• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- Type.cpp - Type representation and manipulation ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements type-related functionality.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/CharUnits.h"
16 #include "clang/AST/Type.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/PrettyPrinter.h"
22 #include "clang/AST/TypeVisitor.h"
23 #include "clang/Basic/Specifiers.h"
24 #include "llvm/ADT/APSInt.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include <algorithm>
28 using namespace clang;
29 
isStrictSupersetOf(Qualifiers Other) const30 bool Qualifiers::isStrictSupersetOf(Qualifiers Other) const {
31   return (*this != Other) &&
32     // CVR qualifiers superset
33     (((Mask & CVRMask) | (Other.Mask & CVRMask)) == (Mask & CVRMask)) &&
34     // ObjC GC qualifiers superset
35     ((getObjCGCAttr() == Other.getObjCGCAttr()) ||
36      (hasObjCGCAttr() && !Other.hasObjCGCAttr())) &&
37     // Address space superset.
38     ((getAddressSpace() == Other.getAddressSpace()) ||
39      (hasAddressSpace()&& !Other.hasAddressSpace())) &&
40     // Lifetime qualifier superset.
41     ((getObjCLifetime() == Other.getObjCLifetime()) ||
42      (hasObjCLifetime() && !Other.hasObjCLifetime()));
43 }
44 
getBaseTypeIdentifier() const45 const IdentifierInfo* QualType::getBaseTypeIdentifier() const {
46   const Type* ty = getTypePtr();
47   NamedDecl *ND = NULL;
48   if (ty->isPointerType() || ty->isReferenceType())
49     return ty->getPointeeType().getBaseTypeIdentifier();
50   else if (ty->isRecordType())
51     ND = ty->getAs<RecordType>()->getDecl();
52   else if (ty->isEnumeralType())
53     ND = ty->getAs<EnumType>()->getDecl();
54   else if (ty->getTypeClass() == Type::Typedef)
55     ND = ty->getAs<TypedefType>()->getDecl();
56   else if (ty->isArrayType())
57     return ty->castAsArrayTypeUnsafe()->
58         getElementType().getBaseTypeIdentifier();
59 
60   if (ND)
61     return ND->getIdentifier();
62   return NULL;
63 }
64 
isConstant(QualType T,ASTContext & Ctx)65 bool QualType::isConstant(QualType T, ASTContext &Ctx) {
66   if (T.isConstQualified())
67     return true;
68 
69   if (const ArrayType *AT = Ctx.getAsArrayType(T))
70     return AT->getElementType().isConstant(Ctx);
71 
72   return false;
73 }
74 
getNumAddressingBits(ASTContext & Context,QualType ElementType,const llvm::APInt & NumElements)75 unsigned ConstantArrayType::getNumAddressingBits(ASTContext &Context,
76                                                  QualType ElementType,
77                                                const llvm::APInt &NumElements) {
78   llvm::APSInt SizeExtended(NumElements, true);
79   unsigned SizeTypeBits = Context.getTypeSize(Context.getSizeType());
80   SizeExtended = SizeExtended.extend(std::max(SizeTypeBits,
81                                               SizeExtended.getBitWidth()) * 2);
82 
83   uint64_t ElementSize
84     = Context.getTypeSizeInChars(ElementType).getQuantity();
85   llvm::APSInt TotalSize(llvm::APInt(SizeExtended.getBitWidth(), ElementSize));
86   TotalSize *= SizeExtended;
87 
88   return TotalSize.getActiveBits();
89 }
90 
getMaxSizeBits(ASTContext & Context)91 unsigned ConstantArrayType::getMaxSizeBits(ASTContext &Context) {
92   unsigned Bits = Context.getTypeSize(Context.getSizeType());
93 
94   // GCC appears to only allow 63 bits worth of address space when compiling
95   // for 64-bit, so we do the same.
96   if (Bits == 64)
97     --Bits;
98 
99   return Bits;
100 }
101 
DependentSizedArrayType(const ASTContext & Context,QualType et,QualType can,Expr * e,ArraySizeModifier sm,unsigned tq,SourceRange brackets)102 DependentSizedArrayType::DependentSizedArrayType(const ASTContext &Context,
103                                                  QualType et, QualType can,
104                                                  Expr *e, ArraySizeModifier sm,
105                                                  unsigned tq,
106                                                  SourceRange brackets)
107     : ArrayType(DependentSizedArray, et, can, sm, tq,
108                 (et->containsUnexpandedParameterPack() ||
109                  (e && e->containsUnexpandedParameterPack()))),
110       Context(Context), SizeExpr((Stmt*) e), Brackets(brackets)
111 {
112 }
113 
Profile(llvm::FoldingSetNodeID & ID,const ASTContext & Context,QualType ET,ArraySizeModifier SizeMod,unsigned TypeQuals,Expr * E)114 void DependentSizedArrayType::Profile(llvm::FoldingSetNodeID &ID,
115                                       const ASTContext &Context,
116                                       QualType ET,
117                                       ArraySizeModifier SizeMod,
118                                       unsigned TypeQuals,
119                                       Expr *E) {
120   ID.AddPointer(ET.getAsOpaquePtr());
121   ID.AddInteger(SizeMod);
122   ID.AddInteger(TypeQuals);
123   E->Profile(ID, Context, true);
124 }
125 
DependentSizedExtVectorType(const ASTContext & Context,QualType ElementType,QualType can,Expr * SizeExpr,SourceLocation loc)126 DependentSizedExtVectorType::DependentSizedExtVectorType(const
127                                                          ASTContext &Context,
128                                                          QualType ElementType,
129                                                          QualType can,
130                                                          Expr *SizeExpr,
131                                                          SourceLocation loc)
132     : Type(DependentSizedExtVector, can, /*Dependent=*/true,
133            /*InstantiationDependent=*/true,
134            ElementType->isVariablyModifiedType(),
135            (ElementType->containsUnexpandedParameterPack() ||
136             (SizeExpr && SizeExpr->containsUnexpandedParameterPack()))),
137       Context(Context), SizeExpr(SizeExpr), ElementType(ElementType),
138       loc(loc)
139 {
140 }
141 
142 void
Profile(llvm::FoldingSetNodeID & ID,const ASTContext & Context,QualType ElementType,Expr * SizeExpr)143 DependentSizedExtVectorType::Profile(llvm::FoldingSetNodeID &ID,
144                                      const ASTContext &Context,
145                                      QualType ElementType, Expr *SizeExpr) {
146   ID.AddPointer(ElementType.getAsOpaquePtr());
147   SizeExpr->Profile(ID, Context, true);
148 }
149 
VectorType(QualType vecType,unsigned nElements,QualType canonType,VectorKind vecKind)150 VectorType::VectorType(QualType vecType, unsigned nElements, QualType canonType,
151                        VectorKind vecKind)
152   : Type(Vector, canonType, vecType->isDependentType(),
153          vecType->isInstantiationDependentType(),
154          vecType->isVariablyModifiedType(),
155          vecType->containsUnexpandedParameterPack()),
156     ElementType(vecType)
157 {
158   VectorTypeBits.VecKind = vecKind;
159   VectorTypeBits.NumElements = nElements;
160 }
161 
VectorType(TypeClass tc,QualType vecType,unsigned nElements,QualType canonType,VectorKind vecKind)162 VectorType::VectorType(TypeClass tc, QualType vecType, unsigned nElements,
163                        QualType canonType, VectorKind vecKind)
164   : Type(tc, canonType, vecType->isDependentType(),
165          vecType->isInstantiationDependentType(),
166          vecType->isVariablyModifiedType(),
167          vecType->containsUnexpandedParameterPack()),
168     ElementType(vecType)
169 {
170   VectorTypeBits.VecKind = vecKind;
171   VectorTypeBits.NumElements = nElements;
172 }
173 
174 /// getArrayElementTypeNoTypeQual - If this is an array type, return the
175 /// element type of the array, potentially with type qualifiers missing.
176 /// This method should never be used when type qualifiers are meaningful.
getArrayElementTypeNoTypeQual() const177 const Type *Type::getArrayElementTypeNoTypeQual() const {
178   // If this is directly an array type, return it.
179   if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
180     return ATy->getElementType().getTypePtr();
181 
182   // If the canonical form of this type isn't the right kind, reject it.
183   if (!isa<ArrayType>(CanonicalType))
184     return 0;
185 
186   // If this is a typedef for an array type, strip the typedef off without
187   // losing all typedef information.
188   return cast<ArrayType>(getUnqualifiedDesugaredType())
189     ->getElementType().getTypePtr();
190 }
191 
192 /// getDesugaredType - Return the specified type with any "sugar" removed from
193 /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
194 /// the type is already concrete, it returns it unmodified.  This is similar
195 /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
196 /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
197 /// concrete.
getDesugaredType(QualType T,const ASTContext & Context)198 QualType QualType::getDesugaredType(QualType T, const ASTContext &Context) {
199   SplitQualType split = getSplitDesugaredType(T);
200   return Context.getQualifiedType(split.Ty, split.Quals);
201 }
202 
getSingleStepDesugaredTypeImpl(QualType type,const ASTContext & Context)203 QualType QualType::getSingleStepDesugaredTypeImpl(QualType type,
204                                                   const ASTContext &Context) {
205   SplitQualType split = type.split();
206   QualType desugar = split.Ty->getLocallyUnqualifiedSingleStepDesugaredType();
207   return Context.getQualifiedType(desugar, split.Quals);
208 }
209 
getLocallyUnqualifiedSingleStepDesugaredType() const210 QualType Type::getLocallyUnqualifiedSingleStepDesugaredType() const {
211   switch (getTypeClass()) {
212 #define ABSTRACT_TYPE(Class, Parent)
213 #define TYPE(Class, Parent) \
214   case Type::Class: { \
215     const Class##Type *ty = cast<Class##Type>(this); \
216     if (!ty->isSugared()) return QualType(ty, 0); \
217     return ty->desugar(); \
218   }
219 #include "clang/AST/TypeNodes.def"
220   }
221   llvm_unreachable("bad type kind!");
222 }
223 
getSplitDesugaredType(QualType T)224 SplitQualType QualType::getSplitDesugaredType(QualType T) {
225   QualifierCollector Qs;
226 
227   QualType Cur = T;
228   while (true) {
229     const Type *CurTy = Qs.strip(Cur);
230     switch (CurTy->getTypeClass()) {
231 #define ABSTRACT_TYPE(Class, Parent)
232 #define TYPE(Class, Parent) \
233     case Type::Class: { \
234       const Class##Type *Ty = cast<Class##Type>(CurTy); \
235       if (!Ty->isSugared()) \
236         return SplitQualType(Ty, Qs); \
237       Cur = Ty->desugar(); \
238       break; \
239     }
240 #include "clang/AST/TypeNodes.def"
241     }
242   }
243 }
244 
getSplitUnqualifiedTypeImpl(QualType type)245 SplitQualType QualType::getSplitUnqualifiedTypeImpl(QualType type) {
246   SplitQualType split = type.split();
247 
248   // All the qualifiers we've seen so far.
249   Qualifiers quals = split.Quals;
250 
251   // The last type node we saw with any nodes inside it.
252   const Type *lastTypeWithQuals = split.Ty;
253 
254   while (true) {
255     QualType next;
256 
257     // Do a single-step desugar, aborting the loop if the type isn't
258     // sugared.
259     switch (split.Ty->getTypeClass()) {
260 #define ABSTRACT_TYPE(Class, Parent)
261 #define TYPE(Class, Parent) \
262     case Type::Class: { \
263       const Class##Type *ty = cast<Class##Type>(split.Ty); \
264       if (!ty->isSugared()) goto done; \
265       next = ty->desugar(); \
266       break; \
267     }
268 #include "clang/AST/TypeNodes.def"
269     }
270 
271     // Otherwise, split the underlying type.  If that yields qualifiers,
272     // update the information.
273     split = next.split();
274     if (!split.Quals.empty()) {
275       lastTypeWithQuals = split.Ty;
276       quals.addConsistentQualifiers(split.Quals);
277     }
278   }
279 
280  done:
281   return SplitQualType(lastTypeWithQuals, quals);
282 }
283 
IgnoreParens(QualType T)284 QualType QualType::IgnoreParens(QualType T) {
285   // FIXME: this seems inherently un-qualifiers-safe.
286   while (const ParenType *PT = T->getAs<ParenType>())
287     T = PT->getInnerType();
288   return T;
289 }
290 
291 /// \brief This will check for a TypedefType by removing any existing sugar
292 /// until it reaches a TypedefType or a non-sugared type.
getAs() const293 template <> const TypedefType *Type::getAs() const {
294   const Type *Cur = this;
295 
296   while (true) {
297     if (const TypedefType *TDT = dyn_cast<TypedefType>(Cur))
298       return TDT;
299     switch (Cur->getTypeClass()) {
300 #define ABSTRACT_TYPE(Class, Parent)
301 #define TYPE(Class, Parent) \
302     case Class: { \
303       const Class##Type *Ty = cast<Class##Type>(Cur); \
304       if (!Ty->isSugared()) return 0; \
305       Cur = Ty->desugar().getTypePtr(); \
306       break; \
307     }
308 #include "clang/AST/TypeNodes.def"
309     }
310   }
311 }
312 
313 /// getUnqualifiedDesugaredType - Pull any qualifiers and syntactic
314 /// sugar off the given type.  This should produce an object of the
315 /// same dynamic type as the canonical type.
getUnqualifiedDesugaredType() const316 const Type *Type::getUnqualifiedDesugaredType() const {
317   const Type *Cur = this;
318 
319   while (true) {
320     switch (Cur->getTypeClass()) {
321 #define ABSTRACT_TYPE(Class, Parent)
322 #define TYPE(Class, Parent) \
323     case Class: { \
324       const Class##Type *Ty = cast<Class##Type>(Cur); \
325       if (!Ty->isSugared()) return Cur; \
326       Cur = Ty->desugar().getTypePtr(); \
327       break; \
328     }
329 #include "clang/AST/TypeNodes.def"
330     }
331   }
332 }
333 
isDerivedType() const334 bool Type::isDerivedType() const {
335   switch (CanonicalType->getTypeClass()) {
336   case Pointer:
337   case VariableArray:
338   case ConstantArray:
339   case IncompleteArray:
340   case FunctionProto:
341   case FunctionNoProto:
342   case LValueReference:
343   case RValueReference:
344   case Record:
345     return true;
346   default:
347     return false;
348   }
349 }
isClassType() const350 bool Type::isClassType() const {
351   if (const RecordType *RT = getAs<RecordType>())
352     return RT->getDecl()->isClass();
353   return false;
354 }
isStructureType() const355 bool Type::isStructureType() const {
356   if (const RecordType *RT = getAs<RecordType>())
357     return RT->getDecl()->isStruct();
358   return false;
359 }
isInterfaceType() const360 bool Type::isInterfaceType() const {
361   if (const RecordType *RT = getAs<RecordType>())
362     return RT->getDecl()->isInterface();
363   return false;
364 }
isStructureOrClassType() const365 bool Type::isStructureOrClassType() const {
366   if (const RecordType *RT = getAs<RecordType>())
367     return RT->getDecl()->isStruct() || RT->getDecl()->isClass() ||
368       RT->getDecl()->isInterface();
369   return false;
370 }
isVoidPointerType() const371 bool Type::isVoidPointerType() const {
372   if (const PointerType *PT = getAs<PointerType>())
373     return PT->getPointeeType()->isVoidType();
374   return false;
375 }
376 
isUnionType() const377 bool Type::isUnionType() const {
378   if (const RecordType *RT = getAs<RecordType>())
379     return RT->getDecl()->isUnion();
380   return false;
381 }
382 
isComplexType() const383 bool Type::isComplexType() const {
384   if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
385     return CT->getElementType()->isFloatingType();
386   return false;
387 }
388 
isComplexIntegerType() const389 bool Type::isComplexIntegerType() const {
390   // Check for GCC complex integer extension.
391   return getAsComplexIntegerType();
392 }
393 
getAsComplexIntegerType() const394 const ComplexType *Type::getAsComplexIntegerType() const {
395   if (const ComplexType *Complex = getAs<ComplexType>())
396     if (Complex->getElementType()->isIntegerType())
397       return Complex;
398   return 0;
399 }
400 
getPointeeType() const401 QualType Type::getPointeeType() const {
402   if (const PointerType *PT = getAs<PointerType>())
403     return PT->getPointeeType();
404   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
405     return OPT->getPointeeType();
406   if (const BlockPointerType *BPT = getAs<BlockPointerType>())
407     return BPT->getPointeeType();
408   if (const ReferenceType *RT = getAs<ReferenceType>())
409     return RT->getPointeeType();
410   return QualType();
411 }
412 
getAsStructureType() const413 const RecordType *Type::getAsStructureType() const {
414   // If this is directly a structure type, return it.
415   if (const RecordType *RT = dyn_cast<RecordType>(this)) {
416     if (RT->getDecl()->isStruct())
417       return RT;
418   }
419 
420   // If the canonical form of this type isn't the right kind, reject it.
421   if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
422     if (!RT->getDecl()->isStruct())
423       return 0;
424 
425     // If this is a typedef for a structure type, strip the typedef off without
426     // losing all typedef information.
427     return cast<RecordType>(getUnqualifiedDesugaredType());
428   }
429   return 0;
430 }
431 
getAsUnionType() const432 const RecordType *Type::getAsUnionType() const {
433   // If this is directly a union type, return it.
434   if (const RecordType *RT = dyn_cast<RecordType>(this)) {
435     if (RT->getDecl()->isUnion())
436       return RT;
437   }
438 
439   // If the canonical form of this type isn't the right kind, reject it.
440   if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
441     if (!RT->getDecl()->isUnion())
442       return 0;
443 
444     // If this is a typedef for a union type, strip the typedef off without
445     // losing all typedef information.
446     return cast<RecordType>(getUnqualifiedDesugaredType());
447   }
448 
449   return 0;
450 }
451 
ObjCObjectType(QualType Canonical,QualType Base,ObjCProtocolDecl * const * Protocols,unsigned NumProtocols)452 ObjCObjectType::ObjCObjectType(QualType Canonical, QualType Base,
453                                ObjCProtocolDecl * const *Protocols,
454                                unsigned NumProtocols)
455   : Type(ObjCObject, Canonical, false, false, false, false),
456     BaseType(Base)
457 {
458   ObjCObjectTypeBits.NumProtocols = NumProtocols;
459   assert(getNumProtocols() == NumProtocols &&
460          "bitfield overflow in protocol count");
461   if (NumProtocols)
462     memcpy(getProtocolStorage(), Protocols,
463            NumProtocols * sizeof(ObjCProtocolDecl*));
464 }
465 
getAsObjCQualifiedInterfaceType() const466 const ObjCObjectType *Type::getAsObjCQualifiedInterfaceType() const {
467   // There is no sugar for ObjCObjectType's, just return the canonical
468   // type pointer if it is the right class.  There is no typedef information to
469   // return and these cannot be Address-space qualified.
470   if (const ObjCObjectType *T = getAs<ObjCObjectType>())
471     if (T->getNumProtocols() && T->getInterface())
472       return T;
473   return 0;
474 }
475 
isObjCQualifiedInterfaceType() const476 bool Type::isObjCQualifiedInterfaceType() const {
477   return getAsObjCQualifiedInterfaceType() != 0;
478 }
479 
getAsObjCQualifiedIdType() const480 const ObjCObjectPointerType *Type::getAsObjCQualifiedIdType() const {
481   // There is no sugar for ObjCQualifiedIdType's, just return the canonical
482   // type pointer if it is the right class.
483   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
484     if (OPT->isObjCQualifiedIdType())
485       return OPT;
486   }
487   return 0;
488 }
489 
getAsObjCQualifiedClassType() const490 const ObjCObjectPointerType *Type::getAsObjCQualifiedClassType() const {
491   // There is no sugar for ObjCQualifiedClassType's, just return the canonical
492   // type pointer if it is the right class.
493   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
494     if (OPT->isObjCQualifiedClassType())
495       return OPT;
496   }
497   return 0;
498 }
499 
getAsObjCInterfacePointerType() const500 const ObjCObjectPointerType *Type::getAsObjCInterfacePointerType() const {
501   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
502     if (OPT->getInterfaceType())
503       return OPT;
504   }
505   return 0;
506 }
507 
getCXXRecordDeclForPointerType() const508 const CXXRecordDecl *Type::getCXXRecordDeclForPointerType() const {
509   if (const PointerType *PT = getAs<PointerType>())
510     if (const RecordType *RT = PT->getPointeeType()->getAs<RecordType>())
511       return dyn_cast<CXXRecordDecl>(RT->getDecl());
512   return 0;
513 }
514 
getAsCXXRecordDecl() const515 CXXRecordDecl *Type::getAsCXXRecordDecl() const {
516   if (const RecordType *RT = getAs<RecordType>())
517     return dyn_cast<CXXRecordDecl>(RT->getDecl());
518   else if (const InjectedClassNameType *Injected
519                                   = getAs<InjectedClassNameType>())
520     return Injected->getDecl();
521 
522   return 0;
523 }
524 
525 namespace {
526   class GetContainedAutoVisitor :
527     public TypeVisitor<GetContainedAutoVisitor, AutoType*> {
528   public:
529     using TypeVisitor<GetContainedAutoVisitor, AutoType*>::Visit;
Visit(QualType T)530     AutoType *Visit(QualType T) {
531       if (T.isNull())
532         return 0;
533       return Visit(T.getTypePtr());
534     }
535 
536     // The 'auto' type itself.
VisitAutoType(const AutoType * AT)537     AutoType *VisitAutoType(const AutoType *AT) {
538       return const_cast<AutoType*>(AT);
539     }
540 
541     // Only these types can contain the desired 'auto' type.
VisitPointerType(const PointerType * T)542     AutoType *VisitPointerType(const PointerType *T) {
543       return Visit(T->getPointeeType());
544     }
VisitBlockPointerType(const BlockPointerType * T)545     AutoType *VisitBlockPointerType(const BlockPointerType *T) {
546       return Visit(T->getPointeeType());
547     }
VisitReferenceType(const ReferenceType * T)548     AutoType *VisitReferenceType(const ReferenceType *T) {
549       return Visit(T->getPointeeTypeAsWritten());
550     }
VisitMemberPointerType(const MemberPointerType * T)551     AutoType *VisitMemberPointerType(const MemberPointerType *T) {
552       return Visit(T->getPointeeType());
553     }
VisitArrayType(const ArrayType * T)554     AutoType *VisitArrayType(const ArrayType *T) {
555       return Visit(T->getElementType());
556     }
VisitDependentSizedExtVectorType(const DependentSizedExtVectorType * T)557     AutoType *VisitDependentSizedExtVectorType(
558       const DependentSizedExtVectorType *T) {
559       return Visit(T->getElementType());
560     }
VisitVectorType(const VectorType * T)561     AutoType *VisitVectorType(const VectorType *T) {
562       return Visit(T->getElementType());
563     }
VisitFunctionType(const FunctionType * T)564     AutoType *VisitFunctionType(const FunctionType *T) {
565       return Visit(T->getResultType());
566     }
VisitParenType(const ParenType * T)567     AutoType *VisitParenType(const ParenType *T) {
568       return Visit(T->getInnerType());
569     }
VisitAttributedType(const AttributedType * T)570     AutoType *VisitAttributedType(const AttributedType *T) {
571       return Visit(T->getModifiedType());
572     }
573   };
574 }
575 
getContainedAutoType() const576 AutoType *Type::getContainedAutoType() const {
577   return GetContainedAutoVisitor().Visit(this);
578 }
579 
hasIntegerRepresentation() const580 bool Type::hasIntegerRepresentation() const {
581   if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
582     return VT->getElementType()->isIntegerType();
583   else
584     return isIntegerType();
585 }
586 
587 /// \brief Determine whether this type is an integral type.
588 ///
589 /// This routine determines whether the given type is an integral type per
590 /// C++ [basic.fundamental]p7. Although the C standard does not define the
591 /// term "integral type", it has a similar term "integer type", and in C++
592 /// the two terms are equivalent. However, C's "integer type" includes
593 /// enumeration types, while C++'s "integer type" does not. The \c ASTContext
594 /// parameter is used to determine whether we should be following the C or
595 /// C++ rules when determining whether this type is an integral/integer type.
596 ///
597 /// For cases where C permits "an integer type" and C++ permits "an integral
598 /// type", use this routine.
599 ///
600 /// For cases where C permits "an integer type" and C++ permits "an integral
601 /// or enumeration type", use \c isIntegralOrEnumerationType() instead.
602 ///
603 /// \param Ctx The context in which this type occurs.
604 ///
605 /// \returns true if the type is considered an integral type, false otherwise.
isIntegralType(ASTContext & Ctx) const606 bool Type::isIntegralType(ASTContext &Ctx) const {
607   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
608     return BT->getKind() >= BuiltinType::Bool &&
609     BT->getKind() <= BuiltinType::Int128;
610 
611   if (!Ctx.getLangOpts().CPlusPlus)
612     if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
613       return ET->getDecl()->isComplete(); // Complete enum types are integral in C.
614 
615   return false;
616 }
617 
618 
isIntegralOrUnscopedEnumerationType() const619 bool Type::isIntegralOrUnscopedEnumerationType() const {
620   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
621     return BT->getKind() >= BuiltinType::Bool &&
622            BT->getKind() <= BuiltinType::Int128;
623 
624   // Check for a complete enum type; incomplete enum types are not properly an
625   // enumeration type in the sense required here.
626   // C++0x: However, if the underlying type of the enum is fixed, it is
627   // considered complete.
628   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
629     return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
630 
631   return false;
632 }
633 
634 
635 
isCharType() const636 bool Type::isCharType() const {
637   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
638     return BT->getKind() == BuiltinType::Char_U ||
639            BT->getKind() == BuiltinType::UChar ||
640            BT->getKind() == BuiltinType::Char_S ||
641            BT->getKind() == BuiltinType::SChar;
642   return false;
643 }
644 
isWideCharType() const645 bool Type::isWideCharType() const {
646   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
647     return BT->getKind() == BuiltinType::WChar_S ||
648            BT->getKind() == BuiltinType::WChar_U;
649   return false;
650 }
651 
isChar16Type() const652 bool Type::isChar16Type() const {
653   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
654     return BT->getKind() == BuiltinType::Char16;
655   return false;
656 }
657 
isChar32Type() const658 bool Type::isChar32Type() const {
659   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
660     return BT->getKind() == BuiltinType::Char32;
661   return false;
662 }
663 
664 /// \brief Determine whether this type is any of the built-in character
665 /// types.
isAnyCharacterType() const666 bool Type::isAnyCharacterType() const {
667   const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType);
668   if (BT == 0) return false;
669   switch (BT->getKind()) {
670   default: return false;
671   case BuiltinType::Char_U:
672   case BuiltinType::UChar:
673   case BuiltinType::WChar_U:
674   case BuiltinType::Char16:
675   case BuiltinType::Char32:
676   case BuiltinType::Char_S:
677   case BuiltinType::SChar:
678   case BuiltinType::WChar_S:
679     return true;
680   }
681 }
682 
683 /// isSignedIntegerType - Return true if this is an integer type that is
684 /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
685 /// an enum decl which has a signed representation
isSignedIntegerType() const686 bool Type::isSignedIntegerType() const {
687   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
688     return BT->getKind() >= BuiltinType::Char_S &&
689            BT->getKind() <= BuiltinType::Int128;
690   }
691 
692   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
693     // Incomplete enum types are not treated as integer types.
694     // FIXME: In C++, enum types are never integer types.
695     if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
696       return ET->getDecl()->getIntegerType()->isSignedIntegerType();
697   }
698 
699   return false;
700 }
701 
isSignedIntegerOrEnumerationType() const702 bool Type::isSignedIntegerOrEnumerationType() const {
703   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
704     return BT->getKind() >= BuiltinType::Char_S &&
705     BT->getKind() <= BuiltinType::Int128;
706   }
707 
708   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
709     if (ET->getDecl()->isComplete())
710       return ET->getDecl()->getIntegerType()->isSignedIntegerType();
711   }
712 
713   return false;
714 }
715 
hasSignedIntegerRepresentation() const716 bool Type::hasSignedIntegerRepresentation() const {
717   if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
718     return VT->getElementType()->isSignedIntegerType();
719   else
720     return isSignedIntegerType();
721 }
722 
723 /// isUnsignedIntegerType - Return true if this is an integer type that is
724 /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
725 /// decl which has an unsigned representation
isUnsignedIntegerType() const726 bool Type::isUnsignedIntegerType() const {
727   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
728     return BT->getKind() >= BuiltinType::Bool &&
729            BT->getKind() <= BuiltinType::UInt128;
730   }
731 
732   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
733     // Incomplete enum types are not treated as integer types.
734     // FIXME: In C++, enum types are never integer types.
735     if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
736       return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
737   }
738 
739   return false;
740 }
741 
isUnsignedIntegerOrEnumerationType() const742 bool Type::isUnsignedIntegerOrEnumerationType() const {
743   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
744     return BT->getKind() >= BuiltinType::Bool &&
745     BT->getKind() <= BuiltinType::UInt128;
746   }
747 
748   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
749     if (ET->getDecl()->isComplete())
750       return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
751   }
752 
753   return false;
754 }
755 
hasUnsignedIntegerRepresentation() const756 bool Type::hasUnsignedIntegerRepresentation() const {
757   if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
758     return VT->getElementType()->isUnsignedIntegerType();
759   else
760     return isUnsignedIntegerType();
761 }
762 
isFloatingType() const763 bool Type::isFloatingType() const {
764   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
765     return BT->getKind() >= BuiltinType::Half &&
766            BT->getKind() <= BuiltinType::LongDouble;
767   if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
768     return CT->getElementType()->isFloatingType();
769   return false;
770 }
771 
hasFloatingRepresentation() const772 bool Type::hasFloatingRepresentation() const {
773   if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
774     return VT->getElementType()->isFloatingType();
775   else
776     return isFloatingType();
777 }
778 
isRealFloatingType() const779 bool Type::isRealFloatingType() const {
780   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
781     return BT->isFloatingPoint();
782   return false;
783 }
784 
isRealType() const785 bool Type::isRealType() const {
786   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
787     return BT->getKind() >= BuiltinType::Bool &&
788            BT->getKind() <= BuiltinType::LongDouble;
789   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
790       return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
791   return false;
792 }
793 
isArithmeticType() const794 bool Type::isArithmeticType() const {
795   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
796     return BT->getKind() >= BuiltinType::Bool &&
797            BT->getKind() <= BuiltinType::LongDouble;
798   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
799     // GCC allows forward declaration of enum types (forbid by C99 6.7.2.3p2).
800     // If a body isn't seen by the time we get here, return false.
801     //
802     // C++0x: Enumerations are not arithmetic types. For now, just return
803     // false for scoped enumerations since that will disable any
804     // unwanted implicit conversions.
805     return !ET->getDecl()->isScoped() && ET->getDecl()->isComplete();
806   return isa<ComplexType>(CanonicalType);
807 }
808 
getScalarTypeKind() const809 Type::ScalarTypeKind Type::getScalarTypeKind() const {
810   assert(isScalarType());
811 
812   const Type *T = CanonicalType.getTypePtr();
813   if (const BuiltinType *BT = dyn_cast<BuiltinType>(T)) {
814     if (BT->getKind() == BuiltinType::Bool) return STK_Bool;
815     if (BT->getKind() == BuiltinType::NullPtr) return STK_CPointer;
816     if (BT->isInteger()) return STK_Integral;
817     if (BT->isFloatingPoint()) return STK_Floating;
818     llvm_unreachable("unknown scalar builtin type");
819   } else if (isa<PointerType>(T)) {
820     return STK_CPointer;
821   } else if (isa<BlockPointerType>(T)) {
822     return STK_BlockPointer;
823   } else if (isa<ObjCObjectPointerType>(T)) {
824     return STK_ObjCObjectPointer;
825   } else if (isa<MemberPointerType>(T)) {
826     return STK_MemberPointer;
827   } else if (isa<EnumType>(T)) {
828     assert(cast<EnumType>(T)->getDecl()->isComplete());
829     return STK_Integral;
830   } else if (const ComplexType *CT = dyn_cast<ComplexType>(T)) {
831     if (CT->getElementType()->isRealFloatingType())
832       return STK_FloatingComplex;
833     return STK_IntegralComplex;
834   }
835 
836   llvm_unreachable("unknown scalar type");
837 }
838 
839 /// \brief Determines whether the type is a C++ aggregate type or C
840 /// aggregate or union type.
841 ///
842 /// An aggregate type is an array or a class type (struct, union, or
843 /// class) that has no user-declared constructors, no private or
844 /// protected non-static data members, no base classes, and no virtual
845 /// functions (C++ [dcl.init.aggr]p1). The notion of an aggregate type
846 /// subsumes the notion of C aggregates (C99 6.2.5p21) because it also
847 /// includes union types.
isAggregateType() const848 bool Type::isAggregateType() const {
849   if (const RecordType *Record = dyn_cast<RecordType>(CanonicalType)) {
850     if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(Record->getDecl()))
851       return ClassDecl->isAggregate();
852 
853     return true;
854   }
855 
856   return isa<ArrayType>(CanonicalType);
857 }
858 
859 /// isConstantSizeType - Return true if this is not a variable sized type,
860 /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
861 /// incomplete types or dependent types.
isConstantSizeType() const862 bool Type::isConstantSizeType() const {
863   assert(!isIncompleteType() && "This doesn't make sense for incomplete types");
864   assert(!isDependentType() && "This doesn't make sense for dependent types");
865   // The VAT must have a size, as it is known to be complete.
866   return !isa<VariableArrayType>(CanonicalType);
867 }
868 
869 /// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1)
870 /// - a type that can describe objects, but which lacks information needed to
871 /// determine its size.
isIncompleteType(NamedDecl ** Def) const872 bool Type::isIncompleteType(NamedDecl **Def) const {
873   if (Def)
874     *Def = 0;
875 
876   switch (CanonicalType->getTypeClass()) {
877   default: return false;
878   case Builtin:
879     // Void is the only incomplete builtin type.  Per C99 6.2.5p19, it can never
880     // be completed.
881     return isVoidType();
882   case Enum: {
883     EnumDecl *EnumD = cast<EnumType>(CanonicalType)->getDecl();
884     if (Def)
885       *Def = EnumD;
886 
887     // An enumeration with fixed underlying type is complete (C++0x 7.2p3).
888     if (EnumD->isFixed())
889       return false;
890 
891     return !EnumD->isCompleteDefinition();
892   }
893   case Record: {
894     // A tagged type (struct/union/enum/class) is incomplete if the decl is a
895     // forward declaration, but not a full definition (C99 6.2.5p22).
896     RecordDecl *Rec = cast<RecordType>(CanonicalType)->getDecl();
897     if (Def)
898       *Def = Rec;
899     return !Rec->isCompleteDefinition();
900   }
901   case ConstantArray:
902     // An array is incomplete if its element type is incomplete
903     // (C++ [dcl.array]p1).
904     // We don't handle variable arrays (they're not allowed in C++) or
905     // dependent-sized arrays (dependent types are never treated as incomplete).
906     return cast<ArrayType>(CanonicalType)->getElementType()
907              ->isIncompleteType(Def);
908   case IncompleteArray:
909     // An array of unknown size is an incomplete type (C99 6.2.5p22).
910     return true;
911   case ObjCObject:
912     return cast<ObjCObjectType>(CanonicalType)->getBaseType()
913              ->isIncompleteType(Def);
914   case ObjCInterface: {
915     // ObjC interfaces are incomplete if they are @class, not @interface.
916     ObjCInterfaceDecl *Interface
917       = cast<ObjCInterfaceType>(CanonicalType)->getDecl();
918     if (Def)
919       *Def = Interface;
920     return !Interface->hasDefinition();
921   }
922   }
923 }
924 
isPODType(ASTContext & Context) const925 bool QualType::isPODType(ASTContext &Context) const {
926   // C++11 has a more relaxed definition of POD.
927   if (Context.getLangOpts().CPlusPlus0x)
928     return isCXX11PODType(Context);
929 
930   return isCXX98PODType(Context);
931 }
932 
isCXX98PODType(ASTContext & Context) const933 bool QualType::isCXX98PODType(ASTContext &Context) const {
934   // The compiler shouldn't query this for incomplete types, but the user might.
935   // We return false for that case. Except for incomplete arrays of PODs, which
936   // are PODs according to the standard.
937   if (isNull())
938     return 0;
939 
940   if ((*this)->isIncompleteArrayType())
941     return Context.getBaseElementType(*this).isCXX98PODType(Context);
942 
943   if ((*this)->isIncompleteType())
944     return false;
945 
946   if (Context.getLangOpts().ObjCAutoRefCount) {
947     switch (getObjCLifetime()) {
948     case Qualifiers::OCL_ExplicitNone:
949       return true;
950 
951     case Qualifiers::OCL_Strong:
952     case Qualifiers::OCL_Weak:
953     case Qualifiers::OCL_Autoreleasing:
954       return false;
955 
956     case Qualifiers::OCL_None:
957       break;
958     }
959   }
960 
961   QualType CanonicalType = getTypePtr()->CanonicalType;
962   switch (CanonicalType->getTypeClass()) {
963     // Everything not explicitly mentioned is not POD.
964   default: return false;
965   case Type::VariableArray:
966   case Type::ConstantArray:
967     // IncompleteArray is handled above.
968     return Context.getBaseElementType(*this).isCXX98PODType(Context);
969 
970   case Type::ObjCObjectPointer:
971   case Type::BlockPointer:
972   case Type::Builtin:
973   case Type::Complex:
974   case Type::Pointer:
975   case Type::MemberPointer:
976   case Type::Vector:
977   case Type::ExtVector:
978     return true;
979 
980   case Type::Enum:
981     return true;
982 
983   case Type::Record:
984     if (CXXRecordDecl *ClassDecl
985           = dyn_cast<CXXRecordDecl>(cast<RecordType>(CanonicalType)->getDecl()))
986       return ClassDecl->isPOD();
987 
988     // C struct/union is POD.
989     return true;
990   }
991 }
992 
isTrivialType(ASTContext & Context) const993 bool QualType::isTrivialType(ASTContext &Context) const {
994   // The compiler shouldn't query this for incomplete types, but the user might.
995   // We return false for that case. Except for incomplete arrays of PODs, which
996   // are PODs according to the standard.
997   if (isNull())
998     return 0;
999 
1000   if ((*this)->isArrayType())
1001     return Context.getBaseElementType(*this).isTrivialType(Context);
1002 
1003   // Return false for incomplete types after skipping any incomplete array
1004   // types which are expressly allowed by the standard and thus our API.
1005   if ((*this)->isIncompleteType())
1006     return false;
1007 
1008   if (Context.getLangOpts().ObjCAutoRefCount) {
1009     switch (getObjCLifetime()) {
1010     case Qualifiers::OCL_ExplicitNone:
1011       return true;
1012 
1013     case Qualifiers::OCL_Strong:
1014     case Qualifiers::OCL_Weak:
1015     case Qualifiers::OCL_Autoreleasing:
1016       return false;
1017 
1018     case Qualifiers::OCL_None:
1019       if ((*this)->isObjCLifetimeType())
1020         return false;
1021       break;
1022     }
1023   }
1024 
1025   QualType CanonicalType = getTypePtr()->CanonicalType;
1026   if (CanonicalType->isDependentType())
1027     return false;
1028 
1029   // C++0x [basic.types]p9:
1030   //   Scalar types, trivial class types, arrays of such types, and
1031   //   cv-qualified versions of these types are collectively called trivial
1032   //   types.
1033 
1034   // As an extension, Clang treats vector types as Scalar types.
1035   if (CanonicalType->isScalarType() || CanonicalType->isVectorType())
1036     return true;
1037   if (const RecordType *RT = CanonicalType->getAs<RecordType>()) {
1038     if (const CXXRecordDecl *ClassDecl =
1039         dyn_cast<CXXRecordDecl>(RT->getDecl())) {
1040       // C++0x [class]p5:
1041       //   A trivial class is a class that has a trivial default constructor
1042       if (!ClassDecl->hasTrivialDefaultConstructor()) return false;
1043       //   and is trivially copyable.
1044       if (!ClassDecl->isTriviallyCopyable()) return false;
1045     }
1046 
1047     return true;
1048   }
1049 
1050   // No other types can match.
1051   return false;
1052 }
1053 
isTriviallyCopyableType(ASTContext & Context) const1054 bool QualType::isTriviallyCopyableType(ASTContext &Context) const {
1055   if ((*this)->isArrayType())
1056     return Context.getBaseElementType(*this).isTrivialType(Context);
1057 
1058   if (Context.getLangOpts().ObjCAutoRefCount) {
1059     switch (getObjCLifetime()) {
1060     case Qualifiers::OCL_ExplicitNone:
1061       return true;
1062 
1063     case Qualifiers::OCL_Strong:
1064     case Qualifiers::OCL_Weak:
1065     case Qualifiers::OCL_Autoreleasing:
1066       return false;
1067 
1068     case Qualifiers::OCL_None:
1069       if ((*this)->isObjCLifetimeType())
1070         return false;
1071       break;
1072     }
1073   }
1074 
1075   // C++0x [basic.types]p9
1076   //   Scalar types, trivially copyable class types, arrays of such types, and
1077   //   cv-qualified versions of these types are collectively called trivial
1078   //   types.
1079 
1080   QualType CanonicalType = getCanonicalType();
1081   if (CanonicalType->isDependentType())
1082     return false;
1083 
1084   // Return false for incomplete types after skipping any incomplete array types
1085   // which are expressly allowed by the standard and thus our API.
1086   if (CanonicalType->isIncompleteType())
1087     return false;
1088 
1089   // As an extension, Clang treats vector types as Scalar types.
1090   if (CanonicalType->isScalarType() || CanonicalType->isVectorType())
1091     return true;
1092 
1093   if (const RecordType *RT = CanonicalType->getAs<RecordType>()) {
1094     if (const CXXRecordDecl *ClassDecl =
1095           dyn_cast<CXXRecordDecl>(RT->getDecl())) {
1096       if (!ClassDecl->isTriviallyCopyable()) return false;
1097     }
1098 
1099     return true;
1100   }
1101 
1102   // No other types can match.
1103   return false;
1104 }
1105 
1106 
1107 
isLiteralType() const1108 bool Type::isLiteralType() const {
1109   if (isDependentType())
1110     return false;
1111 
1112   // C++0x [basic.types]p10:
1113   //   A type is a literal type if it is:
1114   //   [...]
1115   //   -- an array of literal type.
1116   // Extension: variable arrays cannot be literal types, since they're
1117   // runtime-sized.
1118   if (isVariableArrayType())
1119     return false;
1120   const Type *BaseTy = getBaseElementTypeUnsafe();
1121   assert(BaseTy && "NULL element type");
1122 
1123   // Return false for incomplete types after skipping any incomplete array
1124   // types; those are expressly allowed by the standard and thus our API.
1125   if (BaseTy->isIncompleteType())
1126     return false;
1127 
1128   // C++0x [basic.types]p10:
1129   //   A type is a literal type if it is:
1130   //    -- a scalar type; or
1131   // As an extension, Clang treats vector types and complex types as
1132   // literal types.
1133   if (BaseTy->isScalarType() || BaseTy->isVectorType() ||
1134       BaseTy->isAnyComplexType())
1135     return true;
1136   //    -- a reference type; or
1137   if (BaseTy->isReferenceType())
1138     return true;
1139   //    -- a class type that has all of the following properties:
1140   if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
1141     //    -- a trivial destructor,
1142     //    -- every constructor call and full-expression in the
1143     //       brace-or-equal-initializers for non-static data members (if any)
1144     //       is a constant expression,
1145     //    -- it is an aggregate type or has at least one constexpr
1146     //       constructor or constructor template that is not a copy or move
1147     //       constructor, and
1148     //    -- all non-static data members and base classes of literal types
1149     //
1150     // We resolve DR1361 by ignoring the second bullet.
1151     if (const CXXRecordDecl *ClassDecl =
1152         dyn_cast<CXXRecordDecl>(RT->getDecl()))
1153       return ClassDecl->isLiteral();
1154 
1155     return true;
1156   }
1157 
1158   return false;
1159 }
1160 
isStandardLayoutType() const1161 bool Type::isStandardLayoutType() const {
1162   if (isDependentType())
1163     return false;
1164 
1165   // C++0x [basic.types]p9:
1166   //   Scalar types, standard-layout class types, arrays of such types, and
1167   //   cv-qualified versions of these types are collectively called
1168   //   standard-layout types.
1169   const Type *BaseTy = getBaseElementTypeUnsafe();
1170   assert(BaseTy && "NULL element type");
1171 
1172   // Return false for incomplete types after skipping any incomplete array
1173   // types which are expressly allowed by the standard and thus our API.
1174   if (BaseTy->isIncompleteType())
1175     return false;
1176 
1177   // As an extension, Clang treats vector types as Scalar types.
1178   if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
1179   if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
1180     if (const CXXRecordDecl *ClassDecl =
1181         dyn_cast<CXXRecordDecl>(RT->getDecl()))
1182       if (!ClassDecl->isStandardLayout())
1183         return false;
1184 
1185     // Default to 'true' for non-C++ class types.
1186     // FIXME: This is a bit dubious, but plain C structs should trivially meet
1187     // all the requirements of standard layout classes.
1188     return true;
1189   }
1190 
1191   // No other types can match.
1192   return false;
1193 }
1194 
1195 // This is effectively the intersection of isTrivialType and
1196 // isStandardLayoutType. We implement it directly to avoid redundant
1197 // conversions from a type to a CXXRecordDecl.
isCXX11PODType(ASTContext & Context) const1198 bool QualType::isCXX11PODType(ASTContext &Context) const {
1199   const Type *ty = getTypePtr();
1200   if (ty->isDependentType())
1201     return false;
1202 
1203   if (Context.getLangOpts().ObjCAutoRefCount) {
1204     switch (getObjCLifetime()) {
1205     case Qualifiers::OCL_ExplicitNone:
1206       return true;
1207 
1208     case Qualifiers::OCL_Strong:
1209     case Qualifiers::OCL_Weak:
1210     case Qualifiers::OCL_Autoreleasing:
1211       return false;
1212 
1213     case Qualifiers::OCL_None:
1214       break;
1215     }
1216   }
1217 
1218   // C++11 [basic.types]p9:
1219   //   Scalar types, POD classes, arrays of such types, and cv-qualified
1220   //   versions of these types are collectively called trivial types.
1221   const Type *BaseTy = ty->getBaseElementTypeUnsafe();
1222   assert(BaseTy && "NULL element type");
1223 
1224   // Return false for incomplete types after skipping any incomplete array
1225   // types which are expressly allowed by the standard and thus our API.
1226   if (BaseTy->isIncompleteType())
1227     return false;
1228 
1229   // As an extension, Clang treats vector types as Scalar types.
1230   if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
1231   if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
1232     if (const CXXRecordDecl *ClassDecl =
1233         dyn_cast<CXXRecordDecl>(RT->getDecl())) {
1234       // C++11 [class]p10:
1235       //   A POD struct is a non-union class that is both a trivial class [...]
1236       if (!ClassDecl->isTrivial()) return false;
1237 
1238       // C++11 [class]p10:
1239       //   A POD struct is a non-union class that is both a trivial class and
1240       //   a standard-layout class [...]
1241       if (!ClassDecl->isStandardLayout()) return false;
1242 
1243       // C++11 [class]p10:
1244       //   A POD struct is a non-union class that is both a trivial class and
1245       //   a standard-layout class, and has no non-static data members of type
1246       //   non-POD struct, non-POD union (or array of such types). [...]
1247       //
1248       // We don't directly query the recursive aspect as the requiremets for
1249       // both standard-layout classes and trivial classes apply recursively
1250       // already.
1251     }
1252 
1253     return true;
1254   }
1255 
1256   // No other types can match.
1257   return false;
1258 }
1259 
isPromotableIntegerType() const1260 bool Type::isPromotableIntegerType() const {
1261   if (const BuiltinType *BT = getAs<BuiltinType>())
1262     switch (BT->getKind()) {
1263     case BuiltinType::Bool:
1264     case BuiltinType::Char_S:
1265     case BuiltinType::Char_U:
1266     case BuiltinType::SChar:
1267     case BuiltinType::UChar:
1268     case BuiltinType::Short:
1269     case BuiltinType::UShort:
1270     case BuiltinType::WChar_S:
1271     case BuiltinType::WChar_U:
1272     case BuiltinType::Char16:
1273     case BuiltinType::Char32:
1274       return true;
1275     default:
1276       return false;
1277     }
1278 
1279   // Enumerated types are promotable to their compatible integer types
1280   // (C99 6.3.1.1) a.k.a. its underlying type (C++ [conv.prom]p2).
1281   if (const EnumType *ET = getAs<EnumType>()){
1282     if (this->isDependentType() || ET->getDecl()->getPromotionType().isNull()
1283         || ET->getDecl()->isScoped())
1284       return false;
1285 
1286     return true;
1287   }
1288 
1289   return false;
1290 }
1291 
isSpecifierType() const1292 bool Type::isSpecifierType() const {
1293   // Note that this intentionally does not use the canonical type.
1294   switch (getTypeClass()) {
1295   case Builtin:
1296   case Record:
1297   case Enum:
1298   case Typedef:
1299   case Complex:
1300   case TypeOfExpr:
1301   case TypeOf:
1302   case TemplateTypeParm:
1303   case SubstTemplateTypeParm:
1304   case TemplateSpecialization:
1305   case Elaborated:
1306   case DependentName:
1307   case DependentTemplateSpecialization:
1308   case ObjCInterface:
1309   case ObjCObject:
1310   case ObjCObjectPointer: // FIXME: object pointers aren't really specifiers
1311     return true;
1312   default:
1313     return false;
1314   }
1315 }
1316 
1317 ElaboratedTypeKeyword
getKeywordForTypeSpec(unsigned TypeSpec)1318 TypeWithKeyword::getKeywordForTypeSpec(unsigned TypeSpec) {
1319   switch (TypeSpec) {
1320   default: return ETK_None;
1321   case TST_typename: return ETK_Typename;
1322   case TST_class: return ETK_Class;
1323   case TST_struct: return ETK_Struct;
1324   case TST_interface: return ETK_Interface;
1325   case TST_union: return ETK_Union;
1326   case TST_enum: return ETK_Enum;
1327   }
1328 }
1329 
1330 TagTypeKind
getTagTypeKindForTypeSpec(unsigned TypeSpec)1331 TypeWithKeyword::getTagTypeKindForTypeSpec(unsigned TypeSpec) {
1332   switch(TypeSpec) {
1333   case TST_class: return TTK_Class;
1334   case TST_struct: return TTK_Struct;
1335   case TST_interface: return TTK_Interface;
1336   case TST_union: return TTK_Union;
1337   case TST_enum: return TTK_Enum;
1338   }
1339 
1340   llvm_unreachable("Type specifier is not a tag type kind.");
1341 }
1342 
1343 ElaboratedTypeKeyword
getKeywordForTagTypeKind(TagTypeKind Kind)1344 TypeWithKeyword::getKeywordForTagTypeKind(TagTypeKind Kind) {
1345   switch (Kind) {
1346   case TTK_Class: return ETK_Class;
1347   case TTK_Struct: return ETK_Struct;
1348   case TTK_Interface: return ETK_Interface;
1349   case TTK_Union: return ETK_Union;
1350   case TTK_Enum: return ETK_Enum;
1351   }
1352   llvm_unreachable("Unknown tag type kind.");
1353 }
1354 
1355 TagTypeKind
getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword)1356 TypeWithKeyword::getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword) {
1357   switch (Keyword) {
1358   case ETK_Class: return TTK_Class;
1359   case ETK_Struct: return TTK_Struct;
1360   case ETK_Interface: return TTK_Interface;
1361   case ETK_Union: return TTK_Union;
1362   case ETK_Enum: return TTK_Enum;
1363   case ETK_None: // Fall through.
1364   case ETK_Typename:
1365     llvm_unreachable("Elaborated type keyword is not a tag type kind.");
1366   }
1367   llvm_unreachable("Unknown elaborated type keyword.");
1368 }
1369 
1370 bool
KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword)1371 TypeWithKeyword::KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword) {
1372   switch (Keyword) {
1373   case ETK_None:
1374   case ETK_Typename:
1375     return false;
1376   case ETK_Class:
1377   case ETK_Struct:
1378   case ETK_Interface:
1379   case ETK_Union:
1380   case ETK_Enum:
1381     return true;
1382   }
1383   llvm_unreachable("Unknown elaborated type keyword.");
1384 }
1385 
1386 const char*
getKeywordName(ElaboratedTypeKeyword Keyword)1387 TypeWithKeyword::getKeywordName(ElaboratedTypeKeyword Keyword) {
1388   switch (Keyword) {
1389   case ETK_None: return "";
1390   case ETK_Typename: return "typename";
1391   case ETK_Class:  return "class";
1392   case ETK_Struct: return "struct";
1393   case ETK_Interface: return "__interface";
1394   case ETK_Union:  return "union";
1395   case ETK_Enum:   return "enum";
1396   }
1397 
1398   llvm_unreachable("Unknown elaborated type keyword.");
1399 }
1400 
DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,const IdentifierInfo * Name,unsigned NumArgs,const TemplateArgument * Args,QualType Canon)1401 DependentTemplateSpecializationType::DependentTemplateSpecializationType(
1402                          ElaboratedTypeKeyword Keyword,
1403                          NestedNameSpecifier *NNS, const IdentifierInfo *Name,
1404                          unsigned NumArgs, const TemplateArgument *Args,
1405                          QualType Canon)
1406   : TypeWithKeyword(Keyword, DependentTemplateSpecialization, Canon, true, true,
1407                     /*VariablyModified=*/false,
1408                     NNS && NNS->containsUnexpandedParameterPack()),
1409     NNS(NNS), Name(Name), NumArgs(NumArgs) {
1410   assert((!NNS || NNS->isDependent()) &&
1411          "DependentTemplateSpecializatonType requires dependent qualifier");
1412   for (unsigned I = 0; I != NumArgs; ++I) {
1413     if (Args[I].containsUnexpandedParameterPack())
1414       setContainsUnexpandedParameterPack();
1415 
1416     new (&getArgBuffer()[I]) TemplateArgument(Args[I]);
1417   }
1418 }
1419 
1420 void
Profile(llvm::FoldingSetNodeID & ID,const ASTContext & Context,ElaboratedTypeKeyword Keyword,NestedNameSpecifier * Qualifier,const IdentifierInfo * Name,unsigned NumArgs,const TemplateArgument * Args)1421 DependentTemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
1422                                              const ASTContext &Context,
1423                                              ElaboratedTypeKeyword Keyword,
1424                                              NestedNameSpecifier *Qualifier,
1425                                              const IdentifierInfo *Name,
1426                                              unsigned NumArgs,
1427                                              const TemplateArgument *Args) {
1428   ID.AddInteger(Keyword);
1429   ID.AddPointer(Qualifier);
1430   ID.AddPointer(Name);
1431   for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
1432     Args[Idx].Profile(ID, Context);
1433 }
1434 
isElaboratedTypeSpecifier() const1435 bool Type::isElaboratedTypeSpecifier() const {
1436   ElaboratedTypeKeyword Keyword;
1437   if (const ElaboratedType *Elab = dyn_cast<ElaboratedType>(this))
1438     Keyword = Elab->getKeyword();
1439   else if (const DependentNameType *DepName = dyn_cast<DependentNameType>(this))
1440     Keyword = DepName->getKeyword();
1441   else if (const DependentTemplateSpecializationType *DepTST =
1442              dyn_cast<DependentTemplateSpecializationType>(this))
1443     Keyword = DepTST->getKeyword();
1444   else
1445     return false;
1446 
1447   return TypeWithKeyword::KeywordIsTagTypeKind(Keyword);
1448 }
1449 
getTypeClassName() const1450 const char *Type::getTypeClassName() const {
1451   switch (TypeBits.TC) {
1452 #define ABSTRACT_TYPE(Derived, Base)
1453 #define TYPE(Derived, Base) case Derived: return #Derived;
1454 #include "clang/AST/TypeNodes.def"
1455   }
1456 
1457   llvm_unreachable("Invalid type class.");
1458 }
1459 
getName(const PrintingPolicy & Policy) const1460 StringRef BuiltinType::getName(const PrintingPolicy &Policy) const {
1461   switch (getKind()) {
1462   case Void:              return "void";
1463   case Bool:              return Policy.Bool ? "bool" : "_Bool";
1464   case Char_S:            return "char";
1465   case Char_U:            return "char";
1466   case SChar:             return "signed char";
1467   case Short:             return "short";
1468   case Int:               return "int";
1469   case Long:              return "long";
1470   case LongLong:          return "long long";
1471   case Int128:            return "__int128";
1472   case UChar:             return "unsigned char";
1473   case UShort:            return "unsigned short";
1474   case UInt:              return "unsigned int";
1475   case ULong:             return "unsigned long";
1476   case ULongLong:         return "unsigned long long";
1477   case UInt128:           return "unsigned __int128";
1478   case Half:              return "half";
1479   case Float:             return "float";
1480   case Double:            return "double";
1481   case LongDouble:        return "long double";
1482   case WChar_S:
1483   case WChar_U:           return "wchar_t";
1484   case Char16:            return "char16_t";
1485   case Char32:            return "char32_t";
1486   case NullPtr:           return "nullptr_t";
1487   case Overload:          return "<overloaded function type>";
1488   case BoundMember:       return "<bound member function type>";
1489   case PseudoObject:      return "<pseudo-object type>";
1490   case Dependent:         return "<dependent type>";
1491   case UnknownAny:        return "<unknown type>";
1492   case ARCUnbridgedCast:  return "<ARC unbridged cast type>";
1493   case BuiltinFn:         return "<builtin fn type>";
1494   case ObjCId:            return "id";
1495   case ObjCClass:         return "Class";
1496   case ObjCSel:           return "SEL";
1497   }
1498 
1499   llvm_unreachable("Invalid builtin type.");
1500 }
1501 
getNonLValueExprType(ASTContext & Context) const1502 QualType QualType::getNonLValueExprType(ASTContext &Context) const {
1503   if (const ReferenceType *RefType = getTypePtr()->getAs<ReferenceType>())
1504     return RefType->getPointeeType();
1505 
1506   // C++0x [basic.lval]:
1507   //   Class prvalues can have cv-qualified types; non-class prvalues always
1508   //   have cv-unqualified types.
1509   //
1510   // See also C99 6.3.2.1p2.
1511   if (!Context.getLangOpts().CPlusPlus ||
1512       (!getTypePtr()->isDependentType() && !getTypePtr()->isRecordType()))
1513     return getUnqualifiedType();
1514 
1515   return *this;
1516 }
1517 
getNameForCallConv(CallingConv CC)1518 StringRef FunctionType::getNameForCallConv(CallingConv CC) {
1519   switch (CC) {
1520   case CC_Default:
1521     llvm_unreachable("no name for default cc");
1522 
1523   case CC_C: return "cdecl";
1524   case CC_X86StdCall: return "stdcall";
1525   case CC_X86FastCall: return "fastcall";
1526   case CC_X86ThisCall: return "thiscall";
1527   case CC_X86Pascal: return "pascal";
1528   case CC_AAPCS: return "aapcs";
1529   case CC_AAPCS_VFP: return "aapcs-vfp";
1530   }
1531 
1532   llvm_unreachable("Invalid calling convention.");
1533 }
1534 
FunctionProtoType(QualType result,const QualType * args,unsigned numArgs,QualType canonical,const ExtProtoInfo & epi)1535 FunctionProtoType::FunctionProtoType(QualType result, const QualType *args,
1536                                      unsigned numArgs, QualType canonical,
1537                                      const ExtProtoInfo &epi)
1538   : FunctionType(FunctionProto, result, epi.TypeQuals, epi.RefQualifier,
1539                  canonical,
1540                  result->isDependentType(),
1541                  result->isInstantiationDependentType(),
1542                  result->isVariablyModifiedType(),
1543                  result->containsUnexpandedParameterPack(),
1544                  epi.ExtInfo),
1545     NumArgs(numArgs), NumExceptions(epi.NumExceptions),
1546     ExceptionSpecType(epi.ExceptionSpecType),
1547     HasAnyConsumedArgs(epi.ConsumedArguments != 0),
1548     Variadic(epi.Variadic), HasTrailingReturn(epi.HasTrailingReturn)
1549 {
1550   // Fill in the trailing argument array.
1551   QualType *argSlot = reinterpret_cast<QualType*>(this+1);
1552   for (unsigned i = 0; i != numArgs; ++i) {
1553     if (args[i]->isDependentType())
1554       setDependent();
1555     else if (args[i]->isInstantiationDependentType())
1556       setInstantiationDependent();
1557 
1558     if (args[i]->containsUnexpandedParameterPack())
1559       setContainsUnexpandedParameterPack();
1560 
1561     argSlot[i] = args[i];
1562   }
1563 
1564   if (getExceptionSpecType() == EST_Dynamic) {
1565     // Fill in the exception array.
1566     QualType *exnSlot = argSlot + numArgs;
1567     for (unsigned i = 0, e = epi.NumExceptions; i != e; ++i) {
1568       if (epi.Exceptions[i]->isDependentType())
1569         setDependent();
1570       else if (epi.Exceptions[i]->isInstantiationDependentType())
1571         setInstantiationDependent();
1572 
1573       if (epi.Exceptions[i]->containsUnexpandedParameterPack())
1574         setContainsUnexpandedParameterPack();
1575 
1576       exnSlot[i] = epi.Exceptions[i];
1577     }
1578   } else if (getExceptionSpecType() == EST_ComputedNoexcept) {
1579     // Store the noexcept expression and context.
1580     Expr **noexSlot = reinterpret_cast<Expr**>(argSlot + numArgs);
1581     *noexSlot = epi.NoexceptExpr;
1582 
1583     if (epi.NoexceptExpr) {
1584       if (epi.NoexceptExpr->isValueDependent()
1585           || epi.NoexceptExpr->isTypeDependent())
1586         setDependent();
1587       else if (epi.NoexceptExpr->isInstantiationDependent())
1588         setInstantiationDependent();
1589     }
1590   } else if (getExceptionSpecType() == EST_Uninstantiated) {
1591     // Store the function decl from which we will resolve our
1592     // exception specification.
1593     FunctionDecl **slot = reinterpret_cast<FunctionDecl**>(argSlot + numArgs);
1594     slot[0] = epi.ExceptionSpecDecl;
1595     slot[1] = epi.ExceptionSpecTemplate;
1596     // This exception specification doesn't make the type dependent, because
1597     // it's not instantiated as part of instantiating the type.
1598   } else if (getExceptionSpecType() == EST_Unevaluated) {
1599     // Store the function decl from which we will resolve our
1600     // exception specification.
1601     FunctionDecl **slot = reinterpret_cast<FunctionDecl**>(argSlot + numArgs);
1602     slot[0] = epi.ExceptionSpecDecl;
1603   }
1604 
1605   if (epi.ConsumedArguments) {
1606     bool *consumedArgs = const_cast<bool*>(getConsumedArgsBuffer());
1607     for (unsigned i = 0; i != numArgs; ++i)
1608       consumedArgs[i] = epi.ConsumedArguments[i];
1609   }
1610 }
1611 
1612 FunctionProtoType::NoexceptResult
getNoexceptSpec(ASTContext & ctx) const1613 FunctionProtoType::getNoexceptSpec(ASTContext &ctx) const {
1614   ExceptionSpecificationType est = getExceptionSpecType();
1615   if (est == EST_BasicNoexcept)
1616     return NR_Nothrow;
1617 
1618   if (est != EST_ComputedNoexcept)
1619     return NR_NoNoexcept;
1620 
1621   Expr *noexceptExpr = getNoexceptExpr();
1622   if (!noexceptExpr)
1623     return NR_BadNoexcept;
1624   if (noexceptExpr->isValueDependent())
1625     return NR_Dependent;
1626 
1627   llvm::APSInt value;
1628   bool isICE = noexceptExpr->isIntegerConstantExpr(value, ctx, 0,
1629                                                    /*evaluated*/false);
1630   (void)isICE;
1631   assert(isICE && "AST should not contain bad noexcept expressions.");
1632 
1633   return value.getBoolValue() ? NR_Nothrow : NR_Throw;
1634 }
1635 
isTemplateVariadic() const1636 bool FunctionProtoType::isTemplateVariadic() const {
1637   for (unsigned ArgIdx = getNumArgs(); ArgIdx; --ArgIdx)
1638     if (isa<PackExpansionType>(getArgType(ArgIdx - 1)))
1639       return true;
1640 
1641   return false;
1642 }
1643 
Profile(llvm::FoldingSetNodeID & ID,QualType Result,const QualType * ArgTys,unsigned NumArgs,const ExtProtoInfo & epi,const ASTContext & Context)1644 void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID, QualType Result,
1645                                 const QualType *ArgTys, unsigned NumArgs,
1646                                 const ExtProtoInfo &epi,
1647                                 const ASTContext &Context) {
1648 
1649   // We have to be careful not to get ambiguous profile encodings.
1650   // Note that valid type pointers are never ambiguous with anything else.
1651   //
1652   // The encoding grammar begins:
1653   //      type type* bool int bool
1654   // If that final bool is true, then there is a section for the EH spec:
1655   //      bool type*
1656   // This is followed by an optional "consumed argument" section of the
1657   // same length as the first type sequence:
1658   //      bool*
1659   // Finally, we have the ext info and trailing return type flag:
1660   //      int bool
1661   //
1662   // There is no ambiguity between the consumed arguments and an empty EH
1663   // spec because of the leading 'bool' which unambiguously indicates
1664   // whether the following bool is the EH spec or part of the arguments.
1665 
1666   ID.AddPointer(Result.getAsOpaquePtr());
1667   for (unsigned i = 0; i != NumArgs; ++i)
1668     ID.AddPointer(ArgTys[i].getAsOpaquePtr());
1669   // This method is relatively performance sensitive, so as a performance
1670   // shortcut, use one AddInteger call instead of four for the next four
1671   // fields.
1672   assert(!(unsigned(epi.Variadic) & ~1) &&
1673          !(unsigned(epi.TypeQuals) & ~255) &&
1674          !(unsigned(epi.RefQualifier) & ~3) &&
1675          !(unsigned(epi.ExceptionSpecType) & ~7) &&
1676          "Values larger than expected.");
1677   ID.AddInteger(unsigned(epi.Variadic) +
1678                 (epi.TypeQuals << 1) +
1679                 (epi.RefQualifier << 9) +
1680                 (epi.ExceptionSpecType << 11));
1681   if (epi.ExceptionSpecType == EST_Dynamic) {
1682     for (unsigned i = 0; i != epi.NumExceptions; ++i)
1683       ID.AddPointer(epi.Exceptions[i].getAsOpaquePtr());
1684   } else if (epi.ExceptionSpecType == EST_ComputedNoexcept && epi.NoexceptExpr){
1685     epi.NoexceptExpr->Profile(ID, Context, false);
1686   } else if (epi.ExceptionSpecType == EST_Uninstantiated ||
1687              epi.ExceptionSpecType == EST_Unevaluated) {
1688     ID.AddPointer(epi.ExceptionSpecDecl->getCanonicalDecl());
1689   }
1690   if (epi.ConsumedArguments) {
1691     for (unsigned i = 0; i != NumArgs; ++i)
1692       ID.AddBoolean(epi.ConsumedArguments[i]);
1693   }
1694   epi.ExtInfo.Profile(ID);
1695   ID.AddBoolean(epi.HasTrailingReturn);
1696 }
1697 
Profile(llvm::FoldingSetNodeID & ID,const ASTContext & Ctx)1698 void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID,
1699                                 const ASTContext &Ctx) {
1700   Profile(ID, getResultType(), arg_type_begin(), NumArgs, getExtProtoInfo(),
1701           Ctx);
1702 }
1703 
desugar() const1704 QualType TypedefType::desugar() const {
1705   return getDecl()->getUnderlyingType();
1706 }
1707 
TypeOfExprType(Expr * E,QualType can)1708 TypeOfExprType::TypeOfExprType(Expr *E, QualType can)
1709   : Type(TypeOfExpr, can, E->isTypeDependent(),
1710          E->isInstantiationDependent(),
1711          E->getType()->isVariablyModifiedType(),
1712          E->containsUnexpandedParameterPack()),
1713     TOExpr(E) {
1714 }
1715 
isSugared() const1716 bool TypeOfExprType::isSugared() const {
1717   return !TOExpr->isTypeDependent();
1718 }
1719 
desugar() const1720 QualType TypeOfExprType::desugar() const {
1721   if (isSugared())
1722     return getUnderlyingExpr()->getType();
1723 
1724   return QualType(this, 0);
1725 }
1726 
Profile(llvm::FoldingSetNodeID & ID,const ASTContext & Context,Expr * E)1727 void DependentTypeOfExprType::Profile(llvm::FoldingSetNodeID &ID,
1728                                       const ASTContext &Context, Expr *E) {
1729   E->Profile(ID, Context, true);
1730 }
1731 
DecltypeType(Expr * E,QualType underlyingType,QualType can)1732 DecltypeType::DecltypeType(Expr *E, QualType underlyingType, QualType can)
1733   // C++11 [temp.type]p2: "If an expression e involves a template parameter,
1734   // decltype(e) denotes a unique dependent type." Hence a decltype type is
1735   // type-dependent even if its expression is only instantiation-dependent.
1736   : Type(Decltype, can, E->isInstantiationDependent(),
1737          E->isInstantiationDependent(),
1738          E->getType()->isVariablyModifiedType(),
1739          E->containsUnexpandedParameterPack()),
1740     E(E),
1741   UnderlyingType(underlyingType) {
1742 }
1743 
isSugared() const1744 bool DecltypeType::isSugared() const { return !E->isInstantiationDependent(); }
1745 
desugar() const1746 QualType DecltypeType::desugar() const {
1747   if (isSugared())
1748     return getUnderlyingType();
1749 
1750   return QualType(this, 0);
1751 }
1752 
DependentDecltypeType(const ASTContext & Context,Expr * E)1753 DependentDecltypeType::DependentDecltypeType(const ASTContext &Context, Expr *E)
1754   : DecltypeType(E, Context.DependentTy), Context(Context) { }
1755 
Profile(llvm::FoldingSetNodeID & ID,const ASTContext & Context,Expr * E)1756 void DependentDecltypeType::Profile(llvm::FoldingSetNodeID &ID,
1757                                     const ASTContext &Context, Expr *E) {
1758   E->Profile(ID, Context, true);
1759 }
1760 
TagType(TypeClass TC,const TagDecl * D,QualType can)1761 TagType::TagType(TypeClass TC, const TagDecl *D, QualType can)
1762   : Type(TC, can, D->isDependentType(),
1763          /*InstantiationDependent=*/D->isDependentType(),
1764          /*VariablyModified=*/false,
1765          /*ContainsUnexpandedParameterPack=*/false),
1766     decl(const_cast<TagDecl*>(D)) {}
1767 
getInterestingTagDecl(TagDecl * decl)1768 static TagDecl *getInterestingTagDecl(TagDecl *decl) {
1769   for (TagDecl::redecl_iterator I = decl->redecls_begin(),
1770                                 E = decl->redecls_end();
1771        I != E; ++I) {
1772     if (I->isCompleteDefinition() || I->isBeingDefined())
1773       return *I;
1774   }
1775   // If there's no definition (not even in progress), return what we have.
1776   return decl;
1777 }
1778 
UnaryTransformType(QualType BaseType,QualType UnderlyingType,UTTKind UKind,QualType CanonicalType)1779 UnaryTransformType::UnaryTransformType(QualType BaseType,
1780                                        QualType UnderlyingType,
1781                                        UTTKind UKind,
1782                                        QualType CanonicalType)
1783   : Type(UnaryTransform, CanonicalType, UnderlyingType->isDependentType(),
1784          UnderlyingType->isInstantiationDependentType(),
1785          UnderlyingType->isVariablyModifiedType(),
1786          BaseType->containsUnexpandedParameterPack())
1787   , BaseType(BaseType), UnderlyingType(UnderlyingType), UKind(UKind)
1788 {}
1789 
getDecl() const1790 TagDecl *TagType::getDecl() const {
1791   return getInterestingTagDecl(decl);
1792 }
1793 
isBeingDefined() const1794 bool TagType::isBeingDefined() const {
1795   return getDecl()->isBeingDefined();
1796 }
1797 
getDecl() const1798 CXXRecordDecl *InjectedClassNameType::getDecl() const {
1799   return cast<CXXRecordDecl>(getInterestingTagDecl(Decl));
1800 }
1801 
getIdentifier() const1802 IdentifierInfo *TemplateTypeParmType::getIdentifier() const {
1803   return isCanonicalUnqualified() ? 0 : getDecl()->getIdentifier();
1804 }
1805 
1806 SubstTemplateTypeParmPackType::
SubstTemplateTypeParmPackType(const TemplateTypeParmType * Param,QualType Canon,const TemplateArgument & ArgPack)1807 SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
1808                               QualType Canon,
1809                               const TemplateArgument &ArgPack)
1810   : Type(SubstTemplateTypeParmPack, Canon, true, true, false, true),
1811     Replaced(Param),
1812     Arguments(ArgPack.pack_begin()), NumArguments(ArgPack.pack_size())
1813 {
1814 }
1815 
getArgumentPack() const1816 TemplateArgument SubstTemplateTypeParmPackType::getArgumentPack() const {
1817   return TemplateArgument(Arguments, NumArguments);
1818 }
1819 
Profile(llvm::FoldingSetNodeID & ID)1820 void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID) {
1821   Profile(ID, getReplacedParameter(), getArgumentPack());
1822 }
1823 
Profile(llvm::FoldingSetNodeID & ID,const TemplateTypeParmType * Replaced,const TemplateArgument & ArgPack)1824 void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID,
1825                                            const TemplateTypeParmType *Replaced,
1826                                             const TemplateArgument &ArgPack) {
1827   ID.AddPointer(Replaced);
1828   ID.AddInteger(ArgPack.pack_size());
1829   for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
1830                                     PEnd = ArgPack.pack_end();
1831        P != PEnd; ++P)
1832     ID.AddPointer(P->getAsType().getAsOpaquePtr());
1833 }
1834 
1835 bool TemplateSpecializationType::
anyDependentTemplateArguments(const TemplateArgumentListInfo & Args,bool & InstantiationDependent)1836 anyDependentTemplateArguments(const TemplateArgumentListInfo &Args,
1837                               bool &InstantiationDependent) {
1838   return anyDependentTemplateArguments(Args.getArgumentArray(), Args.size(),
1839                                        InstantiationDependent);
1840 }
1841 
1842 bool TemplateSpecializationType::
anyDependentTemplateArguments(const TemplateArgumentLoc * Args,unsigned N,bool & InstantiationDependent)1843 anyDependentTemplateArguments(const TemplateArgumentLoc *Args, unsigned N,
1844                               bool &InstantiationDependent) {
1845   for (unsigned i = 0; i != N; ++i) {
1846     if (Args[i].getArgument().isDependent()) {
1847       InstantiationDependent = true;
1848       return true;
1849     }
1850 
1851     if (Args[i].getArgument().isInstantiationDependent())
1852       InstantiationDependent = true;
1853   }
1854   return false;
1855 }
1856 
1857 bool TemplateSpecializationType::
anyDependentTemplateArguments(const TemplateArgument * Args,unsigned N,bool & InstantiationDependent)1858 anyDependentTemplateArguments(const TemplateArgument *Args, unsigned N,
1859                               bool &InstantiationDependent) {
1860   for (unsigned i = 0; i != N; ++i) {
1861     if (Args[i].isDependent()) {
1862       InstantiationDependent = true;
1863       return true;
1864     }
1865 
1866     if (Args[i].isInstantiationDependent())
1867       InstantiationDependent = true;
1868   }
1869   return false;
1870 }
1871 
1872 TemplateSpecializationType::
TemplateSpecializationType(TemplateName T,const TemplateArgument * Args,unsigned NumArgs,QualType Canon,QualType AliasedType)1873 TemplateSpecializationType(TemplateName T,
1874                            const TemplateArgument *Args, unsigned NumArgs,
1875                            QualType Canon, QualType AliasedType)
1876   : Type(TemplateSpecialization,
1877          Canon.isNull()? QualType(this, 0) : Canon,
1878          Canon.isNull()? T.isDependent() : Canon->isDependentType(),
1879          Canon.isNull()? T.isDependent()
1880                        : Canon->isInstantiationDependentType(),
1881          false,
1882          T.containsUnexpandedParameterPack()),
1883     Template(T), NumArgs(NumArgs), TypeAlias(!AliasedType.isNull()) {
1884   assert(!T.getAsDependentTemplateName() &&
1885          "Use DependentTemplateSpecializationType for dependent template-name");
1886   assert((T.getKind() == TemplateName::Template ||
1887           T.getKind() == TemplateName::SubstTemplateTemplateParm ||
1888           T.getKind() == TemplateName::SubstTemplateTemplateParmPack) &&
1889          "Unexpected template name for TemplateSpecializationType");
1890   bool InstantiationDependent;
1891   (void)InstantiationDependent;
1892   assert((!Canon.isNull() ||
1893           T.isDependent() ||
1894           anyDependentTemplateArguments(Args, NumArgs,
1895                                         InstantiationDependent)) &&
1896          "No canonical type for non-dependent class template specialization");
1897 
1898   TemplateArgument *TemplateArgs
1899     = reinterpret_cast<TemplateArgument *>(this + 1);
1900   for (unsigned Arg = 0; Arg < NumArgs; ++Arg) {
1901     // Update dependent and variably-modified bits.
1902     // If the canonical type exists and is non-dependent, the template
1903     // specialization type can be non-dependent even if one of the type
1904     // arguments is. Given:
1905     //   template<typename T> using U = int;
1906     // U<T> is always non-dependent, irrespective of the type T.
1907     // However, U<Ts> contains an unexpanded parameter pack, even though
1908     // its expansion (and thus its desugared type) doesn't.
1909     if (Canon.isNull() && Args[Arg].isDependent())
1910       setDependent();
1911     else if (Args[Arg].isInstantiationDependent())
1912       setInstantiationDependent();
1913 
1914     if (Args[Arg].getKind() == TemplateArgument::Type &&
1915         Args[Arg].getAsType()->isVariablyModifiedType())
1916       setVariablyModified();
1917     if (Args[Arg].containsUnexpandedParameterPack())
1918       setContainsUnexpandedParameterPack();
1919 
1920     new (&TemplateArgs[Arg]) TemplateArgument(Args[Arg]);
1921   }
1922 
1923   // Store the aliased type if this is a type alias template specialization.
1924   if (TypeAlias) {
1925     TemplateArgument *Begin = reinterpret_cast<TemplateArgument *>(this + 1);
1926     *reinterpret_cast<QualType*>(Begin + getNumArgs()) = AliasedType;
1927   }
1928 }
1929 
1930 void
Profile(llvm::FoldingSetNodeID & ID,TemplateName T,const TemplateArgument * Args,unsigned NumArgs,const ASTContext & Context)1931 TemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
1932                                     TemplateName T,
1933                                     const TemplateArgument *Args,
1934                                     unsigned NumArgs,
1935                                     const ASTContext &Context) {
1936   T.Profile(ID);
1937   for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
1938     Args[Idx].Profile(ID, Context);
1939 }
1940 
1941 QualType
apply(const ASTContext & Context,QualType QT) const1942 QualifierCollector::apply(const ASTContext &Context, QualType QT) const {
1943   if (!hasNonFastQualifiers())
1944     return QT.withFastQualifiers(getFastQualifiers());
1945 
1946   return Context.getQualifiedType(QT, *this);
1947 }
1948 
1949 QualType
apply(const ASTContext & Context,const Type * T) const1950 QualifierCollector::apply(const ASTContext &Context, const Type *T) const {
1951   if (!hasNonFastQualifiers())
1952     return QualType(T, getFastQualifiers());
1953 
1954   return Context.getQualifiedType(T, *this);
1955 }
1956 
Profile(llvm::FoldingSetNodeID & ID,QualType BaseType,ObjCProtocolDecl * const * Protocols,unsigned NumProtocols)1957 void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID,
1958                                  QualType BaseType,
1959                                  ObjCProtocolDecl * const *Protocols,
1960                                  unsigned NumProtocols) {
1961   ID.AddPointer(BaseType.getAsOpaquePtr());
1962   for (unsigned i = 0; i != NumProtocols; i++)
1963     ID.AddPointer(Protocols[i]);
1964 }
1965 
Profile(llvm::FoldingSetNodeID & ID)1966 void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID) {
1967   Profile(ID, getBaseType(), qual_begin(), getNumProtocols());
1968 }
1969 
1970 namespace {
1971 
1972 /// \brief The cached properties of a type.
1973 class CachedProperties {
1974   NamedDecl::LinkageInfo LV;
1975   bool local;
1976 
1977 public:
CachedProperties(NamedDecl::LinkageInfo LV,bool local)1978   CachedProperties(NamedDecl::LinkageInfo LV, bool local)
1979     : LV(LV), local(local) {}
1980 
getLinkage() const1981   Linkage getLinkage() const { return LV.linkage(); }
getVisibility() const1982   Visibility getVisibility() const { return LV.visibility(); }
isVisibilityExplicit() const1983   bool isVisibilityExplicit() const { return LV.visibilityExplicit(); }
hasLocalOrUnnamedType() const1984   bool hasLocalOrUnnamedType() const { return local; }
1985 
merge(CachedProperties L,CachedProperties R)1986   friend CachedProperties merge(CachedProperties L, CachedProperties R) {
1987     NamedDecl::LinkageInfo MergedLV = L.LV;
1988     MergedLV.merge(R.LV);
1989     return CachedProperties(MergedLV,
1990                          L.hasLocalOrUnnamedType() | R.hasLocalOrUnnamedType());
1991   }
1992 };
1993 }
1994 
1995 static CachedProperties computeCachedProperties(const Type *T);
1996 
1997 namespace clang {
1998 /// The type-property cache.  This is templated so as to be
1999 /// instantiated at an internal type to prevent unnecessary symbol
2000 /// leakage.
2001 template <class Private> class TypePropertyCache {
2002 public:
get(QualType T)2003   static CachedProperties get(QualType T) {
2004     return get(T.getTypePtr());
2005   }
2006 
get(const Type * T)2007   static CachedProperties get(const Type *T) {
2008     ensure(T);
2009     NamedDecl::LinkageInfo LV(T->TypeBits.getLinkage(),
2010                               T->TypeBits.getVisibility(),
2011                               T->TypeBits.isVisibilityExplicit());
2012     return CachedProperties(LV, T->TypeBits.hasLocalOrUnnamedType());
2013   }
2014 
ensure(const Type * T)2015   static void ensure(const Type *T) {
2016     // If the cache is valid, we're okay.
2017     if (T->TypeBits.isCacheValid()) return;
2018 
2019     // If this type is non-canonical, ask its canonical type for the
2020     // relevant information.
2021     if (!T->isCanonicalUnqualified()) {
2022       const Type *CT = T->getCanonicalTypeInternal().getTypePtr();
2023       ensure(CT);
2024       T->TypeBits.CacheValidAndVisibility =
2025         CT->TypeBits.CacheValidAndVisibility;
2026       T->TypeBits.CachedExplicitVisibility =
2027         CT->TypeBits.CachedExplicitVisibility;
2028       T->TypeBits.CachedLinkage = CT->TypeBits.CachedLinkage;
2029       T->TypeBits.CachedLocalOrUnnamed = CT->TypeBits.CachedLocalOrUnnamed;
2030       return;
2031     }
2032 
2033     // Compute the cached properties and then set the cache.
2034     CachedProperties Result = computeCachedProperties(T);
2035     T->TypeBits.CacheValidAndVisibility = Result.getVisibility() + 1U;
2036     T->TypeBits.CachedExplicitVisibility = Result.isVisibilityExplicit();
2037     assert(T->TypeBits.isCacheValid() &&
2038            T->TypeBits.getVisibility() == Result.getVisibility());
2039     T->TypeBits.CachedLinkage = Result.getLinkage();
2040     T->TypeBits.CachedLocalOrUnnamed = Result.hasLocalOrUnnamedType();
2041   }
2042 };
2043 }
2044 
2045 // Instantiate the friend template at a private class.  In a
2046 // reasonable implementation, these symbols will be internal.
2047 // It is terrible that this is the best way to accomplish this.
2048 namespace { class Private {}; }
2049 typedef TypePropertyCache<Private> Cache;
2050 
computeCachedProperties(const Type * T)2051 static CachedProperties computeCachedProperties(const Type *T) {
2052   switch (T->getTypeClass()) {
2053 #define TYPE(Class,Base)
2054 #define NON_CANONICAL_TYPE(Class,Base) case Type::Class:
2055 #include "clang/AST/TypeNodes.def"
2056     llvm_unreachable("didn't expect a non-canonical type here");
2057 
2058 #define TYPE(Class,Base)
2059 #define DEPENDENT_TYPE(Class,Base) case Type::Class:
2060 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class,Base) case Type::Class:
2061 #include "clang/AST/TypeNodes.def"
2062     // Treat instantiation-dependent types as external.
2063     assert(T->isInstantiationDependentType());
2064     return CachedProperties(NamedDecl::LinkageInfo(), false);
2065 
2066   case Type::Builtin:
2067     // C++ [basic.link]p8:
2068     //   A type is said to have linkage if and only if:
2069     //     - it is a fundamental type (3.9.1); or
2070     return CachedProperties(NamedDecl::LinkageInfo(), false);
2071 
2072   case Type::Record:
2073   case Type::Enum: {
2074     const TagDecl *Tag = cast<TagType>(T)->getDecl();
2075 
2076     // C++ [basic.link]p8:
2077     //     - it is a class or enumeration type that is named (or has a name
2078     //       for linkage purposes (7.1.3)) and the name has linkage; or
2079     //     -  it is a specialization of a class template (14); or
2080     NamedDecl::LinkageInfo LV = Tag->getLinkageAndVisibility();
2081     bool IsLocalOrUnnamed =
2082       Tag->getDeclContext()->isFunctionOrMethod() ||
2083       (!Tag->getIdentifier() && !Tag->getTypedefNameForAnonDecl());
2084     return CachedProperties(LV, IsLocalOrUnnamed);
2085   }
2086 
2087     // C++ [basic.link]p8:
2088     //   - it is a compound type (3.9.2) other than a class or enumeration,
2089     //     compounded exclusively from types that have linkage; or
2090   case Type::Complex:
2091     return Cache::get(cast<ComplexType>(T)->getElementType());
2092   case Type::Pointer:
2093     return Cache::get(cast<PointerType>(T)->getPointeeType());
2094   case Type::BlockPointer:
2095     return Cache::get(cast<BlockPointerType>(T)->getPointeeType());
2096   case Type::LValueReference:
2097   case Type::RValueReference:
2098     return Cache::get(cast<ReferenceType>(T)->getPointeeType());
2099   case Type::MemberPointer: {
2100     const MemberPointerType *MPT = cast<MemberPointerType>(T);
2101     return merge(Cache::get(MPT->getClass()),
2102                  Cache::get(MPT->getPointeeType()));
2103   }
2104   case Type::ConstantArray:
2105   case Type::IncompleteArray:
2106   case Type::VariableArray:
2107     return Cache::get(cast<ArrayType>(T)->getElementType());
2108   case Type::Vector:
2109   case Type::ExtVector:
2110     return Cache::get(cast<VectorType>(T)->getElementType());
2111   case Type::FunctionNoProto:
2112     return Cache::get(cast<FunctionType>(T)->getResultType());
2113   case Type::FunctionProto: {
2114     const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
2115     CachedProperties result = Cache::get(FPT->getResultType());
2116     for (FunctionProtoType::arg_type_iterator ai = FPT->arg_type_begin(),
2117            ae = FPT->arg_type_end(); ai != ae; ++ai)
2118       result = merge(result, Cache::get(*ai));
2119     return result;
2120   }
2121   case Type::ObjCInterface: {
2122     NamedDecl::LinkageInfo LV =
2123       cast<ObjCInterfaceType>(T)->getDecl()->getLinkageAndVisibility();
2124     return CachedProperties(LV, false);
2125   }
2126   case Type::ObjCObject:
2127     return Cache::get(cast<ObjCObjectType>(T)->getBaseType());
2128   case Type::ObjCObjectPointer:
2129     return Cache::get(cast<ObjCObjectPointerType>(T)->getPointeeType());
2130   case Type::Atomic:
2131     return Cache::get(cast<AtomicType>(T)->getValueType());
2132   }
2133 
2134   llvm_unreachable("unhandled type class");
2135 }
2136 
2137 /// \brief Determine the linkage of this type.
getLinkage() const2138 Linkage Type::getLinkage() const {
2139   Cache::ensure(this);
2140   return TypeBits.getLinkage();
2141 }
2142 
2143 /// \brief Determine the linkage of this type.
getVisibility() const2144 Visibility Type::getVisibility() const {
2145   Cache::ensure(this);
2146   return TypeBits.getVisibility();
2147 }
2148 
isVisibilityExplicit() const2149 bool Type::isVisibilityExplicit() const {
2150   Cache::ensure(this);
2151   return TypeBits.isVisibilityExplicit();
2152 }
2153 
hasUnnamedOrLocalType() const2154 bool Type::hasUnnamedOrLocalType() const {
2155   Cache::ensure(this);
2156   return TypeBits.hasLocalOrUnnamedType();
2157 }
2158 
getLinkageAndVisibility() const2159 std::pair<Linkage,Visibility> Type::getLinkageAndVisibility() const {
2160   Cache::ensure(this);
2161   return std::make_pair(TypeBits.getLinkage(), TypeBits.getVisibility());
2162 }
2163 
ClearLinkageCache()2164 void Type::ClearLinkageCache() {
2165   TypeBits.CacheValidAndVisibility = 0;
2166   if (QualType(this, 0) != CanonicalType)
2167     CanonicalType->TypeBits.CacheValidAndVisibility = 0;
2168 }
2169 
getObjCARCImplicitLifetime() const2170 Qualifiers::ObjCLifetime Type::getObjCARCImplicitLifetime() const {
2171   if (isObjCARCImplicitlyUnretainedType())
2172     return Qualifiers::OCL_ExplicitNone;
2173   return Qualifiers::OCL_Strong;
2174 }
2175 
isObjCARCImplicitlyUnretainedType() const2176 bool Type::isObjCARCImplicitlyUnretainedType() const {
2177   assert(isObjCLifetimeType() &&
2178          "cannot query implicit lifetime for non-inferrable type");
2179 
2180   const Type *canon = getCanonicalTypeInternal().getTypePtr();
2181 
2182   // Walk down to the base type.  We don't care about qualifiers for this.
2183   while (const ArrayType *array = dyn_cast<ArrayType>(canon))
2184     canon = array->getElementType().getTypePtr();
2185 
2186   if (const ObjCObjectPointerType *opt
2187         = dyn_cast<ObjCObjectPointerType>(canon)) {
2188     // Class and Class<Protocol> don't require retension.
2189     if (opt->getObjectType()->isObjCClass())
2190       return true;
2191   }
2192 
2193   return false;
2194 }
2195 
isObjCNSObjectType() const2196 bool Type::isObjCNSObjectType() const {
2197   if (const TypedefType *typedefType = dyn_cast<TypedefType>(this))
2198     return typedefType->getDecl()->hasAttr<ObjCNSObjectAttr>();
2199   return false;
2200 }
isObjCRetainableType() const2201 bool Type::isObjCRetainableType() const {
2202   return isObjCObjectPointerType() ||
2203          isBlockPointerType() ||
2204          isObjCNSObjectType();
2205 }
isObjCIndirectLifetimeType() const2206 bool Type::isObjCIndirectLifetimeType() const {
2207   if (isObjCLifetimeType())
2208     return true;
2209   if (const PointerType *OPT = getAs<PointerType>())
2210     return OPT->getPointeeType()->isObjCIndirectLifetimeType();
2211   if (const ReferenceType *Ref = getAs<ReferenceType>())
2212     return Ref->getPointeeType()->isObjCIndirectLifetimeType();
2213   if (const MemberPointerType *MemPtr = getAs<MemberPointerType>())
2214     return MemPtr->getPointeeType()->isObjCIndirectLifetimeType();
2215   return false;
2216 }
2217 
2218 /// Returns true if objects of this type have lifetime semantics under
2219 /// ARC.
isObjCLifetimeType() const2220 bool Type::isObjCLifetimeType() const {
2221   const Type *type = this;
2222   while (const ArrayType *array = type->getAsArrayTypeUnsafe())
2223     type = array->getElementType().getTypePtr();
2224   return type->isObjCRetainableType();
2225 }
2226 
2227 /// \brief Determine whether the given type T is a "bridgable" Objective-C type,
2228 /// which is either an Objective-C object pointer type or an
isObjCARCBridgableType() const2229 bool Type::isObjCARCBridgableType() const {
2230   return isObjCObjectPointerType() || isBlockPointerType();
2231 }
2232 
2233 /// \brief Determine whether the given type T is a "bridgeable" C type.
isCARCBridgableType() const2234 bool Type::isCARCBridgableType() const {
2235   const PointerType *Pointer = getAs<PointerType>();
2236   if (!Pointer)
2237     return false;
2238 
2239   QualType Pointee = Pointer->getPointeeType();
2240   return Pointee->isVoidType() || Pointee->isRecordType();
2241 }
2242 
hasSizedVLAType() const2243 bool Type::hasSizedVLAType() const {
2244   if (!isVariablyModifiedType()) return false;
2245 
2246   if (const PointerType *ptr = getAs<PointerType>())
2247     return ptr->getPointeeType()->hasSizedVLAType();
2248   if (const ReferenceType *ref = getAs<ReferenceType>())
2249     return ref->getPointeeType()->hasSizedVLAType();
2250   if (const ArrayType *arr = getAsArrayTypeUnsafe()) {
2251     if (isa<VariableArrayType>(arr) &&
2252         cast<VariableArrayType>(arr)->getSizeExpr())
2253       return true;
2254 
2255     return arr->getElementType()->hasSizedVLAType();
2256   }
2257 
2258   return false;
2259 }
2260 
isDestructedTypeImpl(QualType type)2261 QualType::DestructionKind QualType::isDestructedTypeImpl(QualType type) {
2262   switch (type.getObjCLifetime()) {
2263   case Qualifiers::OCL_None:
2264   case Qualifiers::OCL_ExplicitNone:
2265   case Qualifiers::OCL_Autoreleasing:
2266     break;
2267 
2268   case Qualifiers::OCL_Strong:
2269     return DK_objc_strong_lifetime;
2270   case Qualifiers::OCL_Weak:
2271     return DK_objc_weak_lifetime;
2272   }
2273 
2274   /// Currently, the only destruction kind we recognize is C++ objects
2275   /// with non-trivial destructors.
2276   const CXXRecordDecl *record =
2277     type->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2278   if (record && record->hasDefinition() && !record->hasTrivialDestructor())
2279     return DK_cxx_destructor;
2280 
2281   return DK_none;
2282 }
2283 
hasTrivialAssignment(ASTContext & Context,bool Copying) const2284 bool QualType::hasTrivialAssignment(ASTContext &Context, bool Copying) const {
2285   switch (getObjCLifetime()) {
2286   case Qualifiers::OCL_None:
2287     break;
2288 
2289   case Qualifiers::OCL_ExplicitNone:
2290     return true;
2291 
2292   case Qualifiers::OCL_Autoreleasing:
2293   case Qualifiers::OCL_Strong:
2294   case Qualifiers::OCL_Weak:
2295     return !Context.getLangOpts().ObjCAutoRefCount;
2296   }
2297 
2298   if (const CXXRecordDecl *Record
2299             = getTypePtr()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl())
2300     return Copying ? Record->hasTrivialCopyAssignment() :
2301                      Record->hasTrivialMoveAssignment();
2302 
2303   return true;
2304 }
2305