1 /*
2 * libjingle
3 * Copyright 2004--2005, Google Inc.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright notice,
9 * this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright notice,
11 * this list of conditions and the following disclaimer in the documentation
12 * and/or other materials provided with the distribution.
13 * 3. The name of the author may not be used to endorse or promote products
14 * derived from this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
19 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
20 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
21 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
22 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
23 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
24 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
25 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 #include "talk/p2p/base/p2ptransportchannel.h"
29
30 #include <set>
31 #include "talk/base/common.h"
32 #include "talk/base/logging.h"
33 #include "talk/p2p/base/common.h"
34
35 namespace {
36
37 // messages for queuing up work for ourselves
38 const uint32 MSG_SORT = 1;
39 const uint32 MSG_PING = 2;
40 const uint32 MSG_ALLOCATE = 3;
41
42 // When the socket is unwritable, we will use 10 Kbps (ignoring IP+UDP headers)
43 // for pinging. When the socket is writable, we will use only 1 Kbps because
44 // we don't want to degrade the quality on a modem. These numbers should work
45 // well on a 28.8K modem, which is the slowest connection on which the voice
46 // quality is reasonable at all.
47 static const uint32 PING_PACKET_SIZE = 60 * 8;
48 static const uint32 WRITABLE_DELAY = 1000 * PING_PACKET_SIZE / 1000; // 480ms
49 static const uint32 UNWRITABLE_DELAY = 1000 * PING_PACKET_SIZE / 10000; // 50ms
50
51 // If there is a current writable connection, then we will also try hard to
52 // make sure it is pinged at this rate.
53 static const uint32 MAX_CURRENT_WRITABLE_DELAY = 900; // 2*WRITABLE_DELAY - bit
54
55 // The minimum improvement in RTT that justifies a switch.
56 static const double kMinImprovement = 10;
57
58 // Amount of time that we wait when *losing* writability before we try doing
59 // another allocation.
60 static const int kAllocateDelay = 1 * 1000; // 1 second
61
62 // We will try creating a new allocator from scratch after a delay of this
63 // length without becoming writable (or timing out).
64 static const int kAllocatePeriod = 20 * 1000; // 20 seconds
65
GetOrigin(cricket::Port * port,cricket::Port * origin_port)66 cricket::Port::CandidateOrigin GetOrigin(cricket::Port* port,
67 cricket::Port* origin_port) {
68 if (!origin_port)
69 return cricket::Port::ORIGIN_MESSAGE;
70 else if (port == origin_port)
71 return cricket::Port::ORIGIN_THIS_PORT;
72 else
73 return cricket::Port::ORIGIN_OTHER_PORT;
74 }
75
76 // Compares two connections based only on static information about them.
CompareConnectionCandidates(cricket::Connection * a,cricket::Connection * b)77 int CompareConnectionCandidates(cricket::Connection* a,
78 cricket::Connection* b) {
79 // Combine local and remote preferences
80 ASSERT(a->local_candidate().preference() == a->port()->preference());
81 ASSERT(b->local_candidate().preference() == b->port()->preference());
82 double a_pref = a->local_candidate().preference()
83 * a->remote_candidate().preference();
84 double b_pref = b->local_candidate().preference()
85 * b->remote_candidate().preference();
86
87 // Now check combined preferences. Lower values get sorted last.
88 if (a_pref > b_pref)
89 return 1;
90 if (a_pref < b_pref)
91 return -1;
92
93 return 0;
94 }
95
96 // Compare two connections based on their writability and static preferences.
CompareConnections(cricket::Connection * a,cricket::Connection * b)97 int CompareConnections(cricket::Connection *a, cricket::Connection *b) {
98 // Sort based on write-state. Better states have lower values.
99 if (a->write_state() < b->write_state())
100 return 1;
101 if (a->write_state() > b->write_state())
102 return -1;
103
104 // Compare the candidate information.
105 return CompareConnectionCandidates(a, b);
106 }
107
108 // Wraps the comparison connection into a less than operator that puts higher
109 // priority writable connections first.
110 class ConnectionCompare {
111 public:
operator ()(const cricket::Connection * ca,const cricket::Connection * cb)112 bool operator()(const cricket::Connection *ca,
113 const cricket::Connection *cb) {
114 cricket::Connection* a = const_cast<cricket::Connection*>(ca);
115 cricket::Connection* b = const_cast<cricket::Connection*>(cb);
116
117 // Compare first on writability and static preferences.
118 int cmp = CompareConnections(a, b);
119 if (cmp > 0)
120 return true;
121 if (cmp < 0)
122 return false;
123
124 // Otherwise, sort based on latency estimate.
125 return a->rtt() < b->rtt();
126
127 // Should we bother checking for the last connection that last received
128 // data? It would help rendezvous on the connection that is also receiving
129 // packets.
130 //
131 // TODO: Yes we should definitely do this. The TCP protocol gains
132 // efficiency by being used bidirectionally, as opposed to two separate
133 // unidirectional streams. This test should probably occur before
134 // comparison of local prefs (assuming combined prefs are the same). We
135 // need to be careful though, not to bounce back and forth with both sides
136 // trying to rendevous with the other.
137 }
138 };
139
140 // Determines whether we should switch between two connections, based first on
141 // static preferences and then (if those are equal) on latency estimates.
ShouldSwitch(cricket::Connection * a_conn,cricket::Connection * b_conn)142 bool ShouldSwitch(cricket::Connection* a_conn, cricket::Connection* b_conn) {
143 if (a_conn == b_conn)
144 return false;
145
146 if (!a_conn || !b_conn) // don't think the latter should happen
147 return true;
148
149 int prefs_cmp = CompareConnections(a_conn, b_conn);
150 if (prefs_cmp < 0)
151 return true;
152 if (prefs_cmp > 0)
153 return false;
154
155 return b_conn->rtt() <= a_conn->rtt() + kMinImprovement;
156 }
157
158 } // unnamed namespace
159
160 namespace cricket {
161
P2PTransportChannel(const std::string & name,const std::string & content_type,P2PTransport * transport,PortAllocator * allocator)162 P2PTransportChannel::P2PTransportChannel(const std::string &name,
163 const std::string &content_type,
164 P2PTransport* transport,
165 PortAllocator *allocator) :
166 TransportChannelImpl(name, content_type),
167 transport_(transport),
168 allocator_(allocator),
169 worker_thread_(talk_base::Thread::Current()),
170 waiting_for_signaling_(false),
171 error_(0),
172 best_connection_(NULL),
173 pinging_started_(false),
174 sort_dirty_(false),
175 was_writable_(false),
176 was_timed_out_(true) {
177 }
178
~P2PTransportChannel()179 P2PTransportChannel::~P2PTransportChannel() {
180 ASSERT(worker_thread_ == talk_base::Thread::Current());
181
182 for (uint32 i = 0; i < allocator_sessions_.size(); ++i)
183 delete allocator_sessions_[i];
184 }
185
186 // Add the allocator session to our list so that we know which sessions
187 // are still active.
AddAllocatorSession(PortAllocatorSession * session)188 void P2PTransportChannel::AddAllocatorSession(PortAllocatorSession* session) {
189 session->set_generation(static_cast<uint32>(allocator_sessions_.size()));
190 allocator_sessions_.push_back(session);
191
192 // We now only want to apply new candidates that we receive to the ports
193 // created by this new session because these are replacing those of the
194 // previous sessions.
195 ports_.clear();
196
197 session->SignalPortReady.connect(this, &P2PTransportChannel::OnPortReady);
198 session->SignalCandidatesReady.connect(
199 this, &P2PTransportChannel::OnCandidatesReady);
200 session->GetInitialPorts();
201 if (pinging_started_)
202 session->StartGetAllPorts();
203 }
204
205 // Go into the state of processing candidates, and running in general
Connect()206 void P2PTransportChannel::Connect() {
207 ASSERT(worker_thread_ == talk_base::Thread::Current());
208
209 // Kick off an allocator session
210 Allocate();
211
212 // Start pinging as the ports come in.
213 thread()->Post(this, MSG_PING);
214 }
215
216 // Reset the socket, clear up any previous allocations and start over
Reset()217 void P2PTransportChannel::Reset() {
218 ASSERT(worker_thread_ == talk_base::Thread::Current());
219
220 // Get rid of all the old allocators. This should clean up everything.
221 for (uint32 i = 0; i < allocator_sessions_.size(); ++i)
222 delete allocator_sessions_[i];
223
224 allocator_sessions_.clear();
225 ports_.clear();
226 connections_.clear();
227 best_connection_ = NULL;
228
229 // Forget about all of the candidates we got before.
230 remote_candidates_.clear();
231
232 // Revert to the initial state.
233 set_readable(false);
234 set_writable(false);
235
236 // Reinitialize the rest of our state.
237 waiting_for_signaling_ = false;
238 pinging_started_ = false;
239 sort_dirty_ = false;
240 was_writable_ = false;
241 was_timed_out_ = true;
242
243 // If we allocated before, start a new one now.
244 if (transport_->connect_requested())
245 Allocate();
246
247 // Start pinging as the ports come in.
248 thread()->Clear(this);
249 thread()->Post(this, MSG_PING);
250 }
251
252 // A new port is available, attempt to make connections for it
OnPortReady(PortAllocatorSession * session,Port * port)253 void P2PTransportChannel::OnPortReady(PortAllocatorSession *session,
254 Port* port) {
255 ASSERT(worker_thread_ == talk_base::Thread::Current());
256
257 // Set in-effect options on the new port
258 for (OptionMap::const_iterator it = options_.begin();
259 it != options_.end();
260 ++it) {
261 int val = port->SetOption(it->first, it->second);
262 if (val < 0) {
263 LOG_J(LS_WARNING, port) << "SetOption(" << it->first
264 << ", " << it->second
265 << ") failed: " << port->GetError();
266 }
267 }
268
269 // Remember the ports and candidates, and signal that candidates are ready.
270 // The session will handle this, and send an initiate/accept/modify message
271 // if one is pending.
272
273 ports_.push_back(port);
274 port->SignalUnknownAddress.connect(
275 this, &P2PTransportChannel::OnUnknownAddress);
276 port->SignalDestroyed.connect(this, &P2PTransportChannel::OnPortDestroyed);
277
278 // Attempt to create a connection from this new port to all of the remote
279 // candidates that we were given so far.
280
281 std::vector<RemoteCandidate>::iterator iter;
282 for (iter = remote_candidates_.begin(); iter != remote_candidates_.end();
283 ++iter)
284 CreateConnection(port, *iter, iter->origin_port(), false);
285
286 SortConnections();
287 }
288
289 // A new candidate is available, let listeners know
OnCandidatesReady(PortAllocatorSession * session,const std::vector<Candidate> & candidates)290 void P2PTransportChannel::OnCandidatesReady(
291 PortAllocatorSession *session, const std::vector<Candidate>& candidates) {
292 for (size_t i = 0; i < candidates.size(); ++i) {
293 SignalCandidateReady(this, candidates[i]);
294 }
295 }
296
297 // Handle stun packets
OnUnknownAddress(Port * port,const talk_base::SocketAddress & address,StunMessage * stun_msg,const std::string & remote_username)298 void P2PTransportChannel::OnUnknownAddress(
299 Port *port, const talk_base::SocketAddress &address, StunMessage *stun_msg,
300 const std::string &remote_username) {
301 ASSERT(worker_thread_ == talk_base::Thread::Current());
302
303 // Port has received a valid stun packet from an address that no Connection
304 // is currently available for. See if the remote user name is in the remote
305 // candidate list. If it isn't return error to the stun request.
306
307 const Candidate *candidate = NULL;
308 std::vector<RemoteCandidate>::iterator it;
309 for (it = remote_candidates_.begin(); it != remote_candidates_.end(); ++it) {
310 if ((*it).username() == remote_username) {
311 candidate = &(*it);
312 break;
313 }
314 }
315 if (candidate == NULL) {
316 // Don't know about this username, the request is bogus
317 // This sometimes happens if a binding response comes in before the ACCEPT
318 // message. It is totally valid; the retry state machine will try again.
319
320 port->SendBindingErrorResponse(stun_msg, address,
321 STUN_ERROR_STALE_CREDENTIALS, STUN_ERROR_REASON_STALE_CREDENTIALS);
322 delete stun_msg;
323 return;
324 }
325
326 // Check for connectivity to this address. Create connections
327 // to this address across all local ports. First, add this as a new remote
328 // address
329
330 Candidate new_remote_candidate = *candidate;
331 new_remote_candidate.set_address(address);
332 // new_remote_candidate.set_protocol(port->protocol());
333
334 // This remote username exists. Now create connections using this candidate,
335 // and resort
336
337 if (CreateConnections(new_remote_candidate, port, true)) {
338 // Send the pinger a successful stun response.
339 port->SendBindingResponse(stun_msg, address);
340
341 // Update the list of connections since we just added another. We do this
342 // after sending the response since it could (in principle) delete the
343 // connection in question.
344 SortConnections();
345 } else {
346 // Hopefully this won't occur, because changing a destination address
347 // shouldn't cause a new connection to fail
348 ASSERT(false);
349 port->SendBindingErrorResponse(stun_msg, address, STUN_ERROR_SERVER_ERROR,
350 STUN_ERROR_REASON_SERVER_ERROR);
351 }
352
353 delete stun_msg;
354 }
355
OnCandidate(const Candidate & candidate)356 void P2PTransportChannel::OnCandidate(const Candidate& candidate) {
357 ASSERT(worker_thread_ == talk_base::Thread::Current());
358
359 // Create connections to this remote candidate.
360 CreateConnections(candidate, NULL, false);
361
362 // Resort the connections list, which may have new elements.
363 SortConnections();
364 }
365
366 // Creates connections from all of the ports that we care about to the given
367 // remote candidate. The return value is true if we created a connection from
368 // the origin port.
CreateConnections(const Candidate & remote_candidate,Port * origin_port,bool readable)369 bool P2PTransportChannel::CreateConnections(const Candidate &remote_candidate,
370 Port* origin_port,
371 bool readable) {
372 ASSERT(worker_thread_ == talk_base::Thread::Current());
373
374 // Add a new connection for this candidate to every port that allows such a
375 // connection (i.e., if they have compatible protocols) and that does not
376 // already have a connection to an equivalent candidate. We must be careful
377 // to make sure that the origin port is included, even if it was pruned,
378 // since that may be the only port that can create this connection.
379
380 bool created = false;
381
382 std::vector<Port *>::reverse_iterator it;
383 for (it = ports_.rbegin(); it != ports_.rend(); ++it) {
384 if (CreateConnection(*it, remote_candidate, origin_port, readable)) {
385 if (*it == origin_port)
386 created = true;
387 }
388 }
389
390 if ((origin_port != NULL) &&
391 std::find(ports_.begin(), ports_.end(), origin_port) == ports_.end()) {
392 if (CreateConnection(origin_port, remote_candidate, origin_port, readable))
393 created = true;
394 }
395
396 // Remember this remote candidate so that we can add it to future ports.
397 RememberRemoteCandidate(remote_candidate, origin_port);
398
399 return created;
400 }
401
402 // Setup a connection object for the local and remote candidate combination.
403 // And then listen to connection object for changes.
CreateConnection(Port * port,const Candidate & remote_candidate,Port * origin_port,bool readable)404 bool P2PTransportChannel::CreateConnection(Port* port,
405 const Candidate& remote_candidate,
406 Port* origin_port,
407 bool readable) {
408 // Look for an existing connection with this remote address. If one is not
409 // found, then we can create a new connection for this address.
410 Connection* connection = port->GetConnection(remote_candidate.address());
411 if (connection != NULL) {
412 // It is not legal to try to change any of the parameters of an existing
413 // connection; however, the other side can send a duplicate candidate.
414 if (!remote_candidate.IsEquivalent(connection->remote_candidate())) {
415 LOG(INFO) << "Attempt to change a remote candidate";
416 return false;
417 }
418 } else {
419 Port::CandidateOrigin origin = GetOrigin(port, origin_port);
420 connection = port->CreateConnection(remote_candidate, origin);
421 if (!connection)
422 return false;
423
424 connections_.push_back(connection);
425 connection->SignalReadPacket.connect(
426 this, &P2PTransportChannel::OnReadPacket);
427 connection->SignalStateChange.connect(
428 this, &P2PTransportChannel::OnConnectionStateChange);
429 connection->SignalDestroyed.connect(
430 this, &P2PTransportChannel::OnConnectionDestroyed);
431
432 LOG_J(LS_INFO, this) << "Created connection with origin=" << origin << ", ("
433 << connections_.size() << " total)";
434 }
435
436 // If we are readable, it is because we are creating this in response to a
437 // ping from the other side. This will cause the state to become readable.
438 if (readable)
439 connection->ReceivedPing();
440
441 return true;
442 }
443
444 // Maintain our remote candidate list, adding this new remote one.
RememberRemoteCandidate(const Candidate & remote_candidate,Port * origin_port)445 void P2PTransportChannel::RememberRemoteCandidate(
446 const Candidate& remote_candidate, Port* origin_port) {
447 // Remove any candidates whose generation is older than this one. The
448 // presence of a new generation indicates that the old ones are not useful.
449 uint32 i = 0;
450 while (i < remote_candidates_.size()) {
451 if (remote_candidates_[i].generation() < remote_candidate.generation()) {
452 LOG(INFO) << "Pruning candidate from old generation: "
453 << remote_candidates_[i].address().ToString();
454 remote_candidates_.erase(remote_candidates_.begin() + i);
455 } else {
456 i += 1;
457 }
458 }
459
460 // Make sure this candidate is not a duplicate.
461 for (uint32 i = 0; i < remote_candidates_.size(); ++i) {
462 if (remote_candidates_[i].IsEquivalent(remote_candidate)) {
463 LOG(INFO) << "Duplicate candidate: "
464 << remote_candidate.address().ToString();
465 return;
466 }
467 }
468
469 // Try this candidate for all future ports.
470 remote_candidates_.push_back(RemoteCandidate(remote_candidate, origin_port));
471
472 // We have some candidates from the other side, we are now serious about
473 // this connection. Let's do the StartGetAllPorts thing.
474 if (!pinging_started_) {
475 pinging_started_ = true;
476 for (size_t i = 0; i < allocator_sessions_.size(); ++i) {
477 if (!allocator_sessions_[i]->IsGettingAllPorts())
478 allocator_sessions_[i]->StartGetAllPorts();
479 }
480 }
481 }
482
483 // Send data to the other side, using our best connection
SendPacket(const char * data,size_t len)484 int P2PTransportChannel::SendPacket(const char *data, size_t len) {
485 // This can get called on any thread that is convenient to write from!
486 if (best_connection_ == NULL) {
487 error_ = EWOULDBLOCK;
488 return SOCKET_ERROR;
489 }
490 int sent = best_connection_->Send(data, len);
491 if (sent <= 0) {
492 ASSERT(sent < 0);
493 error_ = best_connection_->GetError();
494 }
495 return sent;
496 }
497
498 // Begin allocate (or immediately re-allocate, if MSG_ALLOCATE pending)
Allocate()499 void P2PTransportChannel::Allocate() {
500 CancelPendingAllocate();
501 // Time for a new allocator, lets make sure we have a signalling channel
502 // to communicate candidates through first.
503 waiting_for_signaling_ = true;
504 SignalRequestSignaling();
505 }
506
507 // Cancels the pending allocate, if any.
CancelPendingAllocate()508 void P2PTransportChannel::CancelPendingAllocate() {
509 thread()->Clear(this, MSG_ALLOCATE);
510 }
511
512 // Monitor connection states
UpdateConnectionStates()513 void P2PTransportChannel::UpdateConnectionStates() {
514 uint32 now = talk_base::Time();
515
516 // We need to copy the list of connections since some may delete themselves
517 // when we call UpdateState.
518 for (uint32 i = 0; i < connections_.size(); ++i)
519 connections_[i]->UpdateState(now);
520 }
521
522 // Prepare for best candidate sorting
RequestSort()523 void P2PTransportChannel::RequestSort() {
524 if (!sort_dirty_) {
525 worker_thread_->Post(this, MSG_SORT);
526 sort_dirty_ = true;
527 }
528 }
529
530 // Sort the available connections to find the best one. We also monitor
531 // the number of available connections and the current state so that we
532 // can possibly kick off more allocators (for more connections).
SortConnections()533 void P2PTransportChannel::SortConnections() {
534 ASSERT(worker_thread_ == talk_base::Thread::Current());
535
536 // Make sure the connection states are up-to-date since this affects how they
537 // will be sorted.
538 UpdateConnectionStates();
539
540 // Any changes after this point will require a re-sort.
541 sort_dirty_ = false;
542
543 // Get a list of the networks that we are using.
544 std::set<talk_base::Network*> networks;
545 for (uint32 i = 0; i < connections_.size(); ++i)
546 networks.insert(connections_[i]->port()->network());
547
548 // Find the best alternative connection by sorting. It is important to note
549 // that amongst equal preference, writable connections, this will choose the
550 // one whose estimated latency is lowest. So it is the only one that we
551 // need to consider switching to.
552
553 ConnectionCompare cmp;
554 std::stable_sort(connections_.begin(), connections_.end(), cmp);
555 Connection* top_connection = NULL;
556 if (connections_.size() > 0)
557 top_connection = connections_[0];
558
559 // If necessary, switch to the new choice.
560 if (ShouldSwitch(best_connection_, top_connection))
561 SwitchBestConnectionTo(top_connection);
562
563 // We can prune any connection for which there is a writable connection on
564 // the same network with better or equal prefences. We leave those with
565 // better preference just in case they become writable later (at which point,
566 // we would prune out the current best connection). We leave connections on
567 // other networks because they may not be using the same resources and they
568 // may represent very distinct paths over which we can switch.
569 std::set<talk_base::Network*>::iterator network;
570 for (network = networks.begin(); network != networks.end(); ++network) {
571 Connection* primier = GetBestConnectionOnNetwork(*network);
572 if (!primier || (primier->write_state() != Connection::STATE_WRITABLE))
573 continue;
574
575 for (uint32 i = 0; i < connections_.size(); ++i) {
576 if ((connections_[i] != primier) &&
577 (connections_[i]->port()->network() == *network) &&
578 (CompareConnectionCandidates(primier, connections_[i]) >= 0)) {
579 connections_[i]->Prune();
580 }
581 }
582 }
583
584 // Count the number of connections in the various states.
585
586 int writable = 0;
587 int write_connect = 0;
588 int write_timeout = 0;
589
590 for (uint32 i = 0; i < connections_.size(); ++i) {
591 switch (connections_[i]->write_state()) {
592 case Connection::STATE_WRITABLE:
593 ++writable;
594 break;
595 case Connection::STATE_WRITE_CONNECT:
596 ++write_connect;
597 break;
598 case Connection::STATE_WRITE_TIMEOUT:
599 ++write_timeout;
600 break;
601 default:
602 ASSERT(false);
603 }
604 }
605
606 if (writable > 0) {
607 HandleWritable();
608 } else if (write_connect > 0) {
609 HandleNotWritable();
610 } else {
611 HandleAllTimedOut();
612 }
613
614 // Update the state of this channel. This method is called whenever the
615 // state of any connection changes, so this is a good place to do this.
616 UpdateChannelState();
617
618 // Notify of connection state change
619 SignalConnectionMonitor(this);
620 }
621
622 // Track the best connection, and let listeners know
SwitchBestConnectionTo(Connection * conn)623 void P2PTransportChannel::SwitchBestConnectionTo(Connection* conn) {
624 // Note: if conn is NULL, the previous best_connection_ has been destroyed,
625 // so don't use it.
626 // use it.
627 Connection* old_best_connection = best_connection_;
628 best_connection_ = conn;
629 if (best_connection_) {
630 if (old_best_connection) {
631 LOG_J(LS_INFO, this) << "Previous best connection: "
632 << old_best_connection->ToString();
633 }
634 LOG_J(LS_INFO, this) << "New best connection: "
635 << best_connection_->ToString();
636 SignalRouteChange(this, best_connection_->remote_candidate().address());
637 } else {
638 LOG_J(LS_INFO, this) << "No best connection";
639 }
640 }
641
UpdateChannelState()642 void P2PTransportChannel::UpdateChannelState() {
643 // The Handle* functions already set the writable state. We'll just double-
644 // check it here.
645 bool writable = ((best_connection_ != NULL) &&
646 (best_connection_->write_state() ==
647 Connection::STATE_WRITABLE));
648 ASSERT(writable == this->writable());
649 if (writable != this->writable())
650 LOG(LS_ERROR) << "UpdateChannelState: writable state mismatch";
651
652 bool readable = false;
653 for (uint32 i = 0; i < connections_.size(); ++i) {
654 if (connections_[i]->read_state() == Connection::STATE_READABLE)
655 readable = true;
656 }
657 set_readable(readable);
658 }
659
660 // We checked the status of our connections and we had at least one that
661 // was writable, go into the writable state.
HandleWritable()662 void P2PTransportChannel::HandleWritable() {
663 //
664 // One or more connections writable!
665 //
666 if (!writable()) {
667 for (uint32 i = 0; i < allocator_sessions_.size(); ++i) {
668 if (allocator_sessions_[i]->IsGettingAllPorts()) {
669 allocator_sessions_[i]->StopGetAllPorts();
670 }
671 }
672
673 // Stop further allocations.
674 CancelPendingAllocate();
675 }
676
677 // We're writable, obviously we aren't timed out
678 was_writable_ = true;
679 was_timed_out_ = false;
680 set_writable(true);
681 }
682
683 // We checked the status of our connections and we didn't have any that
684 // were writable, go into the connecting state (kick off a new allocator
685 // session).
HandleNotWritable()686 void P2PTransportChannel::HandleNotWritable() {
687 //
688 // No connections are writable but not timed out!
689 //
690 if (was_writable_) {
691 // If we were writable, let's kick off an allocator session immediately
692 was_writable_ = false;
693 Allocate();
694 }
695
696 // We were connecting, obviously not ALL timed out.
697 was_timed_out_ = false;
698 set_writable(false);
699 }
700
701 // We checked the status of our connections and not only weren't they writable
702 // but they were also timed out, we really need a new allocator.
HandleAllTimedOut()703 void P2PTransportChannel::HandleAllTimedOut() {
704 //
705 // No connections... all are timed out!
706 //
707 if (!was_timed_out_) {
708 // We weren't timed out before, so kick off an allocator now (we'll still
709 // be in the fully timed out state until the allocator actually gives back
710 // new ports)
711 Allocate();
712 }
713
714 // NOTE: we start was_timed_out_ in the true state so that we don't get
715 // another allocator created WHILE we are in the process of building up
716 // our first allocator.
717 was_timed_out_ = true;
718 was_writable_ = false;
719 set_writable(false);
720 }
721
722 // If we have a best connection, return it, otherwise return top one in the
723 // list (later we will mark it best).
GetBestConnectionOnNetwork(talk_base::Network * network)724 Connection* P2PTransportChannel::GetBestConnectionOnNetwork(
725 talk_base::Network* network) {
726 // If the best connection is on this network, then it wins.
727 if (best_connection_ && (best_connection_->port()->network() == network))
728 return best_connection_;
729
730 // Otherwise, we return the top-most in sorted order.
731 for (uint32 i = 0; i < connections_.size(); ++i) {
732 if (connections_[i]->port()->network() == network)
733 return connections_[i];
734 }
735
736 return NULL;
737 }
738
739 // Handle any queued up requests
OnMessage(talk_base::Message * pmsg)740 void P2PTransportChannel::OnMessage(talk_base::Message *pmsg) {
741 if (pmsg->message_id == MSG_SORT)
742 OnSort();
743 else if (pmsg->message_id == MSG_PING)
744 OnPing();
745 else if (pmsg->message_id == MSG_ALLOCATE)
746 Allocate();
747 else
748 ASSERT(false);
749 }
750
751 // Handle queued up sort request
OnSort()752 void P2PTransportChannel::OnSort() {
753 // Resort the connections based on the new statistics.
754 SortConnections();
755 }
756
757 // Handle queued up ping request
OnPing()758 void P2PTransportChannel::OnPing() {
759 // Make sure the states of the connections are up-to-date (since this affects
760 // which ones are pingable).
761 UpdateConnectionStates();
762
763 // Find the oldest pingable connection and have it do a ping.
764 Connection* conn = FindNextPingableConnection();
765 if (conn)
766 conn->Ping(talk_base::Time());
767
768 // Post ourselves a message to perform the next ping.
769 uint32 delay = writable() ? WRITABLE_DELAY : UNWRITABLE_DELAY;
770 thread()->PostDelayed(delay, this, MSG_PING);
771 }
772
773 // Is the connection in a state for us to even consider pinging the other side?
IsPingable(Connection * conn)774 bool P2PTransportChannel::IsPingable(Connection* conn) {
775 // An unconnected connection cannot be written to at all, so pinging is out
776 // of the question.
777 if (!conn->connected())
778 return false;
779
780 if (writable()) {
781 // If we are writable, then we only want to ping connections that could be
782 // better than this one, i.e., the ones that were not pruned.
783 return (conn->write_state() != Connection::STATE_WRITE_TIMEOUT);
784 } else {
785 // If we are not writable, then we need to try everything that might work.
786 // This includes both connections that do not have write timeout as well as
787 // ones that do not have read timeout. A connection could be readable but
788 // be in write-timeout if we pruned it before. Since the other side is
789 // still pinging it, it very well might still work.
790 return (conn->write_state() != Connection::STATE_WRITE_TIMEOUT) ||
791 (conn->read_state() != Connection::STATE_READ_TIMEOUT);
792 }
793 }
794
795 // Returns the next pingable connection to ping. This will be the oldest
796 // pingable connection unless we have a writable connection that is past the
797 // maximum acceptable ping delay.
FindNextPingableConnection()798 Connection* P2PTransportChannel::FindNextPingableConnection() {
799 uint32 now = talk_base::Time();
800 if (best_connection_ &&
801 (best_connection_->write_state() == Connection::STATE_WRITABLE) &&
802 (best_connection_->last_ping_sent()
803 + MAX_CURRENT_WRITABLE_DELAY <= now)) {
804 return best_connection_;
805 }
806
807 Connection* oldest_conn = NULL;
808 uint32 oldest_time = 0xFFFFFFFF;
809 for (uint32 i = 0; i < connections_.size(); ++i) {
810 if (IsPingable(connections_[i])) {
811 if (connections_[i]->last_ping_sent() < oldest_time) {
812 oldest_time = connections_[i]->last_ping_sent();
813 oldest_conn = connections_[i];
814 }
815 }
816 }
817 return oldest_conn;
818 }
819
820 // return the number of "pingable" connections
NumPingableConnections()821 uint32 P2PTransportChannel::NumPingableConnections() {
822 uint32 count = 0;
823 for (uint32 i = 0; i < connections_.size(); ++i) {
824 if (IsPingable(connections_[i]))
825 count += 1;
826 }
827 return count;
828 }
829
830 // When a connection's state changes, we need to figure out who to use as
831 // the best connection again. It could have become usable, or become unusable.
OnConnectionStateChange(Connection * connection)832 void P2PTransportChannel::OnConnectionStateChange(Connection *connection) {
833 ASSERT(worker_thread_ == talk_base::Thread::Current());
834
835 // We have to unroll the stack before doing this because we may be changing
836 // the state of connections while sorting.
837 RequestSort();
838 }
839
840 // When a connection is removed, edit it out, and then update our best
841 // connection.
OnConnectionDestroyed(Connection * connection)842 void P2PTransportChannel::OnConnectionDestroyed(Connection *connection) {
843 ASSERT(worker_thread_ == talk_base::Thread::Current());
844
845 // Note: the previous best_connection_ may be destroyed by now, so don't
846 // use it.
847
848 // Remove this connection from the list.
849 std::vector<Connection*>::iterator iter =
850 std::find(connections_.begin(), connections_.end(), connection);
851 ASSERT(iter != connections_.end());
852 connections_.erase(iter);
853
854 LOG_J(LS_INFO, this) << "Removed connection ("
855 << static_cast<int>(connections_.size()) << " remaining)";
856
857 // If this is currently the best connection, then we need to pick a new one.
858 // The call to SortConnections will pick a new one. It looks at the current
859 // best connection in order to avoid switching between fairly similar ones.
860 // Since this connection is no longer an option, we can just set best to NULL
861 // and re-choose a best assuming that there was no best connection.
862 if (best_connection_ == connection) {
863 SwitchBestConnectionTo(NULL);
864 RequestSort();
865 }
866 }
867
868 // When a port is destroyed remove it from our list of ports to use for
869 // connection attempts.
OnPortDestroyed(Port * port)870 void P2PTransportChannel::OnPortDestroyed(Port* port) {
871 ASSERT(worker_thread_ == talk_base::Thread::Current());
872
873 // Remove this port from the list (if we didn't drop it already).
874 std::vector<Port*>::iterator iter =
875 std::find(ports_.begin(), ports_.end(), port);
876 if (iter != ports_.end())
877 ports_.erase(iter);
878
879 LOG(INFO) << "Removed port from p2p socket: "
880 << static_cast<int>(ports_.size()) << " remaining";
881 }
882
883 // We data is available, let listeners know
OnReadPacket(Connection * connection,const char * data,size_t len)884 void P2PTransportChannel::OnReadPacket(Connection *connection,
885 const char *data, size_t len) {
886 ASSERT(worker_thread_ == talk_base::Thread::Current());
887
888 // Let the client know of an incoming packet
889
890 SignalReadPacket(this, data, len);
891 }
892
893 // Set options on ourselves is simply setting options on all of our available
894 // port objects.
SetOption(talk_base::Socket::Option opt,int value)895 int P2PTransportChannel::SetOption(talk_base::Socket::Option opt, int value) {
896 OptionMap::iterator it = options_.find(opt);
897 if (it == options_.end()) {
898 options_.insert(std::make_pair(opt, value));
899 } else if (it->second == value) {
900 return 0;
901 } else {
902 it->second = value;
903 }
904
905 for (uint32 i = 0; i < ports_.size(); ++i) {
906 int val = ports_[i]->SetOption(opt, value);
907 if (val < 0) {
908 // Because this also occurs deferred, probably no point in reporting an
909 // error
910 LOG(WARNING) << "SetOption(" << opt << ", " << value << ") failed: "
911 << ports_[i]->GetError();
912 }
913 }
914 return 0;
915 }
916
917 // When the signalling channel is ready, we can really kick off the allocator
OnSignalingReady()918 void P2PTransportChannel::OnSignalingReady() {
919 if (waiting_for_signaling_) {
920 waiting_for_signaling_ = false;
921 AddAllocatorSession(allocator_->CreateSession(name(), content_type()));
922 thread()->PostDelayed(kAllocatePeriod, this, MSG_ALLOCATE);
923 }
924 }
925
926 } // namespace cricket
927