• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2009 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef BASE_LINKED_LIST_H_
6 #define BASE_LINKED_LIST_H_
7 #pragma once
8 
9 // Simple LinkedList type. (See the Q&A section to understand how this
10 // differs from std::list).
11 //
12 // To use, start by declaring the class which will be contained in the linked
13 // list, as extending LinkNode (this gives it next/previous pointers).
14 //
15 //   class MyNodeType : public LinkNode<MyNodeType> {
16 //     ...
17 //   };
18 //
19 // Next, to keep track of the list's head/tail, use a LinkedList instance:
20 //
21 //   LinkedList<MyNodeType> list;
22 //
23 // To add elements to the list, use any of LinkedList::Append,
24 // LinkNode::InsertBefore, or LinkNode::InsertAfter:
25 //
26 //   LinkNode<MyNodeType>* n1 = ...;
27 //   LinkNode<MyNodeType>* n2 = ...;
28 //   LinkNode<MyNodeType>* n3 = ...;
29 //
30 //   list.Append(n1);
31 //   list.Append(n3);
32 //   n3->InsertBefore(n3);
33 //
34 // Lastly, to iterate through the linked list forwards:
35 //
36 //   for (LinkNode<MyNodeType>* node = list.head();
37 //        node != list.end();
38 //        node = node->next()) {
39 //     MyNodeType* value = node->value();
40 //     ...
41 //   }
42 //
43 // Or to iterate the linked list backwards:
44 //
45 //   for (LinkNode<MyNodeType>* node = list.tail();
46 //        node != list.end();
47 //        node = node->previous()) {
48 //     MyNodeType* value = node->value();
49 //     ...
50 //   }
51 //
52 // Questions and Answers:
53 //
54 // Q. Should I use std::list or base::LinkedList?
55 //
56 // A. The main reason to use base::LinkedList over std::list is
57 //    performance. If you don't care about the performance differences
58 //    then use an STL container, as it makes for better code readability.
59 //
60 //    Comparing the performance of base::LinkedList<T> to std::list<T*>:
61 //
62 //    * Erasing an element of type T* from base::LinkedList<T> is
63 //      an O(1) operation. Whereas for std::list<T*> it is O(n).
64 //      That is because with std::list<T*> you must obtain an
65 //      iterator to the T* element before you can call erase(iterator).
66 //
67 //    * Insertion operations with base::LinkedList<T> never require
68 //      heap allocations.
69 //
70 // Q. How does base::LinkedList implementation differ from std::list?
71 //
72 // A. Doubly-linked lists are made up of nodes that contain "next" and
73 //    "previous" pointers that reference other nodes in the list.
74 //
75 //    With base::LinkedList<T>, the type being inserted already reserves
76 //    space for the "next" and "previous" pointers (base::LinkNode<T>*).
77 //    Whereas with std::list<T> the type can be anything, so the implementation
78 //    needs to glue on the "next" and "previous" pointers using
79 //    some internal node type.
80 
81 namespace base {
82 
83 template <typename T>
84 class LinkNode {
85  public:
LinkNode()86   LinkNode() : previous_(0), next_(0) {}
LinkNode(LinkNode<T> * previous,LinkNode<T> * next)87   LinkNode(LinkNode<T>* previous, LinkNode<T>* next)
88       : previous_(previous), next_(next) {}
89 
90   // Insert |this| into the linked list, before |e|.
InsertBefore(LinkNode<T> * e)91   void InsertBefore(LinkNode<T>* e) {
92     this->next_ = e;
93     this->previous_ = e->previous_;
94     e->previous_->next_ = this;
95     e->previous_ = this;
96   }
97 
98   // Insert |this| into the linked list, after |e|.
InsertAfter(LinkNode<T> * e)99   void InsertAfter(LinkNode<T>* e) {
100     this->next_ = e->next_;
101     this->previous_ = e;
102     e->next_->previous_ = this;
103     e->next_ = this;
104   }
105 
106   // Remove |this| from the linked list.
RemoveFromList()107   void RemoveFromList() {
108     this->previous_->next_ = this->next_;
109     this->next_->previous_ = this->previous_;
110   }
111 
previous()112   LinkNode<T>* previous() const {
113     return previous_;
114   }
115 
next()116   LinkNode<T>* next() const {
117     return next_;
118   }
119 
120   // Cast from the node-type to the value type.
value()121   const T* value() const {
122     return static_cast<const T*>(this);
123   }
124 
value()125   T* value() {
126     return static_cast<T*>(this);
127   }
128 
129   // Work around a Clang bug reported upstream:
130   //   http://llvm.org/bugs/show_bug.cgi?id=7974
131   // TODO(evanm): remove this and its sole caller.
set(LinkNode<T> * prev,LinkNode<T> * next)132   void set(LinkNode<T>* prev, LinkNode<T>* next) {
133     previous_ = prev; next_ = next;
134   }
135 
136  private:
137   LinkNode<T>* previous_;
138   LinkNode<T>* next_;
139 };
140 
141 template <typename T>
142 class LinkedList {
143  public:
144   // The "root" node is self-referential, and forms the basis of a circular
145   // list (root_.next() will point back to the start of the list,
146   // and root_->previous() wraps around to the end of the list).
LinkedList()147   LinkedList() { root_.set(&root_, &root_); }
148 
149   // Appends |e| to the end of the linked list.
Append(LinkNode<T> * e)150   void Append(LinkNode<T>* e) {
151     e->InsertBefore(&root_);
152   }
153 
head()154   LinkNode<T>* head() const {
155     return root_.next();
156   }
157 
tail()158   LinkNode<T>* tail() const {
159     return root_.previous();
160   }
161 
end()162   const LinkNode<T>* end() const {
163     return &root_;
164   }
165 
166  private:
167   LinkNode<T> root_;
168 };
169 
170 }  // namespace base
171 
172 #endif  // BASE_LINKED_LIST_H_
173