• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- ARMJITInfo.cpp - Implement the JIT interfaces for the ARM target --===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the JIT interfaces for the ARM target.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "jit"
15 #include "ARMJITInfo.h"
16 #include "ARM.h"
17 #include "ARMConstantPoolValue.h"
18 #include "ARMRelocations.h"
19 #include "ARMSubtarget.h"
20 #include "MCTargetDesc/ARMAddressingModes.h"
21 #include "llvm/Function.h"
22 #include "llvm/CodeGen/JITCodeEmitter.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/Support/Memory.h"
27 #include <cstdlib>
28 using namespace llvm;
29 
replaceMachineCodeForFunction(void * Old,void * New)30 void ARMJITInfo::replaceMachineCodeForFunction(void *Old, void *New) {
31   report_fatal_error("ARMJITInfo::replaceMachineCodeForFunction");
32 }
33 
34 /// JITCompilerFunction - This contains the address of the JIT function used to
35 /// compile a function lazily.
36 static TargetJITInfo::JITCompilerFn JITCompilerFunction;
37 
38 // Get the ASMPREFIX for the current host.  This is often '_'.
39 #ifndef __USER_LABEL_PREFIX__
40 #define __USER_LABEL_PREFIX__
41 #endif
42 #define GETASMPREFIX2(X) #X
43 #define GETASMPREFIX(X) GETASMPREFIX2(X)
44 #define ASMPREFIX GETASMPREFIX(__USER_LABEL_PREFIX__)
45 
46 // CompilationCallback stub - We can't use a C function with inline assembly in
47 // it, because the prolog/epilog inserted by GCC won't work for us. (We need
48 // to preserve more context and manipulate the stack directly).  Instead,
49 // write our own wrapper, which does things our way, so we have complete
50 // control over register saving and restoring.
51 extern "C" {
52 #if defined(__arm__) && !defined(ANDROID)
53   void ARMCompilationCallback();
54   asm(
55     ".text\n"
56     ".align 2\n"
57     ".globl " ASMPREFIX "ARMCompilationCallback\n"
58     ASMPREFIX "ARMCompilationCallback:\n"
59     // Save caller saved registers since they may contain stuff
60     // for the real target function right now. We have to act as if this
61     // whole compilation callback doesn't exist as far as the caller is
62     // concerned, so we can't just preserve the callee saved regs.
63     "stmdb sp!, {r0, r1, r2, r3, lr}\n"
64 #if (defined(__VFP_FP__) && !defined(__SOFTFP__))
65     "vstmdb sp!, {d0, d1, d2, d3, d4, d5, d6, d7}\n"
66 #endif
67     // The LR contains the address of the stub function on entry.
68     // pass it as the argument to the C part of the callback
69     "mov  r0, lr\n"
70     "sub  sp, sp, #4\n"
71     // Call the C portion of the callback
72     "bl   " ASMPREFIX "ARMCompilationCallbackC\n"
73     "add  sp, sp, #4\n"
74     // Restoring the LR to the return address of the function that invoked
75     // the stub and de-allocating the stack space for it requires us to
76     // swap the two saved LR values on the stack, as they're backwards
77     // for what we need since the pop instruction has a pre-determined
78     // order for the registers.
79     //      +--------+
80     //   0  | LR     | Original return address
81     //      +--------+
82     //   1  | LR     | Stub address (start of stub)
83     // 2-5  | R3..R0 | Saved registers (we need to preserve all regs)
84     // 6-20 | D0..D7 | Saved VFP registers
85     //      +--------+
86     //
87 #if (defined(__VFP_FP__) && !defined(__SOFTFP__))
88     // Restore VFP caller-saved registers.
89     "vldmia sp!, {d0, d1, d2, d3, d4, d5, d6, d7}\n"
90 #endif
91     //
92     //      We need to exchange the values in slots 0 and 1 so we can
93     //      return to the address in slot 1 with the address in slot 0
94     //      restored to the LR.
95     "ldr  r0, [sp,#20]\n"
96     "ldr  r1, [sp,#16]\n"
97     "str  r1, [sp,#20]\n"
98     "str  r0, [sp,#16]\n"
99     // Return to the (newly modified) stub to invoke the real function.
100     // The above twiddling of the saved return addresses allows us to
101     // deallocate everything, including the LR the stub saved, with two
102     // updating load instructions.
103     "ldmia  sp!, {r0, r1, r2, r3, lr}\n"
104     "ldr    pc, [sp], #4\n"
105       );
106 #else  // Not an ARM host
107   void ARMCompilationCallback() {
108     llvm_unreachable("Cannot call ARMCompilationCallback() on a non-ARM arch!");
109   }
110 #endif
111 }
112 
113 /// ARMCompilationCallbackC - This is the target-specific function invoked
114 /// by the function stub when we did not know the real target of a call.
115 /// This function must locate the start of the stub or call site and pass
116 /// it into the JIT compiler function.
ARMCompilationCallbackC(intptr_t StubAddr)117 extern "C" void ARMCompilationCallbackC(intptr_t StubAddr) {
118   // Get the address of the compiled code for this function.
119   intptr_t NewVal = (intptr_t)JITCompilerFunction((void*)StubAddr);
120 
121   // Rewrite the call target... so that we don't end up here every time we
122   // execute the call. We're replacing the first two instructions of the
123   // stub with:
124   //   ldr pc, [pc,#-4]
125   //   <addr>
126   if (!sys::Memory::setRangeWritable((void*)StubAddr, 8)) {
127     llvm_unreachable("ERROR: Unable to mark stub writable");
128   }
129   *(intptr_t *)StubAddr = 0xe51ff004;  // ldr pc, [pc, #-4]
130   *(intptr_t *)(StubAddr+4) = NewVal;
131   if (!sys::Memory::setRangeExecutable((void*)StubAddr, 8)) {
132     llvm_unreachable("ERROR: Unable to mark stub executable");
133   }
134 }
135 
136 TargetJITInfo::LazyResolverFn
getLazyResolverFunction(JITCompilerFn F)137 ARMJITInfo::getLazyResolverFunction(JITCompilerFn F) {
138   JITCompilerFunction = F;
139   return ARMCompilationCallback;
140 }
141 
emitGlobalValueIndirectSym(const GlobalValue * GV,void * Ptr,JITCodeEmitter & JCE)142 void *ARMJITInfo::emitGlobalValueIndirectSym(const GlobalValue *GV, void *Ptr,
143                                              JITCodeEmitter &JCE) {
144   uint8_t Buffer[4];
145   uint8_t *Cur = Buffer;
146   MachineCodeEmitter::emitWordLEInto(Cur, (intptr_t)Ptr);
147   void *PtrAddr = JCE.allocIndirectGV(
148       GV, Buffer, sizeof(Buffer), /*Alignment=*/4);
149   addIndirectSymAddr(Ptr, (intptr_t)PtrAddr);
150   return PtrAddr;
151 }
152 
getStubLayout()153 TargetJITInfo::StubLayout ARMJITInfo::getStubLayout() {
154   // The stub contains up to 3 4-byte instructions, aligned at 4 bytes, and a
155   // 4-byte address.  See emitFunctionStub for details.
156   StubLayout Result = {16, 4};
157   return Result;
158 }
159 
emitFunctionStub(const Function * F,void * Fn,JITCodeEmitter & JCE)160 void *ARMJITInfo::emitFunctionStub(const Function* F, void *Fn,
161                                    JITCodeEmitter &JCE) {
162   void *Addr;
163   // If this is just a call to an external function, emit a branch instead of a
164   // call.  The code is the same except for one bit of the last instruction.
165   if (Fn != (void*)(intptr_t)ARMCompilationCallback) {
166     // Branch to the corresponding function addr.
167     if (IsPIC) {
168       // The stub is 16-byte size and 4-aligned.
169       intptr_t LazyPtr = getIndirectSymAddr(Fn);
170       if (!LazyPtr) {
171         // In PIC mode, the function stub is loading a lazy-ptr.
172         LazyPtr= (intptr_t)emitGlobalValueIndirectSym((const GlobalValue*)F, Fn, JCE);
173         DEBUG(if (F)
174                 errs() << "JIT: Indirect symbol emitted at [" << LazyPtr
175                        << "] for GV '" << F->getName() << "'\n";
176               else
177                 errs() << "JIT: Stub emitted at [" << LazyPtr
178                        << "] for external function at '" << Fn << "'\n");
179       }
180       JCE.emitAlignment(4);
181       Addr = (void*)JCE.getCurrentPCValue();
182       if (!sys::Memory::setRangeWritable(Addr, 16)) {
183         llvm_unreachable("ERROR: Unable to mark stub writable");
184       }
185       JCE.emitWordLE(0xe59fc004);            // ldr ip, [pc, #+4]
186       JCE.emitWordLE(0xe08fc00c);            // L_func$scv: add ip, pc, ip
187       JCE.emitWordLE(0xe59cf000);            // ldr pc, [ip]
188       JCE.emitWordLE(LazyPtr - (intptr_t(Addr)+4+8));  // func - (L_func$scv+8)
189       sys::Memory::InvalidateInstructionCache(Addr, 16);
190       if (!sys::Memory::setRangeExecutable(Addr, 16)) {
191         llvm_unreachable("ERROR: Unable to mark stub executable");
192       }
193     } else {
194       // The stub is 8-byte size and 4-aligned.
195       JCE.emitAlignment(4);
196       Addr = (void*)JCE.getCurrentPCValue();
197       if (!sys::Memory::setRangeWritable(Addr, 8)) {
198         llvm_unreachable("ERROR: Unable to mark stub writable");
199       }
200       JCE.emitWordLE(0xe51ff004);    // ldr pc, [pc, #-4]
201       JCE.emitWordLE((intptr_t)Fn);  // addr of function
202       sys::Memory::InvalidateInstructionCache(Addr, 8);
203       if (!sys::Memory::setRangeExecutable(Addr, 8)) {
204         llvm_unreachable("ERROR: Unable to mark stub executable");
205       }
206     }
207   } else {
208     // The compilation callback will overwrite the first two words of this
209     // stub with indirect branch instructions targeting the compiled code.
210     // This stub sets the return address to restart the stub, so that
211     // the new branch will be invoked when we come back.
212     //
213     // Branch and link to the compilation callback.
214     // The stub is 16-byte size and 4-byte aligned.
215     JCE.emitAlignment(4);
216     Addr = (void*)JCE.getCurrentPCValue();
217     if (!sys::Memory::setRangeWritable(Addr, 16)) {
218       llvm_unreachable("ERROR: Unable to mark stub writable");
219     }
220     // Save LR so the callback can determine which stub called it.
221     // The compilation callback is responsible for popping this prior
222     // to returning.
223     JCE.emitWordLE(0xe92d4000); // push {lr}
224     // Set the return address to go back to the start of this stub.
225     JCE.emitWordLE(0xe24fe00c); // sub lr, pc, #12
226     // Invoke the compilation callback.
227     JCE.emitWordLE(0xe51ff004); // ldr pc, [pc, #-4]
228     // The address of the compilation callback.
229     JCE.emitWordLE((intptr_t)ARMCompilationCallback);
230     sys::Memory::InvalidateInstructionCache(Addr, 16);
231     if (!sys::Memory::setRangeExecutable(Addr, 16)) {
232       llvm_unreachable("ERROR: Unable to mark stub executable");
233     }
234   }
235 
236   return Addr;
237 }
238 
resolveRelocDestAddr(MachineRelocation * MR) const239 intptr_t ARMJITInfo::resolveRelocDestAddr(MachineRelocation *MR) const {
240   ARM::RelocationType RT = (ARM::RelocationType)MR->getRelocationType();
241   switch (RT) {
242   default:
243     return (intptr_t)(MR->getResultPointer());
244   case ARM::reloc_arm_pic_jt:
245     // Destination address - jump table base.
246     return (intptr_t)(MR->getResultPointer()) - MR->getConstantVal();
247   case ARM::reloc_arm_jt_base:
248     // Jump table base address.
249     return getJumpTableBaseAddr(MR->getJumpTableIndex());
250   case ARM::reloc_arm_cp_entry:
251   case ARM::reloc_arm_vfp_cp_entry:
252   case ARM::reloc_arm_so_imm_cp_entry:
253     // Constant pool entry address.
254     return getConstantPoolEntryAddr(MR->getConstantPoolIndex());
255   case ARM::reloc_arm_machine_cp_entry: {
256     ARMConstantPoolValue *ACPV = (ARMConstantPoolValue*)MR->getConstantVal();
257     assert((!ACPV->hasModifier() && !ACPV->mustAddCurrentAddress()) &&
258            "Can't handle this machine constant pool entry yet!");
259     intptr_t Addr = (intptr_t)(MR->getResultPointer());
260     Addr -= getPCLabelAddr(ACPV->getLabelId()) + ACPV->getPCAdjustment();
261     return Addr;
262   }
263   }
264 }
265 
266 /// relocate - Before the JIT can run a block of code that has been emitted,
267 /// it must rewrite the code to contain the actual addresses of any
268 /// referenced global symbols.
relocate(void * Function,MachineRelocation * MR,unsigned NumRelocs,unsigned char * GOTBase)269 void ARMJITInfo::relocate(void *Function, MachineRelocation *MR,
270                           unsigned NumRelocs, unsigned char* GOTBase) {
271   for (unsigned i = 0; i != NumRelocs; ++i, ++MR) {
272     void *RelocPos = (char*)Function + MR->getMachineCodeOffset();
273     intptr_t ResultPtr = resolveRelocDestAddr(MR);
274     switch ((ARM::RelocationType)MR->getRelocationType()) {
275     case ARM::reloc_arm_cp_entry:
276     case ARM::reloc_arm_vfp_cp_entry:
277     case ARM::reloc_arm_relative: {
278       // It is necessary to calculate the correct PC relative value. We
279       // subtract the base addr from the target addr to form a byte offset.
280       ResultPtr = ResultPtr - (intptr_t)RelocPos - 8;
281       // If the result is positive, set bit U(23) to 1.
282       if (ResultPtr >= 0)
283         *((intptr_t*)RelocPos) |= 1 << ARMII::U_BitShift;
284       else {
285         // Otherwise, obtain the absolute value and set bit U(23) to 0.
286         *((intptr_t*)RelocPos) &= ~(1 << ARMII::U_BitShift);
287         ResultPtr = - ResultPtr;
288       }
289       // Set the immed value calculated.
290       // VFP immediate offset is multiplied by 4.
291       if (MR->getRelocationType() == ARM::reloc_arm_vfp_cp_entry)
292         ResultPtr = ResultPtr >> 2;
293       *((intptr_t*)RelocPos) |= ResultPtr;
294       // Set register Rn to PC (which is register 15 on all architectures).
295       // FIXME: This avoids the need for register info in the JIT class.
296       *((intptr_t*)RelocPos) |= 15 << ARMII::RegRnShift;
297       break;
298     }
299     case ARM::reloc_arm_so_imm_cp_entry: {
300       ResultPtr = ResultPtr - (intptr_t)RelocPos - 8;
301       // If the result is positive, set bit U(23) to 1.
302       if (ResultPtr >= 0)
303         *((intptr_t*)RelocPos) |= 1 << ARMII::U_BitShift;
304       else {
305         // Otherwise, obtain the absolute value and set bit U(23) to 0.
306         *((intptr_t*)RelocPos) &= ~(1 << ARMII::U_BitShift);
307         // FIXME: Also set bit 22 to 1 since 'sub' instruction is going to be used.
308         *((intptr_t*)RelocPos) |= 1 << 22;
309         ResultPtr = - ResultPtr;
310       }
311 
312       int SoImmVal = ARM_AM::getSOImmVal(ResultPtr);
313       assert(SoImmVal != -1 && "Not a valid so_imm value!");
314       *((intptr_t*)RelocPos) |= (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1)
315             << ARMII::SoRotImmShift;
316       *((intptr_t*)RelocPos) |= ARM_AM::getSOImmValImm((unsigned)SoImmVal);
317        // Set register Rn to PC (which is register 15 on all architectures).
318        // FIXME: This avoids the need for register info in the JIT class.
319        *((intptr_t*)RelocPos) |= 15 << ARMII::RegRnShift;
320       break;
321     }
322     case ARM::reloc_arm_pic_jt:
323     case ARM::reloc_arm_machine_cp_entry:
324     case ARM::reloc_arm_absolute: {
325       // These addresses have already been resolved.
326       *((intptr_t*)RelocPos) |= (intptr_t)ResultPtr;
327       break;
328     }
329     case ARM::reloc_arm_branch: {
330       // It is necessary to calculate the correct value of signed_immed_24
331       // field. We subtract the base addr from the target addr to form a
332       // byte offset, which must be inside the range -33554432 and +33554428.
333       // Then, we set the signed_immed_24 field of the instruction to bits
334       // [25:2] of the byte offset. More details ARM-ARM p. A4-11.
335       ResultPtr = ResultPtr - (intptr_t)RelocPos - 8;
336       ResultPtr = (ResultPtr & 0x03FFFFFC) >> 2;
337       assert(ResultPtr >= -33554432 && ResultPtr <= 33554428);
338       *((intptr_t*)RelocPos) |= ResultPtr;
339       break;
340     }
341     case ARM::reloc_arm_jt_base: {
342       // JT base - (instruction addr + 8)
343       ResultPtr = ResultPtr - (intptr_t)RelocPos - 8;
344       *((intptr_t*)RelocPos) |= ResultPtr;
345       break;
346     }
347     case ARM::reloc_arm_movw: {
348       ResultPtr = ResultPtr & 0xFFFF;
349       *((intptr_t*)RelocPos) |= ResultPtr & 0xFFF;
350       *((intptr_t*)RelocPos) |= ((ResultPtr >> 12) & 0xF) << 16;
351       break;
352     }
353     case ARM::reloc_arm_movt: {
354       ResultPtr = (ResultPtr >> 16) & 0xFFFF;
355       *((intptr_t*)RelocPos) |= ResultPtr & 0xFFF;
356       *((intptr_t*)RelocPos) |= ((ResultPtr >> 12) & 0xF) << 16;
357       break;
358     }
359     }
360   }
361 }
362