1 // Copyright 2005, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 //
30 // Authors: wan@google.com (Zhanyong Wan), eefacm@gmail.com (Sean Mcafee)
31 //
32 // The Google C++ Testing Framework (Google Test)
33 //
34 // This header file declares functions and macros used internally by
35 // Google Test. They are subject to change without notice.
36
37 #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
38 #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
39
40 #include <gtest/internal/gtest-port.h>
41
42 #ifdef GTEST_OS_LINUX
43 #include <stdlib.h>
44 #include <sys/types.h>
45 #include <sys/wait.h>
46 #include <unistd.h>
47 #endif // GTEST_OS_LINUX
48
49 #include <iomanip> // NOLINT
50 #include <limits> // NOLINT
51
52 #include <gtest/internal/gtest-string.h>
53 #include <gtest/internal/gtest-filepath.h>
54
55 // Due to C++ preprocessor weirdness, we need double indirection to
56 // concatenate two tokens when one of them is __LINE__. Writing
57 //
58 // foo ## __LINE__
59 //
60 // will result in the token foo__LINE__, instead of foo followed by
61 // the current line number. For more details, see
62 // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
63 #define GTEST_CONCAT_TOKEN(foo, bar) GTEST_CONCAT_TOKEN_IMPL(foo, bar)
64 #define GTEST_CONCAT_TOKEN_IMPL(foo, bar) foo ## bar
65
66 // Google Test defines the testing::Message class to allow construction of
67 // test messages via the << operator. The idea is that anything
68 // streamable to std::ostream can be streamed to a testing::Message.
69 // This allows a user to use his own types in Google Test assertions by
70 // overloading the << operator.
71 //
72 // util/gtl/stl_logging-inl.h overloads << for STL containers. These
73 // overloads cannot be defined in the std namespace, as that will be
74 // undefined behavior. Therefore, they are defined in the global
75 // namespace instead.
76 //
77 // C++'s symbol lookup rule (i.e. Koenig lookup) says that these
78 // overloads are visible in either the std namespace or the global
79 // namespace, but not other namespaces, including the testing
80 // namespace which Google Test's Message class is in.
81 //
82 // To allow STL containers (and other types that has a << operator
83 // defined in the global namespace) to be used in Google Test assertions,
84 // testing::Message must access the custom << operator from the global
85 // namespace. Hence this helper function.
86 //
87 // Note: Jeffrey Yasskin suggested an alternative fix by "using
88 // ::operator<<;" in the definition of Message's operator<<. That fix
89 // doesn't require a helper function, but unfortunately doesn't
90 // compile with MSVC.
91 template <typename T>
GTestStreamToHelper(std::ostream * os,const T & val)92 inline void GTestStreamToHelper(std::ostream* os, const T& val) {
93 *os << val;
94 }
95
96 namespace testing {
97
98 // Forward declaration of classes.
99
100 class Message; // Represents a failure message.
101 class TestCase; // A collection of related tests.
102 class TestPartResult; // Result of a test part.
103 class TestInfo; // Information about a test.
104 class UnitTest; // A collection of test cases.
105 class UnitTestEventListenerInterface; // Listens to Google Test events.
106 class AssertionResult; // Result of an assertion.
107
108 namespace internal {
109
110 struct TraceInfo; // Information about a trace point.
111 class ScopedTrace; // Implements scoped trace.
112 class TestInfoImpl; // Opaque implementation of TestInfo
113 class TestResult; // Result of a single Test.
114 class UnitTestImpl; // Opaque implementation of UnitTest
115
116 template <typename E> class List; // A generic list.
117 template <typename E> class ListNode; // A node in a generic list.
118
119 // A secret type that Google Test users don't know about. It has no
120 // definition on purpose. Therefore it's impossible to create a
121 // Secret object, which is what we want.
122 class Secret;
123
124 // Two overloaded helpers for checking at compile time whether an
125 // expression is a null pointer literal (i.e. NULL or any 0-valued
126 // compile-time integral constant). Their return values have
127 // different sizes, so we can use sizeof() to test which version is
128 // picked by the compiler. These helpers have no implementations, as
129 // we only need their signatures.
130 //
131 // Given IsNullLiteralHelper(x), the compiler will pick the first
132 // version if x can be implicitly converted to Secret*, and pick the
133 // second version otherwise. Since Secret is a secret and incomplete
134 // type, the only expression a user can write that has type Secret* is
135 // a null pointer literal. Therefore, we know that x is a null
136 // pointer literal if and only if the first version is picked by the
137 // compiler.
138 char IsNullLiteralHelper(Secret* p);
139 char (&IsNullLiteralHelper(...))[2]; // NOLINT
140
141 // A compile-time bool constant that is true if and only if x is a
142 // null pointer literal (i.e. NULL or any 0-valued compile-time
143 // integral constant).
144 #ifdef __SYMBIAN32__ // Symbian
145 // Passing non-POD classes through ellipsis (...) crashes the ARM compiler.
146 // The Nokia Symbian compiler tries to instantiate a copy constructor for
147 // objects passed through ellipsis (...), failing for uncopyable objects.
148 // Hence we define this to false (and lose support for NULL detection).
149 #define GTEST_IS_NULL_LITERAL(x) false
150 #else // ! __SYMBIAN32__
151 #define GTEST_IS_NULL_LITERAL(x) \
152 (sizeof(::testing::internal::IsNullLiteralHelper(x)) == 1)
153 #endif // __SYMBIAN32__
154
155 // Appends the user-supplied message to the Google-Test-generated message.
156 String AppendUserMessage(const String& gtest_msg,
157 const Message& user_msg);
158
159 // A helper class for creating scoped traces in user programs.
160 class ScopedTrace {
161 public:
162 // The c'tor pushes the given source file location and message onto
163 // a trace stack maintained by Google Test.
164 ScopedTrace(const char* file, int line, const Message& message);
165
166 // The d'tor pops the info pushed by the c'tor.
167 //
168 // Note that the d'tor is not virtual in order to be efficient.
169 // Don't inherit from ScopedTrace!
170 ~ScopedTrace();
171
172 private:
173 GTEST_DISALLOW_COPY_AND_ASSIGN(ScopedTrace);
174 } GTEST_ATTRIBUTE_UNUSED; // A ScopedTrace object does its job in its
175 // c'tor and d'tor. Therefore it doesn't
176 // need to be used otherwise.
177
178 // Converts a streamable value to a String. A NULL pointer is
179 // converted to "(null)". When the input value is a ::string,
180 // ::std::string, ::wstring, or ::std::wstring object, each NUL
181 // character in it is replaced with "\\0".
182 // Declared here but defined in gtest.h, so that it has access
183 // to the definition of the Message class, required by the ARM
184 // compiler.
185 template <typename T>
186 String StreamableToString(const T& streamable);
187
188 // Formats a value to be used in a failure message.
189
190 #ifdef __SYMBIAN32__
191
192 // These are needed as the Nokia Symbian Compiler cannot decide between
193 // const T& and const T* in a function template. The Nokia compiler _can_
194 // decide between class template specializations for T and T*, so a
195 // tr1::type_traits-like is_pointer works, and we can overload on that.
196
197 // This overload makes sure that all pointers (including
198 // those to char or wchar_t) are printed as raw pointers.
199 template <typename T>
FormatValueForFailureMessage(internal::true_type dummy,T * pointer)200 inline String FormatValueForFailureMessage(internal::true_type dummy,
201 T* pointer) {
202 return StreamableToString(static_cast<const void*>(pointer));
203 }
204
205 template <typename T>
FormatValueForFailureMessage(internal::false_type dummy,const T & value)206 inline String FormatValueForFailureMessage(internal::false_type dummy,
207 const T& value) {
208 return StreamableToString(value);
209 }
210
211 template <typename T>
FormatForFailureMessage(const T & value)212 inline String FormatForFailureMessage(const T& value) {
213 return FormatValueForFailureMessage(
214 typename internal::is_pointer<T>::type(), value);
215 }
216
217 #else
218
219 template <typename T>
FormatForFailureMessage(const T & value)220 inline String FormatForFailureMessage(const T& value) {
221 return StreamableToString(value);
222 }
223
224 // This overload makes sure that all pointers (including
225 // those to char or wchar_t) are printed as raw pointers.
226 template <typename T>
FormatForFailureMessage(T * pointer)227 inline String FormatForFailureMessage(T* pointer) {
228 return StreamableToString(static_cast<const void*>(pointer));
229 }
230
231 #endif // __SYMBIAN32__
232
233 // These overloaded versions handle narrow and wide characters.
234 String FormatForFailureMessage(char ch);
235 String FormatForFailureMessage(wchar_t wchar);
236
237 // When this operand is a const char* or char*, and the other operand
238 // is a ::std::string or ::string, we print this operand as a C string
239 // rather than a pointer. We do the same for wide strings.
240
241 // This internal macro is used to avoid duplicated code.
242 #define GTEST_FORMAT_IMPL(operand2_type, operand1_printer)\
243 inline String FormatForComparisonFailureMessage(\
244 operand2_type::value_type* str, const operand2_type& /*operand2*/) {\
245 return operand1_printer(str);\
246 }\
247 inline String FormatForComparisonFailureMessage(\
248 const operand2_type::value_type* str, const operand2_type& /*operand2*/) {\
249 return operand1_printer(str);\
250 }
251
252 #if GTEST_HAS_STD_STRING
253 GTEST_FORMAT_IMPL(::std::string, String::ShowCStringQuoted)
254 #endif // GTEST_HAS_STD_STRING
255 #if GTEST_HAS_STD_WSTRING
256 GTEST_FORMAT_IMPL(::std::wstring, String::ShowWideCStringQuoted)
257 #endif // GTEST_HAS_STD_WSTRING
258
259 #if GTEST_HAS_GLOBAL_STRING
260 GTEST_FORMAT_IMPL(::string, String::ShowCStringQuoted)
261 #endif // GTEST_HAS_GLOBAL_STRING
262 #if GTEST_HAS_GLOBAL_WSTRING
263 GTEST_FORMAT_IMPL(::wstring, String::ShowWideCStringQuoted)
264 #endif // GTEST_HAS_GLOBAL_WSTRING
265
266 #undef GTEST_FORMAT_IMPL
267
268 // Constructs and returns the message for an equality assertion
269 // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
270 //
271 // The first four parameters are the expressions used in the assertion
272 // and their values, as strings. For example, for ASSERT_EQ(foo, bar)
273 // where foo is 5 and bar is 6, we have:
274 //
275 // expected_expression: "foo"
276 // actual_expression: "bar"
277 // expected_value: "5"
278 // actual_value: "6"
279 //
280 // The ignoring_case parameter is true iff the assertion is a
281 // *_STRCASEEQ*. When it's true, the string " (ignoring case)" will
282 // be inserted into the message.
283 AssertionResult EqFailure(const char* expected_expression,
284 const char* actual_expression,
285 const String& expected_value,
286 const String& actual_value,
287 bool ignoring_case);
288
289
290 // This template class represents an IEEE floating-point number
291 // (either single-precision or double-precision, depending on the
292 // template parameters).
293 //
294 // The purpose of this class is to do more sophisticated number
295 // comparison. (Due to round-off error, etc, it's very unlikely that
296 // two floating-points will be equal exactly. Hence a naive
297 // comparison by the == operation often doesn't work.)
298 //
299 // Format of IEEE floating-point:
300 //
301 // The most-significant bit being the leftmost, an IEEE
302 // floating-point looks like
303 //
304 // sign_bit exponent_bits fraction_bits
305 //
306 // Here, sign_bit is a single bit that designates the sign of the
307 // number.
308 //
309 // For float, there are 8 exponent bits and 23 fraction bits.
310 //
311 // For double, there are 11 exponent bits and 52 fraction bits.
312 //
313 // More details can be found at
314 // http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
315 //
316 // Template parameter:
317 //
318 // RawType: the raw floating-point type (either float or double)
319 template <typename RawType>
320 class FloatingPoint {
321 public:
322 // Defines the unsigned integer type that has the same size as the
323 // floating point number.
324 typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
325
326 // Constants.
327
328 // # of bits in a number.
329 static const size_t kBitCount = 8*sizeof(RawType);
330
331 // # of fraction bits in a number.
332 static const size_t kFractionBitCount =
333 std::numeric_limits<RawType>::digits - 1;
334
335 // # of exponent bits in a number.
336 static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
337
338 // The mask for the sign bit.
339 static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
340
341 // The mask for the fraction bits.
342 static const Bits kFractionBitMask =
343 ~static_cast<Bits>(0) >> (kExponentBitCount + 1);
344
345 // The mask for the exponent bits.
346 static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
347
348 // How many ULP's (Units in the Last Place) we want to tolerate when
349 // comparing two numbers. The larger the value, the more error we
350 // allow. A 0 value means that two numbers must be exactly the same
351 // to be considered equal.
352 //
353 // The maximum error of a single floating-point operation is 0.5
354 // units in the last place. On Intel CPU's, all floating-point
355 // calculations are done with 80-bit precision, while double has 64
356 // bits. Therefore, 4 should be enough for ordinary use.
357 //
358 // See the following article for more details on ULP:
359 // http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm.
360 static const size_t kMaxUlps = 4;
361
362 // Constructs a FloatingPoint from a raw floating-point number.
363 //
364 // On an Intel CPU, passing a non-normalized NAN (Not a Number)
365 // around may change its bits, although the new value is guaranteed
366 // to be also a NAN. Therefore, don't expect this constructor to
367 // preserve the bits in x when x is a NAN.
FloatingPoint(const RawType & x)368 explicit FloatingPoint(const RawType& x) : value_(x) {}
369
370 // Static methods
371
372 // Reinterprets a bit pattern as a floating-point number.
373 //
374 // This function is needed to test the AlmostEquals() method.
ReinterpretBits(const Bits bits)375 static RawType ReinterpretBits(const Bits bits) {
376 FloatingPoint fp(0);
377 fp.bits_ = bits;
378 return fp.value_;
379 }
380
381 // Returns the floating-point number that represent positive infinity.
Infinity()382 static RawType Infinity() {
383 return ReinterpretBits(kExponentBitMask);
384 }
385
386 // Non-static methods
387
388 // Returns the bits that represents this number.
bits()389 const Bits &bits() const { return bits_; }
390
391 // Returns the exponent bits of this number.
exponent_bits()392 Bits exponent_bits() const { return kExponentBitMask & bits_; }
393
394 // Returns the fraction bits of this number.
fraction_bits()395 Bits fraction_bits() const { return kFractionBitMask & bits_; }
396
397 // Returns the sign bit of this number.
sign_bit()398 Bits sign_bit() const { return kSignBitMask & bits_; }
399
400 // Returns true iff this is NAN (not a number).
is_nan()401 bool is_nan() const {
402 // It's a NAN if the exponent bits are all ones and the fraction
403 // bits are not entirely zeros.
404 return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
405 }
406
407 // Returns true iff this number is at most kMaxUlps ULP's away from
408 // rhs. In particular, this function:
409 //
410 // - returns false if either number is (or both are) NAN.
411 // - treats really large numbers as almost equal to infinity.
412 // - thinks +0.0 and -0.0 are 0 DLP's apart.
AlmostEquals(const FloatingPoint & rhs)413 bool AlmostEquals(const FloatingPoint& rhs) const {
414 // The IEEE standard says that any comparison operation involving
415 // a NAN must return false.
416 if (is_nan() || rhs.is_nan()) return false;
417
418 return DistanceBetweenSignAndMagnitudeNumbers(bits_, rhs.bits_) <= kMaxUlps;
419 }
420
421 private:
422 // Converts an integer from the sign-and-magnitude representation to
423 // the biased representation. More precisely, let N be 2 to the
424 // power of (kBitCount - 1), an integer x is represented by the
425 // unsigned number x + N.
426 //
427 // For instance,
428 //
429 // -N + 1 (the most negative number representable using
430 // sign-and-magnitude) is represented by 1;
431 // 0 is represented by N; and
432 // N - 1 (the biggest number representable using
433 // sign-and-magnitude) is represented by 2N - 1.
434 //
435 // Read http://en.wikipedia.org/wiki/Signed_number_representations
436 // for more details on signed number representations.
SignAndMagnitudeToBiased(const Bits & sam)437 static Bits SignAndMagnitudeToBiased(const Bits &sam) {
438 if (kSignBitMask & sam) {
439 // sam represents a negative number.
440 return ~sam + 1;
441 } else {
442 // sam represents a positive number.
443 return kSignBitMask | sam;
444 }
445 }
446
447 // Given two numbers in the sign-and-magnitude representation,
448 // returns the distance between them as an unsigned number.
DistanceBetweenSignAndMagnitudeNumbers(const Bits & sam1,const Bits & sam2)449 static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
450 const Bits &sam2) {
451 const Bits biased1 = SignAndMagnitudeToBiased(sam1);
452 const Bits biased2 = SignAndMagnitudeToBiased(sam2);
453 return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
454 }
455
456 union {
457 RawType value_; // The raw floating-point number.
458 Bits bits_; // The bits that represent the number.
459 };
460 };
461
462 // Typedefs the instances of the FloatingPoint template class that we
463 // care to use.
464 typedef FloatingPoint<float> Float;
465 typedef FloatingPoint<double> Double;
466
467 // In order to catch the mistake of putting tests that use different
468 // test fixture classes in the same test case, we need to assign
469 // unique IDs to fixture classes and compare them. The TypeId type is
470 // used to hold such IDs. The user should treat TypeId as an opaque
471 // type: the only operation allowed on TypeId values is to compare
472 // them for equality using the == operator.
473 typedef void* TypeId;
474
475 // GetTypeId<T>() returns the ID of type T. Different values will be
476 // returned for different types. Calling the function twice with the
477 // same type argument is guaranteed to return the same ID.
478 template <typename T>
GetTypeId()479 inline TypeId GetTypeId() {
480 static bool dummy = false;
481 // The compiler is required to create an instance of the static
482 // variable dummy for each T used to instantiate the template.
483 // Therefore, the address of dummy is guaranteed to be unique.
484 return &dummy;
485 }
486
487 #ifdef GTEST_OS_WINDOWS
488
489 // Predicate-formatters for implementing the HRESULT checking macros
490 // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
491 // We pass a long instead of HRESULT to avoid causing an
492 // include dependency for the HRESULT type.
493 AssertionResult IsHRESULTSuccess(const char* expr, long hr); // NOLINT
494 AssertionResult IsHRESULTFailure(const char* expr, long hr); // NOLINT
495
496 #endif // GTEST_OS_WINDOWS
497
498 } // namespace internal
499 } // namespace testing
500
501 #define GTEST_MESSAGE(message, result_type) \
502 ::testing::internal::AssertHelper(result_type, __FILE__, __LINE__, message) \
503 = ::testing::Message()
504
505 #define GTEST_FATAL_FAILURE(message) \
506 return GTEST_MESSAGE(message, ::testing::TPRT_FATAL_FAILURE)
507
508 #define GTEST_NONFATAL_FAILURE(message) \
509 GTEST_MESSAGE(message, ::testing::TPRT_NONFATAL_FAILURE)
510
511 #define GTEST_SUCCESS(message) \
512 GTEST_MESSAGE(message, ::testing::TPRT_SUCCESS)
513
514 #define GTEST_TEST_BOOLEAN(boolexpr, booltext, actual, expected, fail) \
515 GTEST_AMBIGUOUS_ELSE_BLOCKER \
516 if (boolexpr) \
517 ; \
518 else \
519 fail("Value of: " booltext "\n Actual: " #actual "\nExpected: " #expected)
520
521 // Helper macro for defining tests.
522 #define GTEST_TEST(test_case_name, test_name, parent_class)\
523 class test_case_name##_##test_name##_Test : public parent_class {\
524 public:\
525 test_case_name##_##test_name##_Test() {}\
526 static ::testing::Test* NewTest() {\
527 return new test_case_name##_##test_name##_Test;\
528 }\
529 private:\
530 virtual void TestBody();\
531 static ::testing::TestInfo* const test_info_;\
532 GTEST_DISALLOW_COPY_AND_ASSIGN(test_case_name##_##test_name##_Test);\
533 };\
534 \
535 ::testing::TestInfo* const test_case_name##_##test_name##_Test::test_info_ =\
536 ::testing::TestInfo::MakeAndRegisterInstance(\
537 #test_case_name, \
538 #test_name, \
539 ::testing::internal::GetTypeId< parent_class >(), \
540 parent_class::SetUpTestCase, \
541 parent_class::TearDownTestCase, \
542 test_case_name##_##test_name##_Test::NewTest);\
543 void test_case_name##_##test_name##_Test::TestBody()
544
545
546 #endif // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
547