1 //===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the code that handles AST -> LLVM type lowering.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenTypes.h"
15 #include "CGCall.h"
16 #include "CGCXXABI.h"
17 #include "CGRecordLayout.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/RecordLayout.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Module.h"
26 #include "llvm/Target/TargetData.h"
27 using namespace clang;
28 using namespace CodeGen;
29
CodeGenTypes(CodeGenModule & CGM)30 CodeGenTypes::CodeGenTypes(CodeGenModule &CGM)
31 : Context(CGM.getContext()), Target(Context.getTargetInfo()),
32 TheModule(CGM.getModule()), TheTargetData(CGM.getTargetData()),
33 TheABIInfo(CGM.getTargetCodeGenInfo().getABIInfo()),
34 TheCXXABI(CGM.getCXXABI()),
35 CodeGenOpts(CGM.getCodeGenOpts()), CGM(CGM) {
36 SkippedLayout = false;
37 }
38
~CodeGenTypes()39 CodeGenTypes::~CodeGenTypes() {
40 for (llvm::DenseMap<const Type *, CGRecordLayout *>::iterator
41 I = CGRecordLayouts.begin(), E = CGRecordLayouts.end();
42 I != E; ++I)
43 delete I->second;
44
45 for (llvm::FoldingSet<CGFunctionInfo>::iterator
46 I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; )
47 delete &*I++;
48 }
49
addRecordTypeName(const RecordDecl * RD,llvm::StructType * Ty,StringRef suffix)50 void CodeGenTypes::addRecordTypeName(const RecordDecl *RD,
51 llvm::StructType *Ty,
52 StringRef suffix) {
53 SmallString<256> TypeName;
54 llvm::raw_svector_ostream OS(TypeName);
55 OS << RD->getKindName() << '.';
56
57 // Name the codegen type after the typedef name
58 // if there is no tag type name available
59 if (RD->getIdentifier()) {
60 // FIXME: We should not have to check for a null decl context here.
61 // Right now we do it because the implicit Obj-C decls don't have one.
62 if (RD->getDeclContext())
63 OS << RD->getQualifiedNameAsString();
64 else
65 RD->printName(OS);
66 } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) {
67 // FIXME: We should not have to check for a null decl context here.
68 // Right now we do it because the implicit Obj-C decls don't have one.
69 if (TDD->getDeclContext())
70 OS << TDD->getQualifiedNameAsString();
71 else
72 TDD->printName(OS);
73 } else
74 OS << "anon";
75
76 if (!suffix.empty())
77 OS << suffix;
78
79 Ty->setName(OS.str());
80 }
81
82 /// ConvertTypeForMem - Convert type T into a llvm::Type. This differs from
83 /// ConvertType in that it is used to convert to the memory representation for
84 /// a type. For example, the scalar representation for _Bool is i1, but the
85 /// memory representation is usually i8 or i32, depending on the target.
ConvertTypeForMem(QualType T)86 llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T){
87 llvm::Type *R = ConvertType(T);
88
89 // If this is a non-bool type, don't map it.
90 if (!R->isIntegerTy(1))
91 return R;
92
93 // Otherwise, return an integer of the target-specified size.
94 return llvm::IntegerType::get(getLLVMContext(),
95 (unsigned)Context.getTypeSize(T));
96 }
97
98
99 /// isRecordLayoutComplete - Return true if the specified type is already
100 /// completely laid out.
isRecordLayoutComplete(const Type * Ty) const101 bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const {
102 llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I =
103 RecordDeclTypes.find(Ty);
104 return I != RecordDeclTypes.end() && !I->second->isOpaque();
105 }
106
107 static bool
108 isSafeToConvert(QualType T, CodeGenTypes &CGT,
109 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked);
110
111
112 /// isSafeToConvert - Return true if it is safe to convert the specified record
113 /// decl to IR and lay it out, false if doing so would cause us to get into a
114 /// recursive compilation mess.
115 static bool
isSafeToConvert(const RecordDecl * RD,CodeGenTypes & CGT,llvm::SmallPtrSet<const RecordDecl *,16> & AlreadyChecked)116 isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT,
117 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
118 // If we have already checked this type (maybe the same type is used by-value
119 // multiple times in multiple structure fields, don't check again.
120 if (!AlreadyChecked.insert(RD)) return true;
121
122 const Type *Key = CGT.getContext().getTagDeclType(RD).getTypePtr();
123
124 // If this type is already laid out, converting it is a noop.
125 if (CGT.isRecordLayoutComplete(Key)) return true;
126
127 // If this type is currently being laid out, we can't recursively compile it.
128 if (CGT.isRecordBeingLaidOut(Key))
129 return false;
130
131 // If this type would require laying out bases that are currently being laid
132 // out, don't do it. This includes virtual base classes which get laid out
133 // when a class is translated, even though they aren't embedded by-value into
134 // the class.
135 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
136 for (CXXRecordDecl::base_class_const_iterator I = CRD->bases_begin(),
137 E = CRD->bases_end(); I != E; ++I)
138 if (!isSafeToConvert(I->getType()->getAs<RecordType>()->getDecl(),
139 CGT, AlreadyChecked))
140 return false;
141 }
142
143 // If this type would require laying out members that are currently being laid
144 // out, don't do it.
145 for (RecordDecl::field_iterator I = RD->field_begin(),
146 E = RD->field_end(); I != E; ++I)
147 if (!isSafeToConvert(I->getType(), CGT, AlreadyChecked))
148 return false;
149
150 // If there are no problems, lets do it.
151 return true;
152 }
153
154 /// isSafeToConvert - Return true if it is safe to convert this field type,
155 /// which requires the structure elements contained by-value to all be
156 /// recursively safe to convert.
157 static bool
isSafeToConvert(QualType T,CodeGenTypes & CGT,llvm::SmallPtrSet<const RecordDecl *,16> & AlreadyChecked)158 isSafeToConvert(QualType T, CodeGenTypes &CGT,
159 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
160 T = T.getCanonicalType();
161
162 // If this is a record, check it.
163 if (const RecordType *RT = dyn_cast<RecordType>(T))
164 return isSafeToConvert(RT->getDecl(), CGT, AlreadyChecked);
165
166 // If this is an array, check the elements, which are embedded inline.
167 if (const ArrayType *AT = dyn_cast<ArrayType>(T))
168 return isSafeToConvert(AT->getElementType(), CGT, AlreadyChecked);
169
170 // Otherwise, there is no concern about transforming this. We only care about
171 // things that are contained by-value in a structure that can have another
172 // structure as a member.
173 return true;
174 }
175
176
177 /// isSafeToConvert - Return true if it is safe to convert the specified record
178 /// decl to IR and lay it out, false if doing so would cause us to get into a
179 /// recursive compilation mess.
isSafeToConvert(const RecordDecl * RD,CodeGenTypes & CGT)180 static bool isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT) {
181 // If no structs are being laid out, we can certainly do this one.
182 if (CGT.noRecordsBeingLaidOut()) return true;
183
184 llvm::SmallPtrSet<const RecordDecl*, 16> AlreadyChecked;
185 return isSafeToConvert(RD, CGT, AlreadyChecked);
186 }
187
188
189 /// isFuncTypeArgumentConvertible - Return true if the specified type in a
190 /// function argument or result position can be converted to an IR type at this
191 /// point. This boils down to being whether it is complete, as well as whether
192 /// we've temporarily deferred expanding the type because we're in a recursive
193 /// context.
isFuncTypeArgumentConvertible(QualType Ty)194 bool CodeGenTypes::isFuncTypeArgumentConvertible(QualType Ty) {
195 // If this isn't a tagged type, we can convert it!
196 const TagType *TT = Ty->getAs<TagType>();
197 if (TT == 0) return true;
198
199 // Incomplete types cannot be converted.
200 if (TT->isIncompleteType())
201 return false;
202
203 // If this is an enum, then it is always safe to convert.
204 const RecordType *RT = dyn_cast<RecordType>(TT);
205 if (RT == 0) return true;
206
207 // Otherwise, we have to be careful. If it is a struct that we're in the
208 // process of expanding, then we can't convert the function type. That's ok
209 // though because we must be in a pointer context under the struct, so we can
210 // just convert it to a dummy type.
211 //
212 // We decide this by checking whether ConvertRecordDeclType returns us an
213 // opaque type for a struct that we know is defined.
214 return isSafeToConvert(RT->getDecl(), *this);
215 }
216
217
218 /// Code to verify a given function type is complete, i.e. the return type
219 /// and all of the argument types are complete. Also check to see if we are in
220 /// a RS_StructPointer context, and if so whether any struct types have been
221 /// pended. If so, we don't want to ask the ABI lowering code to handle a type
222 /// that cannot be converted to an IR type.
isFuncTypeConvertible(const FunctionType * FT)223 bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) {
224 if (!isFuncTypeArgumentConvertible(FT->getResultType()))
225 return false;
226
227 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
228 for (unsigned i = 0, e = FPT->getNumArgs(); i != e; i++)
229 if (!isFuncTypeArgumentConvertible(FPT->getArgType(i)))
230 return false;
231
232 return true;
233 }
234
235 /// UpdateCompletedType - When we find the full definition for a TagDecl,
236 /// replace the 'opaque' type we previously made for it if applicable.
UpdateCompletedType(const TagDecl * TD)237 void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
238 // If this is an enum being completed, then we flush all non-struct types from
239 // the cache. This allows function types and other things that may be derived
240 // from the enum to be recomputed.
241 if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) {
242 // Only flush the cache if we've actually already converted this type.
243 if (TypeCache.count(ED->getTypeForDecl())) {
244 // Okay, we formed some types based on this. We speculated that the enum
245 // would be lowered to i32, so we only need to flush the cache if this
246 // didn't happen.
247 if (!ConvertType(ED->getIntegerType())->isIntegerTy(32))
248 TypeCache.clear();
249 }
250 return;
251 }
252
253 // If we completed a RecordDecl that we previously used and converted to an
254 // anonymous type, then go ahead and complete it now.
255 const RecordDecl *RD = cast<RecordDecl>(TD);
256 if (RD->isDependentType()) return;
257
258 // Only complete it if we converted it already. If we haven't converted it
259 // yet, we'll just do it lazily.
260 if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr()))
261 ConvertRecordDeclType(RD);
262 }
263
getTypeForFormat(llvm::LLVMContext & VMContext,const llvm::fltSemantics & format)264 static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext,
265 const llvm::fltSemantics &format) {
266 if (&format == &llvm::APFloat::IEEEhalf)
267 return llvm::Type::getInt16Ty(VMContext);
268 if (&format == &llvm::APFloat::IEEEsingle)
269 return llvm::Type::getFloatTy(VMContext);
270 if (&format == &llvm::APFloat::IEEEdouble)
271 return llvm::Type::getDoubleTy(VMContext);
272 if (&format == &llvm::APFloat::IEEEquad)
273 return llvm::Type::getFP128Ty(VMContext);
274 if (&format == &llvm::APFloat::PPCDoubleDouble)
275 return llvm::Type::getPPC_FP128Ty(VMContext);
276 if (&format == &llvm::APFloat::x87DoubleExtended)
277 return llvm::Type::getX86_FP80Ty(VMContext);
278 llvm_unreachable("Unknown float format!");
279 }
280
281 /// ConvertType - Convert the specified type to its LLVM form.
ConvertType(QualType T)282 llvm::Type *CodeGenTypes::ConvertType(QualType T) {
283 T = Context.getCanonicalType(T);
284
285 const Type *Ty = T.getTypePtr();
286
287 // RecordTypes are cached and processed specially.
288 if (const RecordType *RT = dyn_cast<RecordType>(Ty))
289 return ConvertRecordDeclType(RT->getDecl());
290
291 // See if type is already cached.
292 llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI = TypeCache.find(Ty);
293 // If type is found in map then use it. Otherwise, convert type T.
294 if (TCI != TypeCache.end())
295 return TCI->second;
296
297 // If we don't have it in the cache, convert it now.
298 llvm::Type *ResultType = 0;
299 switch (Ty->getTypeClass()) {
300 case Type::Record: // Handled above.
301 #define TYPE(Class, Base)
302 #define ABSTRACT_TYPE(Class, Base)
303 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
304 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
305 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
306 #include "clang/AST/TypeNodes.def"
307 llvm_unreachable("Non-canonical or dependent types aren't possible.");
308
309 case Type::Builtin: {
310 switch (cast<BuiltinType>(Ty)->getKind()) {
311 case BuiltinType::Void:
312 case BuiltinType::ObjCId:
313 case BuiltinType::ObjCClass:
314 case BuiltinType::ObjCSel:
315 // LLVM void type can only be used as the result of a function call. Just
316 // map to the same as char.
317 ResultType = llvm::Type::getInt8Ty(getLLVMContext());
318 break;
319
320 case BuiltinType::Bool:
321 // Note that we always return bool as i1 for use as a scalar type.
322 ResultType = llvm::Type::getInt1Ty(getLLVMContext());
323 break;
324
325 case BuiltinType::Char_S:
326 case BuiltinType::Char_U:
327 case BuiltinType::SChar:
328 case BuiltinType::UChar:
329 case BuiltinType::Short:
330 case BuiltinType::UShort:
331 case BuiltinType::Int:
332 case BuiltinType::UInt:
333 case BuiltinType::Long:
334 case BuiltinType::ULong:
335 case BuiltinType::LongLong:
336 case BuiltinType::ULongLong:
337 case BuiltinType::WChar_S:
338 case BuiltinType::WChar_U:
339 case BuiltinType::Char16:
340 case BuiltinType::Char32:
341 ResultType = llvm::IntegerType::get(getLLVMContext(),
342 static_cast<unsigned>(Context.getTypeSize(T)));
343 break;
344
345 case BuiltinType::Half:
346 // Half is special: it might be lowered to i16 (and will be storage-only
347 // type),. or can be represented as a set of native operations.
348
349 // FIXME: Ask target which kind of half FP it prefers (storage only vs
350 // native).
351 ResultType = llvm::Type::getInt16Ty(getLLVMContext());
352 break;
353 case BuiltinType::Float:
354 case BuiltinType::Double:
355 case BuiltinType::LongDouble:
356 ResultType = getTypeForFormat(getLLVMContext(),
357 Context.getFloatTypeSemantics(T));
358 break;
359
360 case BuiltinType::NullPtr:
361 // Model std::nullptr_t as i8*
362 ResultType = llvm::Type::getInt8PtrTy(getLLVMContext());
363 break;
364
365 case BuiltinType::UInt128:
366 case BuiltinType::Int128:
367 ResultType = llvm::IntegerType::get(getLLVMContext(), 128);
368 break;
369
370 case BuiltinType::Dependent:
371 #define BUILTIN_TYPE(Id, SingletonId)
372 #define PLACEHOLDER_TYPE(Id, SingletonId) \
373 case BuiltinType::Id:
374 #include "clang/AST/BuiltinTypes.def"
375 llvm_unreachable("Unexpected placeholder builtin type!");
376 }
377 break;
378 }
379 case Type::Complex: {
380 llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType());
381 ResultType = llvm::StructType::get(EltTy, EltTy, NULL);
382 break;
383 }
384 case Type::LValueReference:
385 case Type::RValueReference: {
386 const ReferenceType *RTy = cast<ReferenceType>(Ty);
387 QualType ETy = RTy->getPointeeType();
388 llvm::Type *PointeeType = ConvertTypeForMem(ETy);
389 unsigned AS = Context.getTargetAddressSpace(ETy);
390 ResultType = llvm::PointerType::get(PointeeType, AS);
391 break;
392 }
393 case Type::Pointer: {
394 const PointerType *PTy = cast<PointerType>(Ty);
395 QualType ETy = PTy->getPointeeType();
396 llvm::Type *PointeeType = ConvertTypeForMem(ETy);
397 if (PointeeType->isVoidTy())
398 PointeeType = llvm::Type::getInt8Ty(getLLVMContext());
399 unsigned AS = Context.getTargetAddressSpace(ETy);
400 ResultType = llvm::PointerType::get(PointeeType, AS);
401 break;
402 }
403
404 case Type::VariableArray: {
405 const VariableArrayType *A = cast<VariableArrayType>(Ty);
406 assert(A->getIndexTypeCVRQualifiers() == 0 &&
407 "FIXME: We only handle trivial array types so far!");
408 // VLAs resolve to the innermost element type; this matches
409 // the return of alloca, and there isn't any obviously better choice.
410 ResultType = ConvertTypeForMem(A->getElementType());
411 break;
412 }
413 case Type::IncompleteArray: {
414 const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty);
415 assert(A->getIndexTypeCVRQualifiers() == 0 &&
416 "FIXME: We only handle trivial array types so far!");
417 // int X[] -> [0 x int], unless the element type is not sized. If it is
418 // unsized (e.g. an incomplete struct) just use [0 x i8].
419 ResultType = ConvertTypeForMem(A->getElementType());
420 if (!ResultType->isSized()) {
421 SkippedLayout = true;
422 ResultType = llvm::Type::getInt8Ty(getLLVMContext());
423 }
424 ResultType = llvm::ArrayType::get(ResultType, 0);
425 break;
426 }
427 case Type::ConstantArray: {
428 const ConstantArrayType *A = cast<ConstantArrayType>(Ty);
429 llvm::Type *EltTy = ConvertTypeForMem(A->getElementType());
430
431 // Lower arrays of undefined struct type to arrays of i8 just to have a
432 // concrete type.
433 if (!EltTy->isSized()) {
434 SkippedLayout = true;
435 EltTy = llvm::Type::getInt8Ty(getLLVMContext());
436 }
437
438 ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue());
439 break;
440 }
441 case Type::ExtVector:
442 case Type::Vector: {
443 const VectorType *VT = cast<VectorType>(Ty);
444 ResultType = llvm::VectorType::get(ConvertType(VT->getElementType()),
445 VT->getNumElements());
446 break;
447 }
448 case Type::FunctionNoProto:
449 case Type::FunctionProto: {
450 const FunctionType *FT = cast<FunctionType>(Ty);
451 // First, check whether we can build the full function type. If the
452 // function type depends on an incomplete type (e.g. a struct or enum), we
453 // cannot lower the function type.
454 if (!isFuncTypeConvertible(FT)) {
455 // This function's type depends on an incomplete tag type.
456 // Return a placeholder type.
457 ResultType = llvm::StructType::get(getLLVMContext());
458
459 SkippedLayout = true;
460 break;
461 }
462
463 // While we're converting the argument types for a function, we don't want
464 // to recursively convert any pointed-to structs. Converting directly-used
465 // structs is ok though.
466 if (!RecordsBeingLaidOut.insert(Ty)) {
467 ResultType = llvm::StructType::get(getLLVMContext());
468
469 SkippedLayout = true;
470 break;
471 }
472
473 // The function type can be built; call the appropriate routines to
474 // build it.
475 const CGFunctionInfo *FI;
476 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
477 FI = &arrangeFreeFunctionType(
478 CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0)));
479 } else {
480 const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT);
481 FI = &arrangeFreeFunctionType(
482 CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0)));
483 }
484
485 // If there is something higher level prodding our CGFunctionInfo, then
486 // don't recurse into it again.
487 if (FunctionsBeingProcessed.count(FI)) {
488
489 ResultType = llvm::StructType::get(getLLVMContext());
490 SkippedLayout = true;
491 } else {
492
493 // Otherwise, we're good to go, go ahead and convert it.
494 ResultType = GetFunctionType(*FI);
495 }
496
497 RecordsBeingLaidOut.erase(Ty);
498
499 if (SkippedLayout)
500 TypeCache.clear();
501
502 if (RecordsBeingLaidOut.empty())
503 while (!DeferredRecords.empty())
504 ConvertRecordDeclType(DeferredRecords.pop_back_val());
505 break;
506 }
507
508 case Type::ObjCObject:
509 ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType());
510 break;
511
512 case Type::ObjCInterface: {
513 // Objective-C interfaces are always opaque (outside of the
514 // runtime, which can do whatever it likes); we never refine
515 // these.
516 llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)];
517 if (!T)
518 T = llvm::StructType::create(getLLVMContext());
519 ResultType = T;
520 break;
521 }
522
523 case Type::ObjCObjectPointer: {
524 // Protocol qualifications do not influence the LLVM type, we just return a
525 // pointer to the underlying interface type. We don't need to worry about
526 // recursive conversion.
527 llvm::Type *T =
528 ConvertTypeForMem(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
529 ResultType = T->getPointerTo();
530 break;
531 }
532
533 case Type::Enum: {
534 const EnumDecl *ED = cast<EnumType>(Ty)->getDecl();
535 if (ED->isCompleteDefinition() || ED->isFixed())
536 return ConvertType(ED->getIntegerType());
537 // Return a placeholder 'i32' type. This can be changed later when the
538 // type is defined (see UpdateCompletedType), but is likely to be the
539 // "right" answer.
540 ResultType = llvm::Type::getInt32Ty(getLLVMContext());
541 break;
542 }
543
544 case Type::BlockPointer: {
545 const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType();
546 llvm::Type *PointeeType = ConvertTypeForMem(FTy);
547 unsigned AS = Context.getTargetAddressSpace(FTy);
548 ResultType = llvm::PointerType::get(PointeeType, AS);
549 break;
550 }
551
552 case Type::MemberPointer: {
553 ResultType =
554 getCXXABI().ConvertMemberPointerType(cast<MemberPointerType>(Ty));
555 break;
556 }
557
558 case Type::Atomic: {
559 ResultType = ConvertType(cast<AtomicType>(Ty)->getValueType());
560 break;
561 }
562 }
563
564 assert(ResultType && "Didn't convert a type?");
565
566 TypeCache[Ty] = ResultType;
567 return ResultType;
568 }
569
570 /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
ConvertRecordDeclType(const RecordDecl * RD)571 llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) {
572 // TagDecl's are not necessarily unique, instead use the (clang)
573 // type connected to the decl.
574 const Type *Key = Context.getTagDeclType(RD).getTypePtr();
575
576 llvm::StructType *&Entry = RecordDeclTypes[Key];
577
578 // If we don't have a StructType at all yet, create the forward declaration.
579 if (Entry == 0) {
580 Entry = llvm::StructType::create(getLLVMContext());
581 addRecordTypeName(RD, Entry, "");
582 }
583 llvm::StructType *Ty = Entry;
584
585 // If this is still a forward declaration, or the LLVM type is already
586 // complete, there's nothing more to do.
587 RD = RD->getDefinition();
588 if (RD == 0 || !RD->isCompleteDefinition() || !Ty->isOpaque())
589 return Ty;
590
591 // If converting this type would cause us to infinitely loop, don't do it!
592 if (!isSafeToConvert(RD, *this)) {
593 DeferredRecords.push_back(RD);
594 return Ty;
595 }
596
597 // Okay, this is a definition of a type. Compile the implementation now.
598 bool InsertResult = RecordsBeingLaidOut.insert(Key); (void)InsertResult;
599 assert(InsertResult && "Recursively compiling a struct?");
600
601 // Force conversion of non-virtual base classes recursively.
602 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
603 for (CXXRecordDecl::base_class_const_iterator i = CRD->bases_begin(),
604 e = CRD->bases_end(); i != e; ++i) {
605 if (i->isVirtual()) continue;
606
607 ConvertRecordDeclType(i->getType()->getAs<RecordType>()->getDecl());
608 }
609 }
610
611 // Layout fields.
612 CGRecordLayout *Layout = ComputeRecordLayout(RD, Ty);
613 CGRecordLayouts[Key] = Layout;
614
615 // We're done laying out this struct.
616 bool EraseResult = RecordsBeingLaidOut.erase(Key); (void)EraseResult;
617 assert(EraseResult && "struct not in RecordsBeingLaidOut set?");
618
619 // If this struct blocked a FunctionType conversion, then recompute whatever
620 // was derived from that.
621 // FIXME: This is hugely overconservative.
622 if (SkippedLayout)
623 TypeCache.clear();
624
625 // If we're done converting the outer-most record, then convert any deferred
626 // structs as well.
627 if (RecordsBeingLaidOut.empty())
628 while (!DeferredRecords.empty())
629 ConvertRecordDeclType(DeferredRecords.pop_back_val());
630
631 return Ty;
632 }
633
634 /// getCGRecordLayout - Return record layout info for the given record decl.
635 const CGRecordLayout &
getCGRecordLayout(const RecordDecl * RD)636 CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) {
637 const Type *Key = Context.getTagDeclType(RD).getTypePtr();
638
639 const CGRecordLayout *Layout = CGRecordLayouts.lookup(Key);
640 if (!Layout) {
641 // Compute the type information.
642 ConvertRecordDeclType(RD);
643
644 // Now try again.
645 Layout = CGRecordLayouts.lookup(Key);
646 }
647
648 assert(Layout && "Unable to find record layout information for type");
649 return *Layout;
650 }
651
isZeroInitializable(QualType T)652 bool CodeGenTypes::isZeroInitializable(QualType T) {
653 // No need to check for member pointers when not compiling C++.
654 if (!Context.getLangOpts().CPlusPlus)
655 return true;
656
657 T = Context.getBaseElementType(T);
658
659 // Records are non-zero-initializable if they contain any
660 // non-zero-initializable subobjects.
661 if (const RecordType *RT = T->getAs<RecordType>()) {
662 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
663 return isZeroInitializable(RD);
664 }
665
666 // We have to ask the ABI about member pointers.
667 if (const MemberPointerType *MPT = T->getAs<MemberPointerType>())
668 return getCXXABI().isZeroInitializable(MPT);
669
670 // Everything else is okay.
671 return true;
672 }
673
isZeroInitializable(const CXXRecordDecl * RD)674 bool CodeGenTypes::isZeroInitializable(const CXXRecordDecl *RD) {
675 return getCGRecordLayout(RD).isZeroInitializable();
676 }
677