• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2005, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 //
30 // Authors: wan@google.com (Zhanyong Wan), eefacm@gmail.com (Sean Mcafee)
31 //
32 // The Google C++ Testing Framework (Google Test)
33 //
34 // This header file declares functions and macros used internally by
35 // Google Test.  They are subject to change without notice.
36 
37 #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
38 #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
39 
40 #include <gtest/internal/gtest-port.h>
41 
42 #ifdef GTEST_OS_LINUX
43 #include <stdlib.h>
44 #include <sys/types.h>
45 #include <sys/wait.h>
46 #include <unistd.h>
47 #endif  // GTEST_OS_LINUX
48 
49 #include <iomanip>  // NOLINT
50 #include <limits>   // NOLINT
51 
52 #include <gtest/internal/gtest-string.h>
53 #include <gtest/internal/gtest-filepath.h>
54 
55 // Due to C++ preprocessor weirdness, we need double indirection to
56 // concatenate two tokens when one of them is __LINE__.  Writing
57 //
58 //   foo ## __LINE__
59 //
60 // will result in the token foo__LINE__, instead of foo followed by
61 // the current line number.  For more details, see
62 // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
63 #define GTEST_CONCAT_TOKEN(foo, bar) GTEST_CONCAT_TOKEN_IMPL(foo, bar)
64 #define GTEST_CONCAT_TOKEN_IMPL(foo, bar) foo ## bar
65 
66 // Google Test defines the testing::Message class to allow construction of
67 // test messages via the << operator.  The idea is that anything
68 // streamable to std::ostream can be streamed to a testing::Message.
69 // This allows a user to use his own types in Google Test assertions by
70 // overloading the << operator.
71 //
72 // util/gtl/stl_logging-inl.h overloads << for STL containers.  These
73 // overloads cannot be defined in the std namespace, as that will be
74 // undefined behavior.  Therefore, they are defined in the global
75 // namespace instead.
76 //
77 // C++'s symbol lookup rule (i.e. Koenig lookup) says that these
78 // overloads are visible in either the std namespace or the global
79 // namespace, but not other namespaces, including the testing
80 // namespace which Google Test's Message class is in.
81 //
82 // To allow STL containers (and other types that has a << operator
83 // defined in the global namespace) to be used in Google Test assertions,
84 // testing::Message must access the custom << operator from the global
85 // namespace.  Hence this helper function.
86 //
87 // Note: Jeffrey Yasskin suggested an alternative fix by "using
88 // ::operator<<;" in the definition of Message's operator<<.  That fix
89 // doesn't require a helper function, but unfortunately doesn't
90 // compile with MSVC.
91 template <typename T>
GTestStreamToHelper(std::ostream * os,const T & val)92 inline void GTestStreamToHelper(std::ostream* os, const T& val) {
93   *os << val;
94 }
95 
96 namespace testing {
97 
98 // Forward declaration of classes.
99 
100 class Message;                         // Represents a failure message.
101 class TestCase;                        // A collection of related tests.
102 class TestPartResult;                  // Result of a test part.
103 class TestInfo;                        // Information about a test.
104 class UnitTest;                        // A collection of test cases.
105 class UnitTestEventListenerInterface;  // Listens to Google Test events.
106 class AssertionResult;                 // Result of an assertion.
107 
108 namespace internal {
109 
110 struct TraceInfo;                      // Information about a trace point.
111 class ScopedTrace;                     // Implements scoped trace.
112 class TestInfoImpl;                    // Opaque implementation of TestInfo
113 class TestResult;                      // Result of a single Test.
114 class UnitTestImpl;                    // Opaque implementation of UnitTest
115 
116 template <typename E> class List;      // A generic list.
117 template <typename E> class ListNode;  // A node in a generic list.
118 
119 // A secret type that Google Test users don't know about.  It has no
120 // definition on purpose.  Therefore it's impossible to create a
121 // Secret object, which is what we want.
122 class Secret;
123 
124 // Two overloaded helpers for checking at compile time whether an
125 // expression is a null pointer literal (i.e. NULL or any 0-valued
126 // compile-time integral constant).  Their return values have
127 // different sizes, so we can use sizeof() to test which version is
128 // picked by the compiler.  These helpers have no implementations, as
129 // we only need their signatures.
130 //
131 // Given IsNullLiteralHelper(x), the compiler will pick the first
132 // version if x can be implicitly converted to Secret*, and pick the
133 // second version otherwise.  Since Secret is a secret and incomplete
134 // type, the only expression a user can write that has type Secret* is
135 // a null pointer literal.  Therefore, we know that x is a null
136 // pointer literal if and only if the first version is picked by the
137 // compiler.
138 char IsNullLiteralHelper(Secret* p);
139 char (&IsNullLiteralHelper(...))[2];  // NOLINT
140 
141 // A compile-time bool constant that is true if and only if x is a
142 // null pointer literal (i.e. NULL or any 0-valued compile-time
143 // integral constant).
144 #ifdef __SYMBIAN32__  // Symbian
145 // Passing non-POD classes through ellipsis (...) crashes the ARM compiler.
146 // The Nokia Symbian compiler tries to instantiate a copy constructor for
147 // objects passed through ellipsis (...), failing for uncopyable objects.
148 // Hence we define this to false (and lose support for NULL detection).
149 #define GTEST_IS_NULL_LITERAL(x) false
150 #else  // ! __SYMBIAN32__
151 #define GTEST_IS_NULL_LITERAL(x) \
152     (sizeof(::testing::internal::IsNullLiteralHelper(x)) == 1)
153 #endif  // __SYMBIAN32__
154 
155 // Appends the user-supplied message to the Google-Test-generated message.
156 String AppendUserMessage(const String& gtest_msg,
157                          const Message& user_msg);
158 
159 // A helper class for creating scoped traces in user programs.
160 class ScopedTrace {
161  public:
162   // The c'tor pushes the given source file location and message onto
163   // a trace stack maintained by Google Test.
164   ScopedTrace(const char* file, int line, const Message& message);
165 
166   // The d'tor pops the info pushed by the c'tor.
167   //
168   // Note that the d'tor is not virtual in order to be efficient.
169   // Don't inherit from ScopedTrace!
170   ~ScopedTrace();
171 
172  private:
173   GTEST_DISALLOW_COPY_AND_ASSIGN(ScopedTrace);
174 } GTEST_ATTRIBUTE_UNUSED;  // A ScopedTrace object does its job in its
175                            // c'tor and d'tor.  Therefore it doesn't
176                            // need to be used otherwise.
177 
178 // Converts a streamable value to a String.  A NULL pointer is
179 // converted to "(null)".  When the input value is a ::string,
180 // ::std::string, ::wstring, or ::std::wstring object, each NUL
181 // character in it is replaced with "\\0".
182 // Declared here but defined in gtest.h, so that it has access
183 // to the definition of the Message class, required by the ARM
184 // compiler.
185 template <typename T>
186 String StreamableToString(const T& streamable);
187 
188 // Formats a value to be used in a failure message.
189 
190 #ifdef __SYMBIAN32__
191 
192 // These are needed as the Nokia Symbian Compiler cannot decide between
193 // const T& and const T* in a function template. The Nokia compiler _can_
194 // decide between class template specializations for T and T*, so a
195 // tr1::type_traits-like is_pointer works, and we can overload on that.
196 
197 // This overload makes sure that all pointers (including
198 // those to char or wchar_t) are printed as raw pointers.
199 template <typename T>
FormatValueForFailureMessage(internal::true_type dummy,T * pointer)200 inline String FormatValueForFailureMessage(internal::true_type dummy,
201                                            T* pointer) {
202   return StreamableToString(static_cast<const void*>(pointer));
203 }
204 
205 template <typename T>
FormatValueForFailureMessage(internal::false_type dummy,const T & value)206 inline String FormatValueForFailureMessage(internal::false_type dummy,
207                                            const T& value) {
208   return StreamableToString(value);
209 }
210 
211 template <typename T>
FormatForFailureMessage(const T & value)212 inline String FormatForFailureMessage(const T& value) {
213   return FormatValueForFailureMessage(
214       typename internal::is_pointer<T>::type(), value);
215 }
216 
217 #else
218 
219 template <typename T>
FormatForFailureMessage(const T & value)220 inline String FormatForFailureMessage(const T& value) {
221   return StreamableToString(value);
222 }
223 
224 // This overload makes sure that all pointers (including
225 // those to char or wchar_t) are printed as raw pointers.
226 template <typename T>
FormatForFailureMessage(T * pointer)227 inline String FormatForFailureMessage(T* pointer) {
228   return StreamableToString(static_cast<const void*>(pointer));
229 }
230 
231 #endif  // __SYMBIAN32__
232 
233 // These overloaded versions handle narrow and wide characters.
234 String FormatForFailureMessage(char ch);
235 String FormatForFailureMessage(wchar_t wchar);
236 
237 // When this operand is a const char* or char*, and the other operand
238 // is a ::std::string or ::string, we print this operand as a C string
239 // rather than a pointer.  We do the same for wide strings.
240 
241 // This internal macro is used to avoid duplicated code.
242 #define GTEST_FORMAT_IMPL(operand2_type, operand1_printer)\
243 inline String FormatForComparisonFailureMessage(\
244     operand2_type::value_type* str, const operand2_type& /*operand2*/) {\
245   return operand1_printer(str);\
246 }\
247 inline String FormatForComparisonFailureMessage(\
248     const operand2_type::value_type* str, const operand2_type& /*operand2*/) {\
249   return operand1_printer(str);\
250 }
251 
252 #if GTEST_HAS_STD_STRING
253 GTEST_FORMAT_IMPL(::std::string, String::ShowCStringQuoted)
254 #endif  // GTEST_HAS_STD_STRING
255 #if GTEST_HAS_STD_WSTRING
256 GTEST_FORMAT_IMPL(::std::wstring, String::ShowWideCStringQuoted)
257 #endif  // GTEST_HAS_STD_WSTRING
258 
259 #if GTEST_HAS_GLOBAL_STRING
260 GTEST_FORMAT_IMPL(::string, String::ShowCStringQuoted)
261 #endif  // GTEST_HAS_GLOBAL_STRING
262 #if GTEST_HAS_GLOBAL_WSTRING
263 GTEST_FORMAT_IMPL(::wstring, String::ShowWideCStringQuoted)
264 #endif  // GTEST_HAS_GLOBAL_WSTRING
265 
266 #undef GTEST_FORMAT_IMPL
267 
268 // Constructs and returns the message for an equality assertion
269 // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
270 //
271 // The first four parameters are the expressions used in the assertion
272 // and their values, as strings.  For example, for ASSERT_EQ(foo, bar)
273 // where foo is 5 and bar is 6, we have:
274 //
275 //   expected_expression: "foo"
276 //   actual_expression:   "bar"
277 //   expected_value:      "5"
278 //   actual_value:        "6"
279 //
280 // The ignoring_case parameter is true iff the assertion is a
281 // *_STRCASEEQ*.  When it's true, the string " (ignoring case)" will
282 // be inserted into the message.
283 AssertionResult EqFailure(const char* expected_expression,
284                           const char* actual_expression,
285                           const String& expected_value,
286                           const String& actual_value,
287                           bool ignoring_case);
288 
289 
290 // This template class represents an IEEE floating-point number
291 // (either single-precision or double-precision, depending on the
292 // template parameters).
293 //
294 // The purpose of this class is to do more sophisticated number
295 // comparison.  (Due to round-off error, etc, it's very unlikely that
296 // two floating-points will be equal exactly.  Hence a naive
297 // comparison by the == operation often doesn't work.)
298 //
299 // Format of IEEE floating-point:
300 //
301 //   The most-significant bit being the leftmost, an IEEE
302 //   floating-point looks like
303 //
304 //     sign_bit exponent_bits fraction_bits
305 //
306 //   Here, sign_bit is a single bit that designates the sign of the
307 //   number.
308 //
309 //   For float, there are 8 exponent bits and 23 fraction bits.
310 //
311 //   For double, there are 11 exponent bits and 52 fraction bits.
312 //
313 //   More details can be found at
314 //   http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
315 //
316 // Template parameter:
317 //
318 //   RawType: the raw floating-point type (either float or double)
319 template <typename RawType>
320 class FloatingPoint {
321  public:
322   // Defines the unsigned integer type that has the same size as the
323   // floating point number.
324   typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
325 
326   // Constants.
327 
328   // # of bits in a number.
329   static const size_t kBitCount = 8*sizeof(RawType);
330 
331   // # of fraction bits in a number.
332   static const size_t kFractionBitCount =
333     std::numeric_limits<RawType>::digits - 1;
334 
335   // # of exponent bits in a number.
336   static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
337 
338   // The mask for the sign bit.
339   static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
340 
341   // The mask for the fraction bits.
342   static const Bits kFractionBitMask =
343     ~static_cast<Bits>(0) >> (kExponentBitCount + 1);
344 
345   // The mask for the exponent bits.
346   static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
347 
348   // How many ULP's (Units in the Last Place) we want to tolerate when
349   // comparing two numbers.  The larger the value, the more error we
350   // allow.  A 0 value means that two numbers must be exactly the same
351   // to be considered equal.
352   //
353   // The maximum error of a single floating-point operation is 0.5
354   // units in the last place.  On Intel CPU's, all floating-point
355   // calculations are done with 80-bit precision, while double has 64
356   // bits.  Therefore, 4 should be enough for ordinary use.
357   //
358   // See the following article for more details on ULP:
359   // http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm.
360   static const size_t kMaxUlps = 4;
361 
362   // Constructs a FloatingPoint from a raw floating-point number.
363   //
364   // On an Intel CPU, passing a non-normalized NAN (Not a Number)
365   // around may change its bits, although the new value is guaranteed
366   // to be also a NAN.  Therefore, don't expect this constructor to
367   // preserve the bits in x when x is a NAN.
FloatingPoint(const RawType & x)368   explicit FloatingPoint(const RawType& x) : value_(x) {}
369 
370   // Static methods
371 
372   // Reinterprets a bit pattern as a floating-point number.
373   //
374   // This function is needed to test the AlmostEquals() method.
ReinterpretBits(const Bits bits)375   static RawType ReinterpretBits(const Bits bits) {
376     FloatingPoint fp(0);
377     fp.bits_ = bits;
378     return fp.value_;
379   }
380 
381   // Returns the floating-point number that represent positive infinity.
Infinity()382   static RawType Infinity() {
383     return ReinterpretBits(kExponentBitMask);
384   }
385 
386   // Non-static methods
387 
388   // Returns the bits that represents this number.
bits()389   const Bits &bits() const { return bits_; }
390 
391   // Returns the exponent bits of this number.
exponent_bits()392   Bits exponent_bits() const { return kExponentBitMask & bits_; }
393 
394   // Returns the fraction bits of this number.
fraction_bits()395   Bits fraction_bits() const { return kFractionBitMask & bits_; }
396 
397   // Returns the sign bit of this number.
sign_bit()398   Bits sign_bit() const { return kSignBitMask & bits_; }
399 
400   // Returns true iff this is NAN (not a number).
is_nan()401   bool is_nan() const {
402     // It's a NAN if the exponent bits are all ones and the fraction
403     // bits are not entirely zeros.
404     return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
405   }
406 
407   // Returns true iff this number is at most kMaxUlps ULP's away from
408   // rhs.  In particular, this function:
409   //
410   //   - returns false if either number is (or both are) NAN.
411   //   - treats really large numbers as almost equal to infinity.
412   //   - thinks +0.0 and -0.0 are 0 DLP's apart.
AlmostEquals(const FloatingPoint & rhs)413   bool AlmostEquals(const FloatingPoint& rhs) const {
414     // The IEEE standard says that any comparison operation involving
415     // a NAN must return false.
416     if (is_nan() || rhs.is_nan()) return false;
417 
418     return DistanceBetweenSignAndMagnitudeNumbers(bits_, rhs.bits_) <= kMaxUlps;
419   }
420 
421  private:
422   // Converts an integer from the sign-and-magnitude representation to
423   // the biased representation.  More precisely, let N be 2 to the
424   // power of (kBitCount - 1), an integer x is represented by the
425   // unsigned number x + N.
426   //
427   // For instance,
428   //
429   //   -N + 1 (the most negative number representable using
430   //          sign-and-magnitude) is represented by 1;
431   //   0      is represented by N; and
432   //   N - 1  (the biggest number representable using
433   //          sign-and-magnitude) is represented by 2N - 1.
434   //
435   // Read http://en.wikipedia.org/wiki/Signed_number_representations
436   // for more details on signed number representations.
SignAndMagnitudeToBiased(const Bits & sam)437   static Bits SignAndMagnitudeToBiased(const Bits &sam) {
438     if (kSignBitMask & sam) {
439       // sam represents a negative number.
440       return ~sam + 1;
441     } else {
442       // sam represents a positive number.
443       return kSignBitMask | sam;
444     }
445   }
446 
447   // Given two numbers in the sign-and-magnitude representation,
448   // returns the distance between them as an unsigned number.
DistanceBetweenSignAndMagnitudeNumbers(const Bits & sam1,const Bits & sam2)449   static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
450                                                      const Bits &sam2) {
451     const Bits biased1 = SignAndMagnitudeToBiased(sam1);
452     const Bits biased2 = SignAndMagnitudeToBiased(sam2);
453     return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
454   }
455 
456   union {
457     RawType value_;  // The raw floating-point number.
458     Bits bits_;      // The bits that represent the number.
459   };
460 };
461 
462 // Typedefs the instances of the FloatingPoint template class that we
463 // care to use.
464 typedef FloatingPoint<float> Float;
465 typedef FloatingPoint<double> Double;
466 
467 // In order to catch the mistake of putting tests that use different
468 // test fixture classes in the same test case, we need to assign
469 // unique IDs to fixture classes and compare them.  The TypeId type is
470 // used to hold such IDs.  The user should treat TypeId as an opaque
471 // type: the only operation allowed on TypeId values is to compare
472 // them for equality using the == operator.
473 typedef void* TypeId;
474 
475 // GetTypeId<T>() returns the ID of type T.  Different values will be
476 // returned for different types.  Calling the function twice with the
477 // same type argument is guaranteed to return the same ID.
478 template <typename T>
GetTypeId()479 inline TypeId GetTypeId() {
480   static bool dummy = false;
481   // The compiler is required to create an instance of the static
482   // variable dummy for each T used to instantiate the template.
483   // Therefore, the address of dummy is guaranteed to be unique.
484   return &dummy;
485 }
486 
487 #ifdef GTEST_OS_WINDOWS
488 
489 // Predicate-formatters for implementing the HRESULT checking macros
490 // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
491 // We pass a long instead of HRESULT to avoid causing an
492 // include dependency for the HRESULT type.
493 AssertionResult IsHRESULTSuccess(const char* expr, long hr);  // NOLINT
494 AssertionResult IsHRESULTFailure(const char* expr, long hr);  // NOLINT
495 
496 #endif  // GTEST_OS_WINDOWS
497 
498 }  // namespace internal
499 }  // namespace testing
500 
501 #define GTEST_MESSAGE(message, result_type) \
502   ::testing::internal::AssertHelper(result_type, __FILE__, __LINE__, message) \
503     = ::testing::Message()
504 
505 #define GTEST_FATAL_FAILURE(message) \
506   return GTEST_MESSAGE(message, ::testing::TPRT_FATAL_FAILURE)
507 
508 #define GTEST_NONFATAL_FAILURE(message) \
509   GTEST_MESSAGE(message, ::testing::TPRT_NONFATAL_FAILURE)
510 
511 #define GTEST_SUCCESS(message) \
512   GTEST_MESSAGE(message, ::testing::TPRT_SUCCESS)
513 
514 #define GTEST_TEST_BOOLEAN(boolexpr, booltext, actual, expected, fail) \
515   GTEST_AMBIGUOUS_ELSE_BLOCKER \
516   if (boolexpr) \
517     ; \
518   else \
519     fail("Value of: " booltext "\n  Actual: " #actual "\nExpected: " #expected)
520 
521 // Helper macro for defining tests.
522 #define GTEST_TEST(test_case_name, test_name, parent_class)\
523 class test_case_name##_##test_name##_Test : public parent_class {\
524  public:\
525   test_case_name##_##test_name##_Test() {}\
526   static ::testing::Test* NewTest() {\
527     return new test_case_name##_##test_name##_Test;\
528   }\
529  private:\
530   virtual void TestBody();\
531   static ::testing::TestInfo* const test_info_;\
532   GTEST_DISALLOW_COPY_AND_ASSIGN(test_case_name##_##test_name##_Test);\
533 };\
534 \
535 ::testing::TestInfo* const test_case_name##_##test_name##_Test::test_info_ =\
536   ::testing::TestInfo::MakeAndRegisterInstance(\
537     #test_case_name, \
538     #test_name, \
539     ::testing::internal::GetTypeId< parent_class >(), \
540     parent_class::SetUpTestCase, \
541     parent_class::TearDownTestCase, \
542     test_case_name##_##test_name##_Test::NewTest);\
543 void test_case_name##_##test_name##_Test::TestBody()
544 
545 
546 #endif  // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
547