1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Stmt nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CGDebugInfo.h"
15 #include "CodeGenModule.h"
16 #include "CodeGenFunction.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/StmtVisitor.h"
19 #include "clang/Basic/PrettyStackTrace.h"
20 #include "clang/Basic/TargetInfo.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/InlineAsm.h"
23 #include "llvm/Intrinsics.h"
24 #include "llvm/Target/TargetData.h"
25 using namespace clang;
26 using namespace CodeGen;
27
28 //===----------------------------------------------------------------------===//
29 // Statement Emission
30 //===----------------------------------------------------------------------===//
31
EmitStopPoint(const Stmt * S)32 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
33 if (CGDebugInfo *DI = getDebugInfo()) {
34 SourceLocation Loc;
35 if (isa<DeclStmt>(S))
36 Loc = S->getLocEnd();
37 else
38 Loc = S->getLocStart();
39 DI->EmitLocation(Builder, Loc);
40 }
41 }
42
EmitStmt(const Stmt * S)43 void CodeGenFunction::EmitStmt(const Stmt *S) {
44 assert(S && "Null statement?");
45
46 // These statements have their own debug info handling.
47 if (EmitSimpleStmt(S))
48 return;
49
50 // Check if we are generating unreachable code.
51 if (!HaveInsertPoint()) {
52 // If so, and the statement doesn't contain a label, then we do not need to
53 // generate actual code. This is safe because (1) the current point is
54 // unreachable, so we don't need to execute the code, and (2) we've already
55 // handled the statements which update internal data structures (like the
56 // local variable map) which could be used by subsequent statements.
57 if (!ContainsLabel(S)) {
58 // Verify that any decl statements were handled as simple, they may be in
59 // scope of subsequent reachable statements.
60 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
61 return;
62 }
63
64 // Otherwise, make a new block to hold the code.
65 EnsureInsertPoint();
66 }
67
68 // Generate a stoppoint if we are emitting debug info.
69 EmitStopPoint(S);
70
71 switch (S->getStmtClass()) {
72 case Stmt::NoStmtClass:
73 case Stmt::CXXCatchStmtClass:
74 case Stmt::SEHExceptStmtClass:
75 case Stmt::SEHFinallyStmtClass:
76 case Stmt::MSDependentExistsStmtClass:
77 llvm_unreachable("invalid statement class to emit generically");
78 case Stmt::NullStmtClass:
79 case Stmt::CompoundStmtClass:
80 case Stmt::DeclStmtClass:
81 case Stmt::LabelStmtClass:
82 case Stmt::AttributedStmtClass:
83 case Stmt::GotoStmtClass:
84 case Stmt::BreakStmtClass:
85 case Stmt::ContinueStmtClass:
86 case Stmt::DefaultStmtClass:
87 case Stmt::CaseStmtClass:
88 llvm_unreachable("should have emitted these statements as simple");
89
90 #define STMT(Type, Base)
91 #define ABSTRACT_STMT(Op)
92 #define EXPR(Type, Base) \
93 case Stmt::Type##Class:
94 #include "clang/AST/StmtNodes.inc"
95 {
96 // Remember the block we came in on.
97 llvm::BasicBlock *incoming = Builder.GetInsertBlock();
98 assert(incoming && "expression emission must have an insertion point");
99
100 EmitIgnoredExpr(cast<Expr>(S));
101
102 llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
103 assert(outgoing && "expression emission cleared block!");
104
105 // The expression emitters assume (reasonably!) that the insertion
106 // point is always set. To maintain that, the call-emission code
107 // for noreturn functions has to enter a new block with no
108 // predecessors. We want to kill that block and mark the current
109 // insertion point unreachable in the common case of a call like
110 // "exit();". Since expression emission doesn't otherwise create
111 // blocks with no predecessors, we can just test for that.
112 // However, we must be careful not to do this to our incoming
113 // block, because *statement* emission does sometimes create
114 // reachable blocks which will have no predecessors until later in
115 // the function. This occurs with, e.g., labels that are not
116 // reachable by fallthrough.
117 if (incoming != outgoing && outgoing->use_empty()) {
118 outgoing->eraseFromParent();
119 Builder.ClearInsertionPoint();
120 }
121 break;
122 }
123
124 case Stmt::IndirectGotoStmtClass:
125 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
126
127 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break;
128 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S)); break;
129 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S)); break;
130 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S)); break;
131
132 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break;
133
134 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break;
135 case Stmt::GCCAsmStmtClass: // Intentional fall-through.
136 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break;
137
138 case Stmt::ObjCAtTryStmtClass:
139 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
140 break;
141 case Stmt::ObjCAtCatchStmtClass:
142 llvm_unreachable(
143 "@catch statements should be handled by EmitObjCAtTryStmt");
144 case Stmt::ObjCAtFinallyStmtClass:
145 llvm_unreachable(
146 "@finally statements should be handled by EmitObjCAtTryStmt");
147 case Stmt::ObjCAtThrowStmtClass:
148 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
149 break;
150 case Stmt::ObjCAtSynchronizedStmtClass:
151 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
152 break;
153 case Stmt::ObjCForCollectionStmtClass:
154 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
155 break;
156 case Stmt::ObjCAutoreleasePoolStmtClass:
157 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
158 break;
159
160 case Stmt::CXXTryStmtClass:
161 EmitCXXTryStmt(cast<CXXTryStmt>(*S));
162 break;
163 case Stmt::CXXForRangeStmtClass:
164 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S));
165 case Stmt::SEHTryStmtClass:
166 // FIXME Not yet implemented
167 break;
168 }
169 }
170
EmitSimpleStmt(const Stmt * S)171 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
172 switch (S->getStmtClass()) {
173 default: return false;
174 case Stmt::NullStmtClass: break;
175 case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
176 case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break;
177 case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break;
178 case Stmt::AttributedStmtClass:
179 EmitAttributedStmt(cast<AttributedStmt>(*S)); break;
180 case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break;
181 case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break;
182 case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
183 case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break;
184 case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break;
185 }
186
187 return true;
188 }
189
190 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true,
191 /// this captures the expression result of the last sub-statement and returns it
192 /// (for use by the statement expression extension).
EmitCompoundStmt(const CompoundStmt & S,bool GetLast,AggValueSlot AggSlot)193 RValue CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
194 AggValueSlot AggSlot) {
195 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
196 "LLVM IR generation of compound statement ('{}')");
197
198 // Keep track of the current cleanup stack depth, including debug scopes.
199 LexicalScope Scope(*this, S.getSourceRange());
200
201 for (CompoundStmt::const_body_iterator I = S.body_begin(),
202 E = S.body_end()-GetLast; I != E; ++I)
203 EmitStmt(*I);
204
205 RValue RV;
206 if (!GetLast)
207 RV = RValue::get(0);
208 else {
209 // We have to special case labels here. They are statements, but when put
210 // at the end of a statement expression, they yield the value of their
211 // subexpression. Handle this by walking through all labels we encounter,
212 // emitting them before we evaluate the subexpr.
213 const Stmt *LastStmt = S.body_back();
214 while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
215 EmitLabel(LS->getDecl());
216 LastStmt = LS->getSubStmt();
217 }
218
219 EnsureInsertPoint();
220
221 RV = EmitAnyExpr(cast<Expr>(LastStmt), AggSlot);
222 }
223
224 return RV;
225 }
226
SimplifyForwardingBlocks(llvm::BasicBlock * BB)227 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
228 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
229
230 // If there is a cleanup stack, then we it isn't worth trying to
231 // simplify this block (we would need to remove it from the scope map
232 // and cleanup entry).
233 if (!EHStack.empty())
234 return;
235
236 // Can only simplify direct branches.
237 if (!BI || !BI->isUnconditional())
238 return;
239
240 BB->replaceAllUsesWith(BI->getSuccessor(0));
241 BI->eraseFromParent();
242 BB->eraseFromParent();
243 }
244
EmitBlock(llvm::BasicBlock * BB,bool IsFinished)245 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
246 llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
247
248 // Fall out of the current block (if necessary).
249 EmitBranch(BB);
250
251 if (IsFinished && BB->use_empty()) {
252 delete BB;
253 return;
254 }
255
256 // Place the block after the current block, if possible, or else at
257 // the end of the function.
258 if (CurBB && CurBB->getParent())
259 CurFn->getBasicBlockList().insertAfter(CurBB, BB);
260 else
261 CurFn->getBasicBlockList().push_back(BB);
262 Builder.SetInsertPoint(BB);
263 }
264
EmitBranch(llvm::BasicBlock * Target)265 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
266 // Emit a branch from the current block to the target one if this
267 // was a real block. If this was just a fall-through block after a
268 // terminator, don't emit it.
269 llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
270
271 if (!CurBB || CurBB->getTerminator()) {
272 // If there is no insert point or the previous block is already
273 // terminated, don't touch it.
274 } else {
275 // Otherwise, create a fall-through branch.
276 Builder.CreateBr(Target);
277 }
278
279 Builder.ClearInsertionPoint();
280 }
281
EmitBlockAfterUses(llvm::BasicBlock * block)282 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
283 bool inserted = false;
284 for (llvm::BasicBlock::use_iterator
285 i = block->use_begin(), e = block->use_end(); i != e; ++i) {
286 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(*i)) {
287 CurFn->getBasicBlockList().insertAfter(insn->getParent(), block);
288 inserted = true;
289 break;
290 }
291 }
292
293 if (!inserted)
294 CurFn->getBasicBlockList().push_back(block);
295
296 Builder.SetInsertPoint(block);
297 }
298
299 CodeGenFunction::JumpDest
getJumpDestForLabel(const LabelDecl * D)300 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
301 JumpDest &Dest = LabelMap[D];
302 if (Dest.isValid()) return Dest;
303
304 // Create, but don't insert, the new block.
305 Dest = JumpDest(createBasicBlock(D->getName()),
306 EHScopeStack::stable_iterator::invalid(),
307 NextCleanupDestIndex++);
308 return Dest;
309 }
310
EmitLabel(const LabelDecl * D)311 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
312 JumpDest &Dest = LabelMap[D];
313
314 // If we didn't need a forward reference to this label, just go
315 // ahead and create a destination at the current scope.
316 if (!Dest.isValid()) {
317 Dest = getJumpDestInCurrentScope(D->getName());
318
319 // Otherwise, we need to give this label a target depth and remove
320 // it from the branch-fixups list.
321 } else {
322 assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
323 Dest = JumpDest(Dest.getBlock(),
324 EHStack.stable_begin(),
325 Dest.getDestIndex());
326
327 ResolveBranchFixups(Dest.getBlock());
328 }
329
330 EmitBlock(Dest.getBlock());
331 }
332
333
EmitLabelStmt(const LabelStmt & S)334 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
335 EmitLabel(S.getDecl());
336 EmitStmt(S.getSubStmt());
337 }
338
EmitAttributedStmt(const AttributedStmt & S)339 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
340 EmitStmt(S.getSubStmt());
341 }
342
EmitGotoStmt(const GotoStmt & S)343 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
344 // If this code is reachable then emit a stop point (if generating
345 // debug info). We have to do this ourselves because we are on the
346 // "simple" statement path.
347 if (HaveInsertPoint())
348 EmitStopPoint(&S);
349
350 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
351 }
352
353
EmitIndirectGotoStmt(const IndirectGotoStmt & S)354 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
355 if (const LabelDecl *Target = S.getConstantTarget()) {
356 EmitBranchThroughCleanup(getJumpDestForLabel(Target));
357 return;
358 }
359
360 // Ensure that we have an i8* for our PHI node.
361 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
362 Int8PtrTy, "addr");
363 llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
364
365 // Get the basic block for the indirect goto.
366 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
367
368 // The first instruction in the block has to be the PHI for the switch dest,
369 // add an entry for this branch.
370 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
371
372 EmitBranch(IndGotoBB);
373 }
374
EmitIfStmt(const IfStmt & S)375 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
376 // C99 6.8.4.1: The first substatement is executed if the expression compares
377 // unequal to 0. The condition must be a scalar type.
378 RunCleanupsScope ConditionScope(*this);
379
380 if (S.getConditionVariable())
381 EmitAutoVarDecl(*S.getConditionVariable());
382
383 // If the condition constant folds and can be elided, try to avoid emitting
384 // the condition and the dead arm of the if/else.
385 bool CondConstant;
386 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) {
387 // Figure out which block (then or else) is executed.
388 const Stmt *Executed = S.getThen();
389 const Stmt *Skipped = S.getElse();
390 if (!CondConstant) // Condition false?
391 std::swap(Executed, Skipped);
392
393 // If the skipped block has no labels in it, just emit the executed block.
394 // This avoids emitting dead code and simplifies the CFG substantially.
395 if (!ContainsLabel(Skipped)) {
396 if (Executed) {
397 RunCleanupsScope ExecutedScope(*this);
398 EmitStmt(Executed);
399 }
400 return;
401 }
402 }
403
404 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit
405 // the conditional branch.
406 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
407 llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
408 llvm::BasicBlock *ElseBlock = ContBlock;
409 if (S.getElse())
410 ElseBlock = createBasicBlock("if.else");
411 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock);
412
413 // Emit the 'then' code.
414 EmitBlock(ThenBlock);
415 {
416 RunCleanupsScope ThenScope(*this);
417 EmitStmt(S.getThen());
418 }
419 EmitBranch(ContBlock);
420
421 // Emit the 'else' code if present.
422 if (const Stmt *Else = S.getElse()) {
423 // There is no need to emit line number for unconditional branch.
424 if (getDebugInfo())
425 Builder.SetCurrentDebugLocation(llvm::DebugLoc());
426 EmitBlock(ElseBlock);
427 {
428 RunCleanupsScope ElseScope(*this);
429 EmitStmt(Else);
430 }
431 // There is no need to emit line number for unconditional branch.
432 if (getDebugInfo())
433 Builder.SetCurrentDebugLocation(llvm::DebugLoc());
434 EmitBranch(ContBlock);
435 }
436
437 // Emit the continuation block for code after the if.
438 EmitBlock(ContBlock, true);
439 }
440
EmitWhileStmt(const WhileStmt & S)441 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) {
442 // Emit the header for the loop, which will also become
443 // the continue target.
444 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
445 EmitBlock(LoopHeader.getBlock());
446
447 // Create an exit block for when the condition fails, which will
448 // also become the break target.
449 JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
450
451 // Store the blocks to use for break and continue.
452 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
453
454 // C++ [stmt.while]p2:
455 // When the condition of a while statement is a declaration, the
456 // scope of the variable that is declared extends from its point
457 // of declaration (3.3.2) to the end of the while statement.
458 // [...]
459 // The object created in a condition is destroyed and created
460 // with each iteration of the loop.
461 RunCleanupsScope ConditionScope(*this);
462
463 if (S.getConditionVariable())
464 EmitAutoVarDecl(*S.getConditionVariable());
465
466 // Evaluate the conditional in the while header. C99 6.8.5.1: The
467 // evaluation of the controlling expression takes place before each
468 // execution of the loop body.
469 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
470
471 // while(1) is common, avoid extra exit blocks. Be sure
472 // to correctly handle break/continue though.
473 bool EmitBoolCondBranch = true;
474 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
475 if (C->isOne())
476 EmitBoolCondBranch = false;
477
478 // As long as the condition is true, go to the loop body.
479 llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
480 if (EmitBoolCondBranch) {
481 llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
482 if (ConditionScope.requiresCleanups())
483 ExitBlock = createBasicBlock("while.exit");
484
485 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
486
487 if (ExitBlock != LoopExit.getBlock()) {
488 EmitBlock(ExitBlock);
489 EmitBranchThroughCleanup(LoopExit);
490 }
491 }
492
493 // Emit the loop body. We have to emit this in a cleanup scope
494 // because it might be a singleton DeclStmt.
495 {
496 RunCleanupsScope BodyScope(*this);
497 EmitBlock(LoopBody);
498 EmitStmt(S.getBody());
499 }
500
501 BreakContinueStack.pop_back();
502
503 // Immediately force cleanup.
504 ConditionScope.ForceCleanup();
505
506 // Branch to the loop header again.
507 EmitBranch(LoopHeader.getBlock());
508
509 // Emit the exit block.
510 EmitBlock(LoopExit.getBlock(), true);
511
512 // The LoopHeader typically is just a branch if we skipped emitting
513 // a branch, try to erase it.
514 if (!EmitBoolCondBranch)
515 SimplifyForwardingBlocks(LoopHeader.getBlock());
516 }
517
EmitDoStmt(const DoStmt & S)518 void CodeGenFunction::EmitDoStmt(const DoStmt &S) {
519 JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
520 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
521
522 // Store the blocks to use for break and continue.
523 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
524
525 // Emit the body of the loop.
526 llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
527 EmitBlock(LoopBody);
528 {
529 RunCleanupsScope BodyScope(*this);
530 EmitStmt(S.getBody());
531 }
532
533 BreakContinueStack.pop_back();
534
535 EmitBlock(LoopCond.getBlock());
536
537 // C99 6.8.5.2: "The evaluation of the controlling expression takes place
538 // after each execution of the loop body."
539
540 // Evaluate the conditional in the while header.
541 // C99 6.8.5p2/p4: The first substatement is executed if the expression
542 // compares unequal to 0. The condition must be a scalar type.
543 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
544
545 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure
546 // to correctly handle break/continue though.
547 bool EmitBoolCondBranch = true;
548 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
549 if (C->isZero())
550 EmitBoolCondBranch = false;
551
552 // As long as the condition is true, iterate the loop.
553 if (EmitBoolCondBranch)
554 Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock());
555
556 // Emit the exit block.
557 EmitBlock(LoopExit.getBlock());
558
559 // The DoCond block typically is just a branch if we skipped
560 // emitting a branch, try to erase it.
561 if (!EmitBoolCondBranch)
562 SimplifyForwardingBlocks(LoopCond.getBlock());
563 }
564
EmitForStmt(const ForStmt & S)565 void CodeGenFunction::EmitForStmt(const ForStmt &S) {
566 JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
567
568 RunCleanupsScope ForScope(*this);
569
570 CGDebugInfo *DI = getDebugInfo();
571 if (DI)
572 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
573
574 // Evaluate the first part before the loop.
575 if (S.getInit())
576 EmitStmt(S.getInit());
577
578 // Start the loop with a block that tests the condition.
579 // If there's an increment, the continue scope will be overwritten
580 // later.
581 JumpDest Continue = getJumpDestInCurrentScope("for.cond");
582 llvm::BasicBlock *CondBlock = Continue.getBlock();
583 EmitBlock(CondBlock);
584
585 // Create a cleanup scope for the condition variable cleanups.
586 RunCleanupsScope ConditionScope(*this);
587
588 llvm::Value *BoolCondVal = 0;
589 if (S.getCond()) {
590 // If the for statement has a condition scope, emit the local variable
591 // declaration.
592 llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
593 if (S.getConditionVariable()) {
594 EmitAutoVarDecl(*S.getConditionVariable());
595 }
596
597 // If there are any cleanups between here and the loop-exit scope,
598 // create a block to stage a loop exit along.
599 if (ForScope.requiresCleanups())
600 ExitBlock = createBasicBlock("for.cond.cleanup");
601
602 // As long as the condition is true, iterate the loop.
603 llvm::BasicBlock *ForBody = createBasicBlock("for.body");
604
605 // C99 6.8.5p2/p4: The first substatement is executed if the expression
606 // compares unequal to 0. The condition must be a scalar type.
607 BoolCondVal = EvaluateExprAsBool(S.getCond());
608 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock);
609
610 if (ExitBlock != LoopExit.getBlock()) {
611 EmitBlock(ExitBlock);
612 EmitBranchThroughCleanup(LoopExit);
613 }
614
615 EmitBlock(ForBody);
616 } else {
617 // Treat it as a non-zero constant. Don't even create a new block for the
618 // body, just fall into it.
619 }
620
621 // If the for loop doesn't have an increment we can just use the
622 // condition as the continue block. Otherwise we'll need to create
623 // a block for it (in the current scope, i.e. in the scope of the
624 // condition), and that we will become our continue block.
625 if (S.getInc())
626 Continue = getJumpDestInCurrentScope("for.inc");
627
628 // Store the blocks to use for break and continue.
629 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
630
631 {
632 // Create a separate cleanup scope for the body, in case it is not
633 // a compound statement.
634 RunCleanupsScope BodyScope(*this);
635 EmitStmt(S.getBody());
636 }
637
638 // If there is an increment, emit it next.
639 if (S.getInc()) {
640 EmitBlock(Continue.getBlock());
641 EmitStmt(S.getInc());
642 }
643
644 BreakContinueStack.pop_back();
645
646 ConditionScope.ForceCleanup();
647 EmitBranch(CondBlock);
648
649 ForScope.ForceCleanup();
650
651 if (DI)
652 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
653
654 // Emit the fall-through block.
655 EmitBlock(LoopExit.getBlock(), true);
656 }
657
EmitCXXForRangeStmt(const CXXForRangeStmt & S)658 void CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S) {
659 JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
660
661 RunCleanupsScope ForScope(*this);
662
663 CGDebugInfo *DI = getDebugInfo();
664 if (DI)
665 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
666
667 // Evaluate the first pieces before the loop.
668 EmitStmt(S.getRangeStmt());
669 EmitStmt(S.getBeginEndStmt());
670
671 // Start the loop with a block that tests the condition.
672 // If there's an increment, the continue scope will be overwritten
673 // later.
674 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
675 EmitBlock(CondBlock);
676
677 // If there are any cleanups between here and the loop-exit scope,
678 // create a block to stage a loop exit along.
679 llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
680 if (ForScope.requiresCleanups())
681 ExitBlock = createBasicBlock("for.cond.cleanup");
682
683 // The loop body, consisting of the specified body and the loop variable.
684 llvm::BasicBlock *ForBody = createBasicBlock("for.body");
685
686 // The body is executed if the expression, contextually converted
687 // to bool, is true.
688 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
689 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock);
690
691 if (ExitBlock != LoopExit.getBlock()) {
692 EmitBlock(ExitBlock);
693 EmitBranchThroughCleanup(LoopExit);
694 }
695
696 EmitBlock(ForBody);
697
698 // Create a block for the increment. In case of a 'continue', we jump there.
699 JumpDest Continue = getJumpDestInCurrentScope("for.inc");
700
701 // Store the blocks to use for break and continue.
702 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
703
704 {
705 // Create a separate cleanup scope for the loop variable and body.
706 RunCleanupsScope BodyScope(*this);
707 EmitStmt(S.getLoopVarStmt());
708 EmitStmt(S.getBody());
709 }
710
711 // If there is an increment, emit it next.
712 EmitBlock(Continue.getBlock());
713 EmitStmt(S.getInc());
714
715 BreakContinueStack.pop_back();
716
717 EmitBranch(CondBlock);
718
719 ForScope.ForceCleanup();
720
721 if (DI)
722 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
723
724 // Emit the fall-through block.
725 EmitBlock(LoopExit.getBlock(), true);
726 }
727
EmitReturnOfRValue(RValue RV,QualType Ty)728 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
729 if (RV.isScalar()) {
730 Builder.CreateStore(RV.getScalarVal(), ReturnValue);
731 } else if (RV.isAggregate()) {
732 EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty);
733 } else {
734 StoreComplexToAddr(RV.getComplexVal(), ReturnValue, false);
735 }
736 EmitBranchThroughCleanup(ReturnBlock);
737 }
738
739 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
740 /// if the function returns void, or may be missing one if the function returns
741 /// non-void. Fun stuff :).
EmitReturnStmt(const ReturnStmt & S)742 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
743 // Emit the result value, even if unused, to evalute the side effects.
744 const Expr *RV = S.getRetValue();
745
746 // FIXME: Clean this up by using an LValue for ReturnTemp,
747 // EmitStoreThroughLValue, and EmitAnyExpr.
748 if (S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable() &&
749 !Target.useGlobalsForAutomaticVariables()) {
750 // Apply the named return value optimization for this return statement,
751 // which means doing nothing: the appropriate result has already been
752 // constructed into the NRVO variable.
753
754 // If there is an NRVO flag for this variable, set it to 1 into indicate
755 // that the cleanup code should not destroy the variable.
756 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
757 Builder.CreateStore(Builder.getTrue(), NRVOFlag);
758 } else if (!ReturnValue) {
759 // Make sure not to return anything, but evaluate the expression
760 // for side effects.
761 if (RV)
762 EmitAnyExpr(RV);
763 } else if (RV == 0) {
764 // Do nothing (return value is left uninitialized)
765 } else if (FnRetTy->isReferenceType()) {
766 // If this function returns a reference, take the address of the expression
767 // rather than the value.
768 RValue Result = EmitReferenceBindingToExpr(RV, /*InitializedDecl=*/0);
769 Builder.CreateStore(Result.getScalarVal(), ReturnValue);
770 } else if (!hasAggregateLLVMType(RV->getType())) {
771 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
772 } else if (RV->getType()->isAnyComplexType()) {
773 EmitComplexExprIntoAddr(RV, ReturnValue, false);
774 } else {
775 CharUnits Alignment = getContext().getTypeAlignInChars(RV->getType());
776 EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Alignment, Qualifiers(),
777 AggValueSlot::IsDestructed,
778 AggValueSlot::DoesNotNeedGCBarriers,
779 AggValueSlot::IsNotAliased));
780 }
781
782 EmitBranchThroughCleanup(ReturnBlock);
783 }
784
EmitDeclStmt(const DeclStmt & S)785 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
786 // As long as debug info is modeled with instructions, we have to ensure we
787 // have a place to insert here and write the stop point here.
788 if (HaveInsertPoint())
789 EmitStopPoint(&S);
790
791 for (DeclStmt::const_decl_iterator I = S.decl_begin(), E = S.decl_end();
792 I != E; ++I)
793 EmitDecl(**I);
794 }
795
EmitBreakStmt(const BreakStmt & S)796 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
797 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
798
799 // If this code is reachable then emit a stop point (if generating
800 // debug info). We have to do this ourselves because we are on the
801 // "simple" statement path.
802 if (HaveInsertPoint())
803 EmitStopPoint(&S);
804
805 JumpDest Block = BreakContinueStack.back().BreakBlock;
806 EmitBranchThroughCleanup(Block);
807 }
808
EmitContinueStmt(const ContinueStmt & S)809 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
810 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
811
812 // If this code is reachable then emit a stop point (if generating
813 // debug info). We have to do this ourselves because we are on the
814 // "simple" statement path.
815 if (HaveInsertPoint())
816 EmitStopPoint(&S);
817
818 JumpDest Block = BreakContinueStack.back().ContinueBlock;
819 EmitBranchThroughCleanup(Block);
820 }
821
822 /// EmitCaseStmtRange - If case statement range is not too big then
823 /// add multiple cases to switch instruction, one for each value within
824 /// the range. If range is too big then emit "if" condition check.
EmitCaseStmtRange(const CaseStmt & S)825 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
826 assert(S.getRHS() && "Expected RHS value in CaseStmt");
827
828 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
829 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
830
831 // Emit the code for this case. We do this first to make sure it is
832 // properly chained from our predecessor before generating the
833 // switch machinery to enter this block.
834 EmitBlock(createBasicBlock("sw.bb"));
835 llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
836 EmitStmt(S.getSubStmt());
837
838 // If range is empty, do nothing.
839 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
840 return;
841
842 llvm::APInt Range = RHS - LHS;
843 // FIXME: parameters such as this should not be hardcoded.
844 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
845 // Range is small enough to add multiple switch instruction cases.
846 for (unsigned i = 0, e = Range.getZExtValue() + 1; i != e; ++i) {
847 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
848 LHS++;
849 }
850 return;
851 }
852
853 // The range is too big. Emit "if" condition into a new block,
854 // making sure to save and restore the current insertion point.
855 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
856
857 // Push this test onto the chain of range checks (which terminates
858 // in the default basic block). The switch's default will be changed
859 // to the top of this chain after switch emission is complete.
860 llvm::BasicBlock *FalseDest = CaseRangeBlock;
861 CaseRangeBlock = createBasicBlock("sw.caserange");
862
863 CurFn->getBasicBlockList().push_back(CaseRangeBlock);
864 Builder.SetInsertPoint(CaseRangeBlock);
865
866 // Emit range check.
867 llvm::Value *Diff =
868 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
869 llvm::Value *Cond =
870 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
871 Builder.CreateCondBr(Cond, CaseDest, FalseDest);
872
873 // Restore the appropriate insertion point.
874 if (RestoreBB)
875 Builder.SetInsertPoint(RestoreBB);
876 else
877 Builder.ClearInsertionPoint();
878 }
879
EmitCaseStmt(const CaseStmt & S)880 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
881 // If there is no enclosing switch instance that we're aware of, then this
882 // case statement and its block can be elided. This situation only happens
883 // when we've constant-folded the switch, are emitting the constant case,
884 // and part of the constant case includes another case statement. For
885 // instance: switch (4) { case 4: do { case 5: } while (1); }
886 if (!SwitchInsn) {
887 EmitStmt(S.getSubStmt());
888 return;
889 }
890
891 // Handle case ranges.
892 if (S.getRHS()) {
893 EmitCaseStmtRange(S);
894 return;
895 }
896
897 llvm::ConstantInt *CaseVal =
898 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
899
900 // If the body of the case is just a 'break', and if there was no fallthrough,
901 // try to not emit an empty block.
902 if ((CGM.getCodeGenOpts().OptimizationLevel > 0) &&
903 isa<BreakStmt>(S.getSubStmt())) {
904 JumpDest Block = BreakContinueStack.back().BreakBlock;
905
906 // Only do this optimization if there are no cleanups that need emitting.
907 if (isObviouslyBranchWithoutCleanups(Block)) {
908 SwitchInsn->addCase(CaseVal, Block.getBlock());
909
910 // If there was a fallthrough into this case, make sure to redirect it to
911 // the end of the switch as well.
912 if (Builder.GetInsertBlock()) {
913 Builder.CreateBr(Block.getBlock());
914 Builder.ClearInsertionPoint();
915 }
916 return;
917 }
918 }
919
920 EmitBlock(createBasicBlock("sw.bb"));
921 llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
922 SwitchInsn->addCase(CaseVal, CaseDest);
923
924 // Recursively emitting the statement is acceptable, but is not wonderful for
925 // code where we have many case statements nested together, i.e.:
926 // case 1:
927 // case 2:
928 // case 3: etc.
929 // Handling this recursively will create a new block for each case statement
930 // that falls through to the next case which is IR intensive. It also causes
931 // deep recursion which can run into stack depth limitations. Handle
932 // sequential non-range case statements specially.
933 const CaseStmt *CurCase = &S;
934 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
935
936 // Otherwise, iteratively add consecutive cases to this switch stmt.
937 while (NextCase && NextCase->getRHS() == 0) {
938 CurCase = NextCase;
939 llvm::ConstantInt *CaseVal =
940 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
941 SwitchInsn->addCase(CaseVal, CaseDest);
942 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
943 }
944
945 // Normal default recursion for non-cases.
946 EmitStmt(CurCase->getSubStmt());
947 }
948
EmitDefaultStmt(const DefaultStmt & S)949 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
950 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
951 assert(DefaultBlock->empty() &&
952 "EmitDefaultStmt: Default block already defined?");
953 EmitBlock(DefaultBlock);
954 EmitStmt(S.getSubStmt());
955 }
956
957 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
958 /// constant value that is being switched on, see if we can dead code eliminate
959 /// the body of the switch to a simple series of statements to emit. Basically,
960 /// on a switch (5) we want to find these statements:
961 /// case 5:
962 /// printf(...); <--
963 /// ++i; <--
964 /// break;
965 ///
966 /// and add them to the ResultStmts vector. If it is unsafe to do this
967 /// transformation (for example, one of the elided statements contains a label
968 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S'
969 /// should include statements after it (e.g. the printf() line is a substmt of
970 /// the case) then return CSFC_FallThrough. If we handled it and found a break
971 /// statement, then return CSFC_Success.
972 ///
973 /// If Case is non-null, then we are looking for the specified case, checking
974 /// that nothing we jump over contains labels. If Case is null, then we found
975 /// the case and are looking for the break.
976 ///
977 /// If the recursive walk actually finds our Case, then we set FoundCase to
978 /// true.
979 ///
980 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
CollectStatementsForCase(const Stmt * S,const SwitchCase * Case,bool & FoundCase,SmallVectorImpl<const Stmt * > & ResultStmts)981 static CSFC_Result CollectStatementsForCase(const Stmt *S,
982 const SwitchCase *Case,
983 bool &FoundCase,
984 SmallVectorImpl<const Stmt*> &ResultStmts) {
985 // If this is a null statement, just succeed.
986 if (S == 0)
987 return Case ? CSFC_Success : CSFC_FallThrough;
988
989 // If this is the switchcase (case 4: or default) that we're looking for, then
990 // we're in business. Just add the substatement.
991 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
992 if (S == Case) {
993 FoundCase = true;
994 return CollectStatementsForCase(SC->getSubStmt(), 0, FoundCase,
995 ResultStmts);
996 }
997
998 // Otherwise, this is some other case or default statement, just ignore it.
999 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1000 ResultStmts);
1001 }
1002
1003 // If we are in the live part of the code and we found our break statement,
1004 // return a success!
1005 if (Case == 0 && isa<BreakStmt>(S))
1006 return CSFC_Success;
1007
1008 // If this is a switch statement, then it might contain the SwitchCase, the
1009 // break, or neither.
1010 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1011 // Handle this as two cases: we might be looking for the SwitchCase (if so
1012 // the skipped statements must be skippable) or we might already have it.
1013 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1014 if (Case) {
1015 // Keep track of whether we see a skipped declaration. The code could be
1016 // using the declaration even if it is skipped, so we can't optimize out
1017 // the decl if the kept statements might refer to it.
1018 bool HadSkippedDecl = false;
1019
1020 // If we're looking for the case, just see if we can skip each of the
1021 // substatements.
1022 for (; Case && I != E; ++I) {
1023 HadSkippedDecl |= isa<DeclStmt>(*I);
1024
1025 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1026 case CSFC_Failure: return CSFC_Failure;
1027 case CSFC_Success:
1028 // A successful result means that either 1) that the statement doesn't
1029 // have the case and is skippable, or 2) does contain the case value
1030 // and also contains the break to exit the switch. In the later case,
1031 // we just verify the rest of the statements are elidable.
1032 if (FoundCase) {
1033 // If we found the case and skipped declarations, we can't do the
1034 // optimization.
1035 if (HadSkippedDecl)
1036 return CSFC_Failure;
1037
1038 for (++I; I != E; ++I)
1039 if (CodeGenFunction::ContainsLabel(*I, true))
1040 return CSFC_Failure;
1041 return CSFC_Success;
1042 }
1043 break;
1044 case CSFC_FallThrough:
1045 // If we have a fallthrough condition, then we must have found the
1046 // case started to include statements. Consider the rest of the
1047 // statements in the compound statement as candidates for inclusion.
1048 assert(FoundCase && "Didn't find case but returned fallthrough?");
1049 // We recursively found Case, so we're not looking for it anymore.
1050 Case = 0;
1051
1052 // If we found the case and skipped declarations, we can't do the
1053 // optimization.
1054 if (HadSkippedDecl)
1055 return CSFC_Failure;
1056 break;
1057 }
1058 }
1059 }
1060
1061 // If we have statements in our range, then we know that the statements are
1062 // live and need to be added to the set of statements we're tracking.
1063 for (; I != E; ++I) {
1064 switch (CollectStatementsForCase(*I, 0, FoundCase, ResultStmts)) {
1065 case CSFC_Failure: return CSFC_Failure;
1066 case CSFC_FallThrough:
1067 // A fallthrough result means that the statement was simple and just
1068 // included in ResultStmt, keep adding them afterwards.
1069 break;
1070 case CSFC_Success:
1071 // A successful result means that we found the break statement and
1072 // stopped statement inclusion. We just ensure that any leftover stmts
1073 // are skippable and return success ourselves.
1074 for (++I; I != E; ++I)
1075 if (CodeGenFunction::ContainsLabel(*I, true))
1076 return CSFC_Failure;
1077 return CSFC_Success;
1078 }
1079 }
1080
1081 return Case ? CSFC_Success : CSFC_FallThrough;
1082 }
1083
1084 // Okay, this is some other statement that we don't handle explicitly, like a
1085 // for statement or increment etc. If we are skipping over this statement,
1086 // just verify it doesn't have labels, which would make it invalid to elide.
1087 if (Case) {
1088 if (CodeGenFunction::ContainsLabel(S, true))
1089 return CSFC_Failure;
1090 return CSFC_Success;
1091 }
1092
1093 // Otherwise, we want to include this statement. Everything is cool with that
1094 // so long as it doesn't contain a break out of the switch we're in.
1095 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1096
1097 // Otherwise, everything is great. Include the statement and tell the caller
1098 // that we fall through and include the next statement as well.
1099 ResultStmts.push_back(S);
1100 return CSFC_FallThrough;
1101 }
1102
1103 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1104 /// then invoke CollectStatementsForCase to find the list of statements to emit
1105 /// for a switch on constant. See the comment above CollectStatementsForCase
1106 /// for more details.
FindCaseStatementsForValue(const SwitchStmt & S,const llvm::APSInt & ConstantCondValue,SmallVectorImpl<const Stmt * > & ResultStmts,ASTContext & C)1107 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1108 const llvm::APSInt &ConstantCondValue,
1109 SmallVectorImpl<const Stmt*> &ResultStmts,
1110 ASTContext &C) {
1111 // First step, find the switch case that is being branched to. We can do this
1112 // efficiently by scanning the SwitchCase list.
1113 const SwitchCase *Case = S.getSwitchCaseList();
1114 const DefaultStmt *DefaultCase = 0;
1115
1116 for (; Case; Case = Case->getNextSwitchCase()) {
1117 // It's either a default or case. Just remember the default statement in
1118 // case we're not jumping to any numbered cases.
1119 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1120 DefaultCase = DS;
1121 continue;
1122 }
1123
1124 // Check to see if this case is the one we're looking for.
1125 const CaseStmt *CS = cast<CaseStmt>(Case);
1126 // Don't handle case ranges yet.
1127 if (CS->getRHS()) return false;
1128
1129 // If we found our case, remember it as 'case'.
1130 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1131 break;
1132 }
1133
1134 // If we didn't find a matching case, we use a default if it exists, or we
1135 // elide the whole switch body!
1136 if (Case == 0) {
1137 // It is safe to elide the body of the switch if it doesn't contain labels
1138 // etc. If it is safe, return successfully with an empty ResultStmts list.
1139 if (DefaultCase == 0)
1140 return !CodeGenFunction::ContainsLabel(&S);
1141 Case = DefaultCase;
1142 }
1143
1144 // Ok, we know which case is being jumped to, try to collect all the
1145 // statements that follow it. This can fail for a variety of reasons. Also,
1146 // check to see that the recursive walk actually found our case statement.
1147 // Insane cases like this can fail to find it in the recursive walk since we
1148 // don't handle every stmt kind:
1149 // switch (4) {
1150 // while (1) {
1151 // case 4: ...
1152 bool FoundCase = false;
1153 return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1154 ResultStmts) != CSFC_Failure &&
1155 FoundCase;
1156 }
1157
EmitSwitchStmt(const SwitchStmt & S)1158 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1159 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1160
1161 RunCleanupsScope ConditionScope(*this);
1162
1163 if (S.getConditionVariable())
1164 EmitAutoVarDecl(*S.getConditionVariable());
1165
1166 // Handle nested switch statements.
1167 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1168 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1169
1170 // See if we can constant fold the condition of the switch and therefore only
1171 // emit the live case statement (if any) of the switch.
1172 llvm::APSInt ConstantCondValue;
1173 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1174 SmallVector<const Stmt*, 4> CaseStmts;
1175 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1176 getContext())) {
1177 RunCleanupsScope ExecutedScope(*this);
1178
1179 // At this point, we are no longer "within" a switch instance, so
1180 // we can temporarily enforce this to ensure that any embedded case
1181 // statements are not emitted.
1182 SwitchInsn = 0;
1183
1184 // Okay, we can dead code eliminate everything except this case. Emit the
1185 // specified series of statements and we're good.
1186 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1187 EmitStmt(CaseStmts[i]);
1188
1189 // Now we want to restore the saved switch instance so that nested
1190 // switches continue to function properly
1191 SwitchInsn = SavedSwitchInsn;
1192
1193 return;
1194 }
1195 }
1196
1197 llvm::Value *CondV = EmitScalarExpr(S.getCond());
1198
1199 // Create basic block to hold stuff that comes after switch
1200 // statement. We also need to create a default block now so that
1201 // explicit case ranges tests can have a place to jump to on
1202 // failure.
1203 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1204 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1205 CaseRangeBlock = DefaultBlock;
1206
1207 // Clear the insertion point to indicate we are in unreachable code.
1208 Builder.ClearInsertionPoint();
1209
1210 // All break statements jump to NextBlock. If BreakContinueStack is non empty
1211 // then reuse last ContinueBlock.
1212 JumpDest OuterContinue;
1213 if (!BreakContinueStack.empty())
1214 OuterContinue = BreakContinueStack.back().ContinueBlock;
1215
1216 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1217
1218 // Emit switch body.
1219 EmitStmt(S.getBody());
1220
1221 BreakContinueStack.pop_back();
1222
1223 // Update the default block in case explicit case range tests have
1224 // been chained on top.
1225 SwitchInsn->setDefaultDest(CaseRangeBlock);
1226
1227 // If a default was never emitted:
1228 if (!DefaultBlock->getParent()) {
1229 // If we have cleanups, emit the default block so that there's a
1230 // place to jump through the cleanups from.
1231 if (ConditionScope.requiresCleanups()) {
1232 EmitBlock(DefaultBlock);
1233
1234 // Otherwise, just forward the default block to the switch end.
1235 } else {
1236 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1237 delete DefaultBlock;
1238 }
1239 }
1240
1241 ConditionScope.ForceCleanup();
1242
1243 // Emit continuation.
1244 EmitBlock(SwitchExit.getBlock(), true);
1245
1246 SwitchInsn = SavedSwitchInsn;
1247 CaseRangeBlock = SavedCRBlock;
1248 }
1249
1250 static std::string
SimplifyConstraint(const char * Constraint,const TargetInfo & Target,SmallVectorImpl<TargetInfo::ConstraintInfo> * OutCons=0)1251 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1252 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=0) {
1253 std::string Result;
1254
1255 while (*Constraint) {
1256 switch (*Constraint) {
1257 default:
1258 Result += Target.convertConstraint(Constraint);
1259 break;
1260 // Ignore these
1261 case '*':
1262 case '?':
1263 case '!':
1264 case '=': // Will see this and the following in mult-alt constraints.
1265 case '+':
1266 break;
1267 case ',':
1268 Result += "|";
1269 break;
1270 case 'g':
1271 Result += "imr";
1272 break;
1273 case '[': {
1274 assert(OutCons &&
1275 "Must pass output names to constraints with a symbolic name");
1276 unsigned Index;
1277 bool result = Target.resolveSymbolicName(Constraint,
1278 &(*OutCons)[0],
1279 OutCons->size(), Index);
1280 assert(result && "Could not resolve symbolic name"); (void)result;
1281 Result += llvm::utostr(Index);
1282 break;
1283 }
1284 }
1285
1286 Constraint++;
1287 }
1288
1289 return Result;
1290 }
1291
1292 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
1293 /// as using a particular register add that as a constraint that will be used
1294 /// in this asm stmt.
1295 static std::string
AddVariableConstraints(const std::string & Constraint,const Expr & AsmExpr,const TargetInfo & Target,CodeGenModule & CGM,const AsmStmt & Stmt)1296 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
1297 const TargetInfo &Target, CodeGenModule &CGM,
1298 const AsmStmt &Stmt) {
1299 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
1300 if (!AsmDeclRef)
1301 return Constraint;
1302 const ValueDecl &Value = *AsmDeclRef->getDecl();
1303 const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
1304 if (!Variable)
1305 return Constraint;
1306 if (Variable->getStorageClass() != SC_Register)
1307 return Constraint;
1308 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
1309 if (!Attr)
1310 return Constraint;
1311 StringRef Register = Attr->getLabel();
1312 assert(Target.isValidGCCRegisterName(Register));
1313 // We're using validateOutputConstraint here because we only care if
1314 // this is a register constraint.
1315 TargetInfo::ConstraintInfo Info(Constraint, "");
1316 if (Target.validateOutputConstraint(Info) &&
1317 !Info.allowsRegister()) {
1318 CGM.ErrorUnsupported(&Stmt, "__asm__");
1319 return Constraint;
1320 }
1321 // Canonicalize the register here before returning it.
1322 Register = Target.getNormalizedGCCRegisterName(Register);
1323 return "{" + Register.str() + "}";
1324 }
1325
1326 llvm::Value*
EmitAsmInputLValue(const TargetInfo::ConstraintInfo & Info,LValue InputValue,QualType InputType,std::string & ConstraintStr)1327 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
1328 LValue InputValue, QualType InputType,
1329 std::string &ConstraintStr) {
1330 llvm::Value *Arg;
1331 if (Info.allowsRegister() || !Info.allowsMemory()) {
1332 if (!CodeGenFunction::hasAggregateLLVMType(InputType)) {
1333 Arg = EmitLoadOfLValue(InputValue).getScalarVal();
1334 } else {
1335 llvm::Type *Ty = ConvertType(InputType);
1336 uint64_t Size = CGM.getTargetData().getTypeSizeInBits(Ty);
1337 if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
1338 Ty = llvm::IntegerType::get(getLLVMContext(), Size);
1339 Ty = llvm::PointerType::getUnqual(Ty);
1340
1341 Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
1342 Ty));
1343 } else {
1344 Arg = InputValue.getAddress();
1345 ConstraintStr += '*';
1346 }
1347 }
1348 } else {
1349 Arg = InputValue.getAddress();
1350 ConstraintStr += '*';
1351 }
1352
1353 return Arg;
1354 }
1355
EmitAsmInput(const TargetInfo::ConstraintInfo & Info,const Expr * InputExpr,std::string & ConstraintStr)1356 llvm::Value* CodeGenFunction::EmitAsmInput(
1357 const TargetInfo::ConstraintInfo &Info,
1358 const Expr *InputExpr,
1359 std::string &ConstraintStr) {
1360 if (Info.allowsRegister() || !Info.allowsMemory())
1361 if (!CodeGenFunction::hasAggregateLLVMType(InputExpr->getType()))
1362 return EmitScalarExpr(InputExpr);
1363
1364 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1365 LValue Dest = EmitLValue(InputExpr);
1366 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr);
1367 }
1368
1369 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1370 /// asm call instruction. The !srcloc MDNode contains a list of constant
1371 /// integers which are the source locations of the start of each line in the
1372 /// asm.
getAsmSrcLocInfo(const StringLiteral * Str,CodeGenFunction & CGF)1373 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1374 CodeGenFunction &CGF) {
1375 SmallVector<llvm::Value *, 8> Locs;
1376 // Add the location of the first line to the MDNode.
1377 Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1378 Str->getLocStart().getRawEncoding()));
1379 StringRef StrVal = Str->getString();
1380 if (!StrVal.empty()) {
1381 const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1382 const LangOptions &LangOpts = CGF.CGM.getLangOpts();
1383
1384 // Add the location of the start of each subsequent line of the asm to the
1385 // MDNode.
1386 for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) {
1387 if (StrVal[i] != '\n') continue;
1388 SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts,
1389 CGF.Target);
1390 Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1391 LineLoc.getRawEncoding()));
1392 }
1393 }
1394
1395 return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
1396 }
1397
EmitAsmStmt(const AsmStmt & S)1398 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
1399 // Assemble the final asm string.
1400 std::string AsmString = S.generateAsmString(getContext());
1401
1402 // Get all the output and input constraints together.
1403 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1404 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1405
1406 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1407 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i),
1408 S.getOutputName(i));
1409 bool IsValid = Target.validateOutputConstraint(Info); (void)IsValid;
1410 assert(IsValid && "Failed to parse output constraint");
1411 OutputConstraintInfos.push_back(Info);
1412 }
1413
1414 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1415 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i),
1416 S.getInputName(i));
1417 bool IsValid = Target.validateInputConstraint(OutputConstraintInfos.data(),
1418 S.getNumOutputs(), Info);
1419 assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
1420 InputConstraintInfos.push_back(Info);
1421 }
1422
1423 std::string Constraints;
1424
1425 std::vector<LValue> ResultRegDests;
1426 std::vector<QualType> ResultRegQualTys;
1427 std::vector<llvm::Type *> ResultRegTypes;
1428 std::vector<llvm::Type *> ResultTruncRegTypes;
1429 std::vector<llvm::Type *> ArgTypes;
1430 std::vector<llvm::Value*> Args;
1431
1432 // Keep track of inout constraints.
1433 std::string InOutConstraints;
1434 std::vector<llvm::Value*> InOutArgs;
1435 std::vector<llvm::Type*> InOutArgTypes;
1436
1437 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1438 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
1439
1440 // Simplify the output constraint.
1441 std::string OutputConstraint(S.getOutputConstraint(i));
1442 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, Target);
1443
1444 const Expr *OutExpr = S.getOutputExpr(i);
1445 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
1446
1447 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
1448 Target, CGM, S);
1449
1450 LValue Dest = EmitLValue(OutExpr);
1451 if (!Constraints.empty())
1452 Constraints += ',';
1453
1454 // If this is a register output, then make the inline asm return it
1455 // by-value. If this is a memory result, return the value by-reference.
1456 if (!Info.allowsMemory() && !hasAggregateLLVMType(OutExpr->getType())) {
1457 Constraints += "=" + OutputConstraint;
1458 ResultRegQualTys.push_back(OutExpr->getType());
1459 ResultRegDests.push_back(Dest);
1460 ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
1461 ResultTruncRegTypes.push_back(ResultRegTypes.back());
1462
1463 // If this output is tied to an input, and if the input is larger, then
1464 // we need to set the actual result type of the inline asm node to be the
1465 // same as the input type.
1466 if (Info.hasMatchingInput()) {
1467 unsigned InputNo;
1468 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
1469 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
1470 if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
1471 break;
1472 }
1473 assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
1474
1475 QualType InputTy = S.getInputExpr(InputNo)->getType();
1476 QualType OutputType = OutExpr->getType();
1477
1478 uint64_t InputSize = getContext().getTypeSize(InputTy);
1479 if (getContext().getTypeSize(OutputType) < InputSize) {
1480 // Form the asm to return the value as a larger integer or fp type.
1481 ResultRegTypes.back() = ConvertType(InputTy);
1482 }
1483 }
1484 if (llvm::Type* AdjTy =
1485 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1486 ResultRegTypes.back()))
1487 ResultRegTypes.back() = AdjTy;
1488 } else {
1489 ArgTypes.push_back(Dest.getAddress()->getType());
1490 Args.push_back(Dest.getAddress());
1491 Constraints += "=*";
1492 Constraints += OutputConstraint;
1493 }
1494
1495 if (Info.isReadWrite()) {
1496 InOutConstraints += ',';
1497
1498 const Expr *InputExpr = S.getOutputExpr(i);
1499 llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
1500 InOutConstraints);
1501
1502 if (llvm::Type* AdjTy =
1503 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1504 Arg->getType()))
1505 Arg = Builder.CreateBitCast(Arg, AdjTy);
1506
1507 if (Info.allowsRegister())
1508 InOutConstraints += llvm::utostr(i);
1509 else
1510 InOutConstraints += OutputConstraint;
1511
1512 InOutArgTypes.push_back(Arg->getType());
1513 InOutArgs.push_back(Arg);
1514 }
1515 }
1516
1517 unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs();
1518
1519 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1520 const Expr *InputExpr = S.getInputExpr(i);
1521
1522 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1523
1524 if (!Constraints.empty())
1525 Constraints += ',';
1526
1527 // Simplify the input constraint.
1528 std::string InputConstraint(S.getInputConstraint(i));
1529 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), Target,
1530 &OutputConstraintInfos);
1531
1532 InputConstraint =
1533 AddVariableConstraints(InputConstraint,
1534 *InputExpr->IgnoreParenNoopCasts(getContext()),
1535 Target, CGM, S);
1536
1537 llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
1538
1539 // If this input argument is tied to a larger output result, extend the
1540 // input to be the same size as the output. The LLVM backend wants to see
1541 // the input and output of a matching constraint be the same size. Note
1542 // that GCC does not define what the top bits are here. We use zext because
1543 // that is usually cheaper, but LLVM IR should really get an anyext someday.
1544 if (Info.hasTiedOperand()) {
1545 unsigned Output = Info.getTiedOperand();
1546 QualType OutputType = S.getOutputExpr(Output)->getType();
1547 QualType InputTy = InputExpr->getType();
1548
1549 if (getContext().getTypeSize(OutputType) >
1550 getContext().getTypeSize(InputTy)) {
1551 // Use ptrtoint as appropriate so that we can do our extension.
1552 if (isa<llvm::PointerType>(Arg->getType()))
1553 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
1554 llvm::Type *OutputTy = ConvertType(OutputType);
1555 if (isa<llvm::IntegerType>(OutputTy))
1556 Arg = Builder.CreateZExt(Arg, OutputTy);
1557 else if (isa<llvm::PointerType>(OutputTy))
1558 Arg = Builder.CreateZExt(Arg, IntPtrTy);
1559 else {
1560 assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
1561 Arg = Builder.CreateFPExt(Arg, OutputTy);
1562 }
1563 }
1564 }
1565 if (llvm::Type* AdjTy =
1566 getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
1567 Arg->getType()))
1568 Arg = Builder.CreateBitCast(Arg, AdjTy);
1569
1570 ArgTypes.push_back(Arg->getType());
1571 Args.push_back(Arg);
1572 Constraints += InputConstraint;
1573 }
1574
1575 // Append the "input" part of inout constraints last.
1576 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
1577 ArgTypes.push_back(InOutArgTypes[i]);
1578 Args.push_back(InOutArgs[i]);
1579 }
1580 Constraints += InOutConstraints;
1581
1582 // Clobbers
1583 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
1584 StringRef Clobber = S.getClobber(i);
1585
1586 if (Clobber != "memory" && Clobber != "cc")
1587 Clobber = Target.getNormalizedGCCRegisterName(Clobber);
1588
1589 if (i != 0 || NumConstraints != 0)
1590 Constraints += ',';
1591
1592 Constraints += "~{";
1593 Constraints += Clobber;
1594 Constraints += '}';
1595 }
1596
1597 // Add machine specific clobbers
1598 std::string MachineClobbers = Target.getClobbers();
1599 if (!MachineClobbers.empty()) {
1600 if (!Constraints.empty())
1601 Constraints += ',';
1602 Constraints += MachineClobbers;
1603 }
1604
1605 llvm::Type *ResultType;
1606 if (ResultRegTypes.empty())
1607 ResultType = VoidTy;
1608 else if (ResultRegTypes.size() == 1)
1609 ResultType = ResultRegTypes[0];
1610 else
1611 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
1612
1613 llvm::FunctionType *FTy =
1614 llvm::FunctionType::get(ResultType, ArgTypes, false);
1615
1616 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
1617 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
1618 llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
1619 llvm::InlineAsm *IA =
1620 llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
1621 /* IsAlignStack */ false, AsmDialect);
1622 llvm::CallInst *Result = Builder.CreateCall(IA, Args);
1623 Result->addAttribute(~0, llvm::Attribute::NoUnwind);
1624
1625 // Slap the source location of the inline asm into a !srcloc metadata on the
1626 // call. FIXME: Handle metadata for MS-style inline asms.
1627 if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S))
1628 Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(),
1629 *this));
1630
1631 // Extract all of the register value results from the asm.
1632 std::vector<llvm::Value*> RegResults;
1633 if (ResultRegTypes.size() == 1) {
1634 RegResults.push_back(Result);
1635 } else {
1636 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
1637 llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
1638 RegResults.push_back(Tmp);
1639 }
1640 }
1641
1642 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
1643 llvm::Value *Tmp = RegResults[i];
1644
1645 // If the result type of the LLVM IR asm doesn't match the result type of
1646 // the expression, do the conversion.
1647 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
1648 llvm::Type *TruncTy = ResultTruncRegTypes[i];
1649
1650 // Truncate the integer result to the right size, note that TruncTy can be
1651 // a pointer.
1652 if (TruncTy->isFloatingPointTy())
1653 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
1654 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
1655 uint64_t ResSize = CGM.getTargetData().getTypeSizeInBits(TruncTy);
1656 Tmp = Builder.CreateTrunc(Tmp,
1657 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
1658 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
1659 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
1660 uint64_t TmpSize =CGM.getTargetData().getTypeSizeInBits(Tmp->getType());
1661 Tmp = Builder.CreatePtrToInt(Tmp,
1662 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
1663 Tmp = Builder.CreateTrunc(Tmp, TruncTy);
1664 } else if (TruncTy->isIntegerTy()) {
1665 Tmp = Builder.CreateTrunc(Tmp, TruncTy);
1666 } else if (TruncTy->isVectorTy()) {
1667 Tmp = Builder.CreateBitCast(Tmp, TruncTy);
1668 }
1669 }
1670
1671 EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]);
1672 }
1673 }
1674