1 //===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements extra semantic analysis beyond what is enforced
11 // by the C type system.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "clang/Sema/Initialization.h"
16 #include "clang/Sema/Sema.h"
17 #include "clang/Sema/SemaInternal.h"
18 #include "clang/Sema/Initialization.h"
19 #include "clang/Sema/Lookup.h"
20 #include "clang/Sema/ScopeInfo.h"
21 #include "clang/Analysis/Analyses/FormatString.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/CharUnits.h"
24 #include "clang/AST/DeclCXX.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/AST/Expr.h"
27 #include "clang/AST/ExprCXX.h"
28 #include "clang/AST/ExprObjC.h"
29 #include "clang/AST/EvaluatedExprVisitor.h"
30 #include "clang/AST/DeclObjC.h"
31 #include "clang/AST/StmtCXX.h"
32 #include "clang/AST/StmtObjC.h"
33 #include "clang/Lex/Preprocessor.h"
34 #include "llvm/ADT/BitVector.h"
35 #include "llvm/ADT/SmallString.h"
36 #include "llvm/ADT/STLExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "clang/Basic/TargetBuiltins.h"
39 #include "clang/Basic/TargetInfo.h"
40 #include "clang/Basic/ConvertUTF.h"
41 #include <limits>
42 using namespace clang;
43 using namespace sema;
44
getLocationOfStringLiteralByte(const StringLiteral * SL,unsigned ByteNo) const45 SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
46 unsigned ByteNo) const {
47 return SL->getLocationOfByte(ByteNo, PP.getSourceManager(),
48 PP.getLangOpts(), PP.getTargetInfo());
49 }
50
51 /// Checks that a call expression's argument count is the desired number.
52 /// This is useful when doing custom type-checking. Returns true on error.
checkArgCount(Sema & S,CallExpr * call,unsigned desiredArgCount)53 static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
54 unsigned argCount = call->getNumArgs();
55 if (argCount == desiredArgCount) return false;
56
57 if (argCount < desiredArgCount)
58 return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
59 << 0 /*function call*/ << desiredArgCount << argCount
60 << call->getSourceRange();
61
62 // Highlight all the excess arguments.
63 SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
64 call->getArg(argCount - 1)->getLocEnd());
65
66 return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
67 << 0 /*function call*/ << desiredArgCount << argCount
68 << call->getArg(1)->getSourceRange();
69 }
70
71 /// Check that the first argument to __builtin_annotation is an integer
72 /// and the second argument is a non-wide string literal.
SemaBuiltinAnnotation(Sema & S,CallExpr * TheCall)73 static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
74 if (checkArgCount(S, TheCall, 2))
75 return true;
76
77 // First argument should be an integer.
78 Expr *ValArg = TheCall->getArg(0);
79 QualType Ty = ValArg->getType();
80 if (!Ty->isIntegerType()) {
81 S.Diag(ValArg->getLocStart(), diag::err_builtin_annotation_first_arg)
82 << ValArg->getSourceRange();
83 return true;
84 }
85
86 // Second argument should be a constant string.
87 Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
88 StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
89 if (!Literal || !Literal->isAscii()) {
90 S.Diag(StrArg->getLocStart(), diag::err_builtin_annotation_second_arg)
91 << StrArg->getSourceRange();
92 return true;
93 }
94
95 TheCall->setType(Ty);
96 return false;
97 }
98
99 ExprResult
CheckBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)100 Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
101 ExprResult TheCallResult(Owned(TheCall));
102
103 // Find out if any arguments are required to be integer constant expressions.
104 unsigned ICEArguments = 0;
105 ASTContext::GetBuiltinTypeError Error;
106 Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
107 if (Error != ASTContext::GE_None)
108 ICEArguments = 0; // Don't diagnose previously diagnosed errors.
109
110 // If any arguments are required to be ICE's, check and diagnose.
111 for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
112 // Skip arguments not required to be ICE's.
113 if ((ICEArguments & (1 << ArgNo)) == 0) continue;
114
115 llvm::APSInt Result;
116 if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
117 return true;
118 ICEArguments &= ~(1 << ArgNo);
119 }
120
121 switch (BuiltinID) {
122 case Builtin::BI__builtin___CFStringMakeConstantString:
123 assert(TheCall->getNumArgs() == 1 &&
124 "Wrong # arguments to builtin CFStringMakeConstantString");
125 if (CheckObjCString(TheCall->getArg(0)))
126 return ExprError();
127 break;
128 case Builtin::BI__builtin_stdarg_start:
129 case Builtin::BI__builtin_va_start:
130 if (SemaBuiltinVAStart(TheCall))
131 return ExprError();
132 break;
133 case Builtin::BI__builtin_isgreater:
134 case Builtin::BI__builtin_isgreaterequal:
135 case Builtin::BI__builtin_isless:
136 case Builtin::BI__builtin_islessequal:
137 case Builtin::BI__builtin_islessgreater:
138 case Builtin::BI__builtin_isunordered:
139 if (SemaBuiltinUnorderedCompare(TheCall))
140 return ExprError();
141 break;
142 case Builtin::BI__builtin_fpclassify:
143 if (SemaBuiltinFPClassification(TheCall, 6))
144 return ExprError();
145 break;
146 case Builtin::BI__builtin_isfinite:
147 case Builtin::BI__builtin_isinf:
148 case Builtin::BI__builtin_isinf_sign:
149 case Builtin::BI__builtin_isnan:
150 case Builtin::BI__builtin_isnormal:
151 if (SemaBuiltinFPClassification(TheCall, 1))
152 return ExprError();
153 break;
154 case Builtin::BI__builtin_shufflevector:
155 return SemaBuiltinShuffleVector(TheCall);
156 // TheCall will be freed by the smart pointer here, but that's fine, since
157 // SemaBuiltinShuffleVector guts it, but then doesn't release it.
158 case Builtin::BI__builtin_prefetch:
159 if (SemaBuiltinPrefetch(TheCall))
160 return ExprError();
161 break;
162 case Builtin::BI__builtin_object_size:
163 if (SemaBuiltinObjectSize(TheCall))
164 return ExprError();
165 break;
166 case Builtin::BI__builtin_longjmp:
167 if (SemaBuiltinLongjmp(TheCall))
168 return ExprError();
169 break;
170
171 case Builtin::BI__builtin_classify_type:
172 if (checkArgCount(*this, TheCall, 1)) return true;
173 TheCall->setType(Context.IntTy);
174 break;
175 case Builtin::BI__builtin_constant_p:
176 if (checkArgCount(*this, TheCall, 1)) return true;
177 TheCall->setType(Context.IntTy);
178 break;
179 case Builtin::BI__sync_fetch_and_add:
180 case Builtin::BI__sync_fetch_and_add_1:
181 case Builtin::BI__sync_fetch_and_add_2:
182 case Builtin::BI__sync_fetch_and_add_4:
183 case Builtin::BI__sync_fetch_and_add_8:
184 case Builtin::BI__sync_fetch_and_add_16:
185 case Builtin::BI__sync_fetch_and_sub:
186 case Builtin::BI__sync_fetch_and_sub_1:
187 case Builtin::BI__sync_fetch_and_sub_2:
188 case Builtin::BI__sync_fetch_and_sub_4:
189 case Builtin::BI__sync_fetch_and_sub_8:
190 case Builtin::BI__sync_fetch_and_sub_16:
191 case Builtin::BI__sync_fetch_and_or:
192 case Builtin::BI__sync_fetch_and_or_1:
193 case Builtin::BI__sync_fetch_and_or_2:
194 case Builtin::BI__sync_fetch_and_or_4:
195 case Builtin::BI__sync_fetch_and_or_8:
196 case Builtin::BI__sync_fetch_and_or_16:
197 case Builtin::BI__sync_fetch_and_and:
198 case Builtin::BI__sync_fetch_and_and_1:
199 case Builtin::BI__sync_fetch_and_and_2:
200 case Builtin::BI__sync_fetch_and_and_4:
201 case Builtin::BI__sync_fetch_and_and_8:
202 case Builtin::BI__sync_fetch_and_and_16:
203 case Builtin::BI__sync_fetch_and_xor:
204 case Builtin::BI__sync_fetch_and_xor_1:
205 case Builtin::BI__sync_fetch_and_xor_2:
206 case Builtin::BI__sync_fetch_and_xor_4:
207 case Builtin::BI__sync_fetch_and_xor_8:
208 case Builtin::BI__sync_fetch_and_xor_16:
209 case Builtin::BI__sync_add_and_fetch:
210 case Builtin::BI__sync_add_and_fetch_1:
211 case Builtin::BI__sync_add_and_fetch_2:
212 case Builtin::BI__sync_add_and_fetch_4:
213 case Builtin::BI__sync_add_and_fetch_8:
214 case Builtin::BI__sync_add_and_fetch_16:
215 case Builtin::BI__sync_sub_and_fetch:
216 case Builtin::BI__sync_sub_and_fetch_1:
217 case Builtin::BI__sync_sub_and_fetch_2:
218 case Builtin::BI__sync_sub_and_fetch_4:
219 case Builtin::BI__sync_sub_and_fetch_8:
220 case Builtin::BI__sync_sub_and_fetch_16:
221 case Builtin::BI__sync_and_and_fetch:
222 case Builtin::BI__sync_and_and_fetch_1:
223 case Builtin::BI__sync_and_and_fetch_2:
224 case Builtin::BI__sync_and_and_fetch_4:
225 case Builtin::BI__sync_and_and_fetch_8:
226 case Builtin::BI__sync_and_and_fetch_16:
227 case Builtin::BI__sync_or_and_fetch:
228 case Builtin::BI__sync_or_and_fetch_1:
229 case Builtin::BI__sync_or_and_fetch_2:
230 case Builtin::BI__sync_or_and_fetch_4:
231 case Builtin::BI__sync_or_and_fetch_8:
232 case Builtin::BI__sync_or_and_fetch_16:
233 case Builtin::BI__sync_xor_and_fetch:
234 case Builtin::BI__sync_xor_and_fetch_1:
235 case Builtin::BI__sync_xor_and_fetch_2:
236 case Builtin::BI__sync_xor_and_fetch_4:
237 case Builtin::BI__sync_xor_and_fetch_8:
238 case Builtin::BI__sync_xor_and_fetch_16:
239 case Builtin::BI__sync_val_compare_and_swap:
240 case Builtin::BI__sync_val_compare_and_swap_1:
241 case Builtin::BI__sync_val_compare_and_swap_2:
242 case Builtin::BI__sync_val_compare_and_swap_4:
243 case Builtin::BI__sync_val_compare_and_swap_8:
244 case Builtin::BI__sync_val_compare_and_swap_16:
245 case Builtin::BI__sync_bool_compare_and_swap:
246 case Builtin::BI__sync_bool_compare_and_swap_1:
247 case Builtin::BI__sync_bool_compare_and_swap_2:
248 case Builtin::BI__sync_bool_compare_and_swap_4:
249 case Builtin::BI__sync_bool_compare_and_swap_8:
250 case Builtin::BI__sync_bool_compare_and_swap_16:
251 case Builtin::BI__sync_lock_test_and_set:
252 case Builtin::BI__sync_lock_test_and_set_1:
253 case Builtin::BI__sync_lock_test_and_set_2:
254 case Builtin::BI__sync_lock_test_and_set_4:
255 case Builtin::BI__sync_lock_test_and_set_8:
256 case Builtin::BI__sync_lock_test_and_set_16:
257 case Builtin::BI__sync_lock_release:
258 case Builtin::BI__sync_lock_release_1:
259 case Builtin::BI__sync_lock_release_2:
260 case Builtin::BI__sync_lock_release_4:
261 case Builtin::BI__sync_lock_release_8:
262 case Builtin::BI__sync_lock_release_16:
263 case Builtin::BI__sync_swap:
264 case Builtin::BI__sync_swap_1:
265 case Builtin::BI__sync_swap_2:
266 case Builtin::BI__sync_swap_4:
267 case Builtin::BI__sync_swap_8:
268 case Builtin::BI__sync_swap_16:
269 return SemaBuiltinAtomicOverloaded(TheCallResult);
270 #define BUILTIN(ID, TYPE, ATTRS)
271 #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
272 case Builtin::BI##ID: \
273 return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
274 #include "clang/Basic/Builtins.def"
275 case Builtin::BI__builtin_annotation:
276 if (SemaBuiltinAnnotation(*this, TheCall))
277 return ExprError();
278 break;
279 }
280
281 // Since the target specific builtins for each arch overlap, only check those
282 // of the arch we are compiling for.
283 if (BuiltinID >= Builtin::FirstTSBuiltin) {
284 switch (Context.getTargetInfo().getTriple().getArch()) {
285 case llvm::Triple::arm:
286 case llvm::Triple::thumb:
287 if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
288 return ExprError();
289 break;
290 case llvm::Triple::mips:
291 case llvm::Triple::mipsel:
292 case llvm::Triple::mips64:
293 case llvm::Triple::mips64el:
294 if (CheckMipsBuiltinFunctionCall(BuiltinID, TheCall))
295 return ExprError();
296 break;
297 default:
298 break;
299 }
300 }
301
302 return TheCallResult;
303 }
304
305 // Get the valid immediate range for the specified NEON type code.
RFT(unsigned t,bool shift=false)306 static unsigned RFT(unsigned t, bool shift = false) {
307 NeonTypeFlags Type(t);
308 int IsQuad = Type.isQuad();
309 switch (Type.getEltType()) {
310 case NeonTypeFlags::Int8:
311 case NeonTypeFlags::Poly8:
312 return shift ? 7 : (8 << IsQuad) - 1;
313 case NeonTypeFlags::Int16:
314 case NeonTypeFlags::Poly16:
315 return shift ? 15 : (4 << IsQuad) - 1;
316 case NeonTypeFlags::Int32:
317 return shift ? 31 : (2 << IsQuad) - 1;
318 case NeonTypeFlags::Int64:
319 return shift ? 63 : (1 << IsQuad) - 1;
320 case NeonTypeFlags::Float16:
321 assert(!shift && "cannot shift float types!");
322 return (4 << IsQuad) - 1;
323 case NeonTypeFlags::Float32:
324 assert(!shift && "cannot shift float types!");
325 return (2 << IsQuad) - 1;
326 }
327 llvm_unreachable("Invalid NeonTypeFlag!");
328 }
329
330 /// getNeonEltType - Return the QualType corresponding to the elements of
331 /// the vector type specified by the NeonTypeFlags. This is used to check
332 /// the pointer arguments for Neon load/store intrinsics.
getNeonEltType(NeonTypeFlags Flags,ASTContext & Context)333 static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context) {
334 switch (Flags.getEltType()) {
335 case NeonTypeFlags::Int8:
336 return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
337 case NeonTypeFlags::Int16:
338 return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
339 case NeonTypeFlags::Int32:
340 return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
341 case NeonTypeFlags::Int64:
342 return Flags.isUnsigned() ? Context.UnsignedLongLongTy : Context.LongLongTy;
343 case NeonTypeFlags::Poly8:
344 return Context.SignedCharTy;
345 case NeonTypeFlags::Poly16:
346 return Context.ShortTy;
347 case NeonTypeFlags::Float16:
348 return Context.UnsignedShortTy;
349 case NeonTypeFlags::Float32:
350 return Context.FloatTy;
351 }
352 llvm_unreachable("Invalid NeonTypeFlag!");
353 }
354
CheckARMBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)355 bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
356 llvm::APSInt Result;
357
358 uint64_t mask = 0;
359 unsigned TV = 0;
360 int PtrArgNum = -1;
361 bool HasConstPtr = false;
362 switch (BuiltinID) {
363 #define GET_NEON_OVERLOAD_CHECK
364 #include "clang/Basic/arm_neon.inc"
365 #undef GET_NEON_OVERLOAD_CHECK
366 }
367
368 // For NEON intrinsics which are overloaded on vector element type, validate
369 // the immediate which specifies which variant to emit.
370 unsigned ImmArg = TheCall->getNumArgs()-1;
371 if (mask) {
372 if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
373 return true;
374
375 TV = Result.getLimitedValue(64);
376 if ((TV > 63) || (mask & (1ULL << TV)) == 0)
377 return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
378 << TheCall->getArg(ImmArg)->getSourceRange();
379 }
380
381 if (PtrArgNum >= 0) {
382 // Check that pointer arguments have the specified type.
383 Expr *Arg = TheCall->getArg(PtrArgNum);
384 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
385 Arg = ICE->getSubExpr();
386 ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
387 QualType RHSTy = RHS.get()->getType();
388 QualType EltTy = getNeonEltType(NeonTypeFlags(TV), Context);
389 if (HasConstPtr)
390 EltTy = EltTy.withConst();
391 QualType LHSTy = Context.getPointerType(EltTy);
392 AssignConvertType ConvTy;
393 ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
394 if (RHS.isInvalid())
395 return true;
396 if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
397 RHS.get(), AA_Assigning))
398 return true;
399 }
400
401 // For NEON intrinsics which take an immediate value as part of the
402 // instruction, range check them here.
403 unsigned i = 0, l = 0, u = 0;
404 switch (BuiltinID) {
405 default: return false;
406 case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
407 case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
408 case ARM::BI__builtin_arm_vcvtr_f:
409 case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
410 #define GET_NEON_IMMEDIATE_CHECK
411 #include "clang/Basic/arm_neon.inc"
412 #undef GET_NEON_IMMEDIATE_CHECK
413 };
414
415 // We can't check the value of a dependent argument.
416 if (TheCall->getArg(i)->isTypeDependent() ||
417 TheCall->getArg(i)->isValueDependent())
418 return false;
419
420 // Check that the immediate argument is actually a constant.
421 if (SemaBuiltinConstantArg(TheCall, i, Result))
422 return true;
423
424 // Range check against the upper/lower values for this isntruction.
425 unsigned Val = Result.getZExtValue();
426 if (Val < l || Val > (u + l))
427 return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
428 << l << u+l << TheCall->getArg(i)->getSourceRange();
429
430 // FIXME: VFP Intrinsics should error if VFP not present.
431 return false;
432 }
433
CheckMipsBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)434 bool Sema::CheckMipsBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
435 unsigned i = 0, l = 0, u = 0;
436 switch (BuiltinID) {
437 default: return false;
438 case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
439 case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
440 case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
441 case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
442 case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
443 case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
444 case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
445 };
446
447 // We can't check the value of a dependent argument.
448 if (TheCall->getArg(i)->isTypeDependent() ||
449 TheCall->getArg(i)->isValueDependent())
450 return false;
451
452 // Check that the immediate argument is actually a constant.
453 llvm::APSInt Result;
454 if (SemaBuiltinConstantArg(TheCall, i, Result))
455 return true;
456
457 // Range check against the upper/lower values for this instruction.
458 unsigned Val = Result.getZExtValue();
459 if (Val < l || Val > u)
460 return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
461 << l << u << TheCall->getArg(i)->getSourceRange();
462
463 return false;
464 }
465
466 /// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
467 /// parameter with the FormatAttr's correct format_idx and firstDataArg.
468 /// Returns true when the format fits the function and the FormatStringInfo has
469 /// been populated.
getFormatStringInfo(const FormatAttr * Format,bool IsCXXMember,FormatStringInfo * FSI)470 bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
471 FormatStringInfo *FSI) {
472 FSI->HasVAListArg = Format->getFirstArg() == 0;
473 FSI->FormatIdx = Format->getFormatIdx() - 1;
474 FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
475
476 // The way the format attribute works in GCC, the implicit this argument
477 // of member functions is counted. However, it doesn't appear in our own
478 // lists, so decrement format_idx in that case.
479 if (IsCXXMember) {
480 if(FSI->FormatIdx == 0)
481 return false;
482 --FSI->FormatIdx;
483 if (FSI->FirstDataArg != 0)
484 --FSI->FirstDataArg;
485 }
486 return true;
487 }
488
489 /// Handles the checks for format strings, non-POD arguments to vararg
490 /// functions, and NULL arguments passed to non-NULL parameters.
checkCall(NamedDecl * FDecl,Expr ** Args,unsigned NumArgs,unsigned NumProtoArgs,bool IsMemberFunction,SourceLocation Loc,SourceRange Range,VariadicCallType CallType)491 void Sema::checkCall(NamedDecl *FDecl, Expr **Args,
492 unsigned NumArgs,
493 unsigned NumProtoArgs,
494 bool IsMemberFunction,
495 SourceLocation Loc,
496 SourceRange Range,
497 VariadicCallType CallType) {
498 // FIXME: This mechanism should be abstracted to be less fragile and
499 // more efficient. For example, just map function ids to custom
500 // handlers.
501
502 // Printf and scanf checking.
503 bool HandledFormatString = false;
504 for (specific_attr_iterator<FormatAttr>
505 I = FDecl->specific_attr_begin<FormatAttr>(),
506 E = FDecl->specific_attr_end<FormatAttr>(); I != E ; ++I)
507 if (CheckFormatArguments(*I, Args, NumArgs, IsMemberFunction, CallType,
508 Loc, Range))
509 HandledFormatString = true;
510
511 // Refuse POD arguments that weren't caught by the format string
512 // checks above.
513 if (!HandledFormatString && CallType != VariadicDoesNotApply)
514 for (unsigned ArgIdx = NumProtoArgs; ArgIdx < NumArgs; ++ArgIdx)
515 variadicArgumentPODCheck(Args[ArgIdx], CallType);
516
517 for (specific_attr_iterator<NonNullAttr>
518 I = FDecl->specific_attr_begin<NonNullAttr>(),
519 E = FDecl->specific_attr_end<NonNullAttr>(); I != E; ++I)
520 CheckNonNullArguments(*I, Args, Loc);
521
522 // Type safety checking.
523 for (specific_attr_iterator<ArgumentWithTypeTagAttr>
524 i = FDecl->specific_attr_begin<ArgumentWithTypeTagAttr>(),
525 e = FDecl->specific_attr_end<ArgumentWithTypeTagAttr>(); i != e; ++i) {
526 CheckArgumentWithTypeTag(*i, Args);
527 }
528 }
529
530 /// CheckConstructorCall - Check a constructor call for correctness and safety
531 /// properties not enforced by the C type system.
CheckConstructorCall(FunctionDecl * FDecl,Expr ** Args,unsigned NumArgs,const FunctionProtoType * Proto,SourceLocation Loc)532 void Sema::CheckConstructorCall(FunctionDecl *FDecl, Expr **Args,
533 unsigned NumArgs,
534 const FunctionProtoType *Proto,
535 SourceLocation Loc) {
536 VariadicCallType CallType =
537 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
538 checkCall(FDecl, Args, NumArgs, Proto->getNumArgs(),
539 /*IsMemberFunction=*/true, Loc, SourceRange(), CallType);
540 }
541
542 /// CheckFunctionCall - Check a direct function call for various correctness
543 /// and safety properties not strictly enforced by the C type system.
CheckFunctionCall(FunctionDecl * FDecl,CallExpr * TheCall,const FunctionProtoType * Proto)544 bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
545 const FunctionProtoType *Proto) {
546 bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall);
547 VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
548 TheCall->getCallee());
549 unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
550 checkCall(FDecl, TheCall->getArgs(), TheCall->getNumArgs(), NumProtoArgs,
551 IsMemberFunction, TheCall->getRParenLoc(),
552 TheCall->getCallee()->getSourceRange(), CallType);
553
554 IdentifierInfo *FnInfo = FDecl->getIdentifier();
555 // None of the checks below are needed for functions that don't have
556 // simple names (e.g., C++ conversion functions).
557 if (!FnInfo)
558 return false;
559
560 unsigned CMId = FDecl->getMemoryFunctionKind();
561 if (CMId == 0)
562 return false;
563
564 // Handle memory setting and copying functions.
565 if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
566 CheckStrlcpycatArguments(TheCall, FnInfo);
567 else if (CMId == Builtin::BIstrncat)
568 CheckStrncatArguments(TheCall, FnInfo);
569 else
570 CheckMemaccessArguments(TheCall, CMId, FnInfo);
571
572 return false;
573 }
574
CheckObjCMethodCall(ObjCMethodDecl * Method,SourceLocation lbrac,Expr ** Args,unsigned NumArgs)575 bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
576 Expr **Args, unsigned NumArgs) {
577 VariadicCallType CallType =
578 Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
579
580 checkCall(Method, Args, NumArgs, Method->param_size(),
581 /*IsMemberFunction=*/false,
582 lbrac, Method->getSourceRange(), CallType);
583
584 return false;
585 }
586
CheckBlockCall(NamedDecl * NDecl,CallExpr * TheCall,const FunctionProtoType * Proto)587 bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall,
588 const FunctionProtoType *Proto) {
589 const VarDecl *V = dyn_cast<VarDecl>(NDecl);
590 if (!V)
591 return false;
592
593 QualType Ty = V->getType();
594 if (!Ty->isBlockPointerType())
595 return false;
596
597 VariadicCallType CallType =
598 Proto && Proto->isVariadic() ? VariadicBlock : VariadicDoesNotApply ;
599 unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
600
601 checkCall(NDecl, TheCall->getArgs(), TheCall->getNumArgs(),
602 NumProtoArgs, /*IsMemberFunction=*/false,
603 TheCall->getRParenLoc(),
604 TheCall->getCallee()->getSourceRange(), CallType);
605
606 return false;
607 }
608
SemaAtomicOpsOverloaded(ExprResult TheCallResult,AtomicExpr::AtomicOp Op)609 ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
610 AtomicExpr::AtomicOp Op) {
611 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
612 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
613
614 // All these operations take one of the following forms:
615 enum {
616 // C __c11_atomic_init(A *, C)
617 Init,
618 // C __c11_atomic_load(A *, int)
619 Load,
620 // void __atomic_load(A *, CP, int)
621 Copy,
622 // C __c11_atomic_add(A *, M, int)
623 Arithmetic,
624 // C __atomic_exchange_n(A *, CP, int)
625 Xchg,
626 // void __atomic_exchange(A *, C *, CP, int)
627 GNUXchg,
628 // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
629 C11CmpXchg,
630 // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
631 GNUCmpXchg
632 } Form = Init;
633 const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 4, 5, 6 };
634 const unsigned NumVals[] = { 1, 0, 1, 1, 1, 2, 2, 3 };
635 // where:
636 // C is an appropriate type,
637 // A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
638 // CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
639 // M is C if C is an integer, and ptrdiff_t if C is a pointer, and
640 // the int parameters are for orderings.
641
642 assert(AtomicExpr::AO__c11_atomic_init == 0 &&
643 AtomicExpr::AO__c11_atomic_fetch_xor + 1 == AtomicExpr::AO__atomic_load
644 && "need to update code for modified C11 atomics");
645 bool IsC11 = Op >= AtomicExpr::AO__c11_atomic_init &&
646 Op <= AtomicExpr::AO__c11_atomic_fetch_xor;
647 bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
648 Op == AtomicExpr::AO__atomic_store_n ||
649 Op == AtomicExpr::AO__atomic_exchange_n ||
650 Op == AtomicExpr::AO__atomic_compare_exchange_n;
651 bool IsAddSub = false;
652
653 switch (Op) {
654 case AtomicExpr::AO__c11_atomic_init:
655 Form = Init;
656 break;
657
658 case AtomicExpr::AO__c11_atomic_load:
659 case AtomicExpr::AO__atomic_load_n:
660 Form = Load;
661 break;
662
663 case AtomicExpr::AO__c11_atomic_store:
664 case AtomicExpr::AO__atomic_load:
665 case AtomicExpr::AO__atomic_store:
666 case AtomicExpr::AO__atomic_store_n:
667 Form = Copy;
668 break;
669
670 case AtomicExpr::AO__c11_atomic_fetch_add:
671 case AtomicExpr::AO__c11_atomic_fetch_sub:
672 case AtomicExpr::AO__atomic_fetch_add:
673 case AtomicExpr::AO__atomic_fetch_sub:
674 case AtomicExpr::AO__atomic_add_fetch:
675 case AtomicExpr::AO__atomic_sub_fetch:
676 IsAddSub = true;
677 // Fall through.
678 case AtomicExpr::AO__c11_atomic_fetch_and:
679 case AtomicExpr::AO__c11_atomic_fetch_or:
680 case AtomicExpr::AO__c11_atomic_fetch_xor:
681 case AtomicExpr::AO__atomic_fetch_and:
682 case AtomicExpr::AO__atomic_fetch_or:
683 case AtomicExpr::AO__atomic_fetch_xor:
684 case AtomicExpr::AO__atomic_fetch_nand:
685 case AtomicExpr::AO__atomic_and_fetch:
686 case AtomicExpr::AO__atomic_or_fetch:
687 case AtomicExpr::AO__atomic_xor_fetch:
688 case AtomicExpr::AO__atomic_nand_fetch:
689 Form = Arithmetic;
690 break;
691
692 case AtomicExpr::AO__c11_atomic_exchange:
693 case AtomicExpr::AO__atomic_exchange_n:
694 Form = Xchg;
695 break;
696
697 case AtomicExpr::AO__atomic_exchange:
698 Form = GNUXchg;
699 break;
700
701 case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
702 case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
703 Form = C11CmpXchg;
704 break;
705
706 case AtomicExpr::AO__atomic_compare_exchange:
707 case AtomicExpr::AO__atomic_compare_exchange_n:
708 Form = GNUCmpXchg;
709 break;
710 }
711
712 // Check we have the right number of arguments.
713 if (TheCall->getNumArgs() < NumArgs[Form]) {
714 Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
715 << 0 << NumArgs[Form] << TheCall->getNumArgs()
716 << TheCall->getCallee()->getSourceRange();
717 return ExprError();
718 } else if (TheCall->getNumArgs() > NumArgs[Form]) {
719 Diag(TheCall->getArg(NumArgs[Form])->getLocStart(),
720 diag::err_typecheck_call_too_many_args)
721 << 0 << NumArgs[Form] << TheCall->getNumArgs()
722 << TheCall->getCallee()->getSourceRange();
723 return ExprError();
724 }
725
726 // Inspect the first argument of the atomic operation.
727 Expr *Ptr = TheCall->getArg(0);
728 Ptr = DefaultFunctionArrayLvalueConversion(Ptr).get();
729 const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
730 if (!pointerType) {
731 Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
732 << Ptr->getType() << Ptr->getSourceRange();
733 return ExprError();
734 }
735
736 // For a __c11 builtin, this should be a pointer to an _Atomic type.
737 QualType AtomTy = pointerType->getPointeeType(); // 'A'
738 QualType ValType = AtomTy; // 'C'
739 if (IsC11) {
740 if (!AtomTy->isAtomicType()) {
741 Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
742 << Ptr->getType() << Ptr->getSourceRange();
743 return ExprError();
744 }
745 ValType = AtomTy->getAs<AtomicType>()->getValueType();
746 }
747
748 // For an arithmetic operation, the implied arithmetic must be well-formed.
749 if (Form == Arithmetic) {
750 // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
751 if (IsAddSub && !ValType->isIntegerType() && !ValType->isPointerType()) {
752 Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
753 << IsC11 << Ptr->getType() << Ptr->getSourceRange();
754 return ExprError();
755 }
756 if (!IsAddSub && !ValType->isIntegerType()) {
757 Diag(DRE->getLocStart(), diag::err_atomic_op_bitwise_needs_atomic_int)
758 << IsC11 << Ptr->getType() << Ptr->getSourceRange();
759 return ExprError();
760 }
761 } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
762 // For __atomic_*_n operations, the value type must be a scalar integral or
763 // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
764 Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
765 << IsC11 << Ptr->getType() << Ptr->getSourceRange();
766 return ExprError();
767 }
768
769 if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context)) {
770 // For GNU atomics, require a trivially-copyable type. This is not part of
771 // the GNU atomics specification, but we enforce it for sanity.
772 Diag(DRE->getLocStart(), diag::err_atomic_op_needs_trivial_copy)
773 << Ptr->getType() << Ptr->getSourceRange();
774 return ExprError();
775 }
776
777 // FIXME: For any builtin other than a load, the ValType must not be
778 // const-qualified.
779
780 switch (ValType.getObjCLifetime()) {
781 case Qualifiers::OCL_None:
782 case Qualifiers::OCL_ExplicitNone:
783 // okay
784 break;
785
786 case Qualifiers::OCL_Weak:
787 case Qualifiers::OCL_Strong:
788 case Qualifiers::OCL_Autoreleasing:
789 // FIXME: Can this happen? By this point, ValType should be known
790 // to be trivially copyable.
791 Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
792 << ValType << Ptr->getSourceRange();
793 return ExprError();
794 }
795
796 QualType ResultType = ValType;
797 if (Form == Copy || Form == GNUXchg || Form == Init)
798 ResultType = Context.VoidTy;
799 else if (Form == C11CmpXchg || Form == GNUCmpXchg)
800 ResultType = Context.BoolTy;
801
802 // The type of a parameter passed 'by value'. In the GNU atomics, such
803 // arguments are actually passed as pointers.
804 QualType ByValType = ValType; // 'CP'
805 if (!IsC11 && !IsN)
806 ByValType = Ptr->getType();
807
808 // The first argument --- the pointer --- has a fixed type; we
809 // deduce the types of the rest of the arguments accordingly. Walk
810 // the remaining arguments, converting them to the deduced value type.
811 for (unsigned i = 1; i != NumArgs[Form]; ++i) {
812 QualType Ty;
813 if (i < NumVals[Form] + 1) {
814 switch (i) {
815 case 1:
816 // The second argument is the non-atomic operand. For arithmetic, this
817 // is always passed by value, and for a compare_exchange it is always
818 // passed by address. For the rest, GNU uses by-address and C11 uses
819 // by-value.
820 assert(Form != Load);
821 if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
822 Ty = ValType;
823 else if (Form == Copy || Form == Xchg)
824 Ty = ByValType;
825 else if (Form == Arithmetic)
826 Ty = Context.getPointerDiffType();
827 else
828 Ty = Context.getPointerType(ValType.getUnqualifiedType());
829 break;
830 case 2:
831 // The third argument to compare_exchange / GNU exchange is a
832 // (pointer to a) desired value.
833 Ty = ByValType;
834 break;
835 case 3:
836 // The fourth argument to GNU compare_exchange is a 'weak' flag.
837 Ty = Context.BoolTy;
838 break;
839 }
840 } else {
841 // The order(s) are always converted to int.
842 Ty = Context.IntTy;
843 }
844
845 InitializedEntity Entity =
846 InitializedEntity::InitializeParameter(Context, Ty, false);
847 ExprResult Arg = TheCall->getArg(i);
848 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
849 if (Arg.isInvalid())
850 return true;
851 TheCall->setArg(i, Arg.get());
852 }
853
854 // Permute the arguments into a 'consistent' order.
855 SmallVector<Expr*, 5> SubExprs;
856 SubExprs.push_back(Ptr);
857 switch (Form) {
858 case Init:
859 // Note, AtomicExpr::getVal1() has a special case for this atomic.
860 SubExprs.push_back(TheCall->getArg(1)); // Val1
861 break;
862 case Load:
863 SubExprs.push_back(TheCall->getArg(1)); // Order
864 break;
865 case Copy:
866 case Arithmetic:
867 case Xchg:
868 SubExprs.push_back(TheCall->getArg(2)); // Order
869 SubExprs.push_back(TheCall->getArg(1)); // Val1
870 break;
871 case GNUXchg:
872 // Note, AtomicExpr::getVal2() has a special case for this atomic.
873 SubExprs.push_back(TheCall->getArg(3)); // Order
874 SubExprs.push_back(TheCall->getArg(1)); // Val1
875 SubExprs.push_back(TheCall->getArg(2)); // Val2
876 break;
877 case C11CmpXchg:
878 SubExprs.push_back(TheCall->getArg(3)); // Order
879 SubExprs.push_back(TheCall->getArg(1)); // Val1
880 SubExprs.push_back(TheCall->getArg(4)); // OrderFail
881 SubExprs.push_back(TheCall->getArg(2)); // Val2
882 break;
883 case GNUCmpXchg:
884 SubExprs.push_back(TheCall->getArg(4)); // Order
885 SubExprs.push_back(TheCall->getArg(1)); // Val1
886 SubExprs.push_back(TheCall->getArg(5)); // OrderFail
887 SubExprs.push_back(TheCall->getArg(2)); // Val2
888 SubExprs.push_back(TheCall->getArg(3)); // Weak
889 break;
890 }
891
892 return Owned(new (Context) AtomicExpr(TheCall->getCallee()->getLocStart(),
893 SubExprs, ResultType, Op,
894 TheCall->getRParenLoc()));
895 }
896
897
898 /// checkBuiltinArgument - Given a call to a builtin function, perform
899 /// normal type-checking on the given argument, updating the call in
900 /// place. This is useful when a builtin function requires custom
901 /// type-checking for some of its arguments but not necessarily all of
902 /// them.
903 ///
904 /// Returns true on error.
checkBuiltinArgument(Sema & S,CallExpr * E,unsigned ArgIndex)905 static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
906 FunctionDecl *Fn = E->getDirectCallee();
907 assert(Fn && "builtin call without direct callee!");
908
909 ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
910 InitializedEntity Entity =
911 InitializedEntity::InitializeParameter(S.Context, Param);
912
913 ExprResult Arg = E->getArg(0);
914 Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
915 if (Arg.isInvalid())
916 return true;
917
918 E->setArg(ArgIndex, Arg.take());
919 return false;
920 }
921
922 /// SemaBuiltinAtomicOverloaded - We have a call to a function like
923 /// __sync_fetch_and_add, which is an overloaded function based on the pointer
924 /// type of its first argument. The main ActOnCallExpr routines have already
925 /// promoted the types of arguments because all of these calls are prototyped as
926 /// void(...).
927 ///
928 /// This function goes through and does final semantic checking for these
929 /// builtins,
930 ExprResult
SemaBuiltinAtomicOverloaded(ExprResult TheCallResult)931 Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
932 CallExpr *TheCall = (CallExpr *)TheCallResult.get();
933 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
934 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
935
936 // Ensure that we have at least one argument to do type inference from.
937 if (TheCall->getNumArgs() < 1) {
938 Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
939 << 0 << 1 << TheCall->getNumArgs()
940 << TheCall->getCallee()->getSourceRange();
941 return ExprError();
942 }
943
944 // Inspect the first argument of the atomic builtin. This should always be
945 // a pointer type, whose element is an integral scalar or pointer type.
946 // Because it is a pointer type, we don't have to worry about any implicit
947 // casts here.
948 // FIXME: We don't allow floating point scalars as input.
949 Expr *FirstArg = TheCall->getArg(0);
950 ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
951 if (FirstArgResult.isInvalid())
952 return ExprError();
953 FirstArg = FirstArgResult.take();
954 TheCall->setArg(0, FirstArg);
955
956 const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
957 if (!pointerType) {
958 Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
959 << FirstArg->getType() << FirstArg->getSourceRange();
960 return ExprError();
961 }
962
963 QualType ValType = pointerType->getPointeeType();
964 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
965 !ValType->isBlockPointerType()) {
966 Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
967 << FirstArg->getType() << FirstArg->getSourceRange();
968 return ExprError();
969 }
970
971 switch (ValType.getObjCLifetime()) {
972 case Qualifiers::OCL_None:
973 case Qualifiers::OCL_ExplicitNone:
974 // okay
975 break;
976
977 case Qualifiers::OCL_Weak:
978 case Qualifiers::OCL_Strong:
979 case Qualifiers::OCL_Autoreleasing:
980 Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
981 << ValType << FirstArg->getSourceRange();
982 return ExprError();
983 }
984
985 // Strip any qualifiers off ValType.
986 ValType = ValType.getUnqualifiedType();
987
988 // The majority of builtins return a value, but a few have special return
989 // types, so allow them to override appropriately below.
990 QualType ResultType = ValType;
991
992 // We need to figure out which concrete builtin this maps onto. For example,
993 // __sync_fetch_and_add with a 2 byte object turns into
994 // __sync_fetch_and_add_2.
995 #define BUILTIN_ROW(x) \
996 { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
997 Builtin::BI##x##_8, Builtin::BI##x##_16 }
998
999 static const unsigned BuiltinIndices[][5] = {
1000 BUILTIN_ROW(__sync_fetch_and_add),
1001 BUILTIN_ROW(__sync_fetch_and_sub),
1002 BUILTIN_ROW(__sync_fetch_and_or),
1003 BUILTIN_ROW(__sync_fetch_and_and),
1004 BUILTIN_ROW(__sync_fetch_and_xor),
1005
1006 BUILTIN_ROW(__sync_add_and_fetch),
1007 BUILTIN_ROW(__sync_sub_and_fetch),
1008 BUILTIN_ROW(__sync_and_and_fetch),
1009 BUILTIN_ROW(__sync_or_and_fetch),
1010 BUILTIN_ROW(__sync_xor_and_fetch),
1011
1012 BUILTIN_ROW(__sync_val_compare_and_swap),
1013 BUILTIN_ROW(__sync_bool_compare_and_swap),
1014 BUILTIN_ROW(__sync_lock_test_and_set),
1015 BUILTIN_ROW(__sync_lock_release),
1016 BUILTIN_ROW(__sync_swap)
1017 };
1018 #undef BUILTIN_ROW
1019
1020 // Determine the index of the size.
1021 unsigned SizeIndex;
1022 switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
1023 case 1: SizeIndex = 0; break;
1024 case 2: SizeIndex = 1; break;
1025 case 4: SizeIndex = 2; break;
1026 case 8: SizeIndex = 3; break;
1027 case 16: SizeIndex = 4; break;
1028 default:
1029 Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
1030 << FirstArg->getType() << FirstArg->getSourceRange();
1031 return ExprError();
1032 }
1033
1034 // Each of these builtins has one pointer argument, followed by some number of
1035 // values (0, 1 or 2) followed by a potentially empty varags list of stuff
1036 // that we ignore. Find out which row of BuiltinIndices to read from as well
1037 // as the number of fixed args.
1038 unsigned BuiltinID = FDecl->getBuiltinID();
1039 unsigned BuiltinIndex, NumFixed = 1;
1040 switch (BuiltinID) {
1041 default: llvm_unreachable("Unknown overloaded atomic builtin!");
1042 case Builtin::BI__sync_fetch_and_add:
1043 case Builtin::BI__sync_fetch_and_add_1:
1044 case Builtin::BI__sync_fetch_and_add_2:
1045 case Builtin::BI__sync_fetch_and_add_4:
1046 case Builtin::BI__sync_fetch_and_add_8:
1047 case Builtin::BI__sync_fetch_and_add_16:
1048 BuiltinIndex = 0;
1049 break;
1050
1051 case Builtin::BI__sync_fetch_and_sub:
1052 case Builtin::BI__sync_fetch_and_sub_1:
1053 case Builtin::BI__sync_fetch_and_sub_2:
1054 case Builtin::BI__sync_fetch_and_sub_4:
1055 case Builtin::BI__sync_fetch_and_sub_8:
1056 case Builtin::BI__sync_fetch_and_sub_16:
1057 BuiltinIndex = 1;
1058 break;
1059
1060 case Builtin::BI__sync_fetch_and_or:
1061 case Builtin::BI__sync_fetch_and_or_1:
1062 case Builtin::BI__sync_fetch_and_or_2:
1063 case Builtin::BI__sync_fetch_and_or_4:
1064 case Builtin::BI__sync_fetch_and_or_8:
1065 case Builtin::BI__sync_fetch_and_or_16:
1066 BuiltinIndex = 2;
1067 break;
1068
1069 case Builtin::BI__sync_fetch_and_and:
1070 case Builtin::BI__sync_fetch_and_and_1:
1071 case Builtin::BI__sync_fetch_and_and_2:
1072 case Builtin::BI__sync_fetch_and_and_4:
1073 case Builtin::BI__sync_fetch_and_and_8:
1074 case Builtin::BI__sync_fetch_and_and_16:
1075 BuiltinIndex = 3;
1076 break;
1077
1078 case Builtin::BI__sync_fetch_and_xor:
1079 case Builtin::BI__sync_fetch_and_xor_1:
1080 case Builtin::BI__sync_fetch_and_xor_2:
1081 case Builtin::BI__sync_fetch_and_xor_4:
1082 case Builtin::BI__sync_fetch_and_xor_8:
1083 case Builtin::BI__sync_fetch_and_xor_16:
1084 BuiltinIndex = 4;
1085 break;
1086
1087 case Builtin::BI__sync_add_and_fetch:
1088 case Builtin::BI__sync_add_and_fetch_1:
1089 case Builtin::BI__sync_add_and_fetch_2:
1090 case Builtin::BI__sync_add_and_fetch_4:
1091 case Builtin::BI__sync_add_and_fetch_8:
1092 case Builtin::BI__sync_add_and_fetch_16:
1093 BuiltinIndex = 5;
1094 break;
1095
1096 case Builtin::BI__sync_sub_and_fetch:
1097 case Builtin::BI__sync_sub_and_fetch_1:
1098 case Builtin::BI__sync_sub_and_fetch_2:
1099 case Builtin::BI__sync_sub_and_fetch_4:
1100 case Builtin::BI__sync_sub_and_fetch_8:
1101 case Builtin::BI__sync_sub_and_fetch_16:
1102 BuiltinIndex = 6;
1103 break;
1104
1105 case Builtin::BI__sync_and_and_fetch:
1106 case Builtin::BI__sync_and_and_fetch_1:
1107 case Builtin::BI__sync_and_and_fetch_2:
1108 case Builtin::BI__sync_and_and_fetch_4:
1109 case Builtin::BI__sync_and_and_fetch_8:
1110 case Builtin::BI__sync_and_and_fetch_16:
1111 BuiltinIndex = 7;
1112 break;
1113
1114 case Builtin::BI__sync_or_and_fetch:
1115 case Builtin::BI__sync_or_and_fetch_1:
1116 case Builtin::BI__sync_or_and_fetch_2:
1117 case Builtin::BI__sync_or_and_fetch_4:
1118 case Builtin::BI__sync_or_and_fetch_8:
1119 case Builtin::BI__sync_or_and_fetch_16:
1120 BuiltinIndex = 8;
1121 break;
1122
1123 case Builtin::BI__sync_xor_and_fetch:
1124 case Builtin::BI__sync_xor_and_fetch_1:
1125 case Builtin::BI__sync_xor_and_fetch_2:
1126 case Builtin::BI__sync_xor_and_fetch_4:
1127 case Builtin::BI__sync_xor_and_fetch_8:
1128 case Builtin::BI__sync_xor_and_fetch_16:
1129 BuiltinIndex = 9;
1130 break;
1131
1132 case Builtin::BI__sync_val_compare_and_swap:
1133 case Builtin::BI__sync_val_compare_and_swap_1:
1134 case Builtin::BI__sync_val_compare_and_swap_2:
1135 case Builtin::BI__sync_val_compare_and_swap_4:
1136 case Builtin::BI__sync_val_compare_and_swap_8:
1137 case Builtin::BI__sync_val_compare_and_swap_16:
1138 BuiltinIndex = 10;
1139 NumFixed = 2;
1140 break;
1141
1142 case Builtin::BI__sync_bool_compare_and_swap:
1143 case Builtin::BI__sync_bool_compare_and_swap_1:
1144 case Builtin::BI__sync_bool_compare_and_swap_2:
1145 case Builtin::BI__sync_bool_compare_and_swap_4:
1146 case Builtin::BI__sync_bool_compare_and_swap_8:
1147 case Builtin::BI__sync_bool_compare_and_swap_16:
1148 BuiltinIndex = 11;
1149 NumFixed = 2;
1150 ResultType = Context.BoolTy;
1151 break;
1152
1153 case Builtin::BI__sync_lock_test_and_set:
1154 case Builtin::BI__sync_lock_test_and_set_1:
1155 case Builtin::BI__sync_lock_test_and_set_2:
1156 case Builtin::BI__sync_lock_test_and_set_4:
1157 case Builtin::BI__sync_lock_test_and_set_8:
1158 case Builtin::BI__sync_lock_test_and_set_16:
1159 BuiltinIndex = 12;
1160 break;
1161
1162 case Builtin::BI__sync_lock_release:
1163 case Builtin::BI__sync_lock_release_1:
1164 case Builtin::BI__sync_lock_release_2:
1165 case Builtin::BI__sync_lock_release_4:
1166 case Builtin::BI__sync_lock_release_8:
1167 case Builtin::BI__sync_lock_release_16:
1168 BuiltinIndex = 13;
1169 NumFixed = 0;
1170 ResultType = Context.VoidTy;
1171 break;
1172
1173 case Builtin::BI__sync_swap:
1174 case Builtin::BI__sync_swap_1:
1175 case Builtin::BI__sync_swap_2:
1176 case Builtin::BI__sync_swap_4:
1177 case Builtin::BI__sync_swap_8:
1178 case Builtin::BI__sync_swap_16:
1179 BuiltinIndex = 14;
1180 break;
1181 }
1182
1183 // Now that we know how many fixed arguments we expect, first check that we
1184 // have at least that many.
1185 if (TheCall->getNumArgs() < 1+NumFixed) {
1186 Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
1187 << 0 << 1+NumFixed << TheCall->getNumArgs()
1188 << TheCall->getCallee()->getSourceRange();
1189 return ExprError();
1190 }
1191
1192 // Get the decl for the concrete builtin from this, we can tell what the
1193 // concrete integer type we should convert to is.
1194 unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
1195 const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
1196 IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
1197 FunctionDecl *NewBuiltinDecl =
1198 cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
1199 TUScope, false, DRE->getLocStart()));
1200
1201 // The first argument --- the pointer --- has a fixed type; we
1202 // deduce the types of the rest of the arguments accordingly. Walk
1203 // the remaining arguments, converting them to the deduced value type.
1204 for (unsigned i = 0; i != NumFixed; ++i) {
1205 ExprResult Arg = TheCall->getArg(i+1);
1206
1207 // GCC does an implicit conversion to the pointer or integer ValType. This
1208 // can fail in some cases (1i -> int**), check for this error case now.
1209 // Initialize the argument.
1210 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1211 ValType, /*consume*/ false);
1212 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
1213 if (Arg.isInvalid())
1214 return ExprError();
1215
1216 // Okay, we have something that *can* be converted to the right type. Check
1217 // to see if there is a potentially weird extension going on here. This can
1218 // happen when you do an atomic operation on something like an char* and
1219 // pass in 42. The 42 gets converted to char. This is even more strange
1220 // for things like 45.123 -> char, etc.
1221 // FIXME: Do this check.
1222 TheCall->setArg(i+1, Arg.take());
1223 }
1224
1225 ASTContext& Context = this->getASTContext();
1226
1227 // Create a new DeclRefExpr to refer to the new decl.
1228 DeclRefExpr* NewDRE = DeclRefExpr::Create(
1229 Context,
1230 DRE->getQualifierLoc(),
1231 SourceLocation(),
1232 NewBuiltinDecl,
1233 /*enclosing*/ false,
1234 DRE->getLocation(),
1235 Context.BuiltinFnTy,
1236 DRE->getValueKind());
1237
1238 // Set the callee in the CallExpr.
1239 // FIXME: This loses syntactic information.
1240 QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
1241 ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
1242 CK_BuiltinFnToFnPtr);
1243 TheCall->setCallee(PromotedCall.take());
1244
1245 // Change the result type of the call to match the original value type. This
1246 // is arbitrary, but the codegen for these builtins ins design to handle it
1247 // gracefully.
1248 TheCall->setType(ResultType);
1249
1250 return TheCallResult;
1251 }
1252
1253 /// CheckObjCString - Checks that the argument to the builtin
1254 /// CFString constructor is correct
1255 /// Note: It might also make sense to do the UTF-16 conversion here (would
1256 /// simplify the backend).
CheckObjCString(Expr * Arg)1257 bool Sema::CheckObjCString(Expr *Arg) {
1258 Arg = Arg->IgnoreParenCasts();
1259 StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
1260
1261 if (!Literal || !Literal->isAscii()) {
1262 Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
1263 << Arg->getSourceRange();
1264 return true;
1265 }
1266
1267 if (Literal->containsNonAsciiOrNull()) {
1268 StringRef String = Literal->getString();
1269 unsigned NumBytes = String.size();
1270 SmallVector<UTF16, 128> ToBuf(NumBytes);
1271 const UTF8 *FromPtr = (const UTF8 *)String.data();
1272 UTF16 *ToPtr = &ToBuf[0];
1273
1274 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1275 &ToPtr, ToPtr + NumBytes,
1276 strictConversion);
1277 // Check for conversion failure.
1278 if (Result != conversionOK)
1279 Diag(Arg->getLocStart(),
1280 diag::warn_cfstring_truncated) << Arg->getSourceRange();
1281 }
1282 return false;
1283 }
1284
1285 /// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
1286 /// Emit an error and return true on failure, return false on success.
SemaBuiltinVAStart(CallExpr * TheCall)1287 bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
1288 Expr *Fn = TheCall->getCallee();
1289 if (TheCall->getNumArgs() > 2) {
1290 Diag(TheCall->getArg(2)->getLocStart(),
1291 diag::err_typecheck_call_too_many_args)
1292 << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1293 << Fn->getSourceRange()
1294 << SourceRange(TheCall->getArg(2)->getLocStart(),
1295 (*(TheCall->arg_end()-1))->getLocEnd());
1296 return true;
1297 }
1298
1299 if (TheCall->getNumArgs() < 2) {
1300 return Diag(TheCall->getLocEnd(),
1301 diag::err_typecheck_call_too_few_args_at_least)
1302 << 0 /*function call*/ << 2 << TheCall->getNumArgs();
1303 }
1304
1305 // Type-check the first argument normally.
1306 if (checkBuiltinArgument(*this, TheCall, 0))
1307 return true;
1308
1309 // Determine whether the current function is variadic or not.
1310 BlockScopeInfo *CurBlock = getCurBlock();
1311 bool isVariadic;
1312 if (CurBlock)
1313 isVariadic = CurBlock->TheDecl->isVariadic();
1314 else if (FunctionDecl *FD = getCurFunctionDecl())
1315 isVariadic = FD->isVariadic();
1316 else
1317 isVariadic = getCurMethodDecl()->isVariadic();
1318
1319 if (!isVariadic) {
1320 Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
1321 return true;
1322 }
1323
1324 // Verify that the second argument to the builtin is the last argument of the
1325 // current function or method.
1326 bool SecondArgIsLastNamedArgument = false;
1327 const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
1328
1329 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
1330 if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
1331 // FIXME: This isn't correct for methods (results in bogus warning).
1332 // Get the last formal in the current function.
1333 const ParmVarDecl *LastArg;
1334 if (CurBlock)
1335 LastArg = *(CurBlock->TheDecl->param_end()-1);
1336 else if (FunctionDecl *FD = getCurFunctionDecl())
1337 LastArg = *(FD->param_end()-1);
1338 else
1339 LastArg = *(getCurMethodDecl()->param_end()-1);
1340 SecondArgIsLastNamedArgument = PV == LastArg;
1341 }
1342 }
1343
1344 if (!SecondArgIsLastNamedArgument)
1345 Diag(TheCall->getArg(1)->getLocStart(),
1346 diag::warn_second_parameter_of_va_start_not_last_named_argument);
1347 return false;
1348 }
1349
1350 /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
1351 /// friends. This is declared to take (...), so we have to check everything.
SemaBuiltinUnorderedCompare(CallExpr * TheCall)1352 bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
1353 if (TheCall->getNumArgs() < 2)
1354 return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1355 << 0 << 2 << TheCall->getNumArgs()/*function call*/;
1356 if (TheCall->getNumArgs() > 2)
1357 return Diag(TheCall->getArg(2)->getLocStart(),
1358 diag::err_typecheck_call_too_many_args)
1359 << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1360 << SourceRange(TheCall->getArg(2)->getLocStart(),
1361 (*(TheCall->arg_end()-1))->getLocEnd());
1362
1363 ExprResult OrigArg0 = TheCall->getArg(0);
1364 ExprResult OrigArg1 = TheCall->getArg(1);
1365
1366 // Do standard promotions between the two arguments, returning their common
1367 // type.
1368 QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
1369 if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
1370 return true;
1371
1372 // Make sure any conversions are pushed back into the call; this is
1373 // type safe since unordered compare builtins are declared as "_Bool
1374 // foo(...)".
1375 TheCall->setArg(0, OrigArg0.get());
1376 TheCall->setArg(1, OrigArg1.get());
1377
1378 if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
1379 return false;
1380
1381 // If the common type isn't a real floating type, then the arguments were
1382 // invalid for this operation.
1383 if (Res.isNull() || !Res->isRealFloatingType())
1384 return Diag(OrigArg0.get()->getLocStart(),
1385 diag::err_typecheck_call_invalid_ordered_compare)
1386 << OrigArg0.get()->getType() << OrigArg1.get()->getType()
1387 << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
1388
1389 return false;
1390 }
1391
1392 /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
1393 /// __builtin_isnan and friends. This is declared to take (...), so we have
1394 /// to check everything. We expect the last argument to be a floating point
1395 /// value.
SemaBuiltinFPClassification(CallExpr * TheCall,unsigned NumArgs)1396 bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
1397 if (TheCall->getNumArgs() < NumArgs)
1398 return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1399 << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
1400 if (TheCall->getNumArgs() > NumArgs)
1401 return Diag(TheCall->getArg(NumArgs)->getLocStart(),
1402 diag::err_typecheck_call_too_many_args)
1403 << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
1404 << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
1405 (*(TheCall->arg_end()-1))->getLocEnd());
1406
1407 Expr *OrigArg = TheCall->getArg(NumArgs-1);
1408
1409 if (OrigArg->isTypeDependent())
1410 return false;
1411
1412 // This operation requires a non-_Complex floating-point number.
1413 if (!OrigArg->getType()->isRealFloatingType())
1414 return Diag(OrigArg->getLocStart(),
1415 diag::err_typecheck_call_invalid_unary_fp)
1416 << OrigArg->getType() << OrigArg->getSourceRange();
1417
1418 // If this is an implicit conversion from float -> double, remove it.
1419 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
1420 Expr *CastArg = Cast->getSubExpr();
1421 if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
1422 assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
1423 "promotion from float to double is the only expected cast here");
1424 Cast->setSubExpr(0);
1425 TheCall->setArg(NumArgs-1, CastArg);
1426 }
1427 }
1428
1429 return false;
1430 }
1431
1432 /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
1433 // This is declared to take (...), so we have to check everything.
SemaBuiltinShuffleVector(CallExpr * TheCall)1434 ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
1435 if (TheCall->getNumArgs() < 2)
1436 return ExprError(Diag(TheCall->getLocEnd(),
1437 diag::err_typecheck_call_too_few_args_at_least)
1438 << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1439 << TheCall->getSourceRange());
1440
1441 // Determine which of the following types of shufflevector we're checking:
1442 // 1) unary, vector mask: (lhs, mask)
1443 // 2) binary, vector mask: (lhs, rhs, mask)
1444 // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
1445 QualType resType = TheCall->getArg(0)->getType();
1446 unsigned numElements = 0;
1447
1448 if (!TheCall->getArg(0)->isTypeDependent() &&
1449 !TheCall->getArg(1)->isTypeDependent()) {
1450 QualType LHSType = TheCall->getArg(0)->getType();
1451 QualType RHSType = TheCall->getArg(1)->getType();
1452
1453 if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
1454 Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
1455 << SourceRange(TheCall->getArg(0)->getLocStart(),
1456 TheCall->getArg(1)->getLocEnd());
1457 return ExprError();
1458 }
1459
1460 numElements = LHSType->getAs<VectorType>()->getNumElements();
1461 unsigned numResElements = TheCall->getNumArgs() - 2;
1462
1463 // Check to see if we have a call with 2 vector arguments, the unary shuffle
1464 // with mask. If so, verify that RHS is an integer vector type with the
1465 // same number of elts as lhs.
1466 if (TheCall->getNumArgs() == 2) {
1467 if (!RHSType->hasIntegerRepresentation() ||
1468 RHSType->getAs<VectorType>()->getNumElements() != numElements)
1469 Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
1470 << SourceRange(TheCall->getArg(1)->getLocStart(),
1471 TheCall->getArg(1)->getLocEnd());
1472 numResElements = numElements;
1473 }
1474 else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
1475 Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
1476 << SourceRange(TheCall->getArg(0)->getLocStart(),
1477 TheCall->getArg(1)->getLocEnd());
1478 return ExprError();
1479 } else if (numElements != numResElements) {
1480 QualType eltType = LHSType->getAs<VectorType>()->getElementType();
1481 resType = Context.getVectorType(eltType, numResElements,
1482 VectorType::GenericVector);
1483 }
1484 }
1485
1486 for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
1487 if (TheCall->getArg(i)->isTypeDependent() ||
1488 TheCall->getArg(i)->isValueDependent())
1489 continue;
1490
1491 llvm::APSInt Result(32);
1492 if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
1493 return ExprError(Diag(TheCall->getLocStart(),
1494 diag::err_shufflevector_nonconstant_argument)
1495 << TheCall->getArg(i)->getSourceRange());
1496
1497 if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
1498 return ExprError(Diag(TheCall->getLocStart(),
1499 diag::err_shufflevector_argument_too_large)
1500 << TheCall->getArg(i)->getSourceRange());
1501 }
1502
1503 SmallVector<Expr*, 32> exprs;
1504
1505 for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
1506 exprs.push_back(TheCall->getArg(i));
1507 TheCall->setArg(i, 0);
1508 }
1509
1510 return Owned(new (Context) ShuffleVectorExpr(Context, exprs, resType,
1511 TheCall->getCallee()->getLocStart(),
1512 TheCall->getRParenLoc()));
1513 }
1514
1515 /// SemaBuiltinPrefetch - Handle __builtin_prefetch.
1516 // This is declared to take (const void*, ...) and can take two
1517 // optional constant int args.
SemaBuiltinPrefetch(CallExpr * TheCall)1518 bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
1519 unsigned NumArgs = TheCall->getNumArgs();
1520
1521 if (NumArgs > 3)
1522 return Diag(TheCall->getLocEnd(),
1523 diag::err_typecheck_call_too_many_args_at_most)
1524 << 0 /*function call*/ << 3 << NumArgs
1525 << TheCall->getSourceRange();
1526
1527 // Argument 0 is checked for us and the remaining arguments must be
1528 // constant integers.
1529 for (unsigned i = 1; i != NumArgs; ++i) {
1530 Expr *Arg = TheCall->getArg(i);
1531
1532 // We can't check the value of a dependent argument.
1533 if (Arg->isTypeDependent() || Arg->isValueDependent())
1534 continue;
1535
1536 llvm::APSInt Result;
1537 if (SemaBuiltinConstantArg(TheCall, i, Result))
1538 return true;
1539
1540 // FIXME: gcc issues a warning and rewrites these to 0. These
1541 // seems especially odd for the third argument since the default
1542 // is 3.
1543 if (i == 1) {
1544 if (Result.getLimitedValue() > 1)
1545 return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1546 << "0" << "1" << Arg->getSourceRange();
1547 } else {
1548 if (Result.getLimitedValue() > 3)
1549 return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1550 << "0" << "3" << Arg->getSourceRange();
1551 }
1552 }
1553
1554 return false;
1555 }
1556
1557 /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
1558 /// TheCall is a constant expression.
SemaBuiltinConstantArg(CallExpr * TheCall,int ArgNum,llvm::APSInt & Result)1559 bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
1560 llvm::APSInt &Result) {
1561 Expr *Arg = TheCall->getArg(ArgNum);
1562 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1563 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
1564
1565 if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
1566
1567 if (!Arg->isIntegerConstantExpr(Result, Context))
1568 return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
1569 << FDecl->getDeclName() << Arg->getSourceRange();
1570
1571 return false;
1572 }
1573
1574 /// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
1575 /// int type). This simply type checks that type is one of the defined
1576 /// constants (0-3).
1577 // For compatibility check 0-3, llvm only handles 0 and 2.
SemaBuiltinObjectSize(CallExpr * TheCall)1578 bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
1579 llvm::APSInt Result;
1580
1581 // We can't check the value of a dependent argument.
1582 if (TheCall->getArg(1)->isTypeDependent() ||
1583 TheCall->getArg(1)->isValueDependent())
1584 return false;
1585
1586 // Check constant-ness first.
1587 if (SemaBuiltinConstantArg(TheCall, 1, Result))
1588 return true;
1589
1590 Expr *Arg = TheCall->getArg(1);
1591 if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
1592 return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1593 << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1594 }
1595
1596 return false;
1597 }
1598
1599 /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
1600 /// This checks that val is a constant 1.
SemaBuiltinLongjmp(CallExpr * TheCall)1601 bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
1602 Expr *Arg = TheCall->getArg(1);
1603 llvm::APSInt Result;
1604
1605 // TODO: This is less than ideal. Overload this to take a value.
1606 if (SemaBuiltinConstantArg(TheCall, 1, Result))
1607 return true;
1608
1609 if (Result != 1)
1610 return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
1611 << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1612
1613 return false;
1614 }
1615
1616 // Determine if an expression is a string literal or constant string.
1617 // If this function returns false on the arguments to a function expecting a
1618 // format string, we will usually need to emit a warning.
1619 // True string literals are then checked by CheckFormatString.
1620 Sema::StringLiteralCheckType
checkFormatStringExpr(const Expr * E,Expr ** Args,unsigned NumArgs,bool HasVAListArg,unsigned format_idx,unsigned firstDataArg,FormatStringType Type,VariadicCallType CallType,bool inFunctionCall)1621 Sema::checkFormatStringExpr(const Expr *E, Expr **Args,
1622 unsigned NumArgs, bool HasVAListArg,
1623 unsigned format_idx, unsigned firstDataArg,
1624 FormatStringType Type, VariadicCallType CallType,
1625 bool inFunctionCall) {
1626 tryAgain:
1627 if (E->isTypeDependent() || E->isValueDependent())
1628 return SLCT_NotALiteral;
1629
1630 E = E->IgnoreParenCasts();
1631
1632 if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
1633 // Technically -Wformat-nonliteral does not warn about this case.
1634 // The behavior of printf and friends in this case is implementation
1635 // dependent. Ideally if the format string cannot be null then
1636 // it should have a 'nonnull' attribute in the function prototype.
1637 return SLCT_CheckedLiteral;
1638
1639 switch (E->getStmtClass()) {
1640 case Stmt::BinaryConditionalOperatorClass:
1641 case Stmt::ConditionalOperatorClass: {
1642 // The expression is a literal if both sub-expressions were, and it was
1643 // completely checked only if both sub-expressions were checked.
1644 const AbstractConditionalOperator *C =
1645 cast<AbstractConditionalOperator>(E);
1646 StringLiteralCheckType Left =
1647 checkFormatStringExpr(C->getTrueExpr(), Args, NumArgs,
1648 HasVAListArg, format_idx, firstDataArg,
1649 Type, CallType, inFunctionCall);
1650 if (Left == SLCT_NotALiteral)
1651 return SLCT_NotALiteral;
1652 StringLiteralCheckType Right =
1653 checkFormatStringExpr(C->getFalseExpr(), Args, NumArgs,
1654 HasVAListArg, format_idx, firstDataArg,
1655 Type, CallType, inFunctionCall);
1656 return Left < Right ? Left : Right;
1657 }
1658
1659 case Stmt::ImplicitCastExprClass: {
1660 E = cast<ImplicitCastExpr>(E)->getSubExpr();
1661 goto tryAgain;
1662 }
1663
1664 case Stmt::OpaqueValueExprClass:
1665 if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
1666 E = src;
1667 goto tryAgain;
1668 }
1669 return SLCT_NotALiteral;
1670
1671 case Stmt::PredefinedExprClass:
1672 // While __func__, etc., are technically not string literals, they
1673 // cannot contain format specifiers and thus are not a security
1674 // liability.
1675 return SLCT_UncheckedLiteral;
1676
1677 case Stmt::DeclRefExprClass: {
1678 const DeclRefExpr *DR = cast<DeclRefExpr>(E);
1679
1680 // As an exception, do not flag errors for variables binding to
1681 // const string literals.
1682 if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
1683 bool isConstant = false;
1684 QualType T = DR->getType();
1685
1686 if (const ArrayType *AT = Context.getAsArrayType(T)) {
1687 isConstant = AT->getElementType().isConstant(Context);
1688 } else if (const PointerType *PT = T->getAs<PointerType>()) {
1689 isConstant = T.isConstant(Context) &&
1690 PT->getPointeeType().isConstant(Context);
1691 } else if (T->isObjCObjectPointerType()) {
1692 // In ObjC, there is usually no "const ObjectPointer" type,
1693 // so don't check if the pointee type is constant.
1694 isConstant = T.isConstant(Context);
1695 }
1696
1697 if (isConstant) {
1698 if (const Expr *Init = VD->getAnyInitializer()) {
1699 // Look through initializers like const char c[] = { "foo" }
1700 if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
1701 if (InitList->isStringLiteralInit())
1702 Init = InitList->getInit(0)->IgnoreParenImpCasts();
1703 }
1704 return checkFormatStringExpr(Init, Args, NumArgs,
1705 HasVAListArg, format_idx,
1706 firstDataArg, Type, CallType,
1707 /*inFunctionCall*/false);
1708 }
1709 }
1710
1711 // For vprintf* functions (i.e., HasVAListArg==true), we add a
1712 // special check to see if the format string is a function parameter
1713 // of the function calling the printf function. If the function
1714 // has an attribute indicating it is a printf-like function, then we
1715 // should suppress warnings concerning non-literals being used in a call
1716 // to a vprintf function. For example:
1717 //
1718 // void
1719 // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
1720 // va_list ap;
1721 // va_start(ap, fmt);
1722 // vprintf(fmt, ap); // Do NOT emit a warning about "fmt".
1723 // ...
1724 //
1725 if (HasVAListArg) {
1726 if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
1727 if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
1728 int PVIndex = PV->getFunctionScopeIndex() + 1;
1729 for (specific_attr_iterator<FormatAttr>
1730 i = ND->specific_attr_begin<FormatAttr>(),
1731 e = ND->specific_attr_end<FormatAttr>(); i != e ; ++i) {
1732 FormatAttr *PVFormat = *i;
1733 // adjust for implicit parameter
1734 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
1735 if (MD->isInstance())
1736 ++PVIndex;
1737 // We also check if the formats are compatible.
1738 // We can't pass a 'scanf' string to a 'printf' function.
1739 if (PVIndex == PVFormat->getFormatIdx() &&
1740 Type == GetFormatStringType(PVFormat))
1741 return SLCT_UncheckedLiteral;
1742 }
1743 }
1744 }
1745 }
1746 }
1747
1748 return SLCT_NotALiteral;
1749 }
1750
1751 case Stmt::CallExprClass:
1752 case Stmt::CXXMemberCallExprClass: {
1753 const CallExpr *CE = cast<CallExpr>(E);
1754 if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
1755 if (const FormatArgAttr *FA = ND->getAttr<FormatArgAttr>()) {
1756 unsigned ArgIndex = FA->getFormatIdx();
1757 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
1758 if (MD->isInstance())
1759 --ArgIndex;
1760 const Expr *Arg = CE->getArg(ArgIndex - 1);
1761
1762 return checkFormatStringExpr(Arg, Args, NumArgs,
1763 HasVAListArg, format_idx, firstDataArg,
1764 Type, CallType, inFunctionCall);
1765 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
1766 unsigned BuiltinID = FD->getBuiltinID();
1767 if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
1768 BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
1769 const Expr *Arg = CE->getArg(0);
1770 return checkFormatStringExpr(Arg, Args, NumArgs,
1771 HasVAListArg, format_idx,
1772 firstDataArg, Type, CallType,
1773 inFunctionCall);
1774 }
1775 }
1776 }
1777
1778 return SLCT_NotALiteral;
1779 }
1780 case Stmt::ObjCStringLiteralClass:
1781 case Stmt::StringLiteralClass: {
1782 const StringLiteral *StrE = NULL;
1783
1784 if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
1785 StrE = ObjCFExpr->getString();
1786 else
1787 StrE = cast<StringLiteral>(E);
1788
1789 if (StrE) {
1790 CheckFormatString(StrE, E, Args, NumArgs, HasVAListArg, format_idx,
1791 firstDataArg, Type, inFunctionCall, CallType);
1792 return SLCT_CheckedLiteral;
1793 }
1794
1795 return SLCT_NotALiteral;
1796 }
1797
1798 default:
1799 return SLCT_NotALiteral;
1800 }
1801 }
1802
1803 void
CheckNonNullArguments(const NonNullAttr * NonNull,const Expr * const * ExprArgs,SourceLocation CallSiteLoc)1804 Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1805 const Expr * const *ExprArgs,
1806 SourceLocation CallSiteLoc) {
1807 for (NonNullAttr::args_iterator i = NonNull->args_begin(),
1808 e = NonNull->args_end();
1809 i != e; ++i) {
1810 const Expr *ArgExpr = ExprArgs[*i];
1811 if (ArgExpr->isNullPointerConstant(Context,
1812 Expr::NPC_ValueDependentIsNotNull))
1813 Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
1814 }
1815 }
1816
GetFormatStringType(const FormatAttr * Format)1817 Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
1818 return llvm::StringSwitch<FormatStringType>(Format->getType())
1819 .Case("scanf", FST_Scanf)
1820 .Cases("printf", "printf0", FST_Printf)
1821 .Cases("NSString", "CFString", FST_NSString)
1822 .Case("strftime", FST_Strftime)
1823 .Case("strfmon", FST_Strfmon)
1824 .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
1825 .Default(FST_Unknown);
1826 }
1827
1828 /// CheckFormatArguments - Check calls to printf and scanf (and similar
1829 /// functions) for correct use of format strings.
1830 /// Returns true if a format string has been fully checked.
CheckFormatArguments(const FormatAttr * Format,Expr ** Args,unsigned NumArgs,bool IsCXXMember,VariadicCallType CallType,SourceLocation Loc,SourceRange Range)1831 bool Sema::CheckFormatArguments(const FormatAttr *Format, Expr **Args,
1832 unsigned NumArgs, bool IsCXXMember,
1833 VariadicCallType CallType,
1834 SourceLocation Loc, SourceRange Range) {
1835 FormatStringInfo FSI;
1836 if (getFormatStringInfo(Format, IsCXXMember, &FSI))
1837 return CheckFormatArguments(Args, NumArgs, FSI.HasVAListArg, FSI.FormatIdx,
1838 FSI.FirstDataArg, GetFormatStringType(Format),
1839 CallType, Loc, Range);
1840 return false;
1841 }
1842
CheckFormatArguments(Expr ** Args,unsigned NumArgs,bool HasVAListArg,unsigned format_idx,unsigned firstDataArg,FormatStringType Type,VariadicCallType CallType,SourceLocation Loc,SourceRange Range)1843 bool Sema::CheckFormatArguments(Expr **Args, unsigned NumArgs,
1844 bool HasVAListArg, unsigned format_idx,
1845 unsigned firstDataArg, FormatStringType Type,
1846 VariadicCallType CallType,
1847 SourceLocation Loc, SourceRange Range) {
1848 // CHECK: printf/scanf-like function is called with no format string.
1849 if (format_idx >= NumArgs) {
1850 Diag(Loc, diag::warn_missing_format_string) << Range;
1851 return false;
1852 }
1853
1854 const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
1855
1856 // CHECK: format string is not a string literal.
1857 //
1858 // Dynamically generated format strings are difficult to
1859 // automatically vet at compile time. Requiring that format strings
1860 // are string literals: (1) permits the checking of format strings by
1861 // the compiler and thereby (2) can practically remove the source of
1862 // many format string exploits.
1863
1864 // Format string can be either ObjC string (e.g. @"%d") or
1865 // C string (e.g. "%d")
1866 // ObjC string uses the same format specifiers as C string, so we can use
1867 // the same format string checking logic for both ObjC and C strings.
1868 StringLiteralCheckType CT =
1869 checkFormatStringExpr(OrigFormatExpr, Args, NumArgs, HasVAListArg,
1870 format_idx, firstDataArg, Type, CallType);
1871 if (CT != SLCT_NotALiteral)
1872 // Literal format string found, check done!
1873 return CT == SLCT_CheckedLiteral;
1874
1875 // Strftime is particular as it always uses a single 'time' argument,
1876 // so it is safe to pass a non-literal string.
1877 if (Type == FST_Strftime)
1878 return false;
1879
1880 // Do not emit diag when the string param is a macro expansion and the
1881 // format is either NSString or CFString. This is a hack to prevent
1882 // diag when using the NSLocalizedString and CFCopyLocalizedString macros
1883 // which are usually used in place of NS and CF string literals.
1884 if (Type == FST_NSString &&
1885 SourceMgr.isInSystemMacro(Args[format_idx]->getLocStart()))
1886 return false;
1887
1888 // If there are no arguments specified, warn with -Wformat-security, otherwise
1889 // warn only with -Wformat-nonliteral.
1890 if (NumArgs == format_idx+1)
1891 Diag(Args[format_idx]->getLocStart(),
1892 diag::warn_format_nonliteral_noargs)
1893 << OrigFormatExpr->getSourceRange();
1894 else
1895 Diag(Args[format_idx]->getLocStart(),
1896 diag::warn_format_nonliteral)
1897 << OrigFormatExpr->getSourceRange();
1898 return false;
1899 }
1900
1901 namespace {
1902 class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
1903 protected:
1904 Sema &S;
1905 const StringLiteral *FExpr;
1906 const Expr *OrigFormatExpr;
1907 const unsigned FirstDataArg;
1908 const unsigned NumDataArgs;
1909 const char *Beg; // Start of format string.
1910 const bool HasVAListArg;
1911 const Expr * const *Args;
1912 const unsigned NumArgs;
1913 unsigned FormatIdx;
1914 llvm::BitVector CoveredArgs;
1915 bool usesPositionalArgs;
1916 bool atFirstArg;
1917 bool inFunctionCall;
1918 Sema::VariadicCallType CallType;
1919 public:
CheckFormatHandler(Sema & s,const StringLiteral * fexpr,const Expr * origFormatExpr,unsigned firstDataArg,unsigned numDataArgs,const char * beg,bool hasVAListArg,Expr ** args,unsigned numArgs,unsigned formatIdx,bool inFunctionCall,Sema::VariadicCallType callType)1920 CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
1921 const Expr *origFormatExpr, unsigned firstDataArg,
1922 unsigned numDataArgs, const char *beg, bool hasVAListArg,
1923 Expr **args, unsigned numArgs,
1924 unsigned formatIdx, bool inFunctionCall,
1925 Sema::VariadicCallType callType)
1926 : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1927 FirstDataArg(firstDataArg), NumDataArgs(numDataArgs),
1928 Beg(beg), HasVAListArg(hasVAListArg),
1929 Args(args), NumArgs(numArgs), FormatIdx(formatIdx),
1930 usesPositionalArgs(false), atFirstArg(true),
1931 inFunctionCall(inFunctionCall), CallType(callType) {
1932 CoveredArgs.resize(numDataArgs);
1933 CoveredArgs.reset();
1934 }
1935
1936 void DoneProcessing();
1937
1938 void HandleIncompleteSpecifier(const char *startSpecifier,
1939 unsigned specifierLen);
1940
1941 void HandleInvalidLengthModifier(
1942 const analyze_format_string::FormatSpecifier &FS,
1943 const analyze_format_string::ConversionSpecifier &CS,
1944 const char *startSpecifier, unsigned specifierLen, unsigned DiagID);
1945
1946 void HandleNonStandardLengthModifier(
1947 const analyze_format_string::FormatSpecifier &FS,
1948 const char *startSpecifier, unsigned specifierLen);
1949
1950 void HandleNonStandardConversionSpecifier(
1951 const analyze_format_string::ConversionSpecifier &CS,
1952 const char *startSpecifier, unsigned specifierLen);
1953
1954 virtual void HandlePosition(const char *startPos, unsigned posLen);
1955
1956 virtual void HandleInvalidPosition(const char *startSpecifier,
1957 unsigned specifierLen,
1958 analyze_format_string::PositionContext p);
1959
1960 virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1961
1962 void HandleNullChar(const char *nullCharacter);
1963
1964 template <typename Range>
1965 static void EmitFormatDiagnostic(Sema &S, bool inFunctionCall,
1966 const Expr *ArgumentExpr,
1967 PartialDiagnostic PDiag,
1968 SourceLocation StringLoc,
1969 bool IsStringLocation, Range StringRange,
1970 ArrayRef<FixItHint> Fixit = ArrayRef<FixItHint>());
1971
1972 protected:
1973 bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
1974 const char *startSpec,
1975 unsigned specifierLen,
1976 const char *csStart, unsigned csLen);
1977
1978 void HandlePositionalNonpositionalArgs(SourceLocation Loc,
1979 const char *startSpec,
1980 unsigned specifierLen);
1981
1982 SourceRange getFormatStringRange();
1983 CharSourceRange getSpecifierRange(const char *startSpecifier,
1984 unsigned specifierLen);
1985 SourceLocation getLocationOfByte(const char *x);
1986
1987 const Expr *getDataArg(unsigned i) const;
1988
1989 bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
1990 const analyze_format_string::ConversionSpecifier &CS,
1991 const char *startSpecifier, unsigned specifierLen,
1992 unsigned argIndex);
1993
1994 template <typename Range>
1995 void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
1996 bool IsStringLocation, Range StringRange,
1997 ArrayRef<FixItHint> Fixit = ArrayRef<FixItHint>());
1998
1999 void CheckPositionalAndNonpositionalArgs(
2000 const analyze_format_string::FormatSpecifier *FS);
2001 };
2002 }
2003
getFormatStringRange()2004 SourceRange CheckFormatHandler::getFormatStringRange() {
2005 return OrigFormatExpr->getSourceRange();
2006 }
2007
2008 CharSourceRange CheckFormatHandler::
getSpecifierRange(const char * startSpecifier,unsigned specifierLen)2009 getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
2010 SourceLocation Start = getLocationOfByte(startSpecifier);
2011 SourceLocation End = getLocationOfByte(startSpecifier + specifierLen - 1);
2012
2013 // Advance the end SourceLocation by one due to half-open ranges.
2014 End = End.getLocWithOffset(1);
2015
2016 return CharSourceRange::getCharRange(Start, End);
2017 }
2018
getLocationOfByte(const char * x)2019 SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
2020 return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
2021 }
2022
HandleIncompleteSpecifier(const char * startSpecifier,unsigned specifierLen)2023 void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
2024 unsigned specifierLen){
2025 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
2026 getLocationOfByte(startSpecifier),
2027 /*IsStringLocation*/true,
2028 getSpecifierRange(startSpecifier, specifierLen));
2029 }
2030
HandleInvalidLengthModifier(const analyze_format_string::FormatSpecifier & FS,const analyze_format_string::ConversionSpecifier & CS,const char * startSpecifier,unsigned specifierLen,unsigned DiagID)2031 void CheckFormatHandler::HandleInvalidLengthModifier(
2032 const analyze_format_string::FormatSpecifier &FS,
2033 const analyze_format_string::ConversionSpecifier &CS,
2034 const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
2035 using namespace analyze_format_string;
2036
2037 const LengthModifier &LM = FS.getLengthModifier();
2038 CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
2039
2040 // See if we know how to fix this length modifier.
2041 llvm::Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
2042 if (FixedLM) {
2043 EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
2044 getLocationOfByte(LM.getStart()),
2045 /*IsStringLocation*/true,
2046 getSpecifierRange(startSpecifier, specifierLen));
2047
2048 S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
2049 << FixedLM->toString()
2050 << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
2051
2052 } else {
2053 FixItHint Hint;
2054 if (DiagID == diag::warn_format_nonsensical_length)
2055 Hint = FixItHint::CreateRemoval(LMRange);
2056
2057 EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
2058 getLocationOfByte(LM.getStart()),
2059 /*IsStringLocation*/true,
2060 getSpecifierRange(startSpecifier, specifierLen),
2061 Hint);
2062 }
2063 }
2064
HandleNonStandardLengthModifier(const analyze_format_string::FormatSpecifier & FS,const char * startSpecifier,unsigned specifierLen)2065 void CheckFormatHandler::HandleNonStandardLengthModifier(
2066 const analyze_format_string::FormatSpecifier &FS,
2067 const char *startSpecifier, unsigned specifierLen) {
2068 using namespace analyze_format_string;
2069
2070 const LengthModifier &LM = FS.getLengthModifier();
2071 CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
2072
2073 // See if we know how to fix this length modifier.
2074 llvm::Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
2075 if (FixedLM) {
2076 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2077 << LM.toString() << 0,
2078 getLocationOfByte(LM.getStart()),
2079 /*IsStringLocation*/true,
2080 getSpecifierRange(startSpecifier, specifierLen));
2081
2082 S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
2083 << FixedLM->toString()
2084 << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
2085
2086 } else {
2087 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2088 << LM.toString() << 0,
2089 getLocationOfByte(LM.getStart()),
2090 /*IsStringLocation*/true,
2091 getSpecifierRange(startSpecifier, specifierLen));
2092 }
2093 }
2094
HandleNonStandardConversionSpecifier(const analyze_format_string::ConversionSpecifier & CS,const char * startSpecifier,unsigned specifierLen)2095 void CheckFormatHandler::HandleNonStandardConversionSpecifier(
2096 const analyze_format_string::ConversionSpecifier &CS,
2097 const char *startSpecifier, unsigned specifierLen) {
2098 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) << CS.toString()
2099 << 1,
2100 getLocationOfByte(CS.getStart()),
2101 /*IsStringLocation*/true,
2102 getSpecifierRange(startSpecifier, specifierLen));
2103 }
2104
HandlePosition(const char * startPos,unsigned posLen)2105 void CheckFormatHandler::HandlePosition(const char *startPos,
2106 unsigned posLen) {
2107 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
2108 getLocationOfByte(startPos),
2109 /*IsStringLocation*/true,
2110 getSpecifierRange(startPos, posLen));
2111 }
2112
2113 void
HandleInvalidPosition(const char * startPos,unsigned posLen,analyze_format_string::PositionContext p)2114 CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
2115 analyze_format_string::PositionContext p) {
2116 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
2117 << (unsigned) p,
2118 getLocationOfByte(startPos), /*IsStringLocation*/true,
2119 getSpecifierRange(startPos, posLen));
2120 }
2121
HandleZeroPosition(const char * startPos,unsigned posLen)2122 void CheckFormatHandler::HandleZeroPosition(const char *startPos,
2123 unsigned posLen) {
2124 EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
2125 getLocationOfByte(startPos),
2126 /*IsStringLocation*/true,
2127 getSpecifierRange(startPos, posLen));
2128 }
2129
HandleNullChar(const char * nullCharacter)2130 void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
2131 if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
2132 // The presence of a null character is likely an error.
2133 EmitFormatDiagnostic(
2134 S.PDiag(diag::warn_printf_format_string_contains_null_char),
2135 getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
2136 getFormatStringRange());
2137 }
2138 }
2139
2140 // Note that this may return NULL if there was an error parsing or building
2141 // one of the argument expressions.
getDataArg(unsigned i) const2142 const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
2143 return Args[FirstDataArg + i];
2144 }
2145
DoneProcessing()2146 void CheckFormatHandler::DoneProcessing() {
2147 // Does the number of data arguments exceed the number of
2148 // format conversions in the format string?
2149 if (!HasVAListArg) {
2150 // Find any arguments that weren't covered.
2151 CoveredArgs.flip();
2152 signed notCoveredArg = CoveredArgs.find_first();
2153 if (notCoveredArg >= 0) {
2154 assert((unsigned)notCoveredArg < NumDataArgs);
2155 if (const Expr *E = getDataArg((unsigned) notCoveredArg)) {
2156 SourceLocation Loc = E->getLocStart();
2157 if (!S.getSourceManager().isInSystemMacro(Loc)) {
2158 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_data_arg_not_used),
2159 Loc, /*IsStringLocation*/false,
2160 getFormatStringRange());
2161 }
2162 }
2163 }
2164 }
2165 }
2166
2167 bool
HandleInvalidConversionSpecifier(unsigned argIndex,SourceLocation Loc,const char * startSpec,unsigned specifierLen,const char * csStart,unsigned csLen)2168 CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
2169 SourceLocation Loc,
2170 const char *startSpec,
2171 unsigned specifierLen,
2172 const char *csStart,
2173 unsigned csLen) {
2174
2175 bool keepGoing = true;
2176 if (argIndex < NumDataArgs) {
2177 // Consider the argument coverered, even though the specifier doesn't
2178 // make sense.
2179 CoveredArgs.set(argIndex);
2180 }
2181 else {
2182 // If argIndex exceeds the number of data arguments we
2183 // don't issue a warning because that is just a cascade of warnings (and
2184 // they may have intended '%%' anyway). We don't want to continue processing
2185 // the format string after this point, however, as we will like just get
2186 // gibberish when trying to match arguments.
2187 keepGoing = false;
2188 }
2189
2190 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_conversion)
2191 << StringRef(csStart, csLen),
2192 Loc, /*IsStringLocation*/true,
2193 getSpecifierRange(startSpec, specifierLen));
2194
2195 return keepGoing;
2196 }
2197
2198 void
HandlePositionalNonpositionalArgs(SourceLocation Loc,const char * startSpec,unsigned specifierLen)2199 CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
2200 const char *startSpec,
2201 unsigned specifierLen) {
2202 EmitFormatDiagnostic(
2203 S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
2204 Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
2205 }
2206
2207 bool
CheckNumArgs(const analyze_format_string::FormatSpecifier & FS,const analyze_format_string::ConversionSpecifier & CS,const char * startSpecifier,unsigned specifierLen,unsigned argIndex)2208 CheckFormatHandler::CheckNumArgs(
2209 const analyze_format_string::FormatSpecifier &FS,
2210 const analyze_format_string::ConversionSpecifier &CS,
2211 const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
2212
2213 if (argIndex >= NumDataArgs) {
2214 PartialDiagnostic PDiag = FS.usesPositionalArg()
2215 ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
2216 << (argIndex+1) << NumDataArgs)
2217 : S.PDiag(diag::warn_printf_insufficient_data_args);
2218 EmitFormatDiagnostic(
2219 PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
2220 getSpecifierRange(startSpecifier, specifierLen));
2221 return false;
2222 }
2223 return true;
2224 }
2225
2226 template<typename Range>
EmitFormatDiagnostic(PartialDiagnostic PDiag,SourceLocation Loc,bool IsStringLocation,Range StringRange,ArrayRef<FixItHint> FixIt)2227 void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
2228 SourceLocation Loc,
2229 bool IsStringLocation,
2230 Range StringRange,
2231 ArrayRef<FixItHint> FixIt) {
2232 EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
2233 Loc, IsStringLocation, StringRange, FixIt);
2234 }
2235
2236 /// \brief If the format string is not within the funcion call, emit a note
2237 /// so that the function call and string are in diagnostic messages.
2238 ///
2239 /// \param InFunctionCall if true, the format string is within the function
2240 /// call and only one diagnostic message will be produced. Otherwise, an
2241 /// extra note will be emitted pointing to location of the format string.
2242 ///
2243 /// \param ArgumentExpr the expression that is passed as the format string
2244 /// argument in the function call. Used for getting locations when two
2245 /// diagnostics are emitted.
2246 ///
2247 /// \param PDiag the callee should already have provided any strings for the
2248 /// diagnostic message. This function only adds locations and fixits
2249 /// to diagnostics.
2250 ///
2251 /// \param Loc primary location for diagnostic. If two diagnostics are
2252 /// required, one will be at Loc and a new SourceLocation will be created for
2253 /// the other one.
2254 ///
2255 /// \param IsStringLocation if true, Loc points to the format string should be
2256 /// used for the note. Otherwise, Loc points to the argument list and will
2257 /// be used with PDiag.
2258 ///
2259 /// \param StringRange some or all of the string to highlight. This is
2260 /// templated so it can accept either a CharSourceRange or a SourceRange.
2261 ///
2262 /// \param FixIt optional fix it hint for the format string.
2263 template<typename Range>
EmitFormatDiagnostic(Sema & S,bool InFunctionCall,const Expr * ArgumentExpr,PartialDiagnostic PDiag,SourceLocation Loc,bool IsStringLocation,Range StringRange,ArrayRef<FixItHint> FixIt)2264 void CheckFormatHandler::EmitFormatDiagnostic(Sema &S, bool InFunctionCall,
2265 const Expr *ArgumentExpr,
2266 PartialDiagnostic PDiag,
2267 SourceLocation Loc,
2268 bool IsStringLocation,
2269 Range StringRange,
2270 ArrayRef<FixItHint> FixIt) {
2271 if (InFunctionCall) {
2272 const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
2273 D << StringRange;
2274 for (ArrayRef<FixItHint>::iterator I = FixIt.begin(), E = FixIt.end();
2275 I != E; ++I) {
2276 D << *I;
2277 }
2278 } else {
2279 S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
2280 << ArgumentExpr->getSourceRange();
2281
2282 const Sema::SemaDiagnosticBuilder &Note =
2283 S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
2284 diag::note_format_string_defined);
2285
2286 Note << StringRange;
2287 for (ArrayRef<FixItHint>::iterator I = FixIt.begin(), E = FixIt.end();
2288 I != E; ++I) {
2289 Note << *I;
2290 }
2291 }
2292 }
2293
2294 //===--- CHECK: Printf format string checking ------------------------------===//
2295
2296 namespace {
2297 class CheckPrintfHandler : public CheckFormatHandler {
2298 bool ObjCContext;
2299 public:
CheckPrintfHandler(Sema & s,const StringLiteral * fexpr,const Expr * origFormatExpr,unsigned firstDataArg,unsigned numDataArgs,bool isObjC,const char * beg,bool hasVAListArg,Expr ** Args,unsigned NumArgs,unsigned formatIdx,bool inFunctionCall,Sema::VariadicCallType CallType)2300 CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
2301 const Expr *origFormatExpr, unsigned firstDataArg,
2302 unsigned numDataArgs, bool isObjC,
2303 const char *beg, bool hasVAListArg,
2304 Expr **Args, unsigned NumArgs,
2305 unsigned formatIdx, bool inFunctionCall,
2306 Sema::VariadicCallType CallType)
2307 : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
2308 numDataArgs, beg, hasVAListArg, Args, NumArgs,
2309 formatIdx, inFunctionCall, CallType), ObjCContext(isObjC)
2310 {}
2311
2312
2313 bool HandleInvalidPrintfConversionSpecifier(
2314 const analyze_printf::PrintfSpecifier &FS,
2315 const char *startSpecifier,
2316 unsigned specifierLen);
2317
2318 bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
2319 const char *startSpecifier,
2320 unsigned specifierLen);
2321 bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
2322 const char *StartSpecifier,
2323 unsigned SpecifierLen,
2324 const Expr *E);
2325
2326 bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
2327 const char *startSpecifier, unsigned specifierLen);
2328 void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
2329 const analyze_printf::OptionalAmount &Amt,
2330 unsigned type,
2331 const char *startSpecifier, unsigned specifierLen);
2332 void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2333 const analyze_printf::OptionalFlag &flag,
2334 const char *startSpecifier, unsigned specifierLen);
2335 void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
2336 const analyze_printf::OptionalFlag &ignoredFlag,
2337 const analyze_printf::OptionalFlag &flag,
2338 const char *startSpecifier, unsigned specifierLen);
2339 bool checkForCStrMembers(const analyze_printf::ArgType &AT,
2340 const Expr *E, const CharSourceRange &CSR);
2341
2342 };
2343 }
2344
HandleInvalidPrintfConversionSpecifier(const analyze_printf::PrintfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)2345 bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
2346 const analyze_printf::PrintfSpecifier &FS,
2347 const char *startSpecifier,
2348 unsigned specifierLen) {
2349 const analyze_printf::PrintfConversionSpecifier &CS =
2350 FS.getConversionSpecifier();
2351
2352 return HandleInvalidConversionSpecifier(FS.getArgIndex(),
2353 getLocationOfByte(CS.getStart()),
2354 startSpecifier, specifierLen,
2355 CS.getStart(), CS.getLength());
2356 }
2357
HandleAmount(const analyze_format_string::OptionalAmount & Amt,unsigned k,const char * startSpecifier,unsigned specifierLen)2358 bool CheckPrintfHandler::HandleAmount(
2359 const analyze_format_string::OptionalAmount &Amt,
2360 unsigned k, const char *startSpecifier,
2361 unsigned specifierLen) {
2362
2363 if (Amt.hasDataArgument()) {
2364 if (!HasVAListArg) {
2365 unsigned argIndex = Amt.getArgIndex();
2366 if (argIndex >= NumDataArgs) {
2367 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
2368 << k,
2369 getLocationOfByte(Amt.getStart()),
2370 /*IsStringLocation*/true,
2371 getSpecifierRange(startSpecifier, specifierLen));
2372 // Don't do any more checking. We will just emit
2373 // spurious errors.
2374 return false;
2375 }
2376
2377 // Type check the data argument. It should be an 'int'.
2378 // Although not in conformance with C99, we also allow the argument to be
2379 // an 'unsigned int' as that is a reasonably safe case. GCC also
2380 // doesn't emit a warning for that case.
2381 CoveredArgs.set(argIndex);
2382 const Expr *Arg = getDataArg(argIndex);
2383 if (!Arg)
2384 return false;
2385
2386 QualType T = Arg->getType();
2387
2388 const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
2389 assert(AT.isValid());
2390
2391 if (!AT.matchesType(S.Context, T)) {
2392 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
2393 << k << AT.getRepresentativeTypeName(S.Context)
2394 << T << Arg->getSourceRange(),
2395 getLocationOfByte(Amt.getStart()),
2396 /*IsStringLocation*/true,
2397 getSpecifierRange(startSpecifier, specifierLen));
2398 // Don't do any more checking. We will just emit
2399 // spurious errors.
2400 return false;
2401 }
2402 }
2403 }
2404 return true;
2405 }
2406
HandleInvalidAmount(const analyze_printf::PrintfSpecifier & FS,const analyze_printf::OptionalAmount & Amt,unsigned type,const char * startSpecifier,unsigned specifierLen)2407 void CheckPrintfHandler::HandleInvalidAmount(
2408 const analyze_printf::PrintfSpecifier &FS,
2409 const analyze_printf::OptionalAmount &Amt,
2410 unsigned type,
2411 const char *startSpecifier,
2412 unsigned specifierLen) {
2413 const analyze_printf::PrintfConversionSpecifier &CS =
2414 FS.getConversionSpecifier();
2415
2416 FixItHint fixit =
2417 Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
2418 ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
2419 Amt.getConstantLength()))
2420 : FixItHint();
2421
2422 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
2423 << type << CS.toString(),
2424 getLocationOfByte(Amt.getStart()),
2425 /*IsStringLocation*/true,
2426 getSpecifierRange(startSpecifier, specifierLen),
2427 fixit);
2428 }
2429
HandleFlag(const analyze_printf::PrintfSpecifier & FS,const analyze_printf::OptionalFlag & flag,const char * startSpecifier,unsigned specifierLen)2430 void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2431 const analyze_printf::OptionalFlag &flag,
2432 const char *startSpecifier,
2433 unsigned specifierLen) {
2434 // Warn about pointless flag with a fixit removal.
2435 const analyze_printf::PrintfConversionSpecifier &CS =
2436 FS.getConversionSpecifier();
2437 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
2438 << flag.toString() << CS.toString(),
2439 getLocationOfByte(flag.getPosition()),
2440 /*IsStringLocation*/true,
2441 getSpecifierRange(startSpecifier, specifierLen),
2442 FixItHint::CreateRemoval(
2443 getSpecifierRange(flag.getPosition(), 1)));
2444 }
2445
HandleIgnoredFlag(const analyze_printf::PrintfSpecifier & FS,const analyze_printf::OptionalFlag & ignoredFlag,const analyze_printf::OptionalFlag & flag,const char * startSpecifier,unsigned specifierLen)2446 void CheckPrintfHandler::HandleIgnoredFlag(
2447 const analyze_printf::PrintfSpecifier &FS,
2448 const analyze_printf::OptionalFlag &ignoredFlag,
2449 const analyze_printf::OptionalFlag &flag,
2450 const char *startSpecifier,
2451 unsigned specifierLen) {
2452 // Warn about ignored flag with a fixit removal.
2453 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
2454 << ignoredFlag.toString() << flag.toString(),
2455 getLocationOfByte(ignoredFlag.getPosition()),
2456 /*IsStringLocation*/true,
2457 getSpecifierRange(startSpecifier, specifierLen),
2458 FixItHint::CreateRemoval(
2459 getSpecifierRange(ignoredFlag.getPosition(), 1)));
2460 }
2461
2462 // Determines if the specified is a C++ class or struct containing
2463 // a member with the specified name and kind (e.g. a CXXMethodDecl named
2464 // "c_str()").
2465 template<typename MemberKind>
2466 static llvm::SmallPtrSet<MemberKind*, 1>
CXXRecordMembersNamed(StringRef Name,Sema & S,QualType Ty)2467 CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
2468 const RecordType *RT = Ty->getAs<RecordType>();
2469 llvm::SmallPtrSet<MemberKind*, 1> Results;
2470
2471 if (!RT)
2472 return Results;
2473 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
2474 if (!RD)
2475 return Results;
2476
2477 LookupResult R(S, &S.PP.getIdentifierTable().get(Name), SourceLocation(),
2478 Sema::LookupMemberName);
2479
2480 // We just need to include all members of the right kind turned up by the
2481 // filter, at this point.
2482 if (S.LookupQualifiedName(R, RT->getDecl()))
2483 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2484 NamedDecl *decl = (*I)->getUnderlyingDecl();
2485 if (MemberKind *FK = dyn_cast<MemberKind>(decl))
2486 Results.insert(FK);
2487 }
2488 return Results;
2489 }
2490
2491 // Check if a (w)string was passed when a (w)char* was needed, and offer a
2492 // better diagnostic if so. AT is assumed to be valid.
2493 // Returns true when a c_str() conversion method is found.
checkForCStrMembers(const analyze_printf::ArgType & AT,const Expr * E,const CharSourceRange & CSR)2494 bool CheckPrintfHandler::checkForCStrMembers(
2495 const analyze_printf::ArgType &AT, const Expr *E,
2496 const CharSourceRange &CSR) {
2497 typedef llvm::SmallPtrSet<CXXMethodDecl*, 1> MethodSet;
2498
2499 MethodSet Results =
2500 CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
2501
2502 for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
2503 MI != ME; ++MI) {
2504 const CXXMethodDecl *Method = *MI;
2505 if (Method->getNumParams() == 0 &&
2506 AT.matchesType(S.Context, Method->getResultType())) {
2507 // FIXME: Suggest parens if the expression needs them.
2508 SourceLocation EndLoc =
2509 S.getPreprocessor().getLocForEndOfToken(E->getLocEnd());
2510 S.Diag(E->getLocStart(), diag::note_printf_c_str)
2511 << "c_str()"
2512 << FixItHint::CreateInsertion(EndLoc, ".c_str()");
2513 return true;
2514 }
2515 }
2516
2517 return false;
2518 }
2519
2520 bool
HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)2521 CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
2522 &FS,
2523 const char *startSpecifier,
2524 unsigned specifierLen) {
2525
2526 using namespace analyze_format_string;
2527 using namespace analyze_printf;
2528 const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
2529
2530 if (FS.consumesDataArgument()) {
2531 if (atFirstArg) {
2532 atFirstArg = false;
2533 usesPositionalArgs = FS.usesPositionalArg();
2534 }
2535 else if (usesPositionalArgs != FS.usesPositionalArg()) {
2536 HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
2537 startSpecifier, specifierLen);
2538 return false;
2539 }
2540 }
2541
2542 // First check if the field width, precision, and conversion specifier
2543 // have matching data arguments.
2544 if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
2545 startSpecifier, specifierLen)) {
2546 return false;
2547 }
2548
2549 if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
2550 startSpecifier, specifierLen)) {
2551 return false;
2552 }
2553
2554 if (!CS.consumesDataArgument()) {
2555 // FIXME: Technically specifying a precision or field width here
2556 // makes no sense. Worth issuing a warning at some point.
2557 return true;
2558 }
2559
2560 // Consume the argument.
2561 unsigned argIndex = FS.getArgIndex();
2562 if (argIndex < NumDataArgs) {
2563 // The check to see if the argIndex is valid will come later.
2564 // We set the bit here because we may exit early from this
2565 // function if we encounter some other error.
2566 CoveredArgs.set(argIndex);
2567 }
2568
2569 // Check for using an Objective-C specific conversion specifier
2570 // in a non-ObjC literal.
2571 if (!ObjCContext && CS.isObjCArg()) {
2572 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
2573 specifierLen);
2574 }
2575
2576 // Check for invalid use of field width
2577 if (!FS.hasValidFieldWidth()) {
2578 HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
2579 startSpecifier, specifierLen);
2580 }
2581
2582 // Check for invalid use of precision
2583 if (!FS.hasValidPrecision()) {
2584 HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
2585 startSpecifier, specifierLen);
2586 }
2587
2588 // Check each flag does not conflict with any other component.
2589 if (!FS.hasValidThousandsGroupingPrefix())
2590 HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
2591 if (!FS.hasValidLeadingZeros())
2592 HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
2593 if (!FS.hasValidPlusPrefix())
2594 HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
2595 if (!FS.hasValidSpacePrefix())
2596 HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
2597 if (!FS.hasValidAlternativeForm())
2598 HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
2599 if (!FS.hasValidLeftJustified())
2600 HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
2601
2602 // Check that flags are not ignored by another flag
2603 if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
2604 HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
2605 startSpecifier, specifierLen);
2606 if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
2607 HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
2608 startSpecifier, specifierLen);
2609
2610 // Check the length modifier is valid with the given conversion specifier.
2611 if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
2612 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
2613 diag::warn_format_nonsensical_length);
2614 else if (!FS.hasStandardLengthModifier())
2615 HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
2616 else if (!FS.hasStandardLengthConversionCombination())
2617 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
2618 diag::warn_format_non_standard_conversion_spec);
2619
2620 if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
2621 HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
2622
2623 // The remaining checks depend on the data arguments.
2624 if (HasVAListArg)
2625 return true;
2626
2627 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
2628 return false;
2629
2630 const Expr *Arg = getDataArg(argIndex);
2631 if (!Arg)
2632 return true;
2633
2634 return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
2635 }
2636
requiresParensToAddCast(const Expr * E)2637 static bool requiresParensToAddCast(const Expr *E) {
2638 // FIXME: We should have a general way to reason about operator
2639 // precedence and whether parens are actually needed here.
2640 // Take care of a few common cases where they aren't.
2641 const Expr *Inside = E->IgnoreImpCasts();
2642 if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
2643 Inside = POE->getSyntacticForm()->IgnoreImpCasts();
2644
2645 switch (Inside->getStmtClass()) {
2646 case Stmt::ArraySubscriptExprClass:
2647 case Stmt::CallExprClass:
2648 case Stmt::DeclRefExprClass:
2649 case Stmt::MemberExprClass:
2650 case Stmt::ObjCIvarRefExprClass:
2651 case Stmt::ObjCMessageExprClass:
2652 case Stmt::ObjCPropertyRefExprClass:
2653 case Stmt::ParenExprClass:
2654 case Stmt::UnaryOperatorClass:
2655 return false;
2656 default:
2657 return true;
2658 }
2659 }
2660
2661 bool
checkFormatExpr(const analyze_printf::PrintfSpecifier & FS,const char * StartSpecifier,unsigned SpecifierLen,const Expr * E)2662 CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
2663 const char *StartSpecifier,
2664 unsigned SpecifierLen,
2665 const Expr *E) {
2666 using namespace analyze_format_string;
2667 using namespace analyze_printf;
2668 // Now type check the data expression that matches the
2669 // format specifier.
2670 const analyze_printf::ArgType &AT = FS.getArgType(S.Context,
2671 ObjCContext);
2672 if (!AT.isValid())
2673 return true;
2674
2675 QualType IntendedTy = E->getType();
2676 if (AT.matchesType(S.Context, IntendedTy))
2677 return true;
2678
2679 // Look through argument promotions for our error message's reported type.
2680 // This includes the integral and floating promotions, but excludes array
2681 // and function pointer decay; seeing that an argument intended to be a
2682 // string has type 'char [6]' is probably more confusing than 'char *'.
2683 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2684 if (ICE->getCastKind() == CK_IntegralCast ||
2685 ICE->getCastKind() == CK_FloatingCast) {
2686 E = ICE->getSubExpr();
2687 IntendedTy = E->getType();
2688
2689 // Check if we didn't match because of an implicit cast from a 'char'
2690 // or 'short' to an 'int'. This is done because printf is a varargs
2691 // function.
2692 if (ICE->getType() == S.Context.IntTy ||
2693 ICE->getType() == S.Context.UnsignedIntTy) {
2694 // All further checking is done on the subexpression.
2695 if (AT.matchesType(S.Context, IntendedTy))
2696 return true;
2697 }
2698 }
2699 }
2700
2701 if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
2702 // Special-case some of Darwin's platform-independence types.
2703 if (const TypedefType *UserTy = IntendedTy->getAs<TypedefType>()) {
2704 StringRef Name = UserTy->getDecl()->getName();
2705 IntendedTy = llvm::StringSwitch<QualType>(Name)
2706 .Case("NSInteger", S.Context.LongTy)
2707 .Case("NSUInteger", S.Context.UnsignedLongTy)
2708 .Case("SInt32", S.Context.IntTy)
2709 .Case("UInt32", S.Context.UnsignedIntTy)
2710 .Default(IntendedTy);
2711 }
2712 }
2713
2714 // We may be able to offer a FixItHint if it is a supported type.
2715 PrintfSpecifier fixedFS = FS;
2716 bool success = fixedFS.fixType(IntendedTy, S.getLangOpts(),
2717 S.Context, ObjCContext);
2718
2719 if (success) {
2720 // Get the fix string from the fixed format specifier
2721 SmallString<16> buf;
2722 llvm::raw_svector_ostream os(buf);
2723 fixedFS.toString(os);
2724
2725 CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
2726
2727 if (IntendedTy != E->getType()) {
2728 // The canonical type for formatting this value is different from the
2729 // actual type of the expression. (This occurs, for example, with Darwin's
2730 // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
2731 // should be printed as 'long' for 64-bit compatibility.)
2732 // Rather than emitting a normal format/argument mismatch, we want to
2733 // add a cast to the recommended type (and correct the format string
2734 // if necessary).
2735 SmallString<16> CastBuf;
2736 llvm::raw_svector_ostream CastFix(CastBuf);
2737 CastFix << "(";
2738 IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
2739 CastFix << ")";
2740
2741 SmallVector<FixItHint,4> Hints;
2742 if (!AT.matchesType(S.Context, IntendedTy))
2743 Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
2744
2745 if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
2746 // If there's already a cast present, just replace it.
2747 SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
2748 Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
2749
2750 } else if (!requiresParensToAddCast(E)) {
2751 // If the expression has high enough precedence,
2752 // just write the C-style cast.
2753 Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
2754 CastFix.str()));
2755 } else {
2756 // Otherwise, add parens around the expression as well as the cast.
2757 CastFix << "(";
2758 Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
2759 CastFix.str()));
2760
2761 SourceLocation After = S.PP.getLocForEndOfToken(E->getLocEnd());
2762 Hints.push_back(FixItHint::CreateInsertion(After, ")"));
2763 }
2764
2765 // We extract the name from the typedef because we don't want to show
2766 // the underlying type in the diagnostic.
2767 const TypedefType *UserTy = cast<TypedefType>(E->getType());
2768 StringRef Name = UserTy->getDecl()->getName();
2769
2770 // Finally, emit the diagnostic.
2771 EmitFormatDiagnostic(S.PDiag(diag::warn_format_argument_needs_cast)
2772 << Name << IntendedTy
2773 << E->getSourceRange(),
2774 E->getLocStart(), /*IsStringLocation=*/false,
2775 SpecRange, Hints);
2776 } else {
2777 EmitFormatDiagnostic(
2778 S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2779 << AT.getRepresentativeTypeName(S.Context) << IntendedTy
2780 << E->getSourceRange(),
2781 E->getLocStart(),
2782 /*IsStringLocation*/false,
2783 SpecRange,
2784 FixItHint::CreateReplacement(SpecRange, os.str()));
2785 }
2786 } else {
2787 const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
2788 SpecifierLen);
2789 // Since the warning for passing non-POD types to variadic functions
2790 // was deferred until now, we emit a warning for non-POD
2791 // arguments here.
2792 if (S.isValidVarArgType(E->getType()) == Sema::VAK_Invalid) {
2793 unsigned DiagKind;
2794 if (E->getType()->isObjCObjectType())
2795 DiagKind = diag::err_cannot_pass_objc_interface_to_vararg_format;
2796 else
2797 DiagKind = diag::warn_non_pod_vararg_with_format_string;
2798
2799 EmitFormatDiagnostic(
2800 S.PDiag(DiagKind)
2801 << S.getLangOpts().CPlusPlus0x
2802 << E->getType()
2803 << CallType
2804 << AT.getRepresentativeTypeName(S.Context)
2805 << CSR
2806 << E->getSourceRange(),
2807 E->getLocStart(), /*IsStringLocation*/false, CSR);
2808
2809 checkForCStrMembers(AT, E, CSR);
2810 } else
2811 EmitFormatDiagnostic(
2812 S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2813 << AT.getRepresentativeTypeName(S.Context) << E->getType()
2814 << CSR
2815 << E->getSourceRange(),
2816 E->getLocStart(), /*IsStringLocation*/false, CSR);
2817 }
2818
2819 return true;
2820 }
2821
2822 //===--- CHECK: Scanf format string checking ------------------------------===//
2823
2824 namespace {
2825 class CheckScanfHandler : public CheckFormatHandler {
2826 public:
CheckScanfHandler(Sema & s,const StringLiteral * fexpr,const Expr * origFormatExpr,unsigned firstDataArg,unsigned numDataArgs,const char * beg,bool hasVAListArg,Expr ** Args,unsigned NumArgs,unsigned formatIdx,bool inFunctionCall,Sema::VariadicCallType CallType)2827 CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
2828 const Expr *origFormatExpr, unsigned firstDataArg,
2829 unsigned numDataArgs, const char *beg, bool hasVAListArg,
2830 Expr **Args, unsigned NumArgs,
2831 unsigned formatIdx, bool inFunctionCall,
2832 Sema::VariadicCallType CallType)
2833 : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
2834 numDataArgs, beg, hasVAListArg,
2835 Args, NumArgs, formatIdx, inFunctionCall, CallType)
2836 {}
2837
2838 bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
2839 const char *startSpecifier,
2840 unsigned specifierLen);
2841
2842 bool HandleInvalidScanfConversionSpecifier(
2843 const analyze_scanf::ScanfSpecifier &FS,
2844 const char *startSpecifier,
2845 unsigned specifierLen);
2846
2847 void HandleIncompleteScanList(const char *start, const char *end);
2848 };
2849 }
2850
HandleIncompleteScanList(const char * start,const char * end)2851 void CheckScanfHandler::HandleIncompleteScanList(const char *start,
2852 const char *end) {
2853 EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
2854 getLocationOfByte(end), /*IsStringLocation*/true,
2855 getSpecifierRange(start, end - start));
2856 }
2857
HandleInvalidScanfConversionSpecifier(const analyze_scanf::ScanfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)2858 bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
2859 const analyze_scanf::ScanfSpecifier &FS,
2860 const char *startSpecifier,
2861 unsigned specifierLen) {
2862
2863 const analyze_scanf::ScanfConversionSpecifier &CS =
2864 FS.getConversionSpecifier();
2865
2866 return HandleInvalidConversionSpecifier(FS.getArgIndex(),
2867 getLocationOfByte(CS.getStart()),
2868 startSpecifier, specifierLen,
2869 CS.getStart(), CS.getLength());
2870 }
2871
HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)2872 bool CheckScanfHandler::HandleScanfSpecifier(
2873 const analyze_scanf::ScanfSpecifier &FS,
2874 const char *startSpecifier,
2875 unsigned specifierLen) {
2876
2877 using namespace analyze_scanf;
2878 using namespace analyze_format_string;
2879
2880 const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
2881
2882 // Handle case where '%' and '*' don't consume an argument. These shouldn't
2883 // be used to decide if we are using positional arguments consistently.
2884 if (FS.consumesDataArgument()) {
2885 if (atFirstArg) {
2886 atFirstArg = false;
2887 usesPositionalArgs = FS.usesPositionalArg();
2888 }
2889 else if (usesPositionalArgs != FS.usesPositionalArg()) {
2890 HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
2891 startSpecifier, specifierLen);
2892 return false;
2893 }
2894 }
2895
2896 // Check if the field with is non-zero.
2897 const OptionalAmount &Amt = FS.getFieldWidth();
2898 if (Amt.getHowSpecified() == OptionalAmount::Constant) {
2899 if (Amt.getConstantAmount() == 0) {
2900 const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
2901 Amt.getConstantLength());
2902 EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
2903 getLocationOfByte(Amt.getStart()),
2904 /*IsStringLocation*/true, R,
2905 FixItHint::CreateRemoval(R));
2906 }
2907 }
2908
2909 if (!FS.consumesDataArgument()) {
2910 // FIXME: Technically specifying a precision or field width here
2911 // makes no sense. Worth issuing a warning at some point.
2912 return true;
2913 }
2914
2915 // Consume the argument.
2916 unsigned argIndex = FS.getArgIndex();
2917 if (argIndex < NumDataArgs) {
2918 // The check to see if the argIndex is valid will come later.
2919 // We set the bit here because we may exit early from this
2920 // function if we encounter some other error.
2921 CoveredArgs.set(argIndex);
2922 }
2923
2924 // Check the length modifier is valid with the given conversion specifier.
2925 if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
2926 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
2927 diag::warn_format_nonsensical_length);
2928 else if (!FS.hasStandardLengthModifier())
2929 HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
2930 else if (!FS.hasStandardLengthConversionCombination())
2931 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
2932 diag::warn_format_non_standard_conversion_spec);
2933
2934 if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
2935 HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
2936
2937 // The remaining checks depend on the data arguments.
2938 if (HasVAListArg)
2939 return true;
2940
2941 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
2942 return false;
2943
2944 // Check that the argument type matches the format specifier.
2945 const Expr *Ex = getDataArg(argIndex);
2946 if (!Ex)
2947 return true;
2948
2949 const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
2950 if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType())) {
2951 ScanfSpecifier fixedFS = FS;
2952 bool success = fixedFS.fixType(Ex->getType(), S.getLangOpts(),
2953 S.Context);
2954
2955 if (success) {
2956 // Get the fix string from the fixed format specifier.
2957 SmallString<128> buf;
2958 llvm::raw_svector_ostream os(buf);
2959 fixedFS.toString(os);
2960
2961 EmitFormatDiagnostic(
2962 S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2963 << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
2964 << Ex->getSourceRange(),
2965 Ex->getLocStart(),
2966 /*IsStringLocation*/false,
2967 getSpecifierRange(startSpecifier, specifierLen),
2968 FixItHint::CreateReplacement(
2969 getSpecifierRange(startSpecifier, specifierLen),
2970 os.str()));
2971 } else {
2972 EmitFormatDiagnostic(
2973 S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2974 << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
2975 << Ex->getSourceRange(),
2976 Ex->getLocStart(),
2977 /*IsStringLocation*/false,
2978 getSpecifierRange(startSpecifier, specifierLen));
2979 }
2980 }
2981
2982 return true;
2983 }
2984
CheckFormatString(const StringLiteral * FExpr,const Expr * OrigFormatExpr,Expr ** Args,unsigned NumArgs,bool HasVAListArg,unsigned format_idx,unsigned firstDataArg,FormatStringType Type,bool inFunctionCall,VariadicCallType CallType)2985 void Sema::CheckFormatString(const StringLiteral *FExpr,
2986 const Expr *OrigFormatExpr,
2987 Expr **Args, unsigned NumArgs,
2988 bool HasVAListArg, unsigned format_idx,
2989 unsigned firstDataArg, FormatStringType Type,
2990 bool inFunctionCall, VariadicCallType CallType) {
2991
2992 // CHECK: is the format string a wide literal?
2993 if (!FExpr->isAscii() && !FExpr->isUTF8()) {
2994 CheckFormatHandler::EmitFormatDiagnostic(
2995 *this, inFunctionCall, Args[format_idx],
2996 PDiag(diag::warn_format_string_is_wide_literal), FExpr->getLocStart(),
2997 /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
2998 return;
2999 }
3000
3001 // Str - The format string. NOTE: this is NOT null-terminated!
3002 StringRef StrRef = FExpr->getString();
3003 const char *Str = StrRef.data();
3004 unsigned StrLen = StrRef.size();
3005 const unsigned numDataArgs = NumArgs - firstDataArg;
3006
3007 // CHECK: empty format string?
3008 if (StrLen == 0 && numDataArgs > 0) {
3009 CheckFormatHandler::EmitFormatDiagnostic(
3010 *this, inFunctionCall, Args[format_idx],
3011 PDiag(diag::warn_empty_format_string), FExpr->getLocStart(),
3012 /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
3013 return;
3014 }
3015
3016 if (Type == FST_Printf || Type == FST_NSString) {
3017 CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
3018 numDataArgs, (Type == FST_NSString),
3019 Str, HasVAListArg, Args, NumArgs, format_idx,
3020 inFunctionCall, CallType);
3021
3022 if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
3023 getLangOpts()))
3024 H.DoneProcessing();
3025 } else if (Type == FST_Scanf) {
3026 CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg, numDataArgs,
3027 Str, HasVAListArg, Args, NumArgs, format_idx,
3028 inFunctionCall, CallType);
3029
3030 if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
3031 getLangOpts()))
3032 H.DoneProcessing();
3033 } // TODO: handle other formats
3034 }
3035
3036 //===--- CHECK: Standard memory functions ---------------------------------===//
3037
3038 /// \brief Determine whether the given type is a dynamic class type (e.g.,
3039 /// whether it has a vtable).
isDynamicClassType(QualType T)3040 static bool isDynamicClassType(QualType T) {
3041 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
3042 if (CXXRecordDecl *Definition = Record->getDefinition())
3043 if (Definition->isDynamicClass())
3044 return true;
3045
3046 return false;
3047 }
3048
3049 /// \brief If E is a sizeof expression, returns its argument expression,
3050 /// otherwise returns NULL.
getSizeOfExprArg(const Expr * E)3051 static const Expr *getSizeOfExprArg(const Expr* E) {
3052 if (const UnaryExprOrTypeTraitExpr *SizeOf =
3053 dyn_cast<UnaryExprOrTypeTraitExpr>(E))
3054 if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
3055 return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
3056
3057 return 0;
3058 }
3059
3060 /// \brief If E is a sizeof expression, returns its argument type.
getSizeOfArgType(const Expr * E)3061 static QualType getSizeOfArgType(const Expr* E) {
3062 if (const UnaryExprOrTypeTraitExpr *SizeOf =
3063 dyn_cast<UnaryExprOrTypeTraitExpr>(E))
3064 if (SizeOf->getKind() == clang::UETT_SizeOf)
3065 return SizeOf->getTypeOfArgument();
3066
3067 return QualType();
3068 }
3069
3070 /// \brief Check for dangerous or invalid arguments to memset().
3071 ///
3072 /// This issues warnings on known problematic, dangerous or unspecified
3073 /// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
3074 /// function calls.
3075 ///
3076 /// \param Call The call expression to diagnose.
CheckMemaccessArguments(const CallExpr * Call,unsigned BId,IdentifierInfo * FnName)3077 void Sema::CheckMemaccessArguments(const CallExpr *Call,
3078 unsigned BId,
3079 IdentifierInfo *FnName) {
3080 assert(BId != 0);
3081
3082 // It is possible to have a non-standard definition of memset. Validate
3083 // we have enough arguments, and if not, abort further checking.
3084 unsigned ExpectedNumArgs = (BId == Builtin::BIstrndup ? 2 : 3);
3085 if (Call->getNumArgs() < ExpectedNumArgs)
3086 return;
3087
3088 unsigned LastArg = (BId == Builtin::BImemset ||
3089 BId == Builtin::BIstrndup ? 1 : 2);
3090 unsigned LenArg = (BId == Builtin::BIstrndup ? 1 : 2);
3091 const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
3092
3093 // We have special checking when the length is a sizeof expression.
3094 QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
3095 const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
3096 llvm::FoldingSetNodeID SizeOfArgID;
3097
3098 for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
3099 const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
3100 SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
3101
3102 QualType DestTy = Dest->getType();
3103 if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
3104 QualType PointeeTy = DestPtrTy->getPointeeType();
3105
3106 // Never warn about void type pointers. This can be used to suppress
3107 // false positives.
3108 if (PointeeTy->isVoidType())
3109 continue;
3110
3111 // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
3112 // actually comparing the expressions for equality. Because computing the
3113 // expression IDs can be expensive, we only do this if the diagnostic is
3114 // enabled.
3115 if (SizeOfArg &&
3116 Diags.getDiagnosticLevel(diag::warn_sizeof_pointer_expr_memaccess,
3117 SizeOfArg->getExprLoc())) {
3118 // We only compute IDs for expressions if the warning is enabled, and
3119 // cache the sizeof arg's ID.
3120 if (SizeOfArgID == llvm::FoldingSetNodeID())
3121 SizeOfArg->Profile(SizeOfArgID, Context, true);
3122 llvm::FoldingSetNodeID DestID;
3123 Dest->Profile(DestID, Context, true);
3124 if (DestID == SizeOfArgID) {
3125 // TODO: For strncpy() and friends, this could suggest sizeof(dst)
3126 // over sizeof(src) as well.
3127 unsigned ActionIdx = 0; // Default is to suggest dereferencing.
3128 StringRef ReadableName = FnName->getName();
3129
3130 if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
3131 if (UnaryOp->getOpcode() == UO_AddrOf)
3132 ActionIdx = 1; // If its an address-of operator, just remove it.
3133 if (Context.getTypeSize(PointeeTy) == Context.getCharWidth())
3134 ActionIdx = 2; // If the pointee's size is sizeof(char),
3135 // suggest an explicit length.
3136
3137 // If the function is defined as a builtin macro, do not show macro
3138 // expansion.
3139 SourceLocation SL = SizeOfArg->getExprLoc();
3140 SourceRange DSR = Dest->getSourceRange();
3141 SourceRange SSR = SizeOfArg->getSourceRange();
3142 SourceManager &SM = PP.getSourceManager();
3143
3144 if (SM.isMacroArgExpansion(SL)) {
3145 ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
3146 SL = SM.getSpellingLoc(SL);
3147 DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
3148 SM.getSpellingLoc(DSR.getEnd()));
3149 SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
3150 SM.getSpellingLoc(SSR.getEnd()));
3151 }
3152
3153 DiagRuntimeBehavior(SL, SizeOfArg,
3154 PDiag(diag::warn_sizeof_pointer_expr_memaccess)
3155 << ReadableName
3156 << PointeeTy
3157 << DestTy
3158 << DSR
3159 << SSR);
3160 DiagRuntimeBehavior(SL, SizeOfArg,
3161 PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
3162 << ActionIdx
3163 << SSR);
3164
3165 break;
3166 }
3167 }
3168
3169 // Also check for cases where the sizeof argument is the exact same
3170 // type as the memory argument, and where it points to a user-defined
3171 // record type.
3172 if (SizeOfArgTy != QualType()) {
3173 if (PointeeTy->isRecordType() &&
3174 Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
3175 DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
3176 PDiag(diag::warn_sizeof_pointer_type_memaccess)
3177 << FnName << SizeOfArgTy << ArgIdx
3178 << PointeeTy << Dest->getSourceRange()
3179 << LenExpr->getSourceRange());
3180 break;
3181 }
3182 }
3183
3184 // Always complain about dynamic classes.
3185 if (isDynamicClassType(PointeeTy)) {
3186
3187 unsigned OperationType = 0;
3188 // "overwritten" if we're warning about the destination for any call
3189 // but memcmp; otherwise a verb appropriate to the call.
3190 if (ArgIdx != 0 || BId == Builtin::BImemcmp) {
3191 if (BId == Builtin::BImemcpy)
3192 OperationType = 1;
3193 else if(BId == Builtin::BImemmove)
3194 OperationType = 2;
3195 else if (BId == Builtin::BImemcmp)
3196 OperationType = 3;
3197 }
3198
3199 DiagRuntimeBehavior(
3200 Dest->getExprLoc(), Dest,
3201 PDiag(diag::warn_dyn_class_memaccess)
3202 << (BId == Builtin::BImemcmp ? ArgIdx + 2 : ArgIdx)
3203 << FnName << PointeeTy
3204 << OperationType
3205 << Call->getCallee()->getSourceRange());
3206 } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
3207 BId != Builtin::BImemset)
3208 DiagRuntimeBehavior(
3209 Dest->getExprLoc(), Dest,
3210 PDiag(diag::warn_arc_object_memaccess)
3211 << ArgIdx << FnName << PointeeTy
3212 << Call->getCallee()->getSourceRange());
3213 else
3214 continue;
3215
3216 DiagRuntimeBehavior(
3217 Dest->getExprLoc(), Dest,
3218 PDiag(diag::note_bad_memaccess_silence)
3219 << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
3220 break;
3221 }
3222 }
3223 }
3224
3225 // A little helper routine: ignore addition and subtraction of integer literals.
3226 // This intentionally does not ignore all integer constant expressions because
3227 // we don't want to remove sizeof().
ignoreLiteralAdditions(const Expr * Ex,ASTContext & Ctx)3228 static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
3229 Ex = Ex->IgnoreParenCasts();
3230
3231 for (;;) {
3232 const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
3233 if (!BO || !BO->isAdditiveOp())
3234 break;
3235
3236 const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
3237 const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
3238
3239 if (isa<IntegerLiteral>(RHS))
3240 Ex = LHS;
3241 else if (isa<IntegerLiteral>(LHS))
3242 Ex = RHS;
3243 else
3244 break;
3245 }
3246
3247 return Ex;
3248 }
3249
isConstantSizeArrayWithMoreThanOneElement(QualType Ty,ASTContext & Context)3250 static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
3251 ASTContext &Context) {
3252 // Only handle constant-sized or VLAs, but not flexible members.
3253 if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
3254 // Only issue the FIXIT for arrays of size > 1.
3255 if (CAT->getSize().getSExtValue() <= 1)
3256 return false;
3257 } else if (!Ty->isVariableArrayType()) {
3258 return false;
3259 }
3260 return true;
3261 }
3262
3263 // Warn if the user has made the 'size' argument to strlcpy or strlcat
3264 // be the size of the source, instead of the destination.
CheckStrlcpycatArguments(const CallExpr * Call,IdentifierInfo * FnName)3265 void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
3266 IdentifierInfo *FnName) {
3267
3268 // Don't crash if the user has the wrong number of arguments
3269 if (Call->getNumArgs() != 3)
3270 return;
3271
3272 const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
3273 const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
3274 const Expr *CompareWithSrc = NULL;
3275
3276 // Look for 'strlcpy(dst, x, sizeof(x))'
3277 if (const Expr *Ex = getSizeOfExprArg(SizeArg))
3278 CompareWithSrc = Ex;
3279 else {
3280 // Look for 'strlcpy(dst, x, strlen(x))'
3281 if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
3282 if (SizeCall->isBuiltinCall() == Builtin::BIstrlen
3283 && SizeCall->getNumArgs() == 1)
3284 CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
3285 }
3286 }
3287
3288 if (!CompareWithSrc)
3289 return;
3290
3291 // Determine if the argument to sizeof/strlen is equal to the source
3292 // argument. In principle there's all kinds of things you could do
3293 // here, for instance creating an == expression and evaluating it with
3294 // EvaluateAsBooleanCondition, but this uses a more direct technique:
3295 const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
3296 if (!SrcArgDRE)
3297 return;
3298
3299 const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
3300 if (!CompareWithSrcDRE ||
3301 SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
3302 return;
3303
3304 const Expr *OriginalSizeArg = Call->getArg(2);
3305 Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
3306 << OriginalSizeArg->getSourceRange() << FnName;
3307
3308 // Output a FIXIT hint if the destination is an array (rather than a
3309 // pointer to an array). This could be enhanced to handle some
3310 // pointers if we know the actual size, like if DstArg is 'array+2'
3311 // we could say 'sizeof(array)-2'.
3312 const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
3313 if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
3314 return;
3315
3316 SmallString<128> sizeString;
3317 llvm::raw_svector_ostream OS(sizeString);
3318 OS << "sizeof(";
3319 DstArg->printPretty(OS, 0, getPrintingPolicy());
3320 OS << ")";
3321
3322 Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
3323 << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
3324 OS.str());
3325 }
3326
3327 /// Check if two expressions refer to the same declaration.
referToTheSameDecl(const Expr * E1,const Expr * E2)3328 static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
3329 if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
3330 if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
3331 return D1->getDecl() == D2->getDecl();
3332 return false;
3333 }
3334
getStrlenExprArg(const Expr * E)3335 static const Expr *getStrlenExprArg(const Expr *E) {
3336 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
3337 const FunctionDecl *FD = CE->getDirectCallee();
3338 if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
3339 return 0;
3340 return CE->getArg(0)->IgnoreParenCasts();
3341 }
3342 return 0;
3343 }
3344
3345 // Warn on anti-patterns as the 'size' argument to strncat.
3346 // The correct size argument should look like following:
3347 // strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
CheckStrncatArguments(const CallExpr * CE,IdentifierInfo * FnName)3348 void Sema::CheckStrncatArguments(const CallExpr *CE,
3349 IdentifierInfo *FnName) {
3350 // Don't crash if the user has the wrong number of arguments.
3351 if (CE->getNumArgs() < 3)
3352 return;
3353 const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
3354 const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
3355 const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
3356
3357 // Identify common expressions, which are wrongly used as the size argument
3358 // to strncat and may lead to buffer overflows.
3359 unsigned PatternType = 0;
3360 if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
3361 // - sizeof(dst)
3362 if (referToTheSameDecl(SizeOfArg, DstArg))
3363 PatternType = 1;
3364 // - sizeof(src)
3365 else if (referToTheSameDecl(SizeOfArg, SrcArg))
3366 PatternType = 2;
3367 } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
3368 if (BE->getOpcode() == BO_Sub) {
3369 const Expr *L = BE->getLHS()->IgnoreParenCasts();
3370 const Expr *R = BE->getRHS()->IgnoreParenCasts();
3371 // - sizeof(dst) - strlen(dst)
3372 if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
3373 referToTheSameDecl(DstArg, getStrlenExprArg(R)))
3374 PatternType = 1;
3375 // - sizeof(src) - (anything)
3376 else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
3377 PatternType = 2;
3378 }
3379 }
3380
3381 if (PatternType == 0)
3382 return;
3383
3384 // Generate the diagnostic.
3385 SourceLocation SL = LenArg->getLocStart();
3386 SourceRange SR = LenArg->getSourceRange();
3387 SourceManager &SM = PP.getSourceManager();
3388
3389 // If the function is defined as a builtin macro, do not show macro expansion.
3390 if (SM.isMacroArgExpansion(SL)) {
3391 SL = SM.getSpellingLoc(SL);
3392 SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
3393 SM.getSpellingLoc(SR.getEnd()));
3394 }
3395
3396 // Check if the destination is an array (rather than a pointer to an array).
3397 QualType DstTy = DstArg->getType();
3398 bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
3399 Context);
3400 if (!isKnownSizeArray) {
3401 if (PatternType == 1)
3402 Diag(SL, diag::warn_strncat_wrong_size) << SR;
3403 else
3404 Diag(SL, diag::warn_strncat_src_size) << SR;
3405 return;
3406 }
3407
3408 if (PatternType == 1)
3409 Diag(SL, diag::warn_strncat_large_size) << SR;
3410 else
3411 Diag(SL, diag::warn_strncat_src_size) << SR;
3412
3413 SmallString<128> sizeString;
3414 llvm::raw_svector_ostream OS(sizeString);
3415 OS << "sizeof(";
3416 DstArg->printPretty(OS, 0, getPrintingPolicy());
3417 OS << ") - ";
3418 OS << "strlen(";
3419 DstArg->printPretty(OS, 0, getPrintingPolicy());
3420 OS << ") - 1";
3421
3422 Diag(SL, diag::note_strncat_wrong_size)
3423 << FixItHint::CreateReplacement(SR, OS.str());
3424 }
3425
3426 //===--- CHECK: Return Address of Stack Variable --------------------------===//
3427
3428 static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3429 Decl *ParentDecl);
3430 static Expr *EvalAddr(Expr* E, SmallVectorImpl<DeclRefExpr *> &refVars,
3431 Decl *ParentDecl);
3432
3433 /// CheckReturnStackAddr - Check if a return statement returns the address
3434 /// of a stack variable.
3435 void
CheckReturnStackAddr(Expr * RetValExp,QualType lhsType,SourceLocation ReturnLoc)3436 Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
3437 SourceLocation ReturnLoc) {
3438
3439 Expr *stackE = 0;
3440 SmallVector<DeclRefExpr *, 8> refVars;
3441
3442 // Perform checking for returned stack addresses, local blocks,
3443 // label addresses or references to temporaries.
3444 if (lhsType->isPointerType() ||
3445 (!getLangOpts().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
3446 stackE = EvalAddr(RetValExp, refVars, /*ParentDecl=*/0);
3447 } else if (lhsType->isReferenceType()) {
3448 stackE = EvalVal(RetValExp, refVars, /*ParentDecl=*/0);
3449 }
3450
3451 if (stackE == 0)
3452 return; // Nothing suspicious was found.
3453
3454 SourceLocation diagLoc;
3455 SourceRange diagRange;
3456 if (refVars.empty()) {
3457 diagLoc = stackE->getLocStart();
3458 diagRange = stackE->getSourceRange();
3459 } else {
3460 // We followed through a reference variable. 'stackE' contains the
3461 // problematic expression but we will warn at the return statement pointing
3462 // at the reference variable. We will later display the "trail" of
3463 // reference variables using notes.
3464 diagLoc = refVars[0]->getLocStart();
3465 diagRange = refVars[0]->getSourceRange();
3466 }
3467
3468 if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
3469 Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
3470 : diag::warn_ret_stack_addr)
3471 << DR->getDecl()->getDeclName() << diagRange;
3472 } else if (isa<BlockExpr>(stackE)) { // local block.
3473 Diag(diagLoc, diag::err_ret_local_block) << diagRange;
3474 } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
3475 Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
3476 } else { // local temporary.
3477 Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
3478 : diag::warn_ret_local_temp_addr)
3479 << diagRange;
3480 }
3481
3482 // Display the "trail" of reference variables that we followed until we
3483 // found the problematic expression using notes.
3484 for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
3485 VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
3486 // If this var binds to another reference var, show the range of the next
3487 // var, otherwise the var binds to the problematic expression, in which case
3488 // show the range of the expression.
3489 SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
3490 : stackE->getSourceRange();
3491 Diag(VD->getLocation(), diag::note_ref_var_local_bind)
3492 << VD->getDeclName() << range;
3493 }
3494 }
3495
3496 /// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
3497 /// check if the expression in a return statement evaluates to an address
3498 /// to a location on the stack, a local block, an address of a label, or a
3499 /// reference to local temporary. The recursion is used to traverse the
3500 /// AST of the return expression, with recursion backtracking when we
3501 /// encounter a subexpression that (1) clearly does not lead to one of the
3502 /// above problematic expressions (2) is something we cannot determine leads to
3503 /// a problematic expression based on such local checking.
3504 ///
3505 /// Both EvalAddr and EvalVal follow through reference variables to evaluate
3506 /// the expression that they point to. Such variables are added to the
3507 /// 'refVars' vector so that we know what the reference variable "trail" was.
3508 ///
3509 /// EvalAddr processes expressions that are pointers that are used as
3510 /// references (and not L-values). EvalVal handles all other values.
3511 /// At the base case of the recursion is a check for the above problematic
3512 /// expressions.
3513 ///
3514 /// This implementation handles:
3515 ///
3516 /// * pointer-to-pointer casts
3517 /// * implicit conversions from array references to pointers
3518 /// * taking the address of fields
3519 /// * arbitrary interplay between "&" and "*" operators
3520 /// * pointer arithmetic from an address of a stack variable
3521 /// * taking the address of an array element where the array is on the stack
EvalAddr(Expr * E,SmallVectorImpl<DeclRefExpr * > & refVars,Decl * ParentDecl)3522 static Expr *EvalAddr(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3523 Decl *ParentDecl) {
3524 if (E->isTypeDependent())
3525 return NULL;
3526
3527 // We should only be called for evaluating pointer expressions.
3528 assert((E->getType()->isAnyPointerType() ||
3529 E->getType()->isBlockPointerType() ||
3530 E->getType()->isObjCQualifiedIdType()) &&
3531 "EvalAddr only works on pointers");
3532
3533 E = E->IgnoreParens();
3534
3535 // Our "symbolic interpreter" is just a dispatch off the currently
3536 // viewed AST node. We then recursively traverse the AST by calling
3537 // EvalAddr and EvalVal appropriately.
3538 switch (E->getStmtClass()) {
3539 case Stmt::DeclRefExprClass: {
3540 DeclRefExpr *DR = cast<DeclRefExpr>(E);
3541
3542 if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
3543 // If this is a reference variable, follow through to the expression that
3544 // it points to.
3545 if (V->hasLocalStorage() &&
3546 V->getType()->isReferenceType() && V->hasInit()) {
3547 // Add the reference variable to the "trail".
3548 refVars.push_back(DR);
3549 return EvalAddr(V->getInit(), refVars, ParentDecl);
3550 }
3551
3552 return NULL;
3553 }
3554
3555 case Stmt::UnaryOperatorClass: {
3556 // The only unary operator that make sense to handle here
3557 // is AddrOf. All others don't make sense as pointers.
3558 UnaryOperator *U = cast<UnaryOperator>(E);
3559
3560 if (U->getOpcode() == UO_AddrOf)
3561 return EvalVal(U->getSubExpr(), refVars, ParentDecl);
3562 else
3563 return NULL;
3564 }
3565
3566 case Stmt::BinaryOperatorClass: {
3567 // Handle pointer arithmetic. All other binary operators are not valid
3568 // in this context.
3569 BinaryOperator *B = cast<BinaryOperator>(E);
3570 BinaryOperatorKind op = B->getOpcode();
3571
3572 if (op != BO_Add && op != BO_Sub)
3573 return NULL;
3574
3575 Expr *Base = B->getLHS();
3576
3577 // Determine which argument is the real pointer base. It could be
3578 // the RHS argument instead of the LHS.
3579 if (!Base->getType()->isPointerType()) Base = B->getRHS();
3580
3581 assert (Base->getType()->isPointerType());
3582 return EvalAddr(Base, refVars, ParentDecl);
3583 }
3584
3585 // For conditional operators we need to see if either the LHS or RHS are
3586 // valid DeclRefExpr*s. If one of them is valid, we return it.
3587 case Stmt::ConditionalOperatorClass: {
3588 ConditionalOperator *C = cast<ConditionalOperator>(E);
3589
3590 // Handle the GNU extension for missing LHS.
3591 if (Expr *lhsExpr = C->getLHS()) {
3592 // In C++, we can have a throw-expression, which has 'void' type.
3593 if (!lhsExpr->getType()->isVoidType())
3594 if (Expr* LHS = EvalAddr(lhsExpr, refVars, ParentDecl))
3595 return LHS;
3596 }
3597
3598 // In C++, we can have a throw-expression, which has 'void' type.
3599 if (C->getRHS()->getType()->isVoidType())
3600 return NULL;
3601
3602 return EvalAddr(C->getRHS(), refVars, ParentDecl);
3603 }
3604
3605 case Stmt::BlockExprClass:
3606 if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
3607 return E; // local block.
3608 return NULL;
3609
3610 case Stmt::AddrLabelExprClass:
3611 return E; // address of label.
3612
3613 case Stmt::ExprWithCleanupsClass:
3614 return EvalAddr(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,
3615 ParentDecl);
3616
3617 // For casts, we need to handle conversions from arrays to
3618 // pointer values, and pointer-to-pointer conversions.
3619 case Stmt::ImplicitCastExprClass:
3620 case Stmt::CStyleCastExprClass:
3621 case Stmt::CXXFunctionalCastExprClass:
3622 case Stmt::ObjCBridgedCastExprClass:
3623 case Stmt::CXXStaticCastExprClass:
3624 case Stmt::CXXDynamicCastExprClass:
3625 case Stmt::CXXConstCastExprClass:
3626 case Stmt::CXXReinterpretCastExprClass: {
3627 Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
3628 switch (cast<CastExpr>(E)->getCastKind()) {
3629 case CK_BitCast:
3630 case CK_LValueToRValue:
3631 case CK_NoOp:
3632 case CK_BaseToDerived:
3633 case CK_DerivedToBase:
3634 case CK_UncheckedDerivedToBase:
3635 case CK_Dynamic:
3636 case CK_CPointerToObjCPointerCast:
3637 case CK_BlockPointerToObjCPointerCast:
3638 case CK_AnyPointerToBlockPointerCast:
3639 return EvalAddr(SubExpr, refVars, ParentDecl);
3640
3641 case CK_ArrayToPointerDecay:
3642 return EvalVal(SubExpr, refVars, ParentDecl);
3643
3644 default:
3645 return 0;
3646 }
3647 }
3648
3649 case Stmt::MaterializeTemporaryExprClass:
3650 if (Expr *Result = EvalAddr(
3651 cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
3652 refVars, ParentDecl))
3653 return Result;
3654
3655 return E;
3656
3657 // Everything else: we simply don't reason about them.
3658 default:
3659 return NULL;
3660 }
3661 }
3662
3663
3664 /// EvalVal - This function is complements EvalAddr in the mutual recursion.
3665 /// See the comments for EvalAddr for more details.
EvalVal(Expr * E,SmallVectorImpl<DeclRefExpr * > & refVars,Decl * ParentDecl)3666 static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3667 Decl *ParentDecl) {
3668 do {
3669 // We should only be called for evaluating non-pointer expressions, or
3670 // expressions with a pointer type that are not used as references but instead
3671 // are l-values (e.g., DeclRefExpr with a pointer type).
3672
3673 // Our "symbolic interpreter" is just a dispatch off the currently
3674 // viewed AST node. We then recursively traverse the AST by calling
3675 // EvalAddr and EvalVal appropriately.
3676
3677 E = E->IgnoreParens();
3678 switch (E->getStmtClass()) {
3679 case Stmt::ImplicitCastExprClass: {
3680 ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
3681 if (IE->getValueKind() == VK_LValue) {
3682 E = IE->getSubExpr();
3683 continue;
3684 }
3685 return NULL;
3686 }
3687
3688 case Stmt::ExprWithCleanupsClass:
3689 return EvalVal(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,ParentDecl);
3690
3691 case Stmt::DeclRefExprClass: {
3692 // When we hit a DeclRefExpr we are looking at code that refers to a
3693 // variable's name. If it's not a reference variable we check if it has
3694 // local storage within the function, and if so, return the expression.
3695 DeclRefExpr *DR = cast<DeclRefExpr>(E);
3696
3697 if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl())) {
3698 // Check if it refers to itself, e.g. "int& i = i;".
3699 if (V == ParentDecl)
3700 return DR;
3701
3702 if (V->hasLocalStorage()) {
3703 if (!V->getType()->isReferenceType())
3704 return DR;
3705
3706 // Reference variable, follow through to the expression that
3707 // it points to.
3708 if (V->hasInit()) {
3709 // Add the reference variable to the "trail".
3710 refVars.push_back(DR);
3711 return EvalVal(V->getInit(), refVars, V);
3712 }
3713 }
3714 }
3715
3716 return NULL;
3717 }
3718
3719 case Stmt::UnaryOperatorClass: {
3720 // The only unary operator that make sense to handle here
3721 // is Deref. All others don't resolve to a "name." This includes
3722 // handling all sorts of rvalues passed to a unary operator.
3723 UnaryOperator *U = cast<UnaryOperator>(E);
3724
3725 if (U->getOpcode() == UO_Deref)
3726 return EvalAddr(U->getSubExpr(), refVars, ParentDecl);
3727
3728 return NULL;
3729 }
3730
3731 case Stmt::ArraySubscriptExprClass: {
3732 // Array subscripts are potential references to data on the stack. We
3733 // retrieve the DeclRefExpr* for the array variable if it indeed
3734 // has local storage.
3735 return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars,ParentDecl);
3736 }
3737
3738 case Stmt::ConditionalOperatorClass: {
3739 // For conditional operators we need to see if either the LHS or RHS are
3740 // non-NULL Expr's. If one is non-NULL, we return it.
3741 ConditionalOperator *C = cast<ConditionalOperator>(E);
3742
3743 // Handle the GNU extension for missing LHS.
3744 if (Expr *lhsExpr = C->getLHS())
3745 if (Expr *LHS = EvalVal(lhsExpr, refVars, ParentDecl))
3746 return LHS;
3747
3748 return EvalVal(C->getRHS(), refVars, ParentDecl);
3749 }
3750
3751 // Accesses to members are potential references to data on the stack.
3752 case Stmt::MemberExprClass: {
3753 MemberExpr *M = cast<MemberExpr>(E);
3754
3755 // Check for indirect access. We only want direct field accesses.
3756 if (M->isArrow())
3757 return NULL;
3758
3759 // Check whether the member type is itself a reference, in which case
3760 // we're not going to refer to the member, but to what the member refers to.
3761 if (M->getMemberDecl()->getType()->isReferenceType())
3762 return NULL;
3763
3764 return EvalVal(M->getBase(), refVars, ParentDecl);
3765 }
3766
3767 case Stmt::MaterializeTemporaryExprClass:
3768 if (Expr *Result = EvalVal(
3769 cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
3770 refVars, ParentDecl))
3771 return Result;
3772
3773 return E;
3774
3775 default:
3776 // Check that we don't return or take the address of a reference to a
3777 // temporary. This is only useful in C++.
3778 if (!E->isTypeDependent() && E->isRValue())
3779 return E;
3780
3781 // Everything else: we simply don't reason about them.
3782 return NULL;
3783 }
3784 } while (true);
3785 }
3786
3787 //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
3788
3789 /// Check for comparisons of floating point operands using != and ==.
3790 /// Issue a warning if these are no self-comparisons, as they are not likely
3791 /// to do what the programmer intended.
CheckFloatComparison(SourceLocation Loc,Expr * LHS,Expr * RHS)3792 void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
3793 Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
3794 Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
3795
3796 // Special case: check for x == x (which is OK).
3797 // Do not emit warnings for such cases.
3798 if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
3799 if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
3800 if (DRL->getDecl() == DRR->getDecl())
3801 return;
3802
3803
3804 // Special case: check for comparisons against literals that can be exactly
3805 // represented by APFloat. In such cases, do not emit a warning. This
3806 // is a heuristic: often comparison against such literals are used to
3807 // detect if a value in a variable has not changed. This clearly can
3808 // lead to false negatives.
3809 if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
3810 if (FLL->isExact())
3811 return;
3812 } else
3813 if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
3814 if (FLR->isExact())
3815 return;
3816
3817 // Check for comparisons with builtin types.
3818 if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
3819 if (CL->isBuiltinCall())
3820 return;
3821
3822 if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
3823 if (CR->isBuiltinCall())
3824 return;
3825
3826 // Emit the diagnostic.
3827 Diag(Loc, diag::warn_floatingpoint_eq)
3828 << LHS->getSourceRange() << RHS->getSourceRange();
3829 }
3830
3831 //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
3832 //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
3833
3834 namespace {
3835
3836 /// Structure recording the 'active' range of an integer-valued
3837 /// expression.
3838 struct IntRange {
3839 /// The number of bits active in the int.
3840 unsigned Width;
3841
3842 /// True if the int is known not to have negative values.
3843 bool NonNegative;
3844
IntRange__anon32971bd90511::IntRange3845 IntRange(unsigned Width, bool NonNegative)
3846 : Width(Width), NonNegative(NonNegative)
3847 {}
3848
3849 /// Returns the range of the bool type.
forBoolType__anon32971bd90511::IntRange3850 static IntRange forBoolType() {
3851 return IntRange(1, true);
3852 }
3853
3854 /// Returns the range of an opaque value of the given integral type.
forValueOfType__anon32971bd90511::IntRange3855 static IntRange forValueOfType(ASTContext &C, QualType T) {
3856 return forValueOfCanonicalType(C,
3857 T->getCanonicalTypeInternal().getTypePtr());
3858 }
3859
3860 /// Returns the range of an opaque value of a canonical integral type.
forValueOfCanonicalType__anon32971bd90511::IntRange3861 static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
3862 assert(T->isCanonicalUnqualified());
3863
3864 if (const VectorType *VT = dyn_cast<VectorType>(T))
3865 T = VT->getElementType().getTypePtr();
3866 if (const ComplexType *CT = dyn_cast<ComplexType>(T))
3867 T = CT->getElementType().getTypePtr();
3868
3869 // For enum types, use the known bit width of the enumerators.
3870 if (const EnumType *ET = dyn_cast<EnumType>(T)) {
3871 EnumDecl *Enum = ET->getDecl();
3872 if (!Enum->isCompleteDefinition())
3873 return IntRange(C.getIntWidth(QualType(T, 0)), false);
3874
3875 unsigned NumPositive = Enum->getNumPositiveBits();
3876 unsigned NumNegative = Enum->getNumNegativeBits();
3877
3878 return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
3879 }
3880
3881 const BuiltinType *BT = cast<BuiltinType>(T);
3882 assert(BT->isInteger());
3883
3884 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
3885 }
3886
3887 /// Returns the "target" range of a canonical integral type, i.e.
3888 /// the range of values expressible in the type.
3889 ///
3890 /// This matches forValueOfCanonicalType except that enums have the
3891 /// full range of their type, not the range of their enumerators.
forTargetOfCanonicalType__anon32971bd90511::IntRange3892 static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
3893 assert(T->isCanonicalUnqualified());
3894
3895 if (const VectorType *VT = dyn_cast<VectorType>(T))
3896 T = VT->getElementType().getTypePtr();
3897 if (const ComplexType *CT = dyn_cast<ComplexType>(T))
3898 T = CT->getElementType().getTypePtr();
3899 if (const EnumType *ET = dyn_cast<EnumType>(T))
3900 T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
3901
3902 const BuiltinType *BT = cast<BuiltinType>(T);
3903 assert(BT->isInteger());
3904
3905 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
3906 }
3907
3908 /// Returns the supremum of two ranges: i.e. their conservative merge.
join__anon32971bd90511::IntRange3909 static IntRange join(IntRange L, IntRange R) {
3910 return IntRange(std::max(L.Width, R.Width),
3911 L.NonNegative && R.NonNegative);
3912 }
3913
3914 /// Returns the infinum of two ranges: i.e. their aggressive merge.
meet__anon32971bd90511::IntRange3915 static IntRange meet(IntRange L, IntRange R) {
3916 return IntRange(std::min(L.Width, R.Width),
3917 L.NonNegative || R.NonNegative);
3918 }
3919 };
3920
GetValueRange(ASTContext & C,llvm::APSInt & value,unsigned MaxWidth)3921 static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
3922 unsigned MaxWidth) {
3923 if (value.isSigned() && value.isNegative())
3924 return IntRange(value.getMinSignedBits(), false);
3925
3926 if (value.getBitWidth() > MaxWidth)
3927 value = value.trunc(MaxWidth);
3928
3929 // isNonNegative() just checks the sign bit without considering
3930 // signedness.
3931 return IntRange(value.getActiveBits(), true);
3932 }
3933
GetValueRange(ASTContext & C,APValue & result,QualType Ty,unsigned MaxWidth)3934 static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
3935 unsigned MaxWidth) {
3936 if (result.isInt())
3937 return GetValueRange(C, result.getInt(), MaxWidth);
3938
3939 if (result.isVector()) {
3940 IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
3941 for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
3942 IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
3943 R = IntRange::join(R, El);
3944 }
3945 return R;
3946 }
3947
3948 if (result.isComplexInt()) {
3949 IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
3950 IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
3951 return IntRange::join(R, I);
3952 }
3953
3954 // This can happen with lossless casts to intptr_t of "based" lvalues.
3955 // Assume it might use arbitrary bits.
3956 // FIXME: The only reason we need to pass the type in here is to get
3957 // the sign right on this one case. It would be nice if APValue
3958 // preserved this.
3959 assert(result.isLValue() || result.isAddrLabelDiff());
3960 return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
3961 }
3962
3963 /// Pseudo-evaluate the given integer expression, estimating the
3964 /// range of values it might take.
3965 ///
3966 /// \param MaxWidth - the width to which the value will be truncated
GetExprRange(ASTContext & C,Expr * E,unsigned MaxWidth)3967 static IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
3968 E = E->IgnoreParens();
3969
3970 // Try a full evaluation first.
3971 Expr::EvalResult result;
3972 if (E->EvaluateAsRValue(result, C))
3973 return GetValueRange(C, result.Val, E->getType(), MaxWidth);
3974
3975 // I think we only want to look through implicit casts here; if the
3976 // user has an explicit widening cast, we should treat the value as
3977 // being of the new, wider type.
3978 if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
3979 if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
3980 return GetExprRange(C, CE->getSubExpr(), MaxWidth);
3981
3982 IntRange OutputTypeRange = IntRange::forValueOfType(C, CE->getType());
3983
3984 bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
3985
3986 // Assume that non-integer casts can span the full range of the type.
3987 if (!isIntegerCast)
3988 return OutputTypeRange;
3989
3990 IntRange SubRange
3991 = GetExprRange(C, CE->getSubExpr(),
3992 std::min(MaxWidth, OutputTypeRange.Width));
3993
3994 // Bail out if the subexpr's range is as wide as the cast type.
3995 if (SubRange.Width >= OutputTypeRange.Width)
3996 return OutputTypeRange;
3997
3998 // Otherwise, we take the smaller width, and we're non-negative if
3999 // either the output type or the subexpr is.
4000 return IntRange(SubRange.Width,
4001 SubRange.NonNegative || OutputTypeRange.NonNegative);
4002 }
4003
4004 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
4005 // If we can fold the condition, just take that operand.
4006 bool CondResult;
4007 if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
4008 return GetExprRange(C, CondResult ? CO->getTrueExpr()
4009 : CO->getFalseExpr(),
4010 MaxWidth);
4011
4012 // Otherwise, conservatively merge.
4013 IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
4014 IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
4015 return IntRange::join(L, R);
4016 }
4017
4018 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4019 switch (BO->getOpcode()) {
4020
4021 // Boolean-valued operations are single-bit and positive.
4022 case BO_LAnd:
4023 case BO_LOr:
4024 case BO_LT:
4025 case BO_GT:
4026 case BO_LE:
4027 case BO_GE:
4028 case BO_EQ:
4029 case BO_NE:
4030 return IntRange::forBoolType();
4031
4032 // The type of the assignments is the type of the LHS, so the RHS
4033 // is not necessarily the same type.
4034 case BO_MulAssign:
4035 case BO_DivAssign:
4036 case BO_RemAssign:
4037 case BO_AddAssign:
4038 case BO_SubAssign:
4039 case BO_XorAssign:
4040 case BO_OrAssign:
4041 // TODO: bitfields?
4042 return IntRange::forValueOfType(C, E->getType());
4043
4044 // Simple assignments just pass through the RHS, which will have
4045 // been coerced to the LHS type.
4046 case BO_Assign:
4047 // TODO: bitfields?
4048 return GetExprRange(C, BO->getRHS(), MaxWidth);
4049
4050 // Operations with opaque sources are black-listed.
4051 case BO_PtrMemD:
4052 case BO_PtrMemI:
4053 return IntRange::forValueOfType(C, E->getType());
4054
4055 // Bitwise-and uses the *infinum* of the two source ranges.
4056 case BO_And:
4057 case BO_AndAssign:
4058 return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
4059 GetExprRange(C, BO->getRHS(), MaxWidth));
4060
4061 // Left shift gets black-listed based on a judgement call.
4062 case BO_Shl:
4063 // ...except that we want to treat '1 << (blah)' as logically
4064 // positive. It's an important idiom.
4065 if (IntegerLiteral *I
4066 = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
4067 if (I->getValue() == 1) {
4068 IntRange R = IntRange::forValueOfType(C, E->getType());
4069 return IntRange(R.Width, /*NonNegative*/ true);
4070 }
4071 }
4072 // fallthrough
4073
4074 case BO_ShlAssign:
4075 return IntRange::forValueOfType(C, E->getType());
4076
4077 // Right shift by a constant can narrow its left argument.
4078 case BO_Shr:
4079 case BO_ShrAssign: {
4080 IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
4081
4082 // If the shift amount is a positive constant, drop the width by
4083 // that much.
4084 llvm::APSInt shift;
4085 if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
4086 shift.isNonNegative()) {
4087 unsigned zext = shift.getZExtValue();
4088 if (zext >= L.Width)
4089 L.Width = (L.NonNegative ? 0 : 1);
4090 else
4091 L.Width -= zext;
4092 }
4093
4094 return L;
4095 }
4096
4097 // Comma acts as its right operand.
4098 case BO_Comma:
4099 return GetExprRange(C, BO->getRHS(), MaxWidth);
4100
4101 // Black-list pointer subtractions.
4102 case BO_Sub:
4103 if (BO->getLHS()->getType()->isPointerType())
4104 return IntRange::forValueOfType(C, E->getType());
4105 break;
4106
4107 // The width of a division result is mostly determined by the size
4108 // of the LHS.
4109 case BO_Div: {
4110 // Don't 'pre-truncate' the operands.
4111 unsigned opWidth = C.getIntWidth(E->getType());
4112 IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
4113
4114 // If the divisor is constant, use that.
4115 llvm::APSInt divisor;
4116 if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
4117 unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
4118 if (log2 >= L.Width)
4119 L.Width = (L.NonNegative ? 0 : 1);
4120 else
4121 L.Width = std::min(L.Width - log2, MaxWidth);
4122 return L;
4123 }
4124
4125 // Otherwise, just use the LHS's width.
4126 IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
4127 return IntRange(L.Width, L.NonNegative && R.NonNegative);
4128 }
4129
4130 // The result of a remainder can't be larger than the result of
4131 // either side.
4132 case BO_Rem: {
4133 // Don't 'pre-truncate' the operands.
4134 unsigned opWidth = C.getIntWidth(E->getType());
4135 IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
4136 IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
4137
4138 IntRange meet = IntRange::meet(L, R);
4139 meet.Width = std::min(meet.Width, MaxWidth);
4140 return meet;
4141 }
4142
4143 // The default behavior is okay for these.
4144 case BO_Mul:
4145 case BO_Add:
4146 case BO_Xor:
4147 case BO_Or:
4148 break;
4149 }
4150
4151 // The default case is to treat the operation as if it were closed
4152 // on the narrowest type that encompasses both operands.
4153 IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
4154 IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
4155 return IntRange::join(L, R);
4156 }
4157
4158 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
4159 switch (UO->getOpcode()) {
4160 // Boolean-valued operations are white-listed.
4161 case UO_LNot:
4162 return IntRange::forBoolType();
4163
4164 // Operations with opaque sources are black-listed.
4165 case UO_Deref:
4166 case UO_AddrOf: // should be impossible
4167 return IntRange::forValueOfType(C, E->getType());
4168
4169 default:
4170 return GetExprRange(C, UO->getSubExpr(), MaxWidth);
4171 }
4172 }
4173
4174 if (dyn_cast<OffsetOfExpr>(E)) {
4175 IntRange::forValueOfType(C, E->getType());
4176 }
4177
4178 if (FieldDecl *BitField = E->getBitField())
4179 return IntRange(BitField->getBitWidthValue(C),
4180 BitField->getType()->isUnsignedIntegerOrEnumerationType());
4181
4182 return IntRange::forValueOfType(C, E->getType());
4183 }
4184
GetExprRange(ASTContext & C,Expr * E)4185 static IntRange GetExprRange(ASTContext &C, Expr *E) {
4186 return GetExprRange(C, E, C.getIntWidth(E->getType()));
4187 }
4188
4189 /// Checks whether the given value, which currently has the given
4190 /// source semantics, has the same value when coerced through the
4191 /// target semantics.
IsSameFloatAfterCast(const llvm::APFloat & value,const llvm::fltSemantics & Src,const llvm::fltSemantics & Tgt)4192 static bool IsSameFloatAfterCast(const llvm::APFloat &value,
4193 const llvm::fltSemantics &Src,
4194 const llvm::fltSemantics &Tgt) {
4195 llvm::APFloat truncated = value;
4196
4197 bool ignored;
4198 truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
4199 truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
4200
4201 return truncated.bitwiseIsEqual(value);
4202 }
4203
4204 /// Checks whether the given value, which currently has the given
4205 /// source semantics, has the same value when coerced through the
4206 /// target semantics.
4207 ///
4208 /// The value might be a vector of floats (or a complex number).
IsSameFloatAfterCast(const APValue & value,const llvm::fltSemantics & Src,const llvm::fltSemantics & Tgt)4209 static bool IsSameFloatAfterCast(const APValue &value,
4210 const llvm::fltSemantics &Src,
4211 const llvm::fltSemantics &Tgt) {
4212 if (value.isFloat())
4213 return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
4214
4215 if (value.isVector()) {
4216 for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
4217 if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
4218 return false;
4219 return true;
4220 }
4221
4222 assert(value.isComplexFloat());
4223 return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
4224 IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
4225 }
4226
4227 static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
4228
IsZero(Sema & S,Expr * E)4229 static bool IsZero(Sema &S, Expr *E) {
4230 // Suppress cases where we are comparing against an enum constant.
4231 if (const DeclRefExpr *DR =
4232 dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
4233 if (isa<EnumConstantDecl>(DR->getDecl()))
4234 return false;
4235
4236 // Suppress cases where the '0' value is expanded from a macro.
4237 if (E->getLocStart().isMacroID())
4238 return false;
4239
4240 llvm::APSInt Value;
4241 return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
4242 }
4243
HasEnumType(Expr * E)4244 static bool HasEnumType(Expr *E) {
4245 // Strip off implicit integral promotions.
4246 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
4247 if (ICE->getCastKind() != CK_IntegralCast &&
4248 ICE->getCastKind() != CK_NoOp)
4249 break;
4250 E = ICE->getSubExpr();
4251 }
4252
4253 return E->getType()->isEnumeralType();
4254 }
4255
CheckTrivialUnsignedComparison(Sema & S,BinaryOperator * E)4256 static void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
4257 BinaryOperatorKind op = E->getOpcode();
4258 if (E->isValueDependent())
4259 return;
4260
4261 if (op == BO_LT && IsZero(S, E->getRHS())) {
4262 S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
4263 << "< 0" << "false" << HasEnumType(E->getLHS())
4264 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4265 } else if (op == BO_GE && IsZero(S, E->getRHS())) {
4266 S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
4267 << ">= 0" << "true" << HasEnumType(E->getLHS())
4268 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4269 } else if (op == BO_GT && IsZero(S, E->getLHS())) {
4270 S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
4271 << "0 >" << "false" << HasEnumType(E->getRHS())
4272 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4273 } else if (op == BO_LE && IsZero(S, E->getLHS())) {
4274 S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
4275 << "0 <=" << "true" << HasEnumType(E->getRHS())
4276 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4277 }
4278 }
4279
4280 /// Analyze the operands of the given comparison. Implements the
4281 /// fallback case from AnalyzeComparison.
AnalyzeImpConvsInComparison(Sema & S,BinaryOperator * E)4282 static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
4283 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
4284 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
4285 }
4286
4287 /// \brief Implements -Wsign-compare.
4288 ///
4289 /// \param E the binary operator to check for warnings
AnalyzeComparison(Sema & S,BinaryOperator * E)4290 static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
4291 // The type the comparison is being performed in.
4292 QualType T = E->getLHS()->getType();
4293 assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
4294 && "comparison with mismatched types");
4295
4296 // We don't do anything special if this isn't an unsigned integral
4297 // comparison: we're only interested in integral comparisons, and
4298 // signed comparisons only happen in cases we don't care to warn about.
4299 //
4300 // We also don't care about value-dependent expressions or expressions
4301 // whose result is a constant.
4302 if (!T->hasUnsignedIntegerRepresentation()
4303 || E->isValueDependent() || E->isIntegerConstantExpr(S.Context))
4304 return AnalyzeImpConvsInComparison(S, E);
4305
4306 Expr *LHS = E->getLHS()->IgnoreParenImpCasts();
4307 Expr *RHS = E->getRHS()->IgnoreParenImpCasts();
4308
4309 // Check to see if one of the (unmodified) operands is of different
4310 // signedness.
4311 Expr *signedOperand, *unsignedOperand;
4312 if (LHS->getType()->hasSignedIntegerRepresentation()) {
4313 assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
4314 "unsigned comparison between two signed integer expressions?");
4315 signedOperand = LHS;
4316 unsignedOperand = RHS;
4317 } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
4318 signedOperand = RHS;
4319 unsignedOperand = LHS;
4320 } else {
4321 CheckTrivialUnsignedComparison(S, E);
4322 return AnalyzeImpConvsInComparison(S, E);
4323 }
4324
4325 // Otherwise, calculate the effective range of the signed operand.
4326 IntRange signedRange = GetExprRange(S.Context, signedOperand);
4327
4328 // Go ahead and analyze implicit conversions in the operands. Note
4329 // that we skip the implicit conversions on both sides.
4330 AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
4331 AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
4332
4333 // If the signed range is non-negative, -Wsign-compare won't fire,
4334 // but we should still check for comparisons which are always true
4335 // or false.
4336 if (signedRange.NonNegative)
4337 return CheckTrivialUnsignedComparison(S, E);
4338
4339 // For (in)equality comparisons, if the unsigned operand is a
4340 // constant which cannot collide with a overflowed signed operand,
4341 // then reinterpreting the signed operand as unsigned will not
4342 // change the result of the comparison.
4343 if (E->isEqualityOp()) {
4344 unsigned comparisonWidth = S.Context.getIntWidth(T);
4345 IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
4346
4347 // We should never be unable to prove that the unsigned operand is
4348 // non-negative.
4349 assert(unsignedRange.NonNegative && "unsigned range includes negative?");
4350
4351 if (unsignedRange.Width < comparisonWidth)
4352 return;
4353 }
4354
4355 S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
4356 S.PDiag(diag::warn_mixed_sign_comparison)
4357 << LHS->getType() << RHS->getType()
4358 << LHS->getSourceRange() << RHS->getSourceRange());
4359 }
4360
4361 /// Analyzes an attempt to assign the given value to a bitfield.
4362 ///
4363 /// Returns true if there was something fishy about the attempt.
AnalyzeBitFieldAssignment(Sema & S,FieldDecl * Bitfield,Expr * Init,SourceLocation InitLoc)4364 static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
4365 SourceLocation InitLoc) {
4366 assert(Bitfield->isBitField());
4367 if (Bitfield->isInvalidDecl())
4368 return false;
4369
4370 // White-list bool bitfields.
4371 if (Bitfield->getType()->isBooleanType())
4372 return false;
4373
4374 // Ignore value- or type-dependent expressions.
4375 if (Bitfield->getBitWidth()->isValueDependent() ||
4376 Bitfield->getBitWidth()->isTypeDependent() ||
4377 Init->isValueDependent() ||
4378 Init->isTypeDependent())
4379 return false;
4380
4381 Expr *OriginalInit = Init->IgnoreParenImpCasts();
4382
4383 llvm::APSInt Value;
4384 if (!OriginalInit->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects))
4385 return false;
4386
4387 unsigned OriginalWidth = Value.getBitWidth();
4388 unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
4389
4390 if (OriginalWidth <= FieldWidth)
4391 return false;
4392
4393 // Compute the value which the bitfield will contain.
4394 llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
4395 TruncatedValue.setIsSigned(Bitfield->getType()->isSignedIntegerType());
4396
4397 // Check whether the stored value is equal to the original value.
4398 TruncatedValue = TruncatedValue.extend(OriginalWidth);
4399 if (llvm::APSInt::isSameValue(Value, TruncatedValue))
4400 return false;
4401
4402 // Special-case bitfields of width 1: booleans are naturally 0/1, and
4403 // therefore don't strictly fit into a signed bitfield of width 1.
4404 if (FieldWidth == 1 && Value == 1)
4405 return false;
4406
4407 std::string PrettyValue = Value.toString(10);
4408 std::string PrettyTrunc = TruncatedValue.toString(10);
4409
4410 S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
4411 << PrettyValue << PrettyTrunc << OriginalInit->getType()
4412 << Init->getSourceRange();
4413
4414 return true;
4415 }
4416
4417 /// Analyze the given simple or compound assignment for warning-worthy
4418 /// operations.
AnalyzeAssignment(Sema & S,BinaryOperator * E)4419 static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
4420 // Just recurse on the LHS.
4421 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
4422
4423 // We want to recurse on the RHS as normal unless we're assigning to
4424 // a bitfield.
4425 if (FieldDecl *Bitfield = E->getLHS()->getBitField()) {
4426 if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
4427 E->getOperatorLoc())) {
4428 // Recurse, ignoring any implicit conversions on the RHS.
4429 return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
4430 E->getOperatorLoc());
4431 }
4432 }
4433
4434 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
4435 }
4436
4437 /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion.
DiagnoseImpCast(Sema & S,Expr * E,QualType SourceType,QualType T,SourceLocation CContext,unsigned diag,bool pruneControlFlow=false)4438 static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
4439 SourceLocation CContext, unsigned diag,
4440 bool pruneControlFlow = false) {
4441 if (pruneControlFlow) {
4442 S.DiagRuntimeBehavior(E->getExprLoc(), E,
4443 S.PDiag(diag)
4444 << SourceType << T << E->getSourceRange()
4445 << SourceRange(CContext));
4446 return;
4447 }
4448 S.Diag(E->getExprLoc(), diag)
4449 << SourceType << T << E->getSourceRange() << SourceRange(CContext);
4450 }
4451
4452 /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion.
DiagnoseImpCast(Sema & S,Expr * E,QualType T,SourceLocation CContext,unsigned diag,bool pruneControlFlow=false)4453 static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
4454 SourceLocation CContext, unsigned diag,
4455 bool pruneControlFlow = false) {
4456 DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
4457 }
4458
4459 /// Diagnose an implicit cast from a literal expression. Does not warn when the
4460 /// cast wouldn't lose information.
DiagnoseFloatingLiteralImpCast(Sema & S,FloatingLiteral * FL,QualType T,SourceLocation CContext)4461 void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
4462 SourceLocation CContext) {
4463 // Try to convert the literal exactly to an integer. If we can, don't warn.
4464 bool isExact = false;
4465 const llvm::APFloat &Value = FL->getValue();
4466 llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
4467 T->hasUnsignedIntegerRepresentation());
4468 if (Value.convertToInteger(IntegerValue,
4469 llvm::APFloat::rmTowardZero, &isExact)
4470 == llvm::APFloat::opOK && isExact)
4471 return;
4472
4473 SmallString<16> PrettySourceValue;
4474 Value.toString(PrettySourceValue);
4475 SmallString<16> PrettyTargetValue;
4476 if (T->isSpecificBuiltinType(BuiltinType::Bool))
4477 PrettyTargetValue = IntegerValue == 0 ? "false" : "true";
4478 else
4479 IntegerValue.toString(PrettyTargetValue);
4480
4481 S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
4482 << FL->getType() << T.getUnqualifiedType() << PrettySourceValue
4483 << PrettyTargetValue << FL->getSourceRange() << SourceRange(CContext);
4484 }
4485
PrettyPrintInRange(const llvm::APSInt & Value,IntRange Range)4486 std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
4487 if (!Range.Width) return "0";
4488
4489 llvm::APSInt ValueInRange = Value;
4490 ValueInRange.setIsSigned(!Range.NonNegative);
4491 ValueInRange = ValueInRange.trunc(Range.Width);
4492 return ValueInRange.toString(10);
4493 }
4494
IsImplicitBoolFloatConversion(Sema & S,Expr * Ex,bool ToBool)4495 static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
4496 if (!isa<ImplicitCastExpr>(Ex))
4497 return false;
4498
4499 Expr *InnerE = Ex->IgnoreParenImpCasts();
4500 const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
4501 const Type *Source =
4502 S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
4503 if (Target->isDependentType())
4504 return false;
4505
4506 const BuiltinType *FloatCandidateBT =
4507 dyn_cast<BuiltinType>(ToBool ? Source : Target);
4508 const Type *BoolCandidateType = ToBool ? Target : Source;
4509
4510 return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
4511 FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
4512 }
4513
CheckImplicitArgumentConversions(Sema & S,CallExpr * TheCall,SourceLocation CC)4514 void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
4515 SourceLocation CC) {
4516 unsigned NumArgs = TheCall->getNumArgs();
4517 for (unsigned i = 0; i < NumArgs; ++i) {
4518 Expr *CurrA = TheCall->getArg(i);
4519 if (!IsImplicitBoolFloatConversion(S, CurrA, true))
4520 continue;
4521
4522 bool IsSwapped = ((i > 0) &&
4523 IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
4524 IsSwapped |= ((i < (NumArgs - 1)) &&
4525 IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
4526 if (IsSwapped) {
4527 // Warn on this floating-point to bool conversion.
4528 DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
4529 CurrA->getType(), CC,
4530 diag::warn_impcast_floating_point_to_bool);
4531 }
4532 }
4533 }
4534
CheckImplicitConversion(Sema & S,Expr * E,QualType T,SourceLocation CC,bool * ICContext=0)4535 void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
4536 SourceLocation CC, bool *ICContext = 0) {
4537 if (E->isTypeDependent() || E->isValueDependent()) return;
4538
4539 const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
4540 const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
4541 if (Source == Target) return;
4542 if (Target->isDependentType()) return;
4543
4544 // If the conversion context location is invalid don't complain. We also
4545 // don't want to emit a warning if the issue occurs from the expansion of
4546 // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
4547 // delay this check as long as possible. Once we detect we are in that
4548 // scenario, we just return.
4549 if (CC.isInvalid())
4550 return;
4551
4552 // Diagnose implicit casts to bool.
4553 if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
4554 if (isa<StringLiteral>(E))
4555 // Warn on string literal to bool. Checks for string literals in logical
4556 // expressions, for instances, assert(0 && "error here"), is prevented
4557 // by a check in AnalyzeImplicitConversions().
4558 return DiagnoseImpCast(S, E, T, CC,
4559 diag::warn_impcast_string_literal_to_bool);
4560 if (Source->isFunctionType()) {
4561 // Warn on function to bool. Checks free functions and static member
4562 // functions. Weakly imported functions are excluded from the check,
4563 // since it's common to test their value to check whether the linker
4564 // found a definition for them.
4565 ValueDecl *D = 0;
4566 if (DeclRefExpr* R = dyn_cast<DeclRefExpr>(E)) {
4567 D = R->getDecl();
4568 } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
4569 D = M->getMemberDecl();
4570 }
4571
4572 if (D && !D->isWeak()) {
4573 if (FunctionDecl* F = dyn_cast<FunctionDecl>(D)) {
4574 S.Diag(E->getExprLoc(), diag::warn_impcast_function_to_bool)
4575 << F << E->getSourceRange() << SourceRange(CC);
4576 S.Diag(E->getExprLoc(), diag::note_function_to_bool_silence)
4577 << FixItHint::CreateInsertion(E->getExprLoc(), "&");
4578 QualType ReturnType;
4579 UnresolvedSet<4> NonTemplateOverloads;
4580 S.isExprCallable(*E, ReturnType, NonTemplateOverloads);
4581 if (!ReturnType.isNull()
4582 && ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
4583 S.Diag(E->getExprLoc(), diag::note_function_to_bool_call)
4584 << FixItHint::CreateInsertion(
4585 S.getPreprocessor().getLocForEndOfToken(E->getLocEnd()), "()");
4586 return;
4587 }
4588 }
4589 }
4590 }
4591
4592 // Strip vector types.
4593 if (isa<VectorType>(Source)) {
4594 if (!isa<VectorType>(Target)) {
4595 if (S.SourceMgr.isInSystemMacro(CC))
4596 return;
4597 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
4598 }
4599
4600 // If the vector cast is cast between two vectors of the same size, it is
4601 // a bitcast, not a conversion.
4602 if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
4603 return;
4604
4605 Source = cast<VectorType>(Source)->getElementType().getTypePtr();
4606 Target = cast<VectorType>(Target)->getElementType().getTypePtr();
4607 }
4608
4609 // Strip complex types.
4610 if (isa<ComplexType>(Source)) {
4611 if (!isa<ComplexType>(Target)) {
4612 if (S.SourceMgr.isInSystemMacro(CC))
4613 return;
4614
4615 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
4616 }
4617
4618 Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
4619 Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
4620 }
4621
4622 const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
4623 const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
4624
4625 // If the source is floating point...
4626 if (SourceBT && SourceBT->isFloatingPoint()) {
4627 // ...and the target is floating point...
4628 if (TargetBT && TargetBT->isFloatingPoint()) {
4629 // ...then warn if we're dropping FP rank.
4630
4631 // Builtin FP kinds are ordered by increasing FP rank.
4632 if (SourceBT->getKind() > TargetBT->getKind()) {
4633 // Don't warn about float constants that are precisely
4634 // representable in the target type.
4635 Expr::EvalResult result;
4636 if (E->EvaluateAsRValue(result, S.Context)) {
4637 // Value might be a float, a float vector, or a float complex.
4638 if (IsSameFloatAfterCast(result.Val,
4639 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
4640 S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
4641 return;
4642 }
4643
4644 if (S.SourceMgr.isInSystemMacro(CC))
4645 return;
4646
4647 DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
4648 }
4649 return;
4650 }
4651
4652 // If the target is integral, always warn.
4653 if (TargetBT && TargetBT->isInteger()) {
4654 if (S.SourceMgr.isInSystemMacro(CC))
4655 return;
4656
4657 Expr *InnerE = E->IgnoreParenImpCasts();
4658 // We also want to warn on, e.g., "int i = -1.234"
4659 if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
4660 if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
4661 InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
4662
4663 if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
4664 DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
4665 } else {
4666 DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
4667 }
4668 }
4669
4670 // If the target is bool, warn if expr is a function or method call.
4671 if (Target->isSpecificBuiltinType(BuiltinType::Bool) &&
4672 isa<CallExpr>(E)) {
4673 // Check last argument of function call to see if it is an
4674 // implicit cast from a type matching the type the result
4675 // is being cast to.
4676 CallExpr *CEx = cast<CallExpr>(E);
4677 unsigned NumArgs = CEx->getNumArgs();
4678 if (NumArgs > 0) {
4679 Expr *LastA = CEx->getArg(NumArgs - 1);
4680 Expr *InnerE = LastA->IgnoreParenImpCasts();
4681 const Type *InnerType =
4682 S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
4683 if (isa<ImplicitCastExpr>(LastA) && (InnerType == Target)) {
4684 // Warn on this floating-point to bool conversion
4685 DiagnoseImpCast(S, E, T, CC,
4686 diag::warn_impcast_floating_point_to_bool);
4687 }
4688 }
4689 }
4690 return;
4691 }
4692
4693 if ((E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)
4694 == Expr::NPCK_GNUNull) && !Target->isAnyPointerType()
4695 && !Target->isBlockPointerType() && !Target->isMemberPointerType()) {
4696 SourceLocation Loc = E->getSourceRange().getBegin();
4697 if (Loc.isMacroID())
4698 Loc = S.SourceMgr.getImmediateExpansionRange(Loc).first;
4699 if (!Loc.isMacroID() || CC.isMacroID())
4700 S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
4701 << T << clang::SourceRange(CC)
4702 << FixItHint::CreateReplacement(Loc, S.getFixItZeroLiteralForType(T));
4703 }
4704
4705 if (!Source->isIntegerType() || !Target->isIntegerType())
4706 return;
4707
4708 // TODO: remove this early return once the false positives for constant->bool
4709 // in templates, macros, etc, are reduced or removed.
4710 if (Target->isSpecificBuiltinType(BuiltinType::Bool))
4711 return;
4712
4713 IntRange SourceRange = GetExprRange(S.Context, E);
4714 IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
4715
4716 if (SourceRange.Width > TargetRange.Width) {
4717 // If the source is a constant, use a default-on diagnostic.
4718 // TODO: this should happen for bitfield stores, too.
4719 llvm::APSInt Value(32);
4720 if (E->isIntegerConstantExpr(Value, S.Context)) {
4721 if (S.SourceMgr.isInSystemMacro(CC))
4722 return;
4723
4724 std::string PrettySourceValue = Value.toString(10);
4725 std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
4726
4727 S.DiagRuntimeBehavior(E->getExprLoc(), E,
4728 S.PDiag(diag::warn_impcast_integer_precision_constant)
4729 << PrettySourceValue << PrettyTargetValue
4730 << E->getType() << T << E->getSourceRange()
4731 << clang::SourceRange(CC));
4732 return;
4733 }
4734
4735 // People want to build with -Wshorten-64-to-32 and not -Wconversion.
4736 if (S.SourceMgr.isInSystemMacro(CC))
4737 return;
4738
4739 if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
4740 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
4741 /* pruneControlFlow */ true);
4742 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
4743 }
4744
4745 if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
4746 (!TargetRange.NonNegative && SourceRange.NonNegative &&
4747 SourceRange.Width == TargetRange.Width)) {
4748
4749 if (S.SourceMgr.isInSystemMacro(CC))
4750 return;
4751
4752 unsigned DiagID = diag::warn_impcast_integer_sign;
4753
4754 // Traditionally, gcc has warned about this under -Wsign-compare.
4755 // We also want to warn about it in -Wconversion.
4756 // So if -Wconversion is off, use a completely identical diagnostic
4757 // in the sign-compare group.
4758 // The conditional-checking code will
4759 if (ICContext) {
4760 DiagID = diag::warn_impcast_integer_sign_conditional;
4761 *ICContext = true;
4762 }
4763
4764 return DiagnoseImpCast(S, E, T, CC, DiagID);
4765 }
4766
4767 // Diagnose conversions between different enumeration types.
4768 // In C, we pretend that the type of an EnumConstantDecl is its enumeration
4769 // type, to give us better diagnostics.
4770 QualType SourceType = E->getType();
4771 if (!S.getLangOpts().CPlusPlus) {
4772 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
4773 if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
4774 EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
4775 SourceType = S.Context.getTypeDeclType(Enum);
4776 Source = S.Context.getCanonicalType(SourceType).getTypePtr();
4777 }
4778 }
4779
4780 if (const EnumType *SourceEnum = Source->getAs<EnumType>())
4781 if (const EnumType *TargetEnum = Target->getAs<EnumType>())
4782 if ((SourceEnum->getDecl()->getIdentifier() ||
4783 SourceEnum->getDecl()->getTypedefNameForAnonDecl()) &&
4784 (TargetEnum->getDecl()->getIdentifier() ||
4785 TargetEnum->getDecl()->getTypedefNameForAnonDecl()) &&
4786 SourceEnum != TargetEnum) {
4787 if (S.SourceMgr.isInSystemMacro(CC))
4788 return;
4789
4790 return DiagnoseImpCast(S, E, SourceType, T, CC,
4791 diag::warn_impcast_different_enum_types);
4792 }
4793
4794 return;
4795 }
4796
4797 void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
4798 SourceLocation CC, QualType T);
4799
CheckConditionalOperand(Sema & S,Expr * E,QualType T,SourceLocation CC,bool & ICContext)4800 void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
4801 SourceLocation CC, bool &ICContext) {
4802 E = E->IgnoreParenImpCasts();
4803
4804 if (isa<ConditionalOperator>(E))
4805 return CheckConditionalOperator(S, cast<ConditionalOperator>(E), CC, T);
4806
4807 AnalyzeImplicitConversions(S, E, CC);
4808 if (E->getType() != T)
4809 return CheckImplicitConversion(S, E, T, CC, &ICContext);
4810 return;
4811 }
4812
CheckConditionalOperator(Sema & S,ConditionalOperator * E,SourceLocation CC,QualType T)4813 void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
4814 SourceLocation CC, QualType T) {
4815 AnalyzeImplicitConversions(S, E->getCond(), CC);
4816
4817 bool Suspicious = false;
4818 CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
4819 CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
4820
4821 // If -Wconversion would have warned about either of the candidates
4822 // for a signedness conversion to the context type...
4823 if (!Suspicious) return;
4824
4825 // ...but it's currently ignored...
4826 if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional,
4827 CC))
4828 return;
4829
4830 // ...then check whether it would have warned about either of the
4831 // candidates for a signedness conversion to the condition type.
4832 if (E->getType() == T) return;
4833
4834 Suspicious = false;
4835 CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
4836 E->getType(), CC, &Suspicious);
4837 if (!Suspicious)
4838 CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
4839 E->getType(), CC, &Suspicious);
4840 }
4841
4842 /// AnalyzeImplicitConversions - Find and report any interesting
4843 /// implicit conversions in the given expression. There are a couple
4844 /// of competing diagnostics here, -Wconversion and -Wsign-compare.
AnalyzeImplicitConversions(Sema & S,Expr * OrigE,SourceLocation CC)4845 void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
4846 QualType T = OrigE->getType();
4847 Expr *E = OrigE->IgnoreParenImpCasts();
4848
4849 if (E->isTypeDependent() || E->isValueDependent())
4850 return;
4851
4852 // For conditional operators, we analyze the arguments as if they
4853 // were being fed directly into the output.
4854 if (isa<ConditionalOperator>(E)) {
4855 ConditionalOperator *CO = cast<ConditionalOperator>(E);
4856 CheckConditionalOperator(S, CO, CC, T);
4857 return;
4858 }
4859
4860 // Check implicit argument conversions for function calls.
4861 if (CallExpr *Call = dyn_cast<CallExpr>(E))
4862 CheckImplicitArgumentConversions(S, Call, CC);
4863
4864 // Go ahead and check any implicit conversions we might have skipped.
4865 // The non-canonical typecheck is just an optimization;
4866 // CheckImplicitConversion will filter out dead implicit conversions.
4867 if (E->getType() != T)
4868 CheckImplicitConversion(S, E, T, CC);
4869
4870 // Now continue drilling into this expression.
4871
4872 // Skip past explicit casts.
4873 if (isa<ExplicitCastExpr>(E)) {
4874 E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
4875 return AnalyzeImplicitConversions(S, E, CC);
4876 }
4877
4878 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4879 // Do a somewhat different check with comparison operators.
4880 if (BO->isComparisonOp())
4881 return AnalyzeComparison(S, BO);
4882
4883 // And with simple assignments.
4884 if (BO->getOpcode() == BO_Assign)
4885 return AnalyzeAssignment(S, BO);
4886 }
4887
4888 // These break the otherwise-useful invariant below. Fortunately,
4889 // we don't really need to recurse into them, because any internal
4890 // expressions should have been analyzed already when they were
4891 // built into statements.
4892 if (isa<StmtExpr>(E)) return;
4893
4894 // Don't descend into unevaluated contexts.
4895 if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
4896
4897 // Now just recurse over the expression's children.
4898 CC = E->getExprLoc();
4899 BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
4900 bool IsLogicalOperator = BO && BO->isLogicalOp();
4901 for (Stmt::child_range I = E->children(); I; ++I) {
4902 Expr *ChildExpr = dyn_cast_or_null<Expr>(*I);
4903 if (!ChildExpr)
4904 continue;
4905
4906 if (IsLogicalOperator &&
4907 isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
4908 // Ignore checking string literals that are in logical operators.
4909 continue;
4910 AnalyzeImplicitConversions(S, ChildExpr, CC);
4911 }
4912 }
4913
4914 } // end anonymous namespace
4915
4916 /// Diagnoses "dangerous" implicit conversions within the given
4917 /// expression (which is a full expression). Implements -Wconversion
4918 /// and -Wsign-compare.
4919 ///
4920 /// \param CC the "context" location of the implicit conversion, i.e.
4921 /// the most location of the syntactic entity requiring the implicit
4922 /// conversion
CheckImplicitConversions(Expr * E,SourceLocation CC)4923 void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
4924 // Don't diagnose in unevaluated contexts.
4925 if (isUnevaluatedContext())
4926 return;
4927
4928 // Don't diagnose for value- or type-dependent expressions.
4929 if (E->isTypeDependent() || E->isValueDependent())
4930 return;
4931
4932 // Check for array bounds violations in cases where the check isn't triggered
4933 // elsewhere for other Expr types (like BinaryOperators), e.g. when an
4934 // ArraySubscriptExpr is on the RHS of a variable initialization.
4935 CheckArrayAccess(E);
4936
4937 // This is not the right CC for (e.g.) a variable initialization.
4938 AnalyzeImplicitConversions(*this, E, CC);
4939 }
4940
CheckBitFieldInitialization(SourceLocation InitLoc,FieldDecl * BitField,Expr * Init)4941 void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
4942 FieldDecl *BitField,
4943 Expr *Init) {
4944 (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
4945 }
4946
4947 /// CheckParmsForFunctionDef - Check that the parameters of the given
4948 /// function are appropriate for the definition of a function. This
4949 /// takes care of any checks that cannot be performed on the
4950 /// declaration itself, e.g., that the types of each of the function
4951 /// parameters are complete.
CheckParmsForFunctionDef(ParmVarDecl ** P,ParmVarDecl ** PEnd,bool CheckParameterNames)4952 bool Sema::CheckParmsForFunctionDef(ParmVarDecl **P, ParmVarDecl **PEnd,
4953 bool CheckParameterNames) {
4954 bool HasInvalidParm = false;
4955 for (; P != PEnd; ++P) {
4956 ParmVarDecl *Param = *P;
4957
4958 // C99 6.7.5.3p4: the parameters in a parameter type list in a
4959 // function declarator that is part of a function definition of
4960 // that function shall not have incomplete type.
4961 //
4962 // This is also C++ [dcl.fct]p6.
4963 if (!Param->isInvalidDecl() &&
4964 RequireCompleteType(Param->getLocation(), Param->getType(),
4965 diag::err_typecheck_decl_incomplete_type)) {
4966 Param->setInvalidDecl();
4967 HasInvalidParm = true;
4968 }
4969
4970 // C99 6.9.1p5: If the declarator includes a parameter type list, the
4971 // declaration of each parameter shall include an identifier.
4972 if (CheckParameterNames &&
4973 Param->getIdentifier() == 0 &&
4974 !Param->isImplicit() &&
4975 !getLangOpts().CPlusPlus)
4976 Diag(Param->getLocation(), diag::err_parameter_name_omitted);
4977
4978 // C99 6.7.5.3p12:
4979 // If the function declarator is not part of a definition of that
4980 // function, parameters may have incomplete type and may use the [*]
4981 // notation in their sequences of declarator specifiers to specify
4982 // variable length array types.
4983 QualType PType = Param->getOriginalType();
4984 if (const ArrayType *AT = Context.getAsArrayType(PType)) {
4985 if (AT->getSizeModifier() == ArrayType::Star) {
4986 // FIXME: This diagnosic should point the '[*]' if source-location
4987 // information is added for it.
4988 Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
4989 }
4990 }
4991 }
4992
4993 return HasInvalidParm;
4994 }
4995
4996 /// CheckCastAlign - Implements -Wcast-align, which warns when a
4997 /// pointer cast increases the alignment requirements.
CheckCastAlign(Expr * Op,QualType T,SourceRange TRange)4998 void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
4999 // This is actually a lot of work to potentially be doing on every
5000 // cast; don't do it if we're ignoring -Wcast_align (as is the default).
5001 if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align,
5002 TRange.getBegin())
5003 == DiagnosticsEngine::Ignored)
5004 return;
5005
5006 // Ignore dependent types.
5007 if (T->isDependentType() || Op->getType()->isDependentType())
5008 return;
5009
5010 // Require that the destination be a pointer type.
5011 const PointerType *DestPtr = T->getAs<PointerType>();
5012 if (!DestPtr) return;
5013
5014 // If the destination has alignment 1, we're done.
5015 QualType DestPointee = DestPtr->getPointeeType();
5016 if (DestPointee->isIncompleteType()) return;
5017 CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
5018 if (DestAlign.isOne()) return;
5019
5020 // Require that the source be a pointer type.
5021 const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
5022 if (!SrcPtr) return;
5023 QualType SrcPointee = SrcPtr->getPointeeType();
5024
5025 // Whitelist casts from cv void*. We already implicitly
5026 // whitelisted casts to cv void*, since they have alignment 1.
5027 // Also whitelist casts involving incomplete types, which implicitly
5028 // includes 'void'.
5029 if (SrcPointee->isIncompleteType()) return;
5030
5031 CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
5032 if (SrcAlign >= DestAlign) return;
5033
5034 Diag(TRange.getBegin(), diag::warn_cast_align)
5035 << Op->getType() << T
5036 << static_cast<unsigned>(SrcAlign.getQuantity())
5037 << static_cast<unsigned>(DestAlign.getQuantity())
5038 << TRange << Op->getSourceRange();
5039 }
5040
getElementType(const Expr * BaseExpr)5041 static const Type* getElementType(const Expr *BaseExpr) {
5042 const Type* EltType = BaseExpr->getType().getTypePtr();
5043 if (EltType->isAnyPointerType())
5044 return EltType->getPointeeType().getTypePtr();
5045 else if (EltType->isArrayType())
5046 return EltType->getBaseElementTypeUnsafe();
5047 return EltType;
5048 }
5049
5050 /// \brief Check whether this array fits the idiom of a size-one tail padded
5051 /// array member of a struct.
5052 ///
5053 /// We avoid emitting out-of-bounds access warnings for such arrays as they are
5054 /// commonly used to emulate flexible arrays in C89 code.
IsTailPaddedMemberArray(Sema & S,llvm::APInt Size,const NamedDecl * ND)5055 static bool IsTailPaddedMemberArray(Sema &S, llvm::APInt Size,
5056 const NamedDecl *ND) {
5057 if (Size != 1 || !ND) return false;
5058
5059 const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
5060 if (!FD) return false;
5061
5062 // Don't consider sizes resulting from macro expansions or template argument
5063 // substitution to form C89 tail-padded arrays.
5064
5065 TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
5066 while (TInfo) {
5067 TypeLoc TL = TInfo->getTypeLoc();
5068 // Look through typedefs.
5069 const TypedefTypeLoc *TTL = dyn_cast<TypedefTypeLoc>(&TL);
5070 if (TTL) {
5071 const TypedefNameDecl *TDL = TTL->getTypedefNameDecl();
5072 TInfo = TDL->getTypeSourceInfo();
5073 continue;
5074 }
5075 ConstantArrayTypeLoc CTL = cast<ConstantArrayTypeLoc>(TL);
5076 const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
5077 if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
5078 return false;
5079 break;
5080 }
5081
5082 const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
5083 if (!RD) return false;
5084 if (RD->isUnion()) return false;
5085 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
5086 if (!CRD->isStandardLayout()) return false;
5087 }
5088
5089 // See if this is the last field decl in the record.
5090 const Decl *D = FD;
5091 while ((D = D->getNextDeclInContext()))
5092 if (isa<FieldDecl>(D))
5093 return false;
5094 return true;
5095 }
5096
CheckArrayAccess(const Expr * BaseExpr,const Expr * IndexExpr,const ArraySubscriptExpr * ASE,bool AllowOnePastEnd,bool IndexNegated)5097 void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
5098 const ArraySubscriptExpr *ASE,
5099 bool AllowOnePastEnd, bool IndexNegated) {
5100 IndexExpr = IndexExpr->IgnoreParenImpCasts();
5101 if (IndexExpr->isValueDependent())
5102 return;
5103
5104 const Type *EffectiveType = getElementType(BaseExpr);
5105 BaseExpr = BaseExpr->IgnoreParenCasts();
5106 const ConstantArrayType *ArrayTy =
5107 Context.getAsConstantArrayType(BaseExpr->getType());
5108 if (!ArrayTy)
5109 return;
5110
5111 llvm::APSInt index;
5112 if (!IndexExpr->EvaluateAsInt(index, Context))
5113 return;
5114 if (IndexNegated)
5115 index = -index;
5116
5117 const NamedDecl *ND = NULL;
5118 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
5119 ND = dyn_cast<NamedDecl>(DRE->getDecl());
5120 if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
5121 ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
5122
5123 if (index.isUnsigned() || !index.isNegative()) {
5124 llvm::APInt size = ArrayTy->getSize();
5125 if (!size.isStrictlyPositive())
5126 return;
5127
5128 const Type* BaseType = getElementType(BaseExpr);
5129 if (BaseType != EffectiveType) {
5130 // Make sure we're comparing apples to apples when comparing index to size
5131 uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
5132 uint64_t array_typesize = Context.getTypeSize(BaseType);
5133 // Handle ptrarith_typesize being zero, such as when casting to void*
5134 if (!ptrarith_typesize) ptrarith_typesize = 1;
5135 if (ptrarith_typesize != array_typesize) {
5136 // There's a cast to a different size type involved
5137 uint64_t ratio = array_typesize / ptrarith_typesize;
5138 // TODO: Be smarter about handling cases where array_typesize is not a
5139 // multiple of ptrarith_typesize
5140 if (ptrarith_typesize * ratio == array_typesize)
5141 size *= llvm::APInt(size.getBitWidth(), ratio);
5142 }
5143 }
5144
5145 if (size.getBitWidth() > index.getBitWidth())
5146 index = index.zext(size.getBitWidth());
5147 else if (size.getBitWidth() < index.getBitWidth())
5148 size = size.zext(index.getBitWidth());
5149
5150 // For array subscripting the index must be less than size, but for pointer
5151 // arithmetic also allow the index (offset) to be equal to size since
5152 // computing the next address after the end of the array is legal and
5153 // commonly done e.g. in C++ iterators and range-based for loops.
5154 if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
5155 return;
5156
5157 // Also don't warn for arrays of size 1 which are members of some
5158 // structure. These are often used to approximate flexible arrays in C89
5159 // code.
5160 if (IsTailPaddedMemberArray(*this, size, ND))
5161 return;
5162
5163 // Suppress the warning if the subscript expression (as identified by the
5164 // ']' location) and the index expression are both from macro expansions
5165 // within a system header.
5166 if (ASE) {
5167 SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
5168 ASE->getRBracketLoc());
5169 if (SourceMgr.isInSystemHeader(RBracketLoc)) {
5170 SourceLocation IndexLoc = SourceMgr.getSpellingLoc(
5171 IndexExpr->getLocStart());
5172 if (SourceMgr.isFromSameFile(RBracketLoc, IndexLoc))
5173 return;
5174 }
5175 }
5176
5177 unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
5178 if (ASE)
5179 DiagID = diag::warn_array_index_exceeds_bounds;
5180
5181 DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
5182 PDiag(DiagID) << index.toString(10, true)
5183 << size.toString(10, true)
5184 << (unsigned)size.getLimitedValue(~0U)
5185 << IndexExpr->getSourceRange());
5186 } else {
5187 unsigned DiagID = diag::warn_array_index_precedes_bounds;
5188 if (!ASE) {
5189 DiagID = diag::warn_ptr_arith_precedes_bounds;
5190 if (index.isNegative()) index = -index;
5191 }
5192
5193 DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
5194 PDiag(DiagID) << index.toString(10, true)
5195 << IndexExpr->getSourceRange());
5196 }
5197
5198 if (!ND) {
5199 // Try harder to find a NamedDecl to point at in the note.
5200 while (const ArraySubscriptExpr *ASE =
5201 dyn_cast<ArraySubscriptExpr>(BaseExpr))
5202 BaseExpr = ASE->getBase()->IgnoreParenCasts();
5203 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
5204 ND = dyn_cast<NamedDecl>(DRE->getDecl());
5205 if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
5206 ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
5207 }
5208
5209 if (ND)
5210 DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
5211 PDiag(diag::note_array_index_out_of_bounds)
5212 << ND->getDeclName());
5213 }
5214
CheckArrayAccess(const Expr * expr)5215 void Sema::CheckArrayAccess(const Expr *expr) {
5216 int AllowOnePastEnd = 0;
5217 while (expr) {
5218 expr = expr->IgnoreParenImpCasts();
5219 switch (expr->getStmtClass()) {
5220 case Stmt::ArraySubscriptExprClass: {
5221 const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
5222 CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
5223 AllowOnePastEnd > 0);
5224 return;
5225 }
5226 case Stmt::UnaryOperatorClass: {
5227 // Only unwrap the * and & unary operators
5228 const UnaryOperator *UO = cast<UnaryOperator>(expr);
5229 expr = UO->getSubExpr();
5230 switch (UO->getOpcode()) {
5231 case UO_AddrOf:
5232 AllowOnePastEnd++;
5233 break;
5234 case UO_Deref:
5235 AllowOnePastEnd--;
5236 break;
5237 default:
5238 return;
5239 }
5240 break;
5241 }
5242 case Stmt::ConditionalOperatorClass: {
5243 const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
5244 if (const Expr *lhs = cond->getLHS())
5245 CheckArrayAccess(lhs);
5246 if (const Expr *rhs = cond->getRHS())
5247 CheckArrayAccess(rhs);
5248 return;
5249 }
5250 default:
5251 return;
5252 }
5253 }
5254 }
5255
5256 //===--- CHECK: Objective-C retain cycles ----------------------------------//
5257
5258 namespace {
5259 struct RetainCycleOwner {
RetainCycleOwner__anon32971bd90611::RetainCycleOwner5260 RetainCycleOwner() : Variable(0), Indirect(false) {}
5261 VarDecl *Variable;
5262 SourceRange Range;
5263 SourceLocation Loc;
5264 bool Indirect;
5265
setLocsFrom__anon32971bd90611::RetainCycleOwner5266 void setLocsFrom(Expr *e) {
5267 Loc = e->getExprLoc();
5268 Range = e->getSourceRange();
5269 }
5270 };
5271 }
5272
5273 /// Consider whether capturing the given variable can possibly lead to
5274 /// a retain cycle.
considerVariable(VarDecl * var,Expr * ref,RetainCycleOwner & owner)5275 static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
5276 // In ARC, it's captured strongly iff the variable has __strong
5277 // lifetime. In MRR, it's captured strongly if the variable is
5278 // __block and has an appropriate type.
5279 if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
5280 return false;
5281
5282 owner.Variable = var;
5283 owner.setLocsFrom(ref);
5284 return true;
5285 }
5286
findRetainCycleOwner(Sema & S,Expr * e,RetainCycleOwner & owner)5287 static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
5288 while (true) {
5289 e = e->IgnoreParens();
5290 if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
5291 switch (cast->getCastKind()) {
5292 case CK_BitCast:
5293 case CK_LValueBitCast:
5294 case CK_LValueToRValue:
5295 case CK_ARCReclaimReturnedObject:
5296 e = cast->getSubExpr();
5297 continue;
5298
5299 default:
5300 return false;
5301 }
5302 }
5303
5304 if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
5305 ObjCIvarDecl *ivar = ref->getDecl();
5306 if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
5307 return false;
5308
5309 // Try to find a retain cycle in the base.
5310 if (!findRetainCycleOwner(S, ref->getBase(), owner))
5311 return false;
5312
5313 if (ref->isFreeIvar()) owner.setLocsFrom(ref);
5314 owner.Indirect = true;
5315 return true;
5316 }
5317
5318 if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
5319 VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
5320 if (!var) return false;
5321 return considerVariable(var, ref, owner);
5322 }
5323
5324 if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
5325 if (member->isArrow()) return false;
5326
5327 // Don't count this as an indirect ownership.
5328 e = member->getBase();
5329 continue;
5330 }
5331
5332 if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
5333 // Only pay attention to pseudo-objects on property references.
5334 ObjCPropertyRefExpr *pre
5335 = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
5336 ->IgnoreParens());
5337 if (!pre) return false;
5338 if (pre->isImplicitProperty()) return false;
5339 ObjCPropertyDecl *property = pre->getExplicitProperty();
5340 if (!property->isRetaining() &&
5341 !(property->getPropertyIvarDecl() &&
5342 property->getPropertyIvarDecl()->getType()
5343 .getObjCLifetime() == Qualifiers::OCL_Strong))
5344 return false;
5345
5346 owner.Indirect = true;
5347 if (pre->isSuperReceiver()) {
5348 owner.Variable = S.getCurMethodDecl()->getSelfDecl();
5349 if (!owner.Variable)
5350 return false;
5351 owner.Loc = pre->getLocation();
5352 owner.Range = pre->getSourceRange();
5353 return true;
5354 }
5355 e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
5356 ->getSourceExpr());
5357 continue;
5358 }
5359
5360 // Array ivars?
5361
5362 return false;
5363 }
5364 }
5365
5366 namespace {
5367 struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
FindCaptureVisitor__anon32971bd90711::FindCaptureVisitor5368 FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
5369 : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
5370 Variable(variable), Capturer(0) {}
5371
5372 VarDecl *Variable;
5373 Expr *Capturer;
5374
VisitDeclRefExpr__anon32971bd90711::FindCaptureVisitor5375 void VisitDeclRefExpr(DeclRefExpr *ref) {
5376 if (ref->getDecl() == Variable && !Capturer)
5377 Capturer = ref;
5378 }
5379
VisitObjCIvarRefExpr__anon32971bd90711::FindCaptureVisitor5380 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
5381 if (Capturer) return;
5382 Visit(ref->getBase());
5383 if (Capturer && ref->isFreeIvar())
5384 Capturer = ref;
5385 }
5386
VisitBlockExpr__anon32971bd90711::FindCaptureVisitor5387 void VisitBlockExpr(BlockExpr *block) {
5388 // Look inside nested blocks
5389 if (block->getBlockDecl()->capturesVariable(Variable))
5390 Visit(block->getBlockDecl()->getBody());
5391 }
5392
VisitOpaqueValueExpr__anon32971bd90711::FindCaptureVisitor5393 void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
5394 if (Capturer) return;
5395 if (OVE->getSourceExpr())
5396 Visit(OVE->getSourceExpr());
5397 }
5398 };
5399 }
5400
5401 /// Check whether the given argument is a block which captures a
5402 /// variable.
findCapturingExpr(Sema & S,Expr * e,RetainCycleOwner & owner)5403 static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
5404 assert(owner.Variable && owner.Loc.isValid());
5405
5406 e = e->IgnoreParenCasts();
5407 BlockExpr *block = dyn_cast<BlockExpr>(e);
5408 if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
5409 return 0;
5410
5411 FindCaptureVisitor visitor(S.Context, owner.Variable);
5412 visitor.Visit(block->getBlockDecl()->getBody());
5413 return visitor.Capturer;
5414 }
5415
diagnoseRetainCycle(Sema & S,Expr * capturer,RetainCycleOwner & owner)5416 static void diagnoseRetainCycle(Sema &S, Expr *capturer,
5417 RetainCycleOwner &owner) {
5418 assert(capturer);
5419 assert(owner.Variable && owner.Loc.isValid());
5420
5421 S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
5422 << owner.Variable << capturer->getSourceRange();
5423 S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
5424 << owner.Indirect << owner.Range;
5425 }
5426
5427 /// Check for a keyword selector that starts with the word 'add' or
5428 /// 'set'.
isSetterLikeSelector(Selector sel)5429 static bool isSetterLikeSelector(Selector sel) {
5430 if (sel.isUnarySelector()) return false;
5431
5432 StringRef str = sel.getNameForSlot(0);
5433 while (!str.empty() && str.front() == '_') str = str.substr(1);
5434 if (str.startswith("set"))
5435 str = str.substr(3);
5436 else if (str.startswith("add")) {
5437 // Specially whitelist 'addOperationWithBlock:'.
5438 if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
5439 return false;
5440 str = str.substr(3);
5441 }
5442 else
5443 return false;
5444
5445 if (str.empty()) return true;
5446 return !islower(str.front());
5447 }
5448
5449 /// Check a message send to see if it's likely to cause a retain cycle.
checkRetainCycles(ObjCMessageExpr * msg)5450 void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
5451 // Only check instance methods whose selector looks like a setter.
5452 if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
5453 return;
5454
5455 // Try to find a variable that the receiver is strongly owned by.
5456 RetainCycleOwner owner;
5457 if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
5458 if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
5459 return;
5460 } else {
5461 assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
5462 owner.Variable = getCurMethodDecl()->getSelfDecl();
5463 owner.Loc = msg->getSuperLoc();
5464 owner.Range = msg->getSuperLoc();
5465 }
5466
5467 // Check whether the receiver is captured by any of the arguments.
5468 for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
5469 if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
5470 return diagnoseRetainCycle(*this, capturer, owner);
5471 }
5472
5473 /// Check a property assign to see if it's likely to cause a retain cycle.
checkRetainCycles(Expr * receiver,Expr * argument)5474 void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
5475 RetainCycleOwner owner;
5476 if (!findRetainCycleOwner(*this, receiver, owner))
5477 return;
5478
5479 if (Expr *capturer = findCapturingExpr(*this, argument, owner))
5480 diagnoseRetainCycle(*this, capturer, owner);
5481 }
5482
checkUnsafeAssigns(SourceLocation Loc,QualType LHS,Expr * RHS)5483 bool Sema::checkUnsafeAssigns(SourceLocation Loc,
5484 QualType LHS, Expr *RHS) {
5485 Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
5486 if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
5487 return false;
5488 // strip off any implicit cast added to get to the one arc-specific
5489 while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
5490 if (cast->getCastKind() == CK_ARCConsumeObject) {
5491 Diag(Loc, diag::warn_arc_retained_assign)
5492 << (LT == Qualifiers::OCL_ExplicitNone) << 1
5493 << RHS->getSourceRange();
5494 return true;
5495 }
5496 RHS = cast->getSubExpr();
5497 }
5498 return false;
5499 }
5500
checkUnsafeExprAssigns(SourceLocation Loc,Expr * LHS,Expr * RHS)5501 void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
5502 Expr *LHS, Expr *RHS) {
5503 QualType LHSType;
5504 // PropertyRef on LHS type need be directly obtained from
5505 // its declaration as it has a PsuedoType.
5506 ObjCPropertyRefExpr *PRE
5507 = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
5508 if (PRE && !PRE->isImplicitProperty()) {
5509 const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
5510 if (PD)
5511 LHSType = PD->getType();
5512 }
5513
5514 if (LHSType.isNull())
5515 LHSType = LHS->getType();
5516 if (checkUnsafeAssigns(Loc, LHSType, RHS))
5517 return;
5518 Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
5519 // FIXME. Check for other life times.
5520 if (LT != Qualifiers::OCL_None)
5521 return;
5522
5523 if (PRE) {
5524 if (PRE->isImplicitProperty())
5525 return;
5526 const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
5527 if (!PD)
5528 return;
5529
5530 unsigned Attributes = PD->getPropertyAttributes();
5531 if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) {
5532 // when 'assign' attribute was not explicitly specified
5533 // by user, ignore it and rely on property type itself
5534 // for lifetime info.
5535 unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
5536 if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) &&
5537 LHSType->isObjCRetainableType())
5538 return;
5539
5540 while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
5541 if (cast->getCastKind() == CK_ARCConsumeObject) {
5542 Diag(Loc, diag::warn_arc_retained_property_assign)
5543 << RHS->getSourceRange();
5544 return;
5545 }
5546 RHS = cast->getSubExpr();
5547 }
5548 }
5549 else if (Attributes & ObjCPropertyDecl::OBJC_PR_weak) {
5550 while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
5551 if (cast->getCastKind() == CK_ARCConsumeObject) {
5552 Diag(Loc, diag::warn_arc_retained_assign)
5553 << 0 << 0<< RHS->getSourceRange();
5554 return;
5555 }
5556 RHS = cast->getSubExpr();
5557 }
5558 }
5559 }
5560 }
5561
5562 //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
5563
5564 namespace {
ShouldDiagnoseEmptyStmtBody(const SourceManager & SourceMgr,SourceLocation StmtLoc,const NullStmt * Body)5565 bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
5566 SourceLocation StmtLoc,
5567 const NullStmt *Body) {
5568 // Do not warn if the body is a macro that expands to nothing, e.g:
5569 //
5570 // #define CALL(x)
5571 // if (condition)
5572 // CALL(0);
5573 //
5574 if (Body->hasLeadingEmptyMacro())
5575 return false;
5576
5577 // Get line numbers of statement and body.
5578 bool StmtLineInvalid;
5579 unsigned StmtLine = SourceMgr.getSpellingLineNumber(StmtLoc,
5580 &StmtLineInvalid);
5581 if (StmtLineInvalid)
5582 return false;
5583
5584 bool BodyLineInvalid;
5585 unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
5586 &BodyLineInvalid);
5587 if (BodyLineInvalid)
5588 return false;
5589
5590 // Warn if null statement and body are on the same line.
5591 if (StmtLine != BodyLine)
5592 return false;
5593
5594 return true;
5595 }
5596 } // Unnamed namespace
5597
DiagnoseEmptyStmtBody(SourceLocation StmtLoc,const Stmt * Body,unsigned DiagID)5598 void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
5599 const Stmt *Body,
5600 unsigned DiagID) {
5601 // Since this is a syntactic check, don't emit diagnostic for template
5602 // instantiations, this just adds noise.
5603 if (CurrentInstantiationScope)
5604 return;
5605
5606 // The body should be a null statement.
5607 const NullStmt *NBody = dyn_cast<NullStmt>(Body);
5608 if (!NBody)
5609 return;
5610
5611 // Do the usual checks.
5612 if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
5613 return;
5614
5615 Diag(NBody->getSemiLoc(), DiagID);
5616 Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
5617 }
5618
DiagnoseEmptyLoopBody(const Stmt * S,const Stmt * PossibleBody)5619 void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
5620 const Stmt *PossibleBody) {
5621 assert(!CurrentInstantiationScope); // Ensured by caller
5622
5623 SourceLocation StmtLoc;
5624 const Stmt *Body;
5625 unsigned DiagID;
5626 if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
5627 StmtLoc = FS->getRParenLoc();
5628 Body = FS->getBody();
5629 DiagID = diag::warn_empty_for_body;
5630 } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
5631 StmtLoc = WS->getCond()->getSourceRange().getEnd();
5632 Body = WS->getBody();
5633 DiagID = diag::warn_empty_while_body;
5634 } else
5635 return; // Neither `for' nor `while'.
5636
5637 // The body should be a null statement.
5638 const NullStmt *NBody = dyn_cast<NullStmt>(Body);
5639 if (!NBody)
5640 return;
5641
5642 // Skip expensive checks if diagnostic is disabled.
5643 if (Diags.getDiagnosticLevel(DiagID, NBody->getSemiLoc()) ==
5644 DiagnosticsEngine::Ignored)
5645 return;
5646
5647 // Do the usual checks.
5648 if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
5649 return;
5650
5651 // `for(...);' and `while(...);' are popular idioms, so in order to keep
5652 // noise level low, emit diagnostics only if for/while is followed by a
5653 // CompoundStmt, e.g.:
5654 // for (int i = 0; i < n; i++);
5655 // {
5656 // a(i);
5657 // }
5658 // or if for/while is followed by a statement with more indentation
5659 // than for/while itself:
5660 // for (int i = 0; i < n; i++);
5661 // a(i);
5662 bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
5663 if (!ProbableTypo) {
5664 bool BodyColInvalid;
5665 unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
5666 PossibleBody->getLocStart(),
5667 &BodyColInvalid);
5668 if (BodyColInvalid)
5669 return;
5670
5671 bool StmtColInvalid;
5672 unsigned StmtCol = SourceMgr.getPresumedColumnNumber(
5673 S->getLocStart(),
5674 &StmtColInvalid);
5675 if (StmtColInvalid)
5676 return;
5677
5678 if (BodyCol > StmtCol)
5679 ProbableTypo = true;
5680 }
5681
5682 if (ProbableTypo) {
5683 Diag(NBody->getSemiLoc(), DiagID);
5684 Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
5685 }
5686 }
5687
5688 //===--- Layout compatibility ----------------------------------------------//
5689
5690 namespace {
5691
5692 bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
5693
5694 /// \brief Check if two enumeration types are layout-compatible.
isLayoutCompatible(ASTContext & C,EnumDecl * ED1,EnumDecl * ED2)5695 bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
5696 // C++11 [dcl.enum] p8:
5697 // Two enumeration types are layout-compatible if they have the same
5698 // underlying type.
5699 return ED1->isComplete() && ED2->isComplete() &&
5700 C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
5701 }
5702
5703 /// \brief Check if two fields are layout-compatible.
isLayoutCompatible(ASTContext & C,FieldDecl * Field1,FieldDecl * Field2)5704 bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1, FieldDecl *Field2) {
5705 if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
5706 return false;
5707
5708 if (Field1->isBitField() != Field2->isBitField())
5709 return false;
5710
5711 if (Field1->isBitField()) {
5712 // Make sure that the bit-fields are the same length.
5713 unsigned Bits1 = Field1->getBitWidthValue(C);
5714 unsigned Bits2 = Field2->getBitWidthValue(C);
5715
5716 if (Bits1 != Bits2)
5717 return false;
5718 }
5719
5720 return true;
5721 }
5722
5723 /// \brief Check if two standard-layout structs are layout-compatible.
5724 /// (C++11 [class.mem] p17)
isLayoutCompatibleStruct(ASTContext & C,RecordDecl * RD1,RecordDecl * RD2)5725 bool isLayoutCompatibleStruct(ASTContext &C,
5726 RecordDecl *RD1,
5727 RecordDecl *RD2) {
5728 // If both records are C++ classes, check that base classes match.
5729 if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
5730 // If one of records is a CXXRecordDecl we are in C++ mode,
5731 // thus the other one is a CXXRecordDecl, too.
5732 const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
5733 // Check number of base classes.
5734 if (D1CXX->getNumBases() != D2CXX->getNumBases())
5735 return false;
5736
5737 // Check the base classes.
5738 for (CXXRecordDecl::base_class_const_iterator
5739 Base1 = D1CXX->bases_begin(),
5740 BaseEnd1 = D1CXX->bases_end(),
5741 Base2 = D2CXX->bases_begin();
5742 Base1 != BaseEnd1;
5743 ++Base1, ++Base2) {
5744 if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
5745 return false;
5746 }
5747 } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
5748 // If only RD2 is a C++ class, it should have zero base classes.
5749 if (D2CXX->getNumBases() > 0)
5750 return false;
5751 }
5752
5753 // Check the fields.
5754 RecordDecl::field_iterator Field2 = RD2->field_begin(),
5755 Field2End = RD2->field_end(),
5756 Field1 = RD1->field_begin(),
5757 Field1End = RD1->field_end();
5758 for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
5759 if (!isLayoutCompatible(C, *Field1, *Field2))
5760 return false;
5761 }
5762 if (Field1 != Field1End || Field2 != Field2End)
5763 return false;
5764
5765 return true;
5766 }
5767
5768 /// \brief Check if two standard-layout unions are layout-compatible.
5769 /// (C++11 [class.mem] p18)
isLayoutCompatibleUnion(ASTContext & C,RecordDecl * RD1,RecordDecl * RD2)5770 bool isLayoutCompatibleUnion(ASTContext &C,
5771 RecordDecl *RD1,
5772 RecordDecl *RD2) {
5773 llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
5774 for (RecordDecl::field_iterator Field2 = RD2->field_begin(),
5775 Field2End = RD2->field_end();
5776 Field2 != Field2End; ++Field2) {
5777 UnmatchedFields.insert(*Field2);
5778 }
5779
5780 for (RecordDecl::field_iterator Field1 = RD1->field_begin(),
5781 Field1End = RD1->field_end();
5782 Field1 != Field1End; ++Field1) {
5783 llvm::SmallPtrSet<FieldDecl *, 8>::iterator
5784 I = UnmatchedFields.begin(),
5785 E = UnmatchedFields.end();
5786
5787 for ( ; I != E; ++I) {
5788 if (isLayoutCompatible(C, *Field1, *I)) {
5789 bool Result = UnmatchedFields.erase(*I);
5790 (void) Result;
5791 assert(Result);
5792 break;
5793 }
5794 }
5795 if (I == E)
5796 return false;
5797 }
5798
5799 return UnmatchedFields.empty();
5800 }
5801
isLayoutCompatible(ASTContext & C,RecordDecl * RD1,RecordDecl * RD2)5802 bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1, RecordDecl *RD2) {
5803 if (RD1->isUnion() != RD2->isUnion())
5804 return false;
5805
5806 if (RD1->isUnion())
5807 return isLayoutCompatibleUnion(C, RD1, RD2);
5808 else
5809 return isLayoutCompatibleStruct(C, RD1, RD2);
5810 }
5811
5812 /// \brief Check if two types are layout-compatible in C++11 sense.
isLayoutCompatible(ASTContext & C,QualType T1,QualType T2)5813 bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
5814 if (T1.isNull() || T2.isNull())
5815 return false;
5816
5817 // C++11 [basic.types] p11:
5818 // If two types T1 and T2 are the same type, then T1 and T2 are
5819 // layout-compatible types.
5820 if (C.hasSameType(T1, T2))
5821 return true;
5822
5823 T1 = T1.getCanonicalType().getUnqualifiedType();
5824 T2 = T2.getCanonicalType().getUnqualifiedType();
5825
5826 const Type::TypeClass TC1 = T1->getTypeClass();
5827 const Type::TypeClass TC2 = T2->getTypeClass();
5828
5829 if (TC1 != TC2)
5830 return false;
5831
5832 if (TC1 == Type::Enum) {
5833 return isLayoutCompatible(C,
5834 cast<EnumType>(T1)->getDecl(),
5835 cast<EnumType>(T2)->getDecl());
5836 } else if (TC1 == Type::Record) {
5837 if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
5838 return false;
5839
5840 return isLayoutCompatible(C,
5841 cast<RecordType>(T1)->getDecl(),
5842 cast<RecordType>(T2)->getDecl());
5843 }
5844
5845 return false;
5846 }
5847 }
5848
5849 //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
5850
5851 namespace {
5852 /// \brief Given a type tag expression find the type tag itself.
5853 ///
5854 /// \param TypeExpr Type tag expression, as it appears in user's code.
5855 ///
5856 /// \param VD Declaration of an identifier that appears in a type tag.
5857 ///
5858 /// \param MagicValue Type tag magic value.
FindTypeTagExpr(const Expr * TypeExpr,const ASTContext & Ctx,const ValueDecl ** VD,uint64_t * MagicValue)5859 bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
5860 const ValueDecl **VD, uint64_t *MagicValue) {
5861 while(true) {
5862 if (!TypeExpr)
5863 return false;
5864
5865 TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
5866
5867 switch (TypeExpr->getStmtClass()) {
5868 case Stmt::UnaryOperatorClass: {
5869 const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
5870 if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
5871 TypeExpr = UO->getSubExpr();
5872 continue;
5873 }
5874 return false;
5875 }
5876
5877 case Stmt::DeclRefExprClass: {
5878 const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
5879 *VD = DRE->getDecl();
5880 return true;
5881 }
5882
5883 case Stmt::IntegerLiteralClass: {
5884 const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
5885 llvm::APInt MagicValueAPInt = IL->getValue();
5886 if (MagicValueAPInt.getActiveBits() <= 64) {
5887 *MagicValue = MagicValueAPInt.getZExtValue();
5888 return true;
5889 } else
5890 return false;
5891 }
5892
5893 case Stmt::BinaryConditionalOperatorClass:
5894 case Stmt::ConditionalOperatorClass: {
5895 const AbstractConditionalOperator *ACO =
5896 cast<AbstractConditionalOperator>(TypeExpr);
5897 bool Result;
5898 if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx)) {
5899 if (Result)
5900 TypeExpr = ACO->getTrueExpr();
5901 else
5902 TypeExpr = ACO->getFalseExpr();
5903 continue;
5904 }
5905 return false;
5906 }
5907
5908 case Stmt::BinaryOperatorClass: {
5909 const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
5910 if (BO->getOpcode() == BO_Comma) {
5911 TypeExpr = BO->getRHS();
5912 continue;
5913 }
5914 return false;
5915 }
5916
5917 default:
5918 return false;
5919 }
5920 }
5921 }
5922
5923 /// \brief Retrieve the C type corresponding to type tag TypeExpr.
5924 ///
5925 /// \param TypeExpr Expression that specifies a type tag.
5926 ///
5927 /// \param MagicValues Registered magic values.
5928 ///
5929 /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
5930 /// kind.
5931 ///
5932 /// \param TypeInfo Information about the corresponding C type.
5933 ///
5934 /// \returns true if the corresponding C type was found.
GetMatchingCType(const IdentifierInfo * ArgumentKind,const Expr * TypeExpr,const ASTContext & Ctx,const llvm::DenseMap<Sema::TypeTagMagicValue,Sema::TypeTagData> * MagicValues,bool & FoundWrongKind,Sema::TypeTagData & TypeInfo)5935 bool GetMatchingCType(
5936 const IdentifierInfo *ArgumentKind,
5937 const Expr *TypeExpr, const ASTContext &Ctx,
5938 const llvm::DenseMap<Sema::TypeTagMagicValue,
5939 Sema::TypeTagData> *MagicValues,
5940 bool &FoundWrongKind,
5941 Sema::TypeTagData &TypeInfo) {
5942 FoundWrongKind = false;
5943
5944 // Variable declaration that has type_tag_for_datatype attribute.
5945 const ValueDecl *VD = NULL;
5946
5947 uint64_t MagicValue;
5948
5949 if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue))
5950 return false;
5951
5952 if (VD) {
5953 for (specific_attr_iterator<TypeTagForDatatypeAttr>
5954 I = VD->specific_attr_begin<TypeTagForDatatypeAttr>(),
5955 E = VD->specific_attr_end<TypeTagForDatatypeAttr>();
5956 I != E; ++I) {
5957 if (I->getArgumentKind() != ArgumentKind) {
5958 FoundWrongKind = true;
5959 return false;
5960 }
5961 TypeInfo.Type = I->getMatchingCType();
5962 TypeInfo.LayoutCompatible = I->getLayoutCompatible();
5963 TypeInfo.MustBeNull = I->getMustBeNull();
5964 return true;
5965 }
5966 return false;
5967 }
5968
5969 if (!MagicValues)
5970 return false;
5971
5972 llvm::DenseMap<Sema::TypeTagMagicValue,
5973 Sema::TypeTagData>::const_iterator I =
5974 MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
5975 if (I == MagicValues->end())
5976 return false;
5977
5978 TypeInfo = I->second;
5979 return true;
5980 }
5981 } // unnamed namespace
5982
RegisterTypeTagForDatatype(const IdentifierInfo * ArgumentKind,uint64_t MagicValue,QualType Type,bool LayoutCompatible,bool MustBeNull)5983 void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
5984 uint64_t MagicValue, QualType Type,
5985 bool LayoutCompatible,
5986 bool MustBeNull) {
5987 if (!TypeTagForDatatypeMagicValues)
5988 TypeTagForDatatypeMagicValues.reset(
5989 new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
5990
5991 TypeTagMagicValue Magic(ArgumentKind, MagicValue);
5992 (*TypeTagForDatatypeMagicValues)[Magic] =
5993 TypeTagData(Type, LayoutCompatible, MustBeNull);
5994 }
5995
5996 namespace {
IsSameCharType(QualType T1,QualType T2)5997 bool IsSameCharType(QualType T1, QualType T2) {
5998 const BuiltinType *BT1 = T1->getAs<BuiltinType>();
5999 if (!BT1)
6000 return false;
6001
6002 const BuiltinType *BT2 = T2->getAs<BuiltinType>();
6003 if (!BT2)
6004 return false;
6005
6006 BuiltinType::Kind T1Kind = BT1->getKind();
6007 BuiltinType::Kind T2Kind = BT2->getKind();
6008
6009 return (T1Kind == BuiltinType::SChar && T2Kind == BuiltinType::Char_S) ||
6010 (T1Kind == BuiltinType::UChar && T2Kind == BuiltinType::Char_U) ||
6011 (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
6012 (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
6013 }
6014 } // unnamed namespace
6015
CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr * Attr,const Expr * const * ExprArgs)6016 void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
6017 const Expr * const *ExprArgs) {
6018 const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
6019 bool IsPointerAttr = Attr->getIsPointer();
6020
6021 const Expr *TypeTagExpr = ExprArgs[Attr->getTypeTagIdx()];
6022 bool FoundWrongKind;
6023 TypeTagData TypeInfo;
6024 if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
6025 TypeTagForDatatypeMagicValues.get(),
6026 FoundWrongKind, TypeInfo)) {
6027 if (FoundWrongKind)
6028 Diag(TypeTagExpr->getExprLoc(),
6029 diag::warn_type_tag_for_datatype_wrong_kind)
6030 << TypeTagExpr->getSourceRange();
6031 return;
6032 }
6033
6034 const Expr *ArgumentExpr = ExprArgs[Attr->getArgumentIdx()];
6035 if (IsPointerAttr) {
6036 // Skip implicit cast of pointer to `void *' (as a function argument).
6037 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
6038 if (ICE->getType()->isVoidPointerType())
6039 ArgumentExpr = ICE->getSubExpr();
6040 }
6041 QualType ArgumentType = ArgumentExpr->getType();
6042
6043 // Passing a `void*' pointer shouldn't trigger a warning.
6044 if (IsPointerAttr && ArgumentType->isVoidPointerType())
6045 return;
6046
6047 if (TypeInfo.MustBeNull) {
6048 // Type tag with matching void type requires a null pointer.
6049 if (!ArgumentExpr->isNullPointerConstant(Context,
6050 Expr::NPC_ValueDependentIsNotNull)) {
6051 Diag(ArgumentExpr->getExprLoc(),
6052 diag::warn_type_safety_null_pointer_required)
6053 << ArgumentKind->getName()
6054 << ArgumentExpr->getSourceRange()
6055 << TypeTagExpr->getSourceRange();
6056 }
6057 return;
6058 }
6059
6060 QualType RequiredType = TypeInfo.Type;
6061 if (IsPointerAttr)
6062 RequiredType = Context.getPointerType(RequiredType);
6063
6064 bool mismatch = false;
6065 if (!TypeInfo.LayoutCompatible) {
6066 mismatch = !Context.hasSameType(ArgumentType, RequiredType);
6067
6068 // C++11 [basic.fundamental] p1:
6069 // Plain char, signed char, and unsigned char are three distinct types.
6070 //
6071 // But we treat plain `char' as equivalent to `signed char' or `unsigned
6072 // char' depending on the current char signedness mode.
6073 if (mismatch)
6074 if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
6075 RequiredType->getPointeeType())) ||
6076 (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
6077 mismatch = false;
6078 } else
6079 if (IsPointerAttr)
6080 mismatch = !isLayoutCompatible(Context,
6081 ArgumentType->getPointeeType(),
6082 RequiredType->getPointeeType());
6083 else
6084 mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
6085
6086 if (mismatch)
6087 Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
6088 << ArgumentType << ArgumentKind->getName()
6089 << TypeInfo.LayoutCompatible << RequiredType
6090 << ArgumentExpr->getSourceRange()
6091 << TypeTagExpr->getSourceRange();
6092 }
6093
6094