1 // Copyright (c) 2009 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <algorithm> // for min()
8 #include "base/atomicops.h"
9 #include "base/logging.h"
10 #include "testing/gtest/include/gtest/gtest.h"
11
12 // Number of bits in a size_t.
13 static const int kSizeBits = 8 * sizeof(size_t);
14 // The maximum size of a size_t.
15 static const size_t kMaxSize = ~static_cast<size_t>(0);
16 // Maximum positive size of a size_t if it were signed.
17 static const size_t kMaxSignedSize = ((size_t(1) << (kSizeBits-1)) - 1);
18 // An allocation size which is not too big to be reasonable.
19 static const size_t kNotTooBig = 100000;
20 // An allocation size which is just too big.
21 static const size_t kTooBig = ~static_cast<size_t>(0);
22
23 namespace {
24
25 using std::min;
26
27 // Fill a buffer of the specified size with a predetermined pattern
Fill(unsigned char * buffer,int n)28 static void Fill(unsigned char* buffer, int n) {
29 for (int i = 0; i < n; i++) {
30 buffer[i] = (i & 0xff);
31 }
32 }
33
34 // Check that the specified buffer has the predetermined pattern
35 // generated by Fill()
Valid(unsigned char * buffer,int n)36 static bool Valid(unsigned char* buffer, int n) {
37 for (int i = 0; i < n; i++) {
38 if (buffer[i] != (i & 0xff)) {
39 return false;
40 }
41 }
42 return true;
43 }
44
45 // Check that a buffer is completely zeroed.
IsZeroed(unsigned char * buffer,int n)46 static bool IsZeroed(unsigned char* buffer, int n) {
47 for (int i = 0; i < n; i++) {
48 if (buffer[i] != 0) {
49 return false;
50 }
51 }
52 return true;
53 }
54
55 // Check alignment
CheckAlignment(void * p,int align)56 static void CheckAlignment(void* p, int align) {
57 EXPECT_EQ(0, reinterpret_cast<uintptr_t>(p) & (align-1));
58 }
59
60 // Return the next interesting size/delta to check. Returns -1 if no more.
NextSize(int size)61 static int NextSize(int size) {
62 if (size < 100)
63 return size+1;
64
65 if (size < 100000) {
66 // Find next power of two
67 int power = 1;
68 while (power < size)
69 power <<= 1;
70
71 // Yield (power-1, power, power+1)
72 if (size < power-1)
73 return power-1;
74
75 if (size == power-1)
76 return power;
77
78 assert(size == power);
79 return power+1;
80 } else {
81 return -1;
82 }
83 }
84
85 #define GG_ULONGLONG(x) static_cast<uint64>(x)
86
87 template <class AtomicType>
TestAtomicIncrement()88 static void TestAtomicIncrement() {
89 // For now, we just test single threaded execution
90
91 // use a guard value to make sure the NoBarrier_AtomicIncrement doesn't go
92 // outside the expected address bounds. This is in particular to
93 // test that some future change to the asm code doesn't cause the
94 // 32-bit NoBarrier_AtomicIncrement to do the wrong thing on 64-bit machines.
95 struct {
96 AtomicType prev_word;
97 AtomicType count;
98 AtomicType next_word;
99 } s;
100
101 AtomicType prev_word_value, next_word_value;
102 memset(&prev_word_value, 0xFF, sizeof(AtomicType));
103 memset(&next_word_value, 0xEE, sizeof(AtomicType));
104
105 s.prev_word = prev_word_value;
106 s.count = 0;
107 s.next_word = next_word_value;
108
109 EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, 1), 1);
110 EXPECT_EQ(s.count, 1);
111 EXPECT_EQ(s.prev_word, prev_word_value);
112 EXPECT_EQ(s.next_word, next_word_value);
113
114 EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, 2), 3);
115 EXPECT_EQ(s.count, 3);
116 EXPECT_EQ(s.prev_word, prev_word_value);
117 EXPECT_EQ(s.next_word, next_word_value);
118
119 EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, 3), 6);
120 EXPECT_EQ(s.count, 6);
121 EXPECT_EQ(s.prev_word, prev_word_value);
122 EXPECT_EQ(s.next_word, next_word_value);
123
124 EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -3), 3);
125 EXPECT_EQ(s.count, 3);
126 EXPECT_EQ(s.prev_word, prev_word_value);
127 EXPECT_EQ(s.next_word, next_word_value);
128
129 EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -2), 1);
130 EXPECT_EQ(s.count, 1);
131 EXPECT_EQ(s.prev_word, prev_word_value);
132 EXPECT_EQ(s.next_word, next_word_value);
133
134 EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -1), 0);
135 EXPECT_EQ(s.count, 0);
136 EXPECT_EQ(s.prev_word, prev_word_value);
137 EXPECT_EQ(s.next_word, next_word_value);
138
139 EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -1), -1);
140 EXPECT_EQ(s.count, -1);
141 EXPECT_EQ(s.prev_word, prev_word_value);
142 EXPECT_EQ(s.next_word, next_word_value);
143
144 EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -4), -5);
145 EXPECT_EQ(s.count, -5);
146 EXPECT_EQ(s.prev_word, prev_word_value);
147 EXPECT_EQ(s.next_word, next_word_value);
148
149 EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, 5), 0);
150 EXPECT_EQ(s.count, 0);
151 EXPECT_EQ(s.prev_word, prev_word_value);
152 EXPECT_EQ(s.next_word, next_word_value);
153 }
154
155
156 #define NUM_BITS(T) (sizeof(T) * 8)
157
158
159 template <class AtomicType>
TestCompareAndSwap()160 static void TestCompareAndSwap() {
161 AtomicType value = 0;
162 AtomicType prev = base::subtle::NoBarrier_CompareAndSwap(&value, 0, 1);
163 EXPECT_EQ(1, value);
164 EXPECT_EQ(0, prev);
165
166 // Use test value that has non-zero bits in both halves, more for testing
167 // 64-bit implementation on 32-bit platforms.
168 const AtomicType k_test_val = (GG_ULONGLONG(1) <<
169 (NUM_BITS(AtomicType) - 2)) + 11;
170 value = k_test_val;
171 prev = base::subtle::NoBarrier_CompareAndSwap(&value, 0, 5);
172 EXPECT_EQ(k_test_val, value);
173 EXPECT_EQ(k_test_val, prev);
174
175 value = k_test_val;
176 prev = base::subtle::NoBarrier_CompareAndSwap(&value, k_test_val, 5);
177 EXPECT_EQ(5, value);
178 EXPECT_EQ(k_test_val, prev);
179 }
180
181
182 template <class AtomicType>
TestAtomicExchange()183 static void TestAtomicExchange() {
184 AtomicType value = 0;
185 AtomicType new_value = base::subtle::NoBarrier_AtomicExchange(&value, 1);
186 EXPECT_EQ(1, value);
187 EXPECT_EQ(0, new_value);
188
189 // Use test value that has non-zero bits in both halves, more for testing
190 // 64-bit implementation on 32-bit platforms.
191 const AtomicType k_test_val = (GG_ULONGLONG(1) <<
192 (NUM_BITS(AtomicType) - 2)) + 11;
193 value = k_test_val;
194 new_value = base::subtle::NoBarrier_AtomicExchange(&value, k_test_val);
195 EXPECT_EQ(k_test_val, value);
196 EXPECT_EQ(k_test_val, new_value);
197
198 value = k_test_val;
199 new_value = base::subtle::NoBarrier_AtomicExchange(&value, 5);
200 EXPECT_EQ(5, value);
201 EXPECT_EQ(k_test_val, new_value);
202 }
203
204
205 template <class AtomicType>
TestAtomicIncrementBounds()206 static void TestAtomicIncrementBounds() {
207 // Test increment at the half-width boundary of the atomic type.
208 // It is primarily for testing at the 32-bit boundary for 64-bit atomic type.
209 AtomicType test_val = GG_ULONGLONG(1) << (NUM_BITS(AtomicType) / 2);
210 AtomicType value = test_val - 1;
211 AtomicType new_value = base::subtle::NoBarrier_AtomicIncrement(&value, 1);
212 EXPECT_EQ(test_val, value);
213 EXPECT_EQ(value, new_value);
214
215 base::subtle::NoBarrier_AtomicIncrement(&value, -1);
216 EXPECT_EQ(test_val - 1, value);
217 }
218
219 // This is a simple sanity check that values are correct. Not testing
220 // atomicity
221 template <class AtomicType>
TestStore()222 static void TestStore() {
223 const AtomicType kVal1 = static_cast<AtomicType>(0xa5a5a5a5a5a5a5a5LL);
224 const AtomicType kVal2 = static_cast<AtomicType>(-1);
225
226 AtomicType value;
227
228 base::subtle::NoBarrier_Store(&value, kVal1);
229 EXPECT_EQ(kVal1, value);
230 base::subtle::NoBarrier_Store(&value, kVal2);
231 EXPECT_EQ(kVal2, value);
232
233 base::subtle::Acquire_Store(&value, kVal1);
234 EXPECT_EQ(kVal1, value);
235 base::subtle::Acquire_Store(&value, kVal2);
236 EXPECT_EQ(kVal2, value);
237
238 base::subtle::Release_Store(&value, kVal1);
239 EXPECT_EQ(kVal1, value);
240 base::subtle::Release_Store(&value, kVal2);
241 EXPECT_EQ(kVal2, value);
242 }
243
244 // This is a simple sanity check that values are correct. Not testing
245 // atomicity
246 template <class AtomicType>
TestLoad()247 static void TestLoad() {
248 const AtomicType kVal1 = static_cast<AtomicType>(0xa5a5a5a5a5a5a5a5LL);
249 const AtomicType kVal2 = static_cast<AtomicType>(-1);
250
251 AtomicType value;
252
253 value = kVal1;
254 EXPECT_EQ(kVal1, base::subtle::NoBarrier_Load(&value));
255 value = kVal2;
256 EXPECT_EQ(kVal2, base::subtle::NoBarrier_Load(&value));
257
258 value = kVal1;
259 EXPECT_EQ(kVal1, base::subtle::Acquire_Load(&value));
260 value = kVal2;
261 EXPECT_EQ(kVal2, base::subtle::Acquire_Load(&value));
262
263 value = kVal1;
264 EXPECT_EQ(kVal1, base::subtle::Release_Load(&value));
265 value = kVal2;
266 EXPECT_EQ(kVal2, base::subtle::Release_Load(&value));
267 }
268
269 template <class AtomicType>
TestAtomicOps()270 static void TestAtomicOps() {
271 TestCompareAndSwap<AtomicType>();
272 TestAtomicExchange<AtomicType>();
273 TestAtomicIncrementBounds<AtomicType>();
274 TestStore<AtomicType>();
275 TestLoad<AtomicType>();
276 }
277
TestCalloc(size_t n,size_t s,bool ok)278 static void TestCalloc(size_t n, size_t s, bool ok) {
279 char* p = reinterpret_cast<char*>(calloc(n, s));
280 if (!ok) {
281 EXPECT_EQ(NULL, p) << "calloc(n, s) should not succeed";
282 } else {
283 EXPECT_NE(reinterpret_cast<void*>(NULL), p) <<
284 "calloc(n, s) should succeed";
285 for (int i = 0; i < n*s; i++) {
286 EXPECT_EQ('\0', p[i]);
287 }
288 free(p);
289 }
290 }
291
292
293 // A global test counter for number of times the NewHandler is called.
294 static int news_handled = 0;
TestNewHandler()295 static void TestNewHandler() {
296 ++news_handled;
297 throw std::bad_alloc();
298 }
299
300 // Because we compile without exceptions, we expect these will not throw.
TestOneNewWithoutExceptions(void * (* func)(size_t),bool should_throw)301 static void TestOneNewWithoutExceptions(void* (*func)(size_t),
302 bool should_throw) {
303 // success test
304 try {
305 void* ptr = (*func)(kNotTooBig);
306 EXPECT_NE(reinterpret_cast<void*>(NULL), ptr) <<
307 "allocation should not have failed.";
308 } catch(...) {
309 EXPECT_EQ(0, 1) << "allocation threw unexpected exception.";
310 }
311
312 // failure test
313 try {
314 void* rv = (*func)(kTooBig);
315 EXPECT_EQ(NULL, rv);
316 EXPECT_FALSE(should_throw) << "allocation should have thrown.";
317 } catch(...) {
318 EXPECT_TRUE(should_throw) << "allocation threw unexpected exception.";
319 }
320 }
321
TestNothrowNew(void * (* func)(size_t))322 static void TestNothrowNew(void* (*func)(size_t)) {
323 news_handled = 0;
324
325 // test without new_handler:
326 std::new_handler saved_handler = std::set_new_handler(0);
327 TestOneNewWithoutExceptions(func, false);
328
329 // test with new_handler:
330 std::set_new_handler(TestNewHandler);
331 TestOneNewWithoutExceptions(func, true);
332 EXPECT_EQ(news_handled, 1) << "nothrow new_handler was not called.";
333 std::set_new_handler(saved_handler);
334 }
335
336 } // namespace
337
338 //-----------------------------------------------------------------------------
339
TEST(Atomics,AtomicIncrementWord)340 TEST(Atomics, AtomicIncrementWord) {
341 TestAtomicIncrement<AtomicWord>();
342 }
343
TEST(Atomics,AtomicIncrement32)344 TEST(Atomics, AtomicIncrement32) {
345 TestAtomicIncrement<Atomic32>();
346 }
347
TEST(Atomics,AtomicOpsWord)348 TEST(Atomics, AtomicOpsWord) {
349 TestAtomicIncrement<AtomicWord>();
350 }
351
TEST(Atomics,AtomicOps32)352 TEST(Atomics, AtomicOps32) {
353 TestAtomicIncrement<Atomic32>();
354 }
355
TEST(Allocators,Malloc)356 TEST(Allocators, Malloc) {
357 // Try allocating data with a bunch of alignments and sizes
358 for (int size = 1; size < 1048576; size *= 2) {
359 unsigned char* ptr = reinterpret_cast<unsigned char*>(malloc(size));
360 CheckAlignment(ptr, 2); // Should be 2 byte aligned
361 Fill(ptr, size);
362 EXPECT_TRUE(Valid(ptr, size));
363 free(ptr);
364 }
365 }
366
TEST(Allocators,Calloc)367 TEST(Allocators, Calloc) {
368 TestCalloc(0, 0, true);
369 TestCalloc(0, 1, true);
370 TestCalloc(1, 1, true);
371 TestCalloc(1<<10, 0, true);
372 TestCalloc(1<<20, 0, true);
373 TestCalloc(0, 1<<10, true);
374 TestCalloc(0, 1<<20, true);
375 TestCalloc(1<<20, 2, true);
376 TestCalloc(2, 1<<20, true);
377 TestCalloc(1000, 1000, true);
378
379 TestCalloc(kMaxSize, 2, false);
380 TestCalloc(2, kMaxSize, false);
381 TestCalloc(kMaxSize, kMaxSize, false);
382
383 TestCalloc(kMaxSignedSize, 3, false);
384 TestCalloc(3, kMaxSignedSize, false);
385 TestCalloc(kMaxSignedSize, kMaxSignedSize, false);
386 }
387
TEST(Allocators,New)388 TEST(Allocators, New) {
389 TestNothrowNew(&::operator new);
390 TestNothrowNew(&::operator new[]);
391 }
392
393 // This makes sure that reallocing a small number of bytes in either
394 // direction doesn't cause us to allocate new memory.
TEST(Allocators,Realloc1)395 TEST(Allocators, Realloc1) {
396 int start_sizes[] = { 100, 1000, 10000, 100000 };
397 int deltas[] = { 1, -2, 4, -8, 16, -32, 64, -128 };
398
399 for (int s = 0; s < sizeof(start_sizes)/sizeof(*start_sizes); ++s) {
400 void* p = malloc(start_sizes[s]);
401 CHECK(p);
402 // The larger the start-size, the larger the non-reallocing delta.
403 for (int d = 0; d < s*2; ++d) {
404 void* new_p = realloc(p, start_sizes[s] + deltas[d]);
405 CHECK_EQ(p, new_p); // realloc should not allocate new memory
406 }
407 // Test again, but this time reallocing smaller first.
408 for (int d = 0; d < s*2; ++d) {
409 void* new_p = realloc(p, start_sizes[s] - deltas[d]);
410 CHECK_EQ(p, new_p); // realloc should not allocate new memory
411 }
412 free(p);
413 }
414 }
415
TEST(Allocators,Realloc2)416 TEST(Allocators, Realloc2) {
417 for (int src_size = 0; src_size >= 0; src_size = NextSize(src_size)) {
418 for (int dst_size = 0; dst_size >= 0; dst_size = NextSize(dst_size)) {
419 unsigned char* src = reinterpret_cast<unsigned char*>(malloc(src_size));
420 Fill(src, src_size);
421 unsigned char* dst =
422 reinterpret_cast<unsigned char*>(realloc(src, dst_size));
423 EXPECT_TRUE(Valid(dst, min(src_size, dst_size)));
424 Fill(dst, dst_size);
425 EXPECT_TRUE(Valid(dst, dst_size));
426 if (dst != NULL) free(dst);
427 }
428 }
429
430 // Now make sure realloc works correctly even when we overflow the
431 // packed cache, so some entries are evicted from the cache.
432 // The cache has 2^12 entries, keyed by page number.
433 const int kNumEntries = 1 << 14;
434 int** p = reinterpret_cast<int**>(malloc(sizeof(*p) * kNumEntries));
435 int sum = 0;
436 for (int i = 0; i < kNumEntries; i++) {
437 // no page size is likely to be bigger than 8192?
438 p[i] = reinterpret_cast<int*>(malloc(8192));
439 p[i][1000] = i; // use memory deep in the heart of p
440 }
441 for (int i = 0; i < kNumEntries; i++) {
442 p[i] = reinterpret_cast<int*>(realloc(p[i], 9000));
443 }
444 for (int i = 0; i < kNumEntries; i++) {
445 sum += p[i][1000];
446 free(p[i]);
447 }
448 EXPECT_EQ(kNumEntries/2 * (kNumEntries - 1), sum); // assume kNE is even
449 free(p);
450 }
451
TEST(Allocators,ReallocZero)452 TEST(Allocators, ReallocZero) {
453 // Test that realloc to zero does not return NULL.
454 for (int size = 0; size >= 0; size = NextSize(size)) {
455 char* ptr = reinterpret_cast<char*>(malloc(size));
456 EXPECT_NE(static_cast<char*>(NULL), ptr);
457 ptr = reinterpret_cast<char*>(realloc(ptr, 0));
458 EXPECT_NE(static_cast<char*>(NULL), ptr);
459 if (ptr)
460 free(ptr);
461 }
462 }
463
464 #ifdef WIN32
465 // Test recalloc
TEST(Allocators,Recalloc)466 TEST(Allocators, Recalloc) {
467 for (int src_size = 0; src_size >= 0; src_size = NextSize(src_size)) {
468 for (int dst_size = 0; dst_size >= 0; dst_size = NextSize(dst_size)) {
469 unsigned char* src =
470 reinterpret_cast<unsigned char*>(_recalloc(NULL, 1, src_size));
471 EXPECT_TRUE(IsZeroed(src, src_size));
472 Fill(src, src_size);
473 unsigned char* dst =
474 reinterpret_cast<unsigned char*>(_recalloc(src, 1, dst_size));
475 EXPECT_TRUE(Valid(dst, min(src_size, dst_size)));
476 Fill(dst, dst_size);
477 EXPECT_TRUE(Valid(dst, dst_size));
478 if (dst != NULL)
479 free(dst);
480 }
481 }
482 }
483 #endif
484
485
main(int argc,char ** argv)486 int main(int argc, char** argv) {
487 testing::InitGoogleTest(&argc, argv);
488 return RUN_ALL_TESTS();
489 }
490