• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef BASE_MESSAGE_PUMP_WIN_H_
6 #define BASE_MESSAGE_PUMP_WIN_H_
7 #pragma once
8 
9 #include <windows.h>
10 
11 #include <list>
12 
13 #include "base/base_api.h"
14 #include "base/basictypes.h"
15 #include "base/message_pump.h"
16 #include "base/observer_list.h"
17 #include "base/time.h"
18 #include "base/win/scoped_handle.h"
19 
20 namespace base {
21 
22 // MessagePumpWin serves as the base for specialized versions of the MessagePump
23 // for Windows. It provides basic functionality like handling of observers and
24 // controlling the lifetime of the message pump.
25 class BASE_API MessagePumpWin : public MessagePump {
26  public:
27   // An Observer is an object that receives global notifications from the
28   // UI MessageLoop.
29   //
30   // NOTE: An Observer implementation should be extremely fast!
31   //
32   class Observer {
33    public:
~Observer()34     virtual ~Observer() {}
35 
36     // This method is called before processing a message.
37     // The message may be undefined in which case msg.message is 0
38     virtual void WillProcessMessage(const MSG& msg) = 0;
39 
40     // This method is called when control returns from processing a UI message.
41     // The message may be undefined in which case msg.message is 0
42     virtual void DidProcessMessage(const MSG& msg) = 0;
43   };
44 
45   // Dispatcher is used during a nested invocation of Run to dispatch events.
46   // If Run is invoked with a non-NULL Dispatcher, MessageLoop does not
47   // dispatch events (or invoke TranslateMessage), rather every message is
48   // passed to Dispatcher's Dispatch method for dispatch. It is up to the
49   // Dispatcher to dispatch, or not, the event.
50   //
51   // The nested loop is exited by either posting a quit, or returning false
52   // from Dispatch.
53   class Dispatcher {
54    public:
~Dispatcher()55     virtual ~Dispatcher() {}
56     // Dispatches the event. If true is returned processing continues as
57     // normal. If false is returned, the nested loop exits immediately.
58     virtual bool Dispatch(const MSG& msg) = 0;
59   };
60 
MessagePumpWin()61   MessagePumpWin() : have_work_(0), state_(NULL) {}
~MessagePumpWin()62   virtual ~MessagePumpWin() {}
63 
64   // Add an Observer, which will start receiving notifications immediately.
65   void AddObserver(Observer* observer);
66 
67   // Remove an Observer.  It is safe to call this method while an Observer is
68   // receiving a notification callback.
69   void RemoveObserver(Observer* observer);
70 
71   // Give a chance to code processing additional messages to notify the
72   // message loop observers that another message has been processed.
73   void WillProcessMessage(const MSG& msg);
74   void DidProcessMessage(const MSG& msg);
75 
76   // Like MessagePump::Run, but MSG objects are routed through dispatcher.
77   void RunWithDispatcher(Delegate* delegate, Dispatcher* dispatcher);
78 
79   // MessagePump methods:
Run(Delegate * delegate)80   virtual void Run(Delegate* delegate) { RunWithDispatcher(delegate, NULL); }
81   virtual void Quit();
82 
83  protected:
84   struct RunState {
85     Delegate* delegate;
86     Dispatcher* dispatcher;
87 
88     // Used to flag that the current Run() invocation should return ASAP.
89     bool should_quit;
90 
91     // Used to count how many Run() invocations are on the stack.
92     int run_depth;
93   };
94 
95   virtual void DoRunLoop() = 0;
96   int GetCurrentDelay() const;
97 
98   ObserverList<Observer> observers_;
99 
100   // The time at which delayed work should run.
101   TimeTicks delayed_work_time_;
102 
103   // A boolean value used to indicate if there is a kMsgDoWork message pending
104   // in the Windows Message queue.  There is at most one such message, and it
105   // can drive execution of tasks when a native message pump is running.
106   LONG have_work_;
107 
108   // State for the current invocation of Run.
109   RunState* state_;
110 };
111 
112 //-----------------------------------------------------------------------------
113 // MessagePumpForUI extends MessagePumpWin with methods that are particular to a
114 // MessageLoop instantiated with TYPE_UI.
115 //
116 // MessagePumpForUI implements a "traditional" Windows message pump. It contains
117 // a nearly infinite loop that peeks out messages, and then dispatches them.
118 // Intermixed with those peeks are callouts to DoWork for pending tasks, and
119 // DoDelayedWork for pending timers. When there are no events to be serviced,
120 // this pump goes into a wait state. In most cases, this message pump handles
121 // all processing.
122 //
123 // However, when a task, or windows event, invokes on the stack a native dialog
124 // box or such, that window typically provides a bare bones (native?) message
125 // pump.  That bare-bones message pump generally supports little more than a
126 // peek of the Windows message queue, followed by a dispatch of the peeked
127 // message.  MessageLoop extends that bare-bones message pump to also service
128 // Tasks, at the cost of some complexity.
129 //
130 // The basic structure of the extension (refered to as a sub-pump) is that a
131 // special message, kMsgHaveWork, is repeatedly injected into the Windows
132 // Message queue.  Each time the kMsgHaveWork message is peeked, checks are
133 // made for an extended set of events, including the availability of Tasks to
134 // run.
135 //
136 // After running a task, the special message kMsgHaveWork is again posted to
137 // the Windows Message queue, ensuring a future time slice for processing a
138 // future event.  To prevent flooding the Windows Message queue, care is taken
139 // to be sure that at most one kMsgHaveWork message is EVER pending in the
140 // Window's Message queue.
141 //
142 // There are a few additional complexities in this system where, when there are
143 // no Tasks to run, this otherwise infinite stream of messages which drives the
144 // sub-pump is halted.  The pump is automatically re-started when Tasks are
145 // queued.
146 //
147 // A second complexity is that the presence of this stream of posted tasks may
148 // prevent a bare-bones message pump from ever peeking a WM_PAINT or WM_TIMER.
149 // Such paint and timer events always give priority to a posted message, such as
150 // kMsgHaveWork messages.  As a result, care is taken to do some peeking in
151 // between the posting of each kMsgHaveWork message (i.e., after kMsgHaveWork
152 // is peeked, and before a replacement kMsgHaveWork is posted).
153 //
154 // NOTE: Although it may seem odd that messages are used to start and stop this
155 // flow (as opposed to signaling objects, etc.), it should be understood that
156 // the native message pump will *only* respond to messages.  As a result, it is
157 // an excellent choice.  It is also helpful that the starter messages that are
158 // placed in the queue when new task arrive also awakens DoRunLoop.
159 //
160 class BASE_API MessagePumpForUI : public MessagePumpWin {
161  public:
162   // The application-defined code passed to the hook procedure.
163   static const int kMessageFilterCode = 0x5001;
164 
165   MessagePumpForUI();
166   virtual ~MessagePumpForUI();
167 
168   // MessagePump methods:
169   virtual void ScheduleWork();
170   virtual void ScheduleDelayedWork(const TimeTicks& delayed_work_time);
171 
172   // Applications can call this to encourage us to process all pending WM_PAINT
173   // messages.  This method will process all paint messages the Windows Message
174   // queue can provide, up to some fixed number (to avoid any infinite loops).
175   void PumpOutPendingPaintMessages();
176 
177  private:
178   static LRESULT CALLBACK WndProcThunk(
179       HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam);
180   virtual void DoRunLoop();
181   void InitMessageWnd();
182   void WaitForWork();
183   void HandleWorkMessage();
184   void HandleTimerMessage();
185   bool ProcessNextWindowsMessage();
186   bool ProcessMessageHelper(const MSG& msg);
187   bool ProcessPumpReplacementMessage();
188 
189   // A hidden message-only window.
190   HWND message_hwnd_;
191 };
192 
193 //-----------------------------------------------------------------------------
194 // MessagePumpForIO extends MessagePumpWin with methods that are particular to a
195 // MessageLoop instantiated with TYPE_IO. This version of MessagePump does not
196 // deal with Windows mesagges, and instead has a Run loop based on Completion
197 // Ports so it is better suited for IO operations.
198 //
199 class BASE_API MessagePumpForIO : public MessagePumpWin {
200  public:
201   struct IOContext;
202 
203   // Clients interested in receiving OS notifications when asynchronous IO
204   // operations complete should implement this interface and register themselves
205   // with the message pump.
206   //
207   // Typical use #1:
208   //   // Use only when there are no user's buffers involved on the actual IO,
209   //   // so that all the cleanup can be done by the message pump.
210   //   class MyFile : public IOHandler {
211   //     MyFile() {
212   //       ...
213   //       context_ = new IOContext;
214   //       context_->handler = this;
215   //       message_pump->RegisterIOHandler(file_, this);
216   //     }
217   //     ~MyFile() {
218   //       if (pending_) {
219   //         // By setting the handler to NULL, we're asking for this context
220   //         // to be deleted when received, without calling back to us.
221   //         context_->handler = NULL;
222   //       } else {
223   //         delete context_;
224   //      }
225   //     }
226   //     virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
227   //                                DWORD error) {
228   //         pending_ = false;
229   //     }
230   //     void DoSomeIo() {
231   //       ...
232   //       // The only buffer required for this operation is the overlapped
233   //       // structure.
234   //       ConnectNamedPipe(file_, &context_->overlapped);
235   //       pending_ = true;
236   //     }
237   //     bool pending_;
238   //     IOContext* context_;
239   //     HANDLE file_;
240   //   };
241   //
242   // Typical use #2:
243   //   class MyFile : public IOHandler {
244   //     MyFile() {
245   //       ...
246   //       message_pump->RegisterIOHandler(file_, this);
247   //     }
248   //     // Plus some code to make sure that this destructor is not called
249   //     // while there are pending IO operations.
250   //     ~MyFile() {
251   //     }
252   //     virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
253   //                                DWORD error) {
254   //       ...
255   //       delete context;
256   //     }
257   //     void DoSomeIo() {
258   //       ...
259   //       IOContext* context = new IOContext;
260   //       // This is not used for anything. It just prevents the context from
261   //       // being considered "abandoned".
262   //       context->handler = this;
263   //       ReadFile(file_, buffer, num_bytes, &read, &context->overlapped);
264   //     }
265   //     HANDLE file_;
266   //   };
267   //
268   // Typical use #3:
269   // Same as the previous example, except that in order to deal with the
270   // requirement stated for the destructor, the class calls WaitForIOCompletion
271   // from the destructor to block until all IO finishes.
272   //     ~MyFile() {
273   //       while(pending_)
274   //         message_pump->WaitForIOCompletion(INFINITE, this);
275   //     }
276   //
277   class IOHandler {
278    public:
~IOHandler()279     virtual ~IOHandler() {}
280     // This will be called once the pending IO operation associated with
281     // |context| completes. |error| is the Win32 error code of the IO operation
282     // (ERROR_SUCCESS if there was no error). |bytes_transfered| will be zero
283     // on error.
284     virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
285                                DWORD error) = 0;
286   };
287 
288   // An IOObserver is an object that receives IO notifications from the
289   // MessagePump.
290   //
291   // NOTE: An IOObserver implementation should be extremely fast!
292   class IOObserver {
293    public:
IOObserver()294     IOObserver() {}
295 
296     virtual void WillProcessIOEvent() = 0;
297     virtual void DidProcessIOEvent() = 0;
298 
299    protected:
~IOObserver()300     virtual ~IOObserver() {}
301   };
302 
303   // The extended context that should be used as the base structure on every
304   // overlapped IO operation. |handler| must be set to the registered IOHandler
305   // for the given file when the operation is started, and it can be set to NULL
306   // before the operation completes to indicate that the handler should not be
307   // called anymore, and instead, the IOContext should be deleted when the OS
308   // notifies the completion of this operation. Please remember that any buffers
309   // involved with an IO operation should be around until the callback is
310   // received, so this technique can only be used for IO that do not involve
311   // additional buffers (other than the overlapped structure itself).
312   struct IOContext {
313     OVERLAPPED overlapped;
314     IOHandler* handler;
315   };
316 
317   MessagePumpForIO();
~MessagePumpForIO()318   virtual ~MessagePumpForIO() {}
319 
320   // MessagePump methods:
321   virtual void ScheduleWork();
322   virtual void ScheduleDelayedWork(const TimeTicks& delayed_work_time);
323 
324   // Register the handler to be used when asynchronous IO for the given file
325   // completes. The registration persists as long as |file_handle| is valid, so
326   // |handler| must be valid as long as there is pending IO for the given file.
327   void RegisterIOHandler(HANDLE file_handle, IOHandler* handler);
328 
329   // Waits for the next IO completion that should be processed by |filter|, for
330   // up to |timeout| milliseconds. Return true if any IO operation completed,
331   // regardless of the involved handler, and false if the timeout expired. If
332   // the completion port received any message and the involved IO handler
333   // matches |filter|, the callback is called before returning from this code;
334   // if the handler is not the one that we are looking for, the callback will
335   // be postponed for another time, so reentrancy problems can be avoided.
336   // External use of this method should be reserved for the rare case when the
337   // caller is willing to allow pausing regular task dispatching on this thread.
338   bool WaitForIOCompletion(DWORD timeout, IOHandler* filter);
339 
340   void AddIOObserver(IOObserver* obs);
341   void RemoveIOObserver(IOObserver* obs);
342 
343  private:
344   struct IOItem {
345     IOHandler* handler;
346     IOContext* context;
347     DWORD bytes_transfered;
348     DWORD error;
349   };
350 
351   virtual void DoRunLoop();
352   void WaitForWork();
353   bool MatchCompletedIOItem(IOHandler* filter, IOItem* item);
354   bool GetIOItem(DWORD timeout, IOItem* item);
355   bool ProcessInternalIOItem(const IOItem& item);
356   void WillProcessIOEvent();
357   void DidProcessIOEvent();
358 
359   // The completion port associated with this thread.
360   win::ScopedHandle port_;
361   // This list will be empty almost always. It stores IO completions that have
362   // not been delivered yet because somebody was doing cleanup.
363   std::list<IOItem> completed_io_;
364 
365   ObserverList<IOObserver> io_observers_;
366 };
367 
368 }  // namespace base
369 
370 #endif  // BASE_MESSAGE_PUMP_WIN_H_
371