1 //===------- ItaniumCXXABI.cpp - Emit LLVM Code from ASTs for a Module ----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This provides C++ code generation targeting the Itanium C++ ABI. The class
11 // in this file generates structures that follow the Itanium C++ ABI, which is
12 // documented at:
13 // http://www.codesourcery.com/public/cxx-abi/abi.html
14 // http://www.codesourcery.com/public/cxx-abi/abi-eh.html
15 //
16 // It also supports the closely-related ARM ABI, documented at:
17 // http://infocenter.arm.com/help/topic/com.arm.doc.ihi0041c/IHI0041C_cppabi.pdf
18 //
19 //===----------------------------------------------------------------------===//
20
21 #include "CGCXXABI.h"
22 #include "CGRecordLayout.h"
23 #include "CGVTables.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenModule.h"
26 #include <clang/AST/Mangle.h>
27 #include <clang/AST/Type.h>
28 #include <llvm/Intrinsics.h>
29 #include <llvm/Target/TargetData.h>
30 #include <llvm/Value.h>
31
32 using namespace clang;
33 using namespace CodeGen;
34
35 namespace {
36 class ItaniumCXXABI : public CodeGen::CGCXXABI {
37 private:
38 llvm::IntegerType *PtrDiffTy;
39 protected:
40 bool IsARM;
41
42 // It's a little silly for us to cache this.
getPtrDiffTy()43 llvm::IntegerType *getPtrDiffTy() {
44 if (!PtrDiffTy) {
45 QualType T = getContext().getPointerDiffType();
46 llvm::Type *Ty = CGM.getTypes().ConvertType(T);
47 PtrDiffTy = cast<llvm::IntegerType>(Ty);
48 }
49 return PtrDiffTy;
50 }
51
52 public:
ItaniumCXXABI(CodeGen::CodeGenModule & CGM,bool IsARM=false)53 ItaniumCXXABI(CodeGen::CodeGenModule &CGM, bool IsARM = false) :
54 CGCXXABI(CGM), PtrDiffTy(0), IsARM(IsARM) { }
55
56 bool isZeroInitializable(const MemberPointerType *MPT);
57
58 llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT);
59
60 llvm::Value *EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF,
61 llvm::Value *&This,
62 llvm::Value *MemFnPtr,
63 const MemberPointerType *MPT);
64
65 llvm::Value *EmitMemberDataPointerAddress(CodeGenFunction &CGF,
66 llvm::Value *Base,
67 llvm::Value *MemPtr,
68 const MemberPointerType *MPT);
69
70 llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF,
71 const CastExpr *E,
72 llvm::Value *Src);
73 llvm::Constant *EmitMemberPointerConversion(const CastExpr *E,
74 llvm::Constant *Src);
75
76 llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT);
77
78 llvm::Constant *EmitMemberPointer(const CXXMethodDecl *MD);
79 llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT,
80 CharUnits offset);
81 llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT);
82 llvm::Constant *BuildMemberPointer(const CXXMethodDecl *MD,
83 CharUnits ThisAdjustment);
84
85 llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF,
86 llvm::Value *L,
87 llvm::Value *R,
88 const MemberPointerType *MPT,
89 bool Inequality);
90
91 llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
92 llvm::Value *Addr,
93 const MemberPointerType *MPT);
94
95 void BuildConstructorSignature(const CXXConstructorDecl *Ctor,
96 CXXCtorType T,
97 CanQualType &ResTy,
98 SmallVectorImpl<CanQualType> &ArgTys);
99
100 void BuildDestructorSignature(const CXXDestructorDecl *Dtor,
101 CXXDtorType T,
102 CanQualType &ResTy,
103 SmallVectorImpl<CanQualType> &ArgTys);
104
105 void BuildInstanceFunctionParams(CodeGenFunction &CGF,
106 QualType &ResTy,
107 FunctionArgList &Params);
108
109 void EmitInstanceFunctionProlog(CodeGenFunction &CGF);
110
GetPureVirtualCallName()111 StringRef GetPureVirtualCallName() { return "__cxa_pure_virtual"; }
112
113 CharUnits getArrayCookieSizeImpl(QualType elementType);
114 llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF,
115 llvm::Value *NewPtr,
116 llvm::Value *NumElements,
117 const CXXNewExpr *expr,
118 QualType ElementType);
119 llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF,
120 llvm::Value *allocPtr,
121 CharUnits cookieSize);
122
123 void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
124 llvm::GlobalVariable *DeclPtr, bool PerformInit);
125 void registerGlobalDtor(CodeGenFunction &CGF, llvm::Constant *dtor,
126 llvm::Constant *addr);
127
128 void EmitVTables(const CXXRecordDecl *Class);
129 };
130
131 class ARMCXXABI : public ItaniumCXXABI {
132 public:
ARMCXXABI(CodeGen::CodeGenModule & CGM)133 ARMCXXABI(CodeGen::CodeGenModule &CGM) : ItaniumCXXABI(CGM, /*ARM*/ true) {}
134
135 void BuildConstructorSignature(const CXXConstructorDecl *Ctor,
136 CXXCtorType T,
137 CanQualType &ResTy,
138 SmallVectorImpl<CanQualType> &ArgTys);
139
140 void BuildDestructorSignature(const CXXDestructorDecl *Dtor,
141 CXXDtorType T,
142 CanQualType &ResTy,
143 SmallVectorImpl<CanQualType> &ArgTys);
144
145 void BuildInstanceFunctionParams(CodeGenFunction &CGF,
146 QualType &ResTy,
147 FunctionArgList &Params);
148
149 void EmitInstanceFunctionProlog(CodeGenFunction &CGF);
150
151 void EmitReturnFromThunk(CodeGenFunction &CGF, RValue RV, QualType ResTy);
152
153 CharUnits getArrayCookieSizeImpl(QualType elementType);
154 llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF,
155 llvm::Value *NewPtr,
156 llvm::Value *NumElements,
157 const CXXNewExpr *expr,
158 QualType ElementType);
159 llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF, llvm::Value *allocPtr,
160 CharUnits cookieSize);
161
162 private:
163 /// \brief Returns true if the given instance method is one of the
164 /// kinds that the ARM ABI says returns 'this'.
HasThisReturn(GlobalDecl GD)165 static bool HasThisReturn(GlobalDecl GD) {
166 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
167 return ((isa<CXXDestructorDecl>(MD) && GD.getDtorType() != Dtor_Deleting) ||
168 (isa<CXXConstructorDecl>(MD)));
169 }
170 };
171 }
172
CreateItaniumCXXABI(CodeGenModule & CGM)173 CodeGen::CGCXXABI *CodeGen::CreateItaniumCXXABI(CodeGenModule &CGM) {
174 return new ItaniumCXXABI(CGM);
175 }
176
CreateARMCXXABI(CodeGenModule & CGM)177 CodeGen::CGCXXABI *CodeGen::CreateARMCXXABI(CodeGenModule &CGM) {
178 return new ARMCXXABI(CGM);
179 }
180
181 llvm::Type *
ConvertMemberPointerType(const MemberPointerType * MPT)182 ItaniumCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) {
183 if (MPT->isMemberDataPointer())
184 return getPtrDiffTy();
185 return llvm::StructType::get(getPtrDiffTy(), getPtrDiffTy(), NULL);
186 }
187
188 /// In the Itanium and ARM ABIs, method pointers have the form:
189 /// struct { ptrdiff_t ptr; ptrdiff_t adj; } memptr;
190 ///
191 /// In the Itanium ABI:
192 /// - method pointers are virtual if (memptr.ptr & 1) is nonzero
193 /// - the this-adjustment is (memptr.adj)
194 /// - the virtual offset is (memptr.ptr - 1)
195 ///
196 /// In the ARM ABI:
197 /// - method pointers are virtual if (memptr.adj & 1) is nonzero
198 /// - the this-adjustment is (memptr.adj >> 1)
199 /// - the virtual offset is (memptr.ptr)
200 /// ARM uses 'adj' for the virtual flag because Thumb functions
201 /// may be only single-byte aligned.
202 ///
203 /// If the member is virtual, the adjusted 'this' pointer points
204 /// to a vtable pointer from which the virtual offset is applied.
205 ///
206 /// If the member is non-virtual, memptr.ptr is the address of
207 /// the function to call.
208 llvm::Value *
EmitLoadOfMemberFunctionPointer(CodeGenFunction & CGF,llvm::Value * & This,llvm::Value * MemFnPtr,const MemberPointerType * MPT)209 ItaniumCXXABI::EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF,
210 llvm::Value *&This,
211 llvm::Value *MemFnPtr,
212 const MemberPointerType *MPT) {
213 CGBuilderTy &Builder = CGF.Builder;
214
215 const FunctionProtoType *FPT =
216 MPT->getPointeeType()->getAs<FunctionProtoType>();
217 const CXXRecordDecl *RD =
218 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
219
220 llvm::FunctionType *FTy =
221 CGM.getTypes().GetFunctionType(
222 CGM.getTypes().arrangeCXXMethodType(RD, FPT));
223
224 llvm::IntegerType *ptrdiff = getPtrDiffTy();
225 llvm::Constant *ptrdiff_1 = llvm::ConstantInt::get(ptrdiff, 1);
226
227 llvm::BasicBlock *FnVirtual = CGF.createBasicBlock("memptr.virtual");
228 llvm::BasicBlock *FnNonVirtual = CGF.createBasicBlock("memptr.nonvirtual");
229 llvm::BasicBlock *FnEnd = CGF.createBasicBlock("memptr.end");
230
231 // Extract memptr.adj, which is in the second field.
232 llvm::Value *RawAdj = Builder.CreateExtractValue(MemFnPtr, 1, "memptr.adj");
233
234 // Compute the true adjustment.
235 llvm::Value *Adj = RawAdj;
236 if (IsARM)
237 Adj = Builder.CreateAShr(Adj, ptrdiff_1, "memptr.adj.shifted");
238
239 // Apply the adjustment and cast back to the original struct type
240 // for consistency.
241 llvm::Value *Ptr = Builder.CreateBitCast(This, Builder.getInt8PtrTy());
242 Ptr = Builder.CreateInBoundsGEP(Ptr, Adj);
243 This = Builder.CreateBitCast(Ptr, This->getType(), "this.adjusted");
244
245 // Load the function pointer.
246 llvm::Value *FnAsInt = Builder.CreateExtractValue(MemFnPtr, 0, "memptr.ptr");
247
248 // If the LSB in the function pointer is 1, the function pointer points to
249 // a virtual function.
250 llvm::Value *IsVirtual;
251 if (IsARM)
252 IsVirtual = Builder.CreateAnd(RawAdj, ptrdiff_1);
253 else
254 IsVirtual = Builder.CreateAnd(FnAsInt, ptrdiff_1);
255 IsVirtual = Builder.CreateIsNotNull(IsVirtual, "memptr.isvirtual");
256 Builder.CreateCondBr(IsVirtual, FnVirtual, FnNonVirtual);
257
258 // In the virtual path, the adjustment left 'This' pointing to the
259 // vtable of the correct base subobject. The "function pointer" is an
260 // offset within the vtable (+1 for the virtual flag on non-ARM).
261 CGF.EmitBlock(FnVirtual);
262
263 // Cast the adjusted this to a pointer to vtable pointer and load.
264 llvm::Type *VTableTy = Builder.getInt8PtrTy();
265 llvm::Value *VTable = Builder.CreateBitCast(This, VTableTy->getPointerTo());
266 VTable = Builder.CreateLoad(VTable, "memptr.vtable");
267
268 // Apply the offset.
269 llvm::Value *VTableOffset = FnAsInt;
270 if (!IsARM) VTableOffset = Builder.CreateSub(VTableOffset, ptrdiff_1);
271 VTable = Builder.CreateGEP(VTable, VTableOffset);
272
273 // Load the virtual function to call.
274 VTable = Builder.CreateBitCast(VTable, FTy->getPointerTo()->getPointerTo());
275 llvm::Value *VirtualFn = Builder.CreateLoad(VTable, "memptr.virtualfn");
276 CGF.EmitBranch(FnEnd);
277
278 // In the non-virtual path, the function pointer is actually a
279 // function pointer.
280 CGF.EmitBlock(FnNonVirtual);
281 llvm::Value *NonVirtualFn =
282 Builder.CreateIntToPtr(FnAsInt, FTy->getPointerTo(), "memptr.nonvirtualfn");
283
284 // We're done.
285 CGF.EmitBlock(FnEnd);
286 llvm::PHINode *Callee = Builder.CreatePHI(FTy->getPointerTo(), 2);
287 Callee->addIncoming(VirtualFn, FnVirtual);
288 Callee->addIncoming(NonVirtualFn, FnNonVirtual);
289 return Callee;
290 }
291
292 /// Compute an l-value by applying the given pointer-to-member to a
293 /// base object.
EmitMemberDataPointerAddress(CodeGenFunction & CGF,llvm::Value * Base,llvm::Value * MemPtr,const MemberPointerType * MPT)294 llvm::Value *ItaniumCXXABI::EmitMemberDataPointerAddress(CodeGenFunction &CGF,
295 llvm::Value *Base,
296 llvm::Value *MemPtr,
297 const MemberPointerType *MPT) {
298 assert(MemPtr->getType() == getPtrDiffTy());
299
300 CGBuilderTy &Builder = CGF.Builder;
301
302 unsigned AS = cast<llvm::PointerType>(Base->getType())->getAddressSpace();
303
304 // Cast to char*.
305 Base = Builder.CreateBitCast(Base, Builder.getInt8Ty()->getPointerTo(AS));
306
307 // Apply the offset, which we assume is non-null.
308 llvm::Value *Addr = Builder.CreateInBoundsGEP(Base, MemPtr, "memptr.offset");
309
310 // Cast the address to the appropriate pointer type, adopting the
311 // address space of the base pointer.
312 llvm::Type *PType
313 = CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS);
314 return Builder.CreateBitCast(Addr, PType);
315 }
316
317 /// Perform a bitcast, derived-to-base, or base-to-derived member pointer
318 /// conversion.
319 ///
320 /// Bitcast conversions are always a no-op under Itanium.
321 ///
322 /// Obligatory offset/adjustment diagram:
323 /// <-- offset --> <-- adjustment -->
324 /// |--------------------------|----------------------|--------------------|
325 /// ^Derived address point ^Base address point ^Member address point
326 ///
327 /// So when converting a base member pointer to a derived member pointer,
328 /// we add the offset to the adjustment because the address point has
329 /// decreased; and conversely, when converting a derived MP to a base MP
330 /// we subtract the offset from the adjustment because the address point
331 /// has increased.
332 ///
333 /// The standard forbids (at compile time) conversion to and from
334 /// virtual bases, which is why we don't have to consider them here.
335 ///
336 /// The standard forbids (at run time) casting a derived MP to a base
337 /// MP when the derived MP does not point to a member of the base.
338 /// This is why -1 is a reasonable choice for null data member
339 /// pointers.
340 llvm::Value *
EmitMemberPointerConversion(CodeGenFunction & CGF,const CastExpr * E,llvm::Value * src)341 ItaniumCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF,
342 const CastExpr *E,
343 llvm::Value *src) {
344 assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
345 E->getCastKind() == CK_BaseToDerivedMemberPointer ||
346 E->getCastKind() == CK_ReinterpretMemberPointer);
347
348 // Under Itanium, reinterprets don't require any additional processing.
349 if (E->getCastKind() == CK_ReinterpretMemberPointer) return src;
350
351 // Use constant emission if we can.
352 if (isa<llvm::Constant>(src))
353 return EmitMemberPointerConversion(E, cast<llvm::Constant>(src));
354
355 llvm::Constant *adj = getMemberPointerAdjustment(E);
356 if (!adj) return src;
357
358 CGBuilderTy &Builder = CGF.Builder;
359 bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer);
360
361 const MemberPointerType *destTy =
362 E->getType()->castAs<MemberPointerType>();
363
364 // For member data pointers, this is just a matter of adding the
365 // offset if the source is non-null.
366 if (destTy->isMemberDataPointer()) {
367 llvm::Value *dst;
368 if (isDerivedToBase)
369 dst = Builder.CreateNSWSub(src, adj, "adj");
370 else
371 dst = Builder.CreateNSWAdd(src, adj, "adj");
372
373 // Null check.
374 llvm::Value *null = llvm::Constant::getAllOnesValue(src->getType());
375 llvm::Value *isNull = Builder.CreateICmpEQ(src, null, "memptr.isnull");
376 return Builder.CreateSelect(isNull, src, dst);
377 }
378
379 // The this-adjustment is left-shifted by 1 on ARM.
380 if (IsARM) {
381 uint64_t offset = cast<llvm::ConstantInt>(adj)->getZExtValue();
382 offset <<= 1;
383 adj = llvm::ConstantInt::get(adj->getType(), offset);
384 }
385
386 llvm::Value *srcAdj = Builder.CreateExtractValue(src, 1, "src.adj");
387 llvm::Value *dstAdj;
388 if (isDerivedToBase)
389 dstAdj = Builder.CreateNSWSub(srcAdj, adj, "adj");
390 else
391 dstAdj = Builder.CreateNSWAdd(srcAdj, adj, "adj");
392
393 return Builder.CreateInsertValue(src, dstAdj, 1);
394 }
395
396 llvm::Constant *
EmitMemberPointerConversion(const CastExpr * E,llvm::Constant * src)397 ItaniumCXXABI::EmitMemberPointerConversion(const CastExpr *E,
398 llvm::Constant *src) {
399 assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
400 E->getCastKind() == CK_BaseToDerivedMemberPointer ||
401 E->getCastKind() == CK_ReinterpretMemberPointer);
402
403 // Under Itanium, reinterprets don't require any additional processing.
404 if (E->getCastKind() == CK_ReinterpretMemberPointer) return src;
405
406 // If the adjustment is trivial, we don't need to do anything.
407 llvm::Constant *adj = getMemberPointerAdjustment(E);
408 if (!adj) return src;
409
410 bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer);
411
412 const MemberPointerType *destTy =
413 E->getType()->castAs<MemberPointerType>();
414
415 // For member data pointers, this is just a matter of adding the
416 // offset if the source is non-null.
417 if (destTy->isMemberDataPointer()) {
418 // null maps to null.
419 if (src->isAllOnesValue()) return src;
420
421 if (isDerivedToBase)
422 return llvm::ConstantExpr::getNSWSub(src, adj);
423 else
424 return llvm::ConstantExpr::getNSWAdd(src, adj);
425 }
426
427 // The this-adjustment is left-shifted by 1 on ARM.
428 if (IsARM) {
429 uint64_t offset = cast<llvm::ConstantInt>(adj)->getZExtValue();
430 offset <<= 1;
431 adj = llvm::ConstantInt::get(adj->getType(), offset);
432 }
433
434 llvm::Constant *srcAdj = llvm::ConstantExpr::getExtractValue(src, 1);
435 llvm::Constant *dstAdj;
436 if (isDerivedToBase)
437 dstAdj = llvm::ConstantExpr::getNSWSub(srcAdj, adj);
438 else
439 dstAdj = llvm::ConstantExpr::getNSWAdd(srcAdj, adj);
440
441 return llvm::ConstantExpr::getInsertValue(src, dstAdj, 1);
442 }
443
444 llvm::Constant *
EmitNullMemberPointer(const MemberPointerType * MPT)445 ItaniumCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) {
446 llvm::Type *ptrdiff_t = getPtrDiffTy();
447
448 // Itanium C++ ABI 2.3:
449 // A NULL pointer is represented as -1.
450 if (MPT->isMemberDataPointer())
451 return llvm::ConstantInt::get(ptrdiff_t, -1ULL, /*isSigned=*/true);
452
453 llvm::Constant *Zero = llvm::ConstantInt::get(ptrdiff_t, 0);
454 llvm::Constant *Values[2] = { Zero, Zero };
455 return llvm::ConstantStruct::getAnon(Values);
456 }
457
458 llvm::Constant *
EmitMemberDataPointer(const MemberPointerType * MPT,CharUnits offset)459 ItaniumCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT,
460 CharUnits offset) {
461 // Itanium C++ ABI 2.3:
462 // A pointer to data member is an offset from the base address of
463 // the class object containing it, represented as a ptrdiff_t
464 return llvm::ConstantInt::get(getPtrDiffTy(), offset.getQuantity());
465 }
466
EmitMemberPointer(const CXXMethodDecl * MD)467 llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const CXXMethodDecl *MD) {
468 return BuildMemberPointer(MD, CharUnits::Zero());
469 }
470
BuildMemberPointer(const CXXMethodDecl * MD,CharUnits ThisAdjustment)471 llvm::Constant *ItaniumCXXABI::BuildMemberPointer(const CXXMethodDecl *MD,
472 CharUnits ThisAdjustment) {
473 assert(MD->isInstance() && "Member function must not be static!");
474 MD = MD->getCanonicalDecl();
475
476 CodeGenTypes &Types = CGM.getTypes();
477 llvm::Type *ptrdiff_t = getPtrDiffTy();
478
479 // Get the function pointer (or index if this is a virtual function).
480 llvm::Constant *MemPtr[2];
481 if (MD->isVirtual()) {
482 uint64_t Index = CGM.getVTableContext().getMethodVTableIndex(MD);
483
484 const ASTContext &Context = getContext();
485 CharUnits PointerWidth =
486 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
487 uint64_t VTableOffset = (Index * PointerWidth.getQuantity());
488
489 if (IsARM) {
490 // ARM C++ ABI 3.2.1:
491 // This ABI specifies that adj contains twice the this
492 // adjustment, plus 1 if the member function is virtual. The
493 // least significant bit of adj then makes exactly the same
494 // discrimination as the least significant bit of ptr does for
495 // Itanium.
496 MemPtr[0] = llvm::ConstantInt::get(ptrdiff_t, VTableOffset);
497 MemPtr[1] = llvm::ConstantInt::get(ptrdiff_t,
498 2 * ThisAdjustment.getQuantity() + 1);
499 } else {
500 // Itanium C++ ABI 2.3:
501 // For a virtual function, [the pointer field] is 1 plus the
502 // virtual table offset (in bytes) of the function,
503 // represented as a ptrdiff_t.
504 MemPtr[0] = llvm::ConstantInt::get(ptrdiff_t, VTableOffset + 1);
505 MemPtr[1] = llvm::ConstantInt::get(ptrdiff_t,
506 ThisAdjustment.getQuantity());
507 }
508 } else {
509 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
510 llvm::Type *Ty;
511 // Check whether the function has a computable LLVM signature.
512 if (Types.isFuncTypeConvertible(FPT)) {
513 // The function has a computable LLVM signature; use the correct type.
514 Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD));
515 } else {
516 // Use an arbitrary non-function type to tell GetAddrOfFunction that the
517 // function type is incomplete.
518 Ty = ptrdiff_t;
519 }
520 llvm::Constant *addr = CGM.GetAddrOfFunction(MD, Ty);
521
522 MemPtr[0] = llvm::ConstantExpr::getPtrToInt(addr, ptrdiff_t);
523 MemPtr[1] = llvm::ConstantInt::get(ptrdiff_t, (IsARM ? 2 : 1) *
524 ThisAdjustment.getQuantity());
525 }
526
527 return llvm::ConstantStruct::getAnon(MemPtr);
528 }
529
EmitMemberPointer(const APValue & MP,QualType MPType)530 llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const APValue &MP,
531 QualType MPType) {
532 const MemberPointerType *MPT = MPType->castAs<MemberPointerType>();
533 const ValueDecl *MPD = MP.getMemberPointerDecl();
534 if (!MPD)
535 return EmitNullMemberPointer(MPT);
536
537 // Compute the this-adjustment.
538 CharUnits ThisAdjustment = CharUnits::Zero();
539 ArrayRef<const CXXRecordDecl*> Path = MP.getMemberPointerPath();
540 bool DerivedMember = MP.isMemberPointerToDerivedMember();
541 const CXXRecordDecl *RD = cast<CXXRecordDecl>(MPD->getDeclContext());
542 for (unsigned I = 0, N = Path.size(); I != N; ++I) {
543 const CXXRecordDecl *Base = RD;
544 const CXXRecordDecl *Derived = Path[I];
545 if (DerivedMember)
546 std::swap(Base, Derived);
547 ThisAdjustment +=
548 getContext().getASTRecordLayout(Derived).getBaseClassOffset(Base);
549 RD = Path[I];
550 }
551 if (DerivedMember)
552 ThisAdjustment = -ThisAdjustment;
553
554 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD))
555 return BuildMemberPointer(MD, ThisAdjustment);
556
557 CharUnits FieldOffset =
558 getContext().toCharUnitsFromBits(getContext().getFieldOffset(MPD));
559 return EmitMemberDataPointer(MPT, ThisAdjustment + FieldOffset);
560 }
561
562 /// The comparison algorithm is pretty easy: the member pointers are
563 /// the same if they're either bitwise identical *or* both null.
564 ///
565 /// ARM is different here only because null-ness is more complicated.
566 llvm::Value *
EmitMemberPointerComparison(CodeGenFunction & CGF,llvm::Value * L,llvm::Value * R,const MemberPointerType * MPT,bool Inequality)567 ItaniumCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF,
568 llvm::Value *L,
569 llvm::Value *R,
570 const MemberPointerType *MPT,
571 bool Inequality) {
572 CGBuilderTy &Builder = CGF.Builder;
573
574 llvm::ICmpInst::Predicate Eq;
575 llvm::Instruction::BinaryOps And, Or;
576 if (Inequality) {
577 Eq = llvm::ICmpInst::ICMP_NE;
578 And = llvm::Instruction::Or;
579 Or = llvm::Instruction::And;
580 } else {
581 Eq = llvm::ICmpInst::ICMP_EQ;
582 And = llvm::Instruction::And;
583 Or = llvm::Instruction::Or;
584 }
585
586 // Member data pointers are easy because there's a unique null
587 // value, so it just comes down to bitwise equality.
588 if (MPT->isMemberDataPointer())
589 return Builder.CreateICmp(Eq, L, R);
590
591 // For member function pointers, the tautologies are more complex.
592 // The Itanium tautology is:
593 // (L == R) <==> (L.ptr == R.ptr && (L.ptr == 0 || L.adj == R.adj))
594 // The ARM tautology is:
595 // (L == R) <==> (L.ptr == R.ptr &&
596 // (L.adj == R.adj ||
597 // (L.ptr == 0 && ((L.adj|R.adj) & 1) == 0)))
598 // The inequality tautologies have exactly the same structure, except
599 // applying De Morgan's laws.
600
601 llvm::Value *LPtr = Builder.CreateExtractValue(L, 0, "lhs.memptr.ptr");
602 llvm::Value *RPtr = Builder.CreateExtractValue(R, 0, "rhs.memptr.ptr");
603
604 // This condition tests whether L.ptr == R.ptr. This must always be
605 // true for equality to hold.
606 llvm::Value *PtrEq = Builder.CreateICmp(Eq, LPtr, RPtr, "cmp.ptr");
607
608 // This condition, together with the assumption that L.ptr == R.ptr,
609 // tests whether the pointers are both null. ARM imposes an extra
610 // condition.
611 llvm::Value *Zero = llvm::Constant::getNullValue(LPtr->getType());
612 llvm::Value *EqZero = Builder.CreateICmp(Eq, LPtr, Zero, "cmp.ptr.null");
613
614 // This condition tests whether L.adj == R.adj. If this isn't
615 // true, the pointers are unequal unless they're both null.
616 llvm::Value *LAdj = Builder.CreateExtractValue(L, 1, "lhs.memptr.adj");
617 llvm::Value *RAdj = Builder.CreateExtractValue(R, 1, "rhs.memptr.adj");
618 llvm::Value *AdjEq = Builder.CreateICmp(Eq, LAdj, RAdj, "cmp.adj");
619
620 // Null member function pointers on ARM clear the low bit of Adj,
621 // so the zero condition has to check that neither low bit is set.
622 if (IsARM) {
623 llvm::Value *One = llvm::ConstantInt::get(LPtr->getType(), 1);
624
625 // Compute (l.adj | r.adj) & 1 and test it against zero.
626 llvm::Value *OrAdj = Builder.CreateOr(LAdj, RAdj, "or.adj");
627 llvm::Value *OrAdjAnd1 = Builder.CreateAnd(OrAdj, One);
628 llvm::Value *OrAdjAnd1EqZero = Builder.CreateICmp(Eq, OrAdjAnd1, Zero,
629 "cmp.or.adj");
630 EqZero = Builder.CreateBinOp(And, EqZero, OrAdjAnd1EqZero);
631 }
632
633 // Tie together all our conditions.
634 llvm::Value *Result = Builder.CreateBinOp(Or, EqZero, AdjEq);
635 Result = Builder.CreateBinOp(And, PtrEq, Result,
636 Inequality ? "memptr.ne" : "memptr.eq");
637 return Result;
638 }
639
640 llvm::Value *
EmitMemberPointerIsNotNull(CodeGenFunction & CGF,llvm::Value * MemPtr,const MemberPointerType * MPT)641 ItaniumCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
642 llvm::Value *MemPtr,
643 const MemberPointerType *MPT) {
644 CGBuilderTy &Builder = CGF.Builder;
645
646 /// For member data pointers, this is just a check against -1.
647 if (MPT->isMemberDataPointer()) {
648 assert(MemPtr->getType() == getPtrDiffTy());
649 llvm::Value *NegativeOne =
650 llvm::Constant::getAllOnesValue(MemPtr->getType());
651 return Builder.CreateICmpNE(MemPtr, NegativeOne, "memptr.tobool");
652 }
653
654 // In Itanium, a member function pointer is not null if 'ptr' is not null.
655 llvm::Value *Ptr = Builder.CreateExtractValue(MemPtr, 0, "memptr.ptr");
656
657 llvm::Constant *Zero = llvm::ConstantInt::get(Ptr->getType(), 0);
658 llvm::Value *Result = Builder.CreateICmpNE(Ptr, Zero, "memptr.tobool");
659
660 // On ARM, a member function pointer is also non-null if the low bit of 'adj'
661 // (the virtual bit) is set.
662 if (IsARM) {
663 llvm::Constant *One = llvm::ConstantInt::get(Ptr->getType(), 1);
664 llvm::Value *Adj = Builder.CreateExtractValue(MemPtr, 1, "memptr.adj");
665 llvm::Value *VirtualBit = Builder.CreateAnd(Adj, One, "memptr.virtualbit");
666 llvm::Value *IsVirtual = Builder.CreateICmpNE(VirtualBit, Zero,
667 "memptr.isvirtual");
668 Result = Builder.CreateOr(Result, IsVirtual);
669 }
670
671 return Result;
672 }
673
674 /// The Itanium ABI requires non-zero initialization only for data
675 /// member pointers, for which '0' is a valid offset.
isZeroInitializable(const MemberPointerType * MPT)676 bool ItaniumCXXABI::isZeroInitializable(const MemberPointerType *MPT) {
677 return MPT->getPointeeType()->isFunctionType();
678 }
679
680 /// The generic ABI passes 'this', plus a VTT if it's initializing a
681 /// base subobject.
BuildConstructorSignature(const CXXConstructorDecl * Ctor,CXXCtorType Type,CanQualType & ResTy,SmallVectorImpl<CanQualType> & ArgTys)682 void ItaniumCXXABI::BuildConstructorSignature(const CXXConstructorDecl *Ctor,
683 CXXCtorType Type,
684 CanQualType &ResTy,
685 SmallVectorImpl<CanQualType> &ArgTys) {
686 ASTContext &Context = getContext();
687
688 // 'this' is already there.
689
690 // Check if we need to add a VTT parameter (which has type void **).
691 if (Type == Ctor_Base && Ctor->getParent()->getNumVBases() != 0)
692 ArgTys.push_back(Context.getPointerType(Context.VoidPtrTy));
693 }
694
695 /// The ARM ABI does the same as the Itanium ABI, but returns 'this'.
BuildConstructorSignature(const CXXConstructorDecl * Ctor,CXXCtorType Type,CanQualType & ResTy,SmallVectorImpl<CanQualType> & ArgTys)696 void ARMCXXABI::BuildConstructorSignature(const CXXConstructorDecl *Ctor,
697 CXXCtorType Type,
698 CanQualType &ResTy,
699 SmallVectorImpl<CanQualType> &ArgTys) {
700 ItaniumCXXABI::BuildConstructorSignature(Ctor, Type, ResTy, ArgTys);
701 ResTy = ArgTys[0];
702 }
703
704 /// The generic ABI passes 'this', plus a VTT if it's destroying a
705 /// base subobject.
BuildDestructorSignature(const CXXDestructorDecl * Dtor,CXXDtorType Type,CanQualType & ResTy,SmallVectorImpl<CanQualType> & ArgTys)706 void ItaniumCXXABI::BuildDestructorSignature(const CXXDestructorDecl *Dtor,
707 CXXDtorType Type,
708 CanQualType &ResTy,
709 SmallVectorImpl<CanQualType> &ArgTys) {
710 ASTContext &Context = getContext();
711
712 // 'this' is already there.
713
714 // Check if we need to add a VTT parameter (which has type void **).
715 if (Type == Dtor_Base && Dtor->getParent()->getNumVBases() != 0)
716 ArgTys.push_back(Context.getPointerType(Context.VoidPtrTy));
717 }
718
719 /// The ARM ABI does the same as the Itanium ABI, but returns 'this'
720 /// for non-deleting destructors.
BuildDestructorSignature(const CXXDestructorDecl * Dtor,CXXDtorType Type,CanQualType & ResTy,SmallVectorImpl<CanQualType> & ArgTys)721 void ARMCXXABI::BuildDestructorSignature(const CXXDestructorDecl *Dtor,
722 CXXDtorType Type,
723 CanQualType &ResTy,
724 SmallVectorImpl<CanQualType> &ArgTys) {
725 ItaniumCXXABI::BuildDestructorSignature(Dtor, Type, ResTy, ArgTys);
726
727 if (Type != Dtor_Deleting)
728 ResTy = ArgTys[0];
729 }
730
BuildInstanceFunctionParams(CodeGenFunction & CGF,QualType & ResTy,FunctionArgList & Params)731 void ItaniumCXXABI::BuildInstanceFunctionParams(CodeGenFunction &CGF,
732 QualType &ResTy,
733 FunctionArgList &Params) {
734 /// Create the 'this' variable.
735 BuildThisParam(CGF, Params);
736
737 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
738 assert(MD->isInstance());
739
740 // Check if we need a VTT parameter as well.
741 if (CodeGenVTables::needsVTTParameter(CGF.CurGD)) {
742 ASTContext &Context = getContext();
743
744 // FIXME: avoid the fake decl
745 QualType T = Context.getPointerType(Context.VoidPtrTy);
746 ImplicitParamDecl *VTTDecl
747 = ImplicitParamDecl::Create(Context, 0, MD->getLocation(),
748 &Context.Idents.get("vtt"), T);
749 Params.push_back(VTTDecl);
750 getVTTDecl(CGF) = VTTDecl;
751 }
752 }
753
BuildInstanceFunctionParams(CodeGenFunction & CGF,QualType & ResTy,FunctionArgList & Params)754 void ARMCXXABI::BuildInstanceFunctionParams(CodeGenFunction &CGF,
755 QualType &ResTy,
756 FunctionArgList &Params) {
757 ItaniumCXXABI::BuildInstanceFunctionParams(CGF, ResTy, Params);
758
759 // Return 'this' from certain constructors and destructors.
760 if (HasThisReturn(CGF.CurGD))
761 ResTy = Params[0]->getType();
762 }
763
EmitInstanceFunctionProlog(CodeGenFunction & CGF)764 void ItaniumCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
765 /// Initialize the 'this' slot.
766 EmitThisParam(CGF);
767
768 /// Initialize the 'vtt' slot if needed.
769 if (getVTTDecl(CGF)) {
770 getVTTValue(CGF)
771 = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(getVTTDecl(CGF)),
772 "vtt");
773 }
774 }
775
EmitInstanceFunctionProlog(CodeGenFunction & CGF)776 void ARMCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
777 ItaniumCXXABI::EmitInstanceFunctionProlog(CGF);
778
779 /// Initialize the return slot to 'this' at the start of the
780 /// function.
781 if (HasThisReturn(CGF.CurGD))
782 CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue);
783 }
784
EmitReturnFromThunk(CodeGenFunction & CGF,RValue RV,QualType ResultType)785 void ARMCXXABI::EmitReturnFromThunk(CodeGenFunction &CGF,
786 RValue RV, QualType ResultType) {
787 if (!isa<CXXDestructorDecl>(CGF.CurGD.getDecl()))
788 return ItaniumCXXABI::EmitReturnFromThunk(CGF, RV, ResultType);
789
790 // Destructor thunks in the ARM ABI have indeterminate results.
791 llvm::Type *T =
792 cast<llvm::PointerType>(CGF.ReturnValue->getType())->getElementType();
793 RValue Undef = RValue::get(llvm::UndefValue::get(T));
794 return ItaniumCXXABI::EmitReturnFromThunk(CGF, Undef, ResultType);
795 }
796
797 /************************** Array allocation cookies **************************/
798
getArrayCookieSizeImpl(QualType elementType)799 CharUnits ItaniumCXXABI::getArrayCookieSizeImpl(QualType elementType) {
800 // The array cookie is a size_t; pad that up to the element alignment.
801 // The cookie is actually right-justified in that space.
802 return std::max(CharUnits::fromQuantity(CGM.SizeSizeInBytes),
803 CGM.getContext().getTypeAlignInChars(elementType));
804 }
805
InitializeArrayCookie(CodeGenFunction & CGF,llvm::Value * NewPtr,llvm::Value * NumElements,const CXXNewExpr * expr,QualType ElementType)806 llvm::Value *ItaniumCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
807 llvm::Value *NewPtr,
808 llvm::Value *NumElements,
809 const CXXNewExpr *expr,
810 QualType ElementType) {
811 assert(requiresArrayCookie(expr));
812
813 unsigned AS = cast<llvm::PointerType>(NewPtr->getType())->getAddressSpace();
814
815 ASTContext &Ctx = getContext();
816 QualType SizeTy = Ctx.getSizeType();
817 CharUnits SizeSize = Ctx.getTypeSizeInChars(SizeTy);
818
819 // The size of the cookie.
820 CharUnits CookieSize =
821 std::max(SizeSize, Ctx.getTypeAlignInChars(ElementType));
822 assert(CookieSize == getArrayCookieSizeImpl(ElementType));
823
824 // Compute an offset to the cookie.
825 llvm::Value *CookiePtr = NewPtr;
826 CharUnits CookieOffset = CookieSize - SizeSize;
827 if (!CookieOffset.isZero())
828 CookiePtr = CGF.Builder.CreateConstInBoundsGEP1_64(CookiePtr,
829 CookieOffset.getQuantity());
830
831 // Write the number of elements into the appropriate slot.
832 llvm::Value *NumElementsPtr
833 = CGF.Builder.CreateBitCast(CookiePtr,
834 CGF.ConvertType(SizeTy)->getPointerTo(AS));
835 CGF.Builder.CreateStore(NumElements, NumElementsPtr);
836
837 // Finally, compute a pointer to the actual data buffer by skipping
838 // over the cookie completely.
839 return CGF.Builder.CreateConstInBoundsGEP1_64(NewPtr,
840 CookieSize.getQuantity());
841 }
842
readArrayCookieImpl(CodeGenFunction & CGF,llvm::Value * allocPtr,CharUnits cookieSize)843 llvm::Value *ItaniumCXXABI::readArrayCookieImpl(CodeGenFunction &CGF,
844 llvm::Value *allocPtr,
845 CharUnits cookieSize) {
846 // The element size is right-justified in the cookie.
847 llvm::Value *numElementsPtr = allocPtr;
848 CharUnits numElementsOffset =
849 cookieSize - CharUnits::fromQuantity(CGF.SizeSizeInBytes);
850 if (!numElementsOffset.isZero())
851 numElementsPtr =
852 CGF.Builder.CreateConstInBoundsGEP1_64(numElementsPtr,
853 numElementsOffset.getQuantity());
854
855 unsigned AS = cast<llvm::PointerType>(allocPtr->getType())->getAddressSpace();
856 numElementsPtr =
857 CGF.Builder.CreateBitCast(numElementsPtr, CGF.SizeTy->getPointerTo(AS));
858 return CGF.Builder.CreateLoad(numElementsPtr);
859 }
860
getArrayCookieSizeImpl(QualType elementType)861 CharUnits ARMCXXABI::getArrayCookieSizeImpl(QualType elementType) {
862 // On ARM, the cookie is always:
863 // struct array_cookie {
864 // std::size_t element_size; // element_size != 0
865 // std::size_t element_count;
866 // };
867 // TODO: what should we do if the allocated type actually wants
868 // greater alignment?
869 return CharUnits::fromQuantity(2 * CGM.SizeSizeInBytes);
870 }
871
InitializeArrayCookie(CodeGenFunction & CGF,llvm::Value * NewPtr,llvm::Value * NumElements,const CXXNewExpr * expr,QualType ElementType)872 llvm::Value *ARMCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
873 llvm::Value *NewPtr,
874 llvm::Value *NumElements,
875 const CXXNewExpr *expr,
876 QualType ElementType) {
877 assert(requiresArrayCookie(expr));
878
879 // NewPtr is a char*.
880
881 unsigned AS = cast<llvm::PointerType>(NewPtr->getType())->getAddressSpace();
882
883 ASTContext &Ctx = getContext();
884 CharUnits SizeSize = Ctx.getTypeSizeInChars(Ctx.getSizeType());
885 llvm::IntegerType *SizeTy =
886 cast<llvm::IntegerType>(CGF.ConvertType(Ctx.getSizeType()));
887
888 // The cookie is always at the start of the buffer.
889 llvm::Value *CookiePtr = NewPtr;
890
891 // The first element is the element size.
892 CookiePtr = CGF.Builder.CreateBitCast(CookiePtr, SizeTy->getPointerTo(AS));
893 llvm::Value *ElementSize = llvm::ConstantInt::get(SizeTy,
894 Ctx.getTypeSizeInChars(ElementType).getQuantity());
895 CGF.Builder.CreateStore(ElementSize, CookiePtr);
896
897 // The second element is the element count.
898 CookiePtr = CGF.Builder.CreateConstInBoundsGEP1_32(CookiePtr, 1);
899 CGF.Builder.CreateStore(NumElements, CookiePtr);
900
901 // Finally, compute a pointer to the actual data buffer by skipping
902 // over the cookie completely.
903 CharUnits CookieSize = 2 * SizeSize;
904 return CGF.Builder.CreateConstInBoundsGEP1_64(NewPtr,
905 CookieSize.getQuantity());
906 }
907
readArrayCookieImpl(CodeGenFunction & CGF,llvm::Value * allocPtr,CharUnits cookieSize)908 llvm::Value *ARMCXXABI::readArrayCookieImpl(CodeGenFunction &CGF,
909 llvm::Value *allocPtr,
910 CharUnits cookieSize) {
911 // The number of elements is at offset sizeof(size_t) relative to
912 // the allocated pointer.
913 llvm::Value *numElementsPtr
914 = CGF.Builder.CreateConstInBoundsGEP1_64(allocPtr, CGF.SizeSizeInBytes);
915
916 unsigned AS = cast<llvm::PointerType>(allocPtr->getType())->getAddressSpace();
917 numElementsPtr =
918 CGF.Builder.CreateBitCast(numElementsPtr, CGF.SizeTy->getPointerTo(AS));
919 return CGF.Builder.CreateLoad(numElementsPtr);
920 }
921
922 /*********************** Static local initialization **************************/
923
getGuardAcquireFn(CodeGenModule & CGM,llvm::PointerType * GuardPtrTy)924 static llvm::Constant *getGuardAcquireFn(CodeGenModule &CGM,
925 llvm::PointerType *GuardPtrTy) {
926 // int __cxa_guard_acquire(__guard *guard_object);
927 llvm::FunctionType *FTy =
928 llvm::FunctionType::get(CGM.getTypes().ConvertType(CGM.getContext().IntTy),
929 GuardPtrTy, /*isVarArg=*/false);
930
931 return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_acquire",
932 llvm::Attribute::NoUnwind);
933 }
934
getGuardReleaseFn(CodeGenModule & CGM,llvm::PointerType * GuardPtrTy)935 static llvm::Constant *getGuardReleaseFn(CodeGenModule &CGM,
936 llvm::PointerType *GuardPtrTy) {
937 // void __cxa_guard_release(__guard *guard_object);
938 llvm::FunctionType *FTy =
939 llvm::FunctionType::get(CGM.VoidTy, GuardPtrTy, /*isVarArg=*/false);
940
941 return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_release",
942 llvm::Attribute::NoUnwind);
943 }
944
getGuardAbortFn(CodeGenModule & CGM,llvm::PointerType * GuardPtrTy)945 static llvm::Constant *getGuardAbortFn(CodeGenModule &CGM,
946 llvm::PointerType *GuardPtrTy) {
947 // void __cxa_guard_abort(__guard *guard_object);
948 llvm::FunctionType *FTy =
949 llvm::FunctionType::get(CGM.VoidTy, GuardPtrTy, /*isVarArg=*/false);
950
951 return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_abort",
952 llvm::Attribute::NoUnwind);
953 }
954
955 namespace {
956 struct CallGuardAbort : EHScopeStack::Cleanup {
957 llvm::GlobalVariable *Guard;
CallGuardAbort__anonda7d08bc0211::CallGuardAbort958 CallGuardAbort(llvm::GlobalVariable *Guard) : Guard(Guard) {}
959
Emit__anonda7d08bc0211::CallGuardAbort960 void Emit(CodeGenFunction &CGF, Flags flags) {
961 CGF.Builder.CreateCall(getGuardAbortFn(CGF.CGM, Guard->getType()), Guard)
962 ->setDoesNotThrow();
963 }
964 };
965 }
966
967 /// The ARM code here follows the Itanium code closely enough that we
968 /// just special-case it at particular places.
EmitGuardedInit(CodeGenFunction & CGF,const VarDecl & D,llvm::GlobalVariable * var,bool shouldPerformInit)969 void ItaniumCXXABI::EmitGuardedInit(CodeGenFunction &CGF,
970 const VarDecl &D,
971 llvm::GlobalVariable *var,
972 bool shouldPerformInit) {
973 CGBuilderTy &Builder = CGF.Builder;
974
975 // We only need to use thread-safe statics for local variables;
976 // global initialization is always single-threaded.
977 bool threadsafe =
978 (getContext().getLangOpts().ThreadsafeStatics && D.isLocalVarDecl());
979
980 // If we have a global variable with internal linkage and thread-safe statics
981 // are disabled, we can just let the guard variable be of type i8.
982 bool useInt8GuardVariable = !threadsafe && var->hasInternalLinkage();
983
984 llvm::IntegerType *guardTy;
985 if (useInt8GuardVariable) {
986 guardTy = CGF.Int8Ty;
987 } else {
988 // Guard variables are 64 bits in the generic ABI and 32 bits on ARM.
989 guardTy = (IsARM ? CGF.Int32Ty : CGF.Int64Ty);
990 }
991 llvm::PointerType *guardPtrTy = guardTy->getPointerTo();
992
993 // Create the guard variable if we don't already have it (as we
994 // might if we're double-emitting this function body).
995 llvm::GlobalVariable *guard = CGM.getStaticLocalDeclGuardAddress(&D);
996 if (!guard) {
997 // Mangle the name for the guard.
998 SmallString<256> guardName;
999 {
1000 llvm::raw_svector_ostream out(guardName);
1001 getMangleContext().mangleItaniumGuardVariable(&D, out);
1002 out.flush();
1003 }
1004
1005 // Create the guard variable with a zero-initializer.
1006 // Just absorb linkage and visibility from the guarded variable.
1007 guard = new llvm::GlobalVariable(CGM.getModule(), guardTy,
1008 false, var->getLinkage(),
1009 llvm::ConstantInt::get(guardTy, 0),
1010 guardName.str());
1011 guard->setVisibility(var->getVisibility());
1012
1013 CGM.setStaticLocalDeclGuardAddress(&D, guard);
1014 }
1015
1016 // Test whether the variable has completed initialization.
1017 llvm::Value *isInitialized;
1018
1019 // ARM C++ ABI 3.2.3.1:
1020 // To support the potential use of initialization guard variables
1021 // as semaphores that are the target of ARM SWP and LDREX/STREX
1022 // synchronizing instructions we define a static initialization
1023 // guard variable to be a 4-byte aligned, 4- byte word with the
1024 // following inline access protocol.
1025 // #define INITIALIZED 1
1026 // if ((obj_guard & INITIALIZED) != INITIALIZED) {
1027 // if (__cxa_guard_acquire(&obj_guard))
1028 // ...
1029 // }
1030 if (IsARM && !useInt8GuardVariable) {
1031 llvm::Value *V = Builder.CreateLoad(guard);
1032 V = Builder.CreateAnd(V, Builder.getInt32(1));
1033 isInitialized = Builder.CreateIsNull(V, "guard.uninitialized");
1034
1035 // Itanium C++ ABI 3.3.2:
1036 // The following is pseudo-code showing how these functions can be used:
1037 // if (obj_guard.first_byte == 0) {
1038 // if ( __cxa_guard_acquire (&obj_guard) ) {
1039 // try {
1040 // ... initialize the object ...;
1041 // } catch (...) {
1042 // __cxa_guard_abort (&obj_guard);
1043 // throw;
1044 // }
1045 // ... queue object destructor with __cxa_atexit() ...;
1046 // __cxa_guard_release (&obj_guard);
1047 // }
1048 // }
1049 } else {
1050 // Load the first byte of the guard variable.
1051 llvm::LoadInst *LI =
1052 Builder.CreateLoad(Builder.CreateBitCast(guard, CGM.Int8PtrTy));
1053 LI->setAlignment(1);
1054
1055 // Itanium ABI:
1056 // An implementation supporting thread-safety on multiprocessor
1057 // systems must also guarantee that references to the initialized
1058 // object do not occur before the load of the initialization flag.
1059 //
1060 // In LLVM, we do this by marking the load Acquire.
1061 if (threadsafe)
1062 LI->setAtomic(llvm::Acquire);
1063
1064 isInitialized = Builder.CreateIsNull(LI, "guard.uninitialized");
1065 }
1066
1067 llvm::BasicBlock *InitCheckBlock = CGF.createBasicBlock("init.check");
1068 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
1069
1070 // Check if the first byte of the guard variable is zero.
1071 Builder.CreateCondBr(isInitialized, InitCheckBlock, EndBlock);
1072
1073 CGF.EmitBlock(InitCheckBlock);
1074
1075 // Variables used when coping with thread-safe statics and exceptions.
1076 if (threadsafe) {
1077 // Call __cxa_guard_acquire.
1078 llvm::Value *V
1079 = Builder.CreateCall(getGuardAcquireFn(CGM, guardPtrTy), guard);
1080
1081 llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
1082
1083 Builder.CreateCondBr(Builder.CreateIsNotNull(V, "tobool"),
1084 InitBlock, EndBlock);
1085
1086 // Call __cxa_guard_abort along the exceptional edge.
1087 CGF.EHStack.pushCleanup<CallGuardAbort>(EHCleanup, guard);
1088
1089 CGF.EmitBlock(InitBlock);
1090 }
1091
1092 // Emit the initializer and add a global destructor if appropriate.
1093 CGF.EmitCXXGlobalVarDeclInit(D, var, shouldPerformInit);
1094
1095 if (threadsafe) {
1096 // Pop the guard-abort cleanup if we pushed one.
1097 CGF.PopCleanupBlock();
1098
1099 // Call __cxa_guard_release. This cannot throw.
1100 Builder.CreateCall(getGuardReleaseFn(CGM, guardPtrTy), guard);
1101 } else {
1102 Builder.CreateStore(llvm::ConstantInt::get(guardTy, 1), guard);
1103 }
1104
1105 CGF.EmitBlock(EndBlock);
1106 }
1107
1108 /// Register a global destructor using __cxa_atexit.
emitGlobalDtorWithCXAAtExit(CodeGenFunction & CGF,llvm::Constant * dtor,llvm::Constant * addr)1109 static void emitGlobalDtorWithCXAAtExit(CodeGenFunction &CGF,
1110 llvm::Constant *dtor,
1111 llvm::Constant *addr) {
1112 // We're assuming that the destructor function is something we can
1113 // reasonably call with the default CC. Go ahead and cast it to the
1114 // right prototype.
1115 llvm::Type *dtorTy =
1116 llvm::FunctionType::get(CGF.VoidTy, CGF.Int8PtrTy, false)->getPointerTo();
1117
1118 // extern "C" int __cxa_atexit(void (*f)(void *), void *p, void *d);
1119 llvm::Type *paramTys[] = { dtorTy, CGF.Int8PtrTy, CGF.Int8PtrTy };
1120 llvm::FunctionType *atexitTy =
1121 llvm::FunctionType::get(CGF.IntTy, paramTys, false);
1122
1123 // Fetch the actual function.
1124 llvm::Constant *atexit =
1125 CGF.CGM.CreateRuntimeFunction(atexitTy, "__cxa_atexit");
1126 if (llvm::Function *fn = dyn_cast<llvm::Function>(atexit))
1127 fn->setDoesNotThrow();
1128
1129 // Create a variable that binds the atexit to this shared object.
1130 llvm::Constant *handle =
1131 CGF.CGM.CreateRuntimeVariable(CGF.Int8Ty, "__dso_handle");
1132
1133 llvm::Value *args[] = {
1134 llvm::ConstantExpr::getBitCast(dtor, dtorTy),
1135 llvm::ConstantExpr::getBitCast(addr, CGF.Int8PtrTy),
1136 handle
1137 };
1138 CGF.Builder.CreateCall(atexit, args)->setDoesNotThrow();
1139 }
1140
1141 /// Register a global destructor as best as we know how.
registerGlobalDtor(CodeGenFunction & CGF,llvm::Constant * dtor,llvm::Constant * addr)1142 void ItaniumCXXABI::registerGlobalDtor(CodeGenFunction &CGF,
1143 llvm::Constant *dtor,
1144 llvm::Constant *addr) {
1145 // Use __cxa_atexit if available.
1146 if (CGM.getCodeGenOpts().CXAAtExit) {
1147 return emitGlobalDtorWithCXAAtExit(CGF, dtor, addr);
1148 }
1149
1150 // In Apple kexts, we want to add a global destructor entry.
1151 // FIXME: shouldn't this be guarded by some variable?
1152 if (CGM.getContext().getLangOpts().AppleKext) {
1153 // Generate a global destructor entry.
1154 return CGM.AddCXXDtorEntry(dtor, addr);
1155 }
1156
1157 CGF.registerGlobalDtorWithAtExit(dtor, addr);
1158 }
1159
1160 /// Generate and emit virtual tables for the given class.
EmitVTables(const CXXRecordDecl * Class)1161 void ItaniumCXXABI::EmitVTables(const CXXRecordDecl *Class) {
1162 CGM.getVTables().GenerateClassData(CGM.getVTableLinkage(Class), Class);
1163 }
1164