIC mode, the function stub is loading a lazy-ptr.
172 LazyPtr= (intptr_t)emitGlobalValueIndirectSym((const GlobalValue*)F, Fn, JCE);
173 DEBUG(if (F)
174 errs() << "JIT: Indirect symbol emitted at [" << LazyPtr
175 << "] for GV '" << F->getName() << "'\n";
176 else
177 errs() << "JIT: Stub emitted at [" << LazyPtr
178 << "] for external function at '" << Fn << "'\n");
179 }
180 JCE.emitAlignment(4);
181 Addr = (void*)JCE.getCurrentPCValue();
182 if (!sys::Memory::setRangeWritable(Addr, 16)) {
183 llvm_unreachable("ERROR: Unable to mark stub writable");
184 }
185 JCE.emitWordLE(0xe59fc004); // ldr ip, [pc, #+4]
186 JCE.emitWordLE(0xe08fc00c); // L_func$scv: add ip, pc, ip
187 JCE.emitWordLE(0xe59cf000); // ldr pc, [ip]
188 JCE.emitWordLE(LazyPtr - (intptr_t(Addr)+4+8)); // func - (L_func$scv+8)
189 sys::Memory::InvalidateInstructionCache(Addr, 16);
190 if (!sys::Memory::setRangeExecutable(Addr, 16)) {
191 llvm_unreachable("ERROR: Unable to mark stub executable");
192 }
193 } else {
194 // The stub is 8-byte size and 4-aligned.
195 JCE.emitAlignment(4);
196 Addr = (void*)JCE.getCurrentPCValue();
197 if (!sys::Memory::setRangeWritable(Addr, 8)) {
198 llvm_unreachable("ERROR: Unable to mark stub writable");
199 }
200 JCE.emitWordLE(0xe51ff004); // ldr pc, [pc, #-4]
201 JCE.emitWordLE((intptr_t)Fn); // addr of function
202 sys::Memory::InvalidateInstructionCache(Addr, 8);
203 if (!sys::Memory::setRangeExecutable(Addr, 8)) {
204 llvm_unreachable("ERROR: Unable to mark stub executable");
205 }
206 }
207 } else {
208 // The compilation callback will overwrite the first two words of this
209 // stub with indirect branch instructions targeting the compiled code.
210 // This stub sets the return address to restart the stub, so that
211 // the new branch will be invoked when we come back.
212 //
213 // Branch and link to the compilation callback.
214 // The stub is 16-byte size and 4-byte aligned.
215 JCE.emitAlignment(4);
216 Addr = (void*)JCE.getCurrentPCValue();
217 if (!sys::Memory::setRangeWritable(Addr, 16)) {
218 llvm_unreachable("ERROR: Unable to mark stub writable");
219 }
220 // Save LR so the callback can determine which stub called it.
221 // The compilation callback is responsible for popping this prior
222 // to returning.
223 JCE.emitWordLE(0xe92d4000); // push {lr}
224 // Set the return address to go back to the start of this stub.
225 JCE.emitWordLE(0xe24fe00c); // sub lr, pc, #12
226 // Invoke the compilation callback.
227 JCE.emitWordLE(0xe51ff004); // ldr pc, [pc, #-4]
228 // The address of the compilation callback.
229 JCE.emitWordLE((intptr_t)ARMCompilationCallback);
230 sys::Memory::InvalidateInstructionCache(Addr, 16);
231 if (!sys::Memory::setRangeExecutable(Addr, 16)) {
232 llvm_unreachable("ERROR: Unable to mark stub executable");
233 }
234 }
235
236 return Addr;
237 }
238
resolveRelocDestAddr(MachineRelocation * MR) const239 intptr_t ARMJITInfo::resolveRelocDestAddr(MachineRelocation *MR) const {
240 ARM::RelocationType RT = (ARM::RelocationType)MR->getRelocationType();
241 switch (RT) {
242 default:
243 return (intptr_t)(MR->getResultPointer());
244 case ARM::reloc_arm_pic_jt:
245 // Destination address - jump table base.
246 return (intptr_t)(MR->getResultPointer()) - MR->getConstantVal();
247 case ARM::reloc_arm_jt_base:
248 // Jump table base address.
249 return getJumpTableBaseAddr(MR->getJumpTableIndex());
250 case ARM::reloc_arm_cp_entry:
251 case ARM::reloc_arm_vfp_cp_entry:
252 case ARM::reloc_arm_so_imm_cp_entry:
253 // Constant pool entry address.
254 return getConstantPoolEntryAddr(MR->getConstantPoolIndex());
255 case ARM::reloc_arm_machine_cp_entry: {
256 ARMConstantPoolValue *ACPV = (ARMConstantPoolValue*)MR->getConstantVal();
257 assert((!ACPV->hasModifier() && !ACPV->mustAddCurrentAddress()) &&
258 "Can't handle this machine constant pool entry yet!");
259 intptr_t Addr = (intptr_t)(MR->getResultPointer());
260 Addr -= getPCLabelAddr(ACPV->getLabelId()) + ACPV->getPCAdjustment();
261 return Addr;
262 }
263 }
264 }
265
266 /// relocate - Before the JIT can run a block of code that has been emitted,
267 /// it must rewrite the code to contain the actual addresses of any
268 /// referenced global symbols.
relocate(void * Function,MachineRelocation * MR,unsigned NumRelocs,unsigned char * GOTBase)269 void ARMJITInfo::relocate(void *Function, MachineRelocation *MR,
270 unsigned NumRelocs, unsigned char* GOTBase) {
271 for (unsigned i = 0; i != NumRelocs; ++i, ++MR) {
272 void *RelocPos = (char*)Function + MR->getMachineCodeOffset();
273 intptr_t ResultPtr = resolveRelocDestAddr(MR);
274 switch ((ARM::RelocationType)MR->getRelocationType()) {
275 case ARM::reloc_arm_cp_entry:
276 case ARM::reloc_arm_vfp_cp_entry:
277 case ARM::reloc_arm_relative: {
278 // It is necessary to calculate the correct PC relative value. We
279 // subtract the base addr from the target addr to form a byte offset.
280 ResultPtr = ResultPtr - (intptr_t)RelocPos - 8;
281 // If the result is positive, set bit U(23) to 1.
282 if (ResultPtr >= 0)
283 *((intptr_t*)RelocPos) |= 1 << ARMII::U_BitShift;
284 else {
285 // Otherwise, obtain the absolute value and set bit U(23) to 0.
286 *((intptr_t*)RelocPos) &= ~(1 << ARMII::U_BitShift);
287 ResultPtr = - ResultPtr;
288 }
289 // Set the immed value calculated.
290 // VFP immediate offset is multiplied by 4.
291 if (MR->getRelocationType() == ARM::reloc_arm_vfp_cp_entry)
292 ResultPtr = ResultPtr >> 2;
293 *((intptr_t*)RelocPos) |= ResultPtr;
294 // Set register Rn to PC (which is register 15 on all architectures).
295 // FIXME: This avoids the need for register info in the JIT class.
296 *((intptr_t*)RelocPos) |= 15 << ARMII::RegRnShift;
297 break;
298 }
299 case ARM::reloc_arm_so_imm_cp_entry: {
300 ResultPtr = ResultPtr - (intptr_t)RelocPos - 8;
301 // If the result is positive, set bit U(23) to 1.
302 if (ResultPtr >= 0)
303 *((intptr_t*)RelocPos) |= 1 << ARMII::U_BitShift;
304 else {
305 // Otherwise, obtain the absolute value and set bit U(23) to 0.
306 *((intptr_t*)RelocPos) &= ~(1 << ARMII::U_BitShift);
307 // FIXME: Also set bit 22 to 1 since 'sub' instruction is going to be used.
308 *((intptr_t*)RelocPos) |= 1 << 22;
309 ResultPtr = - ResultPtr;
310 }
311
312 int SoImmVal = ARM_AM::getSOImmVal(ResultPtr);
313 assert(SoImmVal != -1 && "Not a valid so_imm value!");
314 *((intptr_t*)RelocPos) |= (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1)
315 << ARMII::SoRotImmShift;
316 *((intptr_t*)RelocPos) |= ARM_AM::getSOImmValImm((unsigned)SoImmVal);
317 // Set register Rn to PC (which is register 15 on all architectures).
318 // FIXME: This avoids the need for register info in the JIT class.
319 *((intptr_t*)RelocPos) |= 15 << ARMII::RegRnShift;
320 break;
321 }
322 case ARM::reloc_arm_pic_jt:
323 case ARM::reloc_arm_machine_cp_entry:
324 case ARM::reloc_arm_absolute: {
325 // These addresses have already been resolved.
326 *((intptr_t*)RelocPos) |= (intptr_t)ResultPtr;
327 break;
328 }
329 case ARM::reloc_arm_branch: {
330 // It is necessary to calculate the correct value of signed_immed_24
331 // field. We subtract the base addr from the target addr to form a
332 // byte offset, which must be inside the range -33554432 and +33554428.
333 // Then, we set the signed_immed_24 field of the instruction to bits
334 // [25:2] of the byte offset. More details ARM-ARM p. A4-11.
335 ResultPtr = ResultPtr - (intptr_t)RelocPos - 8;
336 ResultPtr = (ResultPtr & 0x03FFFFFC) >> 2;
337 assert(ResultPtr >= -33554432 && ResultPtr <= 33554428);
338 *((intptr_t*)RelocPos) |= ResultPtr;
339 break;
340 }
341 case ARM::reloc_arm_jt_base: {
342 // JT base - (instruction addr + 8)
343 ResultPtr = ResultPtr - (intptr_t)RelocPos - 8;
344 *((intptr_t*)RelocPos) |= ResultPtr;
345 break;
346 }
347 case ARM::reloc_arm_movw: {
348 ResultPtr = ResultPtr & 0xFFFF;
349 *((intptr_t*)RelocPos) |= ResultPtr & 0xFFF;
350 *((intptr_t*)RelocPos) |= ((ResultPtr >> 12) & 0xF) << 16;
351 break;
352 }
353 case ARM::reloc_arm_movt: {
354 ResultPtr = (ResultPtr >> 16) & 0xFFFF;
355 *((intptr_t*)RelocPos) |= ResultPtr & 0xFFF;
356 *((intptr_t*)RelocPos) |= ((ResultPtr >> 12) & 0xF) << 16;
357 break;
358 }
359 }
360 }
361 }
362