• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief Implements semantic analysis for C++ expressions.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/Sema/SemaInternal.h"
16 #include "clang/Sema/DeclSpec.h"
17 #include "clang/Sema/Initialization.h"
18 #include "clang/Sema/Lookup.h"
19 #include "clang/Sema/ParsedTemplate.h"
20 #include "clang/Sema/ScopeInfo.h"
21 #include "clang/Sema/Scope.h"
22 #include "clang/Sema/TemplateDeduction.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/CXXInheritance.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/AST/ExprCXX.h"
28 #include "clang/AST/ExprObjC.h"
29 #include "clang/AST/TypeLoc.h"
30 #include "clang/Basic/PartialDiagnostic.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Lex/Preprocessor.h"
33 #include "TypeLocBuilder.h"
34 #include "llvm/ADT/APInt.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/Support/ErrorHandling.h"
37 using namespace clang;
38 using namespace sema;
39 
getDestructorName(SourceLocation TildeLoc,IdentifierInfo & II,SourceLocation NameLoc,Scope * S,CXXScopeSpec & SS,ParsedType ObjectTypePtr,bool EnteringContext)40 ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
41                                    IdentifierInfo &II,
42                                    SourceLocation NameLoc,
43                                    Scope *S, CXXScopeSpec &SS,
44                                    ParsedType ObjectTypePtr,
45                                    bool EnteringContext) {
46   // Determine where to perform name lookup.
47 
48   // FIXME: This area of the standard is very messy, and the current
49   // wording is rather unclear about which scopes we search for the
50   // destructor name; see core issues 399 and 555. Issue 399 in
51   // particular shows where the current description of destructor name
52   // lookup is completely out of line with existing practice, e.g.,
53   // this appears to be ill-formed:
54   //
55   //   namespace N {
56   //     template <typename T> struct S {
57   //       ~S();
58   //     };
59   //   }
60   //
61   //   void f(N::S<int>* s) {
62   //     s->N::S<int>::~S();
63   //   }
64   //
65   // See also PR6358 and PR6359.
66   // For this reason, we're currently only doing the C++03 version of this
67   // code; the C++0x version has to wait until we get a proper spec.
68   QualType SearchType;
69   DeclContext *LookupCtx = 0;
70   bool isDependent = false;
71   bool LookInScope = false;
72 
73   // If we have an object type, it's because we are in a
74   // pseudo-destructor-expression or a member access expression, and
75   // we know what type we're looking for.
76   if (ObjectTypePtr)
77     SearchType = GetTypeFromParser(ObjectTypePtr);
78 
79   if (SS.isSet()) {
80     NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
81 
82     bool AlreadySearched = false;
83     bool LookAtPrefix = true;
84     // C++ [basic.lookup.qual]p6:
85     //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
86     //   the type-names are looked up as types in the scope designated by the
87     //   nested-name-specifier. In a qualified-id of the form:
88     //
89     //     ::[opt] nested-name-specifier  ~ class-name
90     //
91     //   where the nested-name-specifier designates a namespace scope, and in
92     //   a qualified-id of the form:
93     //
94     //     ::opt nested-name-specifier class-name ::  ~ class-name
95     //
96     //   the class-names are looked up as types in the scope designated by
97     //   the nested-name-specifier.
98     //
99     // Here, we check the first case (completely) and determine whether the
100     // code below is permitted to look at the prefix of the
101     // nested-name-specifier.
102     DeclContext *DC = computeDeclContext(SS, EnteringContext);
103     if (DC && DC->isFileContext()) {
104       AlreadySearched = true;
105       LookupCtx = DC;
106       isDependent = false;
107     } else if (DC && isa<CXXRecordDecl>(DC))
108       LookAtPrefix = false;
109 
110     // The second case from the C++03 rules quoted further above.
111     NestedNameSpecifier *Prefix = 0;
112     if (AlreadySearched) {
113       // Nothing left to do.
114     } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
115       CXXScopeSpec PrefixSS;
116       PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
117       LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
118       isDependent = isDependentScopeSpecifier(PrefixSS);
119     } else if (ObjectTypePtr) {
120       LookupCtx = computeDeclContext(SearchType);
121       isDependent = SearchType->isDependentType();
122     } else {
123       LookupCtx = computeDeclContext(SS, EnteringContext);
124       isDependent = LookupCtx && LookupCtx->isDependentContext();
125     }
126 
127     LookInScope = false;
128   } else if (ObjectTypePtr) {
129     // C++ [basic.lookup.classref]p3:
130     //   If the unqualified-id is ~type-name, the type-name is looked up
131     //   in the context of the entire postfix-expression. If the type T
132     //   of the object expression is of a class type C, the type-name is
133     //   also looked up in the scope of class C. At least one of the
134     //   lookups shall find a name that refers to (possibly
135     //   cv-qualified) T.
136     LookupCtx = computeDeclContext(SearchType);
137     isDependent = SearchType->isDependentType();
138     assert((isDependent || !SearchType->isIncompleteType()) &&
139            "Caller should have completed object type");
140 
141     LookInScope = true;
142   } else {
143     // Perform lookup into the current scope (only).
144     LookInScope = true;
145   }
146 
147   TypeDecl *NonMatchingTypeDecl = 0;
148   LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
149   for (unsigned Step = 0; Step != 2; ++Step) {
150     // Look for the name first in the computed lookup context (if we
151     // have one) and, if that fails to find a match, in the scope (if
152     // we're allowed to look there).
153     Found.clear();
154     if (Step == 0 && LookupCtx)
155       LookupQualifiedName(Found, LookupCtx);
156     else if (Step == 1 && LookInScope && S)
157       LookupName(Found, S);
158     else
159       continue;
160 
161     // FIXME: Should we be suppressing ambiguities here?
162     if (Found.isAmbiguous())
163       return ParsedType();
164 
165     if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
166       QualType T = Context.getTypeDeclType(Type);
167 
168       if (SearchType.isNull() || SearchType->isDependentType() ||
169           Context.hasSameUnqualifiedType(T, SearchType)) {
170         // We found our type!
171 
172         return ParsedType::make(T);
173       }
174 
175       if (!SearchType.isNull())
176         NonMatchingTypeDecl = Type;
177     }
178 
179     // If the name that we found is a class template name, and it is
180     // the same name as the template name in the last part of the
181     // nested-name-specifier (if present) or the object type, then
182     // this is the destructor for that class.
183     // FIXME: This is a workaround until we get real drafting for core
184     // issue 399, for which there isn't even an obvious direction.
185     if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
186       QualType MemberOfType;
187       if (SS.isSet()) {
188         if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
189           // Figure out the type of the context, if it has one.
190           if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
191             MemberOfType = Context.getTypeDeclType(Record);
192         }
193       }
194       if (MemberOfType.isNull())
195         MemberOfType = SearchType;
196 
197       if (MemberOfType.isNull())
198         continue;
199 
200       // We're referring into a class template specialization. If the
201       // class template we found is the same as the template being
202       // specialized, we found what we are looking for.
203       if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
204         if (ClassTemplateSpecializationDecl *Spec
205               = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
206           if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
207                 Template->getCanonicalDecl())
208             return ParsedType::make(MemberOfType);
209         }
210 
211         continue;
212       }
213 
214       // We're referring to an unresolved class template
215       // specialization. Determine whether we class template we found
216       // is the same as the template being specialized or, if we don't
217       // know which template is being specialized, that it at least
218       // has the same name.
219       if (const TemplateSpecializationType *SpecType
220             = MemberOfType->getAs<TemplateSpecializationType>()) {
221         TemplateName SpecName = SpecType->getTemplateName();
222 
223         // The class template we found is the same template being
224         // specialized.
225         if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
226           if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
227             return ParsedType::make(MemberOfType);
228 
229           continue;
230         }
231 
232         // The class template we found has the same name as the
233         // (dependent) template name being specialized.
234         if (DependentTemplateName *DepTemplate
235                                     = SpecName.getAsDependentTemplateName()) {
236           if (DepTemplate->isIdentifier() &&
237               DepTemplate->getIdentifier() == Template->getIdentifier())
238             return ParsedType::make(MemberOfType);
239 
240           continue;
241         }
242       }
243     }
244   }
245 
246   if (isDependent) {
247     // We didn't find our type, but that's okay: it's dependent
248     // anyway.
249 
250     // FIXME: What if we have no nested-name-specifier?
251     QualType T = CheckTypenameType(ETK_None, SourceLocation(),
252                                    SS.getWithLocInContext(Context),
253                                    II, NameLoc);
254     return ParsedType::make(T);
255   }
256 
257   if (NonMatchingTypeDecl) {
258     QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
259     Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
260       << T << SearchType;
261     Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
262       << T;
263   } else if (ObjectTypePtr)
264     Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
265       << &II;
266   else
267     Diag(NameLoc, diag::err_destructor_class_name);
268 
269   return ParsedType();
270 }
271 
getDestructorType(const DeclSpec & DS,ParsedType ObjectType)272 ParsedType Sema::getDestructorType(const DeclSpec& DS, ParsedType ObjectType) {
273     if (DS.getTypeSpecType() == DeclSpec::TST_error || !ObjectType)
274       return ParsedType();
275     assert(DS.getTypeSpecType() == DeclSpec::TST_decltype
276            && "only get destructor types from declspecs");
277     QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
278     QualType SearchType = GetTypeFromParser(ObjectType);
279     if (SearchType->isDependentType() || Context.hasSameUnqualifiedType(SearchType, T)) {
280       return ParsedType::make(T);
281     }
282 
283     Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
284       << T << SearchType;
285     return ParsedType();
286 }
287 
288 /// \brief Build a C++ typeid expression with a type operand.
BuildCXXTypeId(QualType TypeInfoType,SourceLocation TypeidLoc,TypeSourceInfo * Operand,SourceLocation RParenLoc)289 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
290                                 SourceLocation TypeidLoc,
291                                 TypeSourceInfo *Operand,
292                                 SourceLocation RParenLoc) {
293   // C++ [expr.typeid]p4:
294   //   The top-level cv-qualifiers of the lvalue expression or the type-id
295   //   that is the operand of typeid are always ignored.
296   //   If the type of the type-id is a class type or a reference to a class
297   //   type, the class shall be completely-defined.
298   Qualifiers Quals;
299   QualType T
300     = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
301                                       Quals);
302   if (T->getAs<RecordType>() &&
303       RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
304     return ExprError();
305 
306   return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
307                                            Operand,
308                                            SourceRange(TypeidLoc, RParenLoc)));
309 }
310 
311 /// \brief Build a C++ typeid expression with an expression operand.
BuildCXXTypeId(QualType TypeInfoType,SourceLocation TypeidLoc,Expr * E,SourceLocation RParenLoc)312 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
313                                 SourceLocation TypeidLoc,
314                                 Expr *E,
315                                 SourceLocation RParenLoc) {
316   if (E && !E->isTypeDependent()) {
317     if (E->getType()->isPlaceholderType()) {
318       ExprResult result = CheckPlaceholderExpr(E);
319       if (result.isInvalid()) return ExprError();
320       E = result.take();
321     }
322 
323     QualType T = E->getType();
324     if (const RecordType *RecordT = T->getAs<RecordType>()) {
325       CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
326       // C++ [expr.typeid]p3:
327       //   [...] If the type of the expression is a class type, the class
328       //   shall be completely-defined.
329       if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
330         return ExprError();
331 
332       // C++ [expr.typeid]p3:
333       //   When typeid is applied to an expression other than an glvalue of a
334       //   polymorphic class type [...] [the] expression is an unevaluated
335       //   operand. [...]
336       if (RecordD->isPolymorphic() && E->isGLValue()) {
337         // The subexpression is potentially evaluated; switch the context
338         // and recheck the subexpression.
339         ExprResult Result = TranformToPotentiallyEvaluated(E);
340         if (Result.isInvalid()) return ExprError();
341         E = Result.take();
342 
343         // We require a vtable to query the type at run time.
344         MarkVTableUsed(TypeidLoc, RecordD);
345       }
346     }
347 
348     // C++ [expr.typeid]p4:
349     //   [...] If the type of the type-id is a reference to a possibly
350     //   cv-qualified type, the result of the typeid expression refers to a
351     //   std::type_info object representing the cv-unqualified referenced
352     //   type.
353     Qualifiers Quals;
354     QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
355     if (!Context.hasSameType(T, UnqualT)) {
356       T = UnqualT;
357       E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).take();
358     }
359   }
360 
361   return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
362                                            E,
363                                            SourceRange(TypeidLoc, RParenLoc)));
364 }
365 
366 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
367 ExprResult
ActOnCXXTypeid(SourceLocation OpLoc,SourceLocation LParenLoc,bool isType,void * TyOrExpr,SourceLocation RParenLoc)368 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
369                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
370   // Find the std::type_info type.
371   if (!getStdNamespace())
372     return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
373 
374   if (!CXXTypeInfoDecl) {
375     IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
376     LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
377     LookupQualifiedName(R, getStdNamespace());
378     CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
379     // Microsoft's typeinfo doesn't have type_info in std but in the global
380     // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
381     if (!CXXTypeInfoDecl && LangOpts.MicrosoftMode) {
382       LookupQualifiedName(R, Context.getTranslationUnitDecl());
383       CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
384     }
385     if (!CXXTypeInfoDecl)
386       return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
387   }
388 
389   if (!getLangOpts().RTTI) {
390     return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
391   }
392 
393   QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
394 
395   if (isType) {
396     // The operand is a type; handle it as such.
397     TypeSourceInfo *TInfo = 0;
398     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
399                                    &TInfo);
400     if (T.isNull())
401       return ExprError();
402 
403     if (!TInfo)
404       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
405 
406     return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
407   }
408 
409   // The operand is an expression.
410   return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
411 }
412 
413 /// Retrieve the UuidAttr associated with QT.
GetUuidAttrOfType(QualType QT)414 static UuidAttr *GetUuidAttrOfType(QualType QT) {
415   // Optionally remove one level of pointer, reference or array indirection.
416   const Type *Ty = QT.getTypePtr();
417   if (QT->isPointerType() || QT->isReferenceType())
418     Ty = QT->getPointeeType().getTypePtr();
419   else if (QT->isArrayType())
420     Ty = cast<ArrayType>(QT)->getElementType().getTypePtr();
421 
422   // Loop all record redeclaration looking for an uuid attribute.
423   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
424   for (CXXRecordDecl::redecl_iterator I = RD->redecls_begin(),
425        E = RD->redecls_end(); I != E; ++I) {
426     if (UuidAttr *Uuid = I->getAttr<UuidAttr>())
427       return Uuid;
428   }
429 
430   return 0;
431 }
432 
433 /// \brief Build a Microsoft __uuidof expression with a type operand.
BuildCXXUuidof(QualType TypeInfoType,SourceLocation TypeidLoc,TypeSourceInfo * Operand,SourceLocation RParenLoc)434 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
435                                 SourceLocation TypeidLoc,
436                                 TypeSourceInfo *Operand,
437                                 SourceLocation RParenLoc) {
438   if (!Operand->getType()->isDependentType()) {
439     if (!GetUuidAttrOfType(Operand->getType()))
440       return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
441   }
442 
443   // FIXME: add __uuidof semantic analysis for type operand.
444   return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
445                                            Operand,
446                                            SourceRange(TypeidLoc, RParenLoc)));
447 }
448 
449 /// \brief Build a Microsoft __uuidof expression with an expression operand.
BuildCXXUuidof(QualType TypeInfoType,SourceLocation TypeidLoc,Expr * E,SourceLocation RParenLoc)450 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
451                                 SourceLocation TypeidLoc,
452                                 Expr *E,
453                                 SourceLocation RParenLoc) {
454   if (!E->getType()->isDependentType()) {
455     if (!GetUuidAttrOfType(E->getType()) &&
456         !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
457       return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
458   }
459   // FIXME: add __uuidof semantic analysis for type operand.
460   return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
461                                            E,
462                                            SourceRange(TypeidLoc, RParenLoc)));
463 }
464 
465 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
466 ExprResult
ActOnCXXUuidof(SourceLocation OpLoc,SourceLocation LParenLoc,bool isType,void * TyOrExpr,SourceLocation RParenLoc)467 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
468                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
469   // If MSVCGuidDecl has not been cached, do the lookup.
470   if (!MSVCGuidDecl) {
471     IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
472     LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
473     LookupQualifiedName(R, Context.getTranslationUnitDecl());
474     MSVCGuidDecl = R.getAsSingle<RecordDecl>();
475     if (!MSVCGuidDecl)
476       return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
477   }
478 
479   QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
480 
481   if (isType) {
482     // The operand is a type; handle it as such.
483     TypeSourceInfo *TInfo = 0;
484     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
485                                    &TInfo);
486     if (T.isNull())
487       return ExprError();
488 
489     if (!TInfo)
490       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
491 
492     return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
493   }
494 
495   // The operand is an expression.
496   return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
497 }
498 
499 /// ActOnCXXBoolLiteral - Parse {true,false} literals.
500 ExprResult
ActOnCXXBoolLiteral(SourceLocation OpLoc,tok::TokenKind Kind)501 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
502   assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
503          "Unknown C++ Boolean value!");
504   return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
505                                                 Context.BoolTy, OpLoc));
506 }
507 
508 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
509 ExprResult
ActOnCXXNullPtrLiteral(SourceLocation Loc)510 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
511   return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
512 }
513 
514 /// ActOnCXXThrow - Parse throw expressions.
515 ExprResult
ActOnCXXThrow(Scope * S,SourceLocation OpLoc,Expr * Ex)516 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
517   bool IsThrownVarInScope = false;
518   if (Ex) {
519     // C++0x [class.copymove]p31:
520     //   When certain criteria are met, an implementation is allowed to omit the
521     //   copy/move construction of a class object [...]
522     //
523     //     - in a throw-expression, when the operand is the name of a
524     //       non-volatile automatic object (other than a function or catch-
525     //       clause parameter) whose scope does not extend beyond the end of the
526     //       innermost enclosing try-block (if there is one), the copy/move
527     //       operation from the operand to the exception object (15.1) can be
528     //       omitted by constructing the automatic object directly into the
529     //       exception object
530     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
531       if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
532         if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
533           for( ; S; S = S->getParent()) {
534             if (S->isDeclScope(Var)) {
535               IsThrownVarInScope = true;
536               break;
537             }
538 
539             if (S->getFlags() &
540                 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
541                  Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
542                  Scope::TryScope))
543               break;
544           }
545         }
546       }
547   }
548 
549   return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
550 }
551 
BuildCXXThrow(SourceLocation OpLoc,Expr * Ex,bool IsThrownVarInScope)552 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
553                                bool IsThrownVarInScope) {
554   // Don't report an error if 'throw' is used in system headers.
555   if (!getLangOpts().CXXExceptions &&
556       !getSourceManager().isInSystemHeader(OpLoc))
557     Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
558 
559   if (Ex && !Ex->isTypeDependent()) {
560     ExprResult ExRes = CheckCXXThrowOperand(OpLoc, Ex, IsThrownVarInScope);
561     if (ExRes.isInvalid())
562       return ExprError();
563     Ex = ExRes.take();
564   }
565 
566   return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc,
567                                           IsThrownVarInScope));
568 }
569 
570 /// CheckCXXThrowOperand - Validate the operand of a throw.
CheckCXXThrowOperand(SourceLocation ThrowLoc,Expr * E,bool IsThrownVarInScope)571 ExprResult Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *E,
572                                       bool IsThrownVarInScope) {
573   // C++ [except.throw]p3:
574   //   A throw-expression initializes a temporary object, called the exception
575   //   object, the type of which is determined by removing any top-level
576   //   cv-qualifiers from the static type of the operand of throw and adjusting
577   //   the type from "array of T" or "function returning T" to "pointer to T"
578   //   or "pointer to function returning T", [...]
579   if (E->getType().hasQualifiers())
580     E = ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
581                           E->getValueKind()).take();
582 
583   ExprResult Res = DefaultFunctionArrayConversion(E);
584   if (Res.isInvalid())
585     return ExprError();
586   E = Res.take();
587 
588   //   If the type of the exception would be an incomplete type or a pointer
589   //   to an incomplete type other than (cv) void the program is ill-formed.
590   QualType Ty = E->getType();
591   bool isPointer = false;
592   if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
593     Ty = Ptr->getPointeeType();
594     isPointer = true;
595   }
596   if (!isPointer || !Ty->isVoidType()) {
597     if (RequireCompleteType(ThrowLoc, Ty,
598                             isPointer? diag::err_throw_incomplete_ptr
599                                      : diag::err_throw_incomplete,
600                             E->getSourceRange()))
601       return ExprError();
602 
603     if (RequireNonAbstractType(ThrowLoc, E->getType(),
604                                diag::err_throw_abstract_type, E))
605       return ExprError();
606   }
607 
608   // Initialize the exception result.  This implicitly weeds out
609   // abstract types or types with inaccessible copy constructors.
610 
611   // C++0x [class.copymove]p31:
612   //   When certain criteria are met, an implementation is allowed to omit the
613   //   copy/move construction of a class object [...]
614   //
615   //     - in a throw-expression, when the operand is the name of a
616   //       non-volatile automatic object (other than a function or catch-clause
617   //       parameter) whose scope does not extend beyond the end of the
618   //       innermost enclosing try-block (if there is one), the copy/move
619   //       operation from the operand to the exception object (15.1) can be
620   //       omitted by constructing the automatic object directly into the
621   //       exception object
622   const VarDecl *NRVOVariable = 0;
623   if (IsThrownVarInScope)
624     NRVOVariable = getCopyElisionCandidate(QualType(), E, false);
625 
626   InitializedEntity Entity =
627       InitializedEntity::InitializeException(ThrowLoc, E->getType(),
628                                              /*NRVO=*/NRVOVariable != 0);
629   Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable,
630                                         QualType(), E,
631                                         IsThrownVarInScope);
632   if (Res.isInvalid())
633     return ExprError();
634   E = Res.take();
635 
636   // If the exception has class type, we need additional handling.
637   const RecordType *RecordTy = Ty->getAs<RecordType>();
638   if (!RecordTy)
639     return Owned(E);
640   CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
641 
642   // If we are throwing a polymorphic class type or pointer thereof,
643   // exception handling will make use of the vtable.
644   MarkVTableUsed(ThrowLoc, RD);
645 
646   // If a pointer is thrown, the referenced object will not be destroyed.
647   if (isPointer)
648     return Owned(E);
649 
650   // If the class has a destructor, we must be able to call it.
651   if (RD->hasIrrelevantDestructor())
652     return Owned(E);
653 
654   CXXDestructorDecl *Destructor = LookupDestructor(RD);
655   if (!Destructor)
656     return Owned(E);
657 
658   MarkFunctionReferenced(E->getExprLoc(), Destructor);
659   CheckDestructorAccess(E->getExprLoc(), Destructor,
660                         PDiag(diag::err_access_dtor_exception) << Ty);
661   DiagnoseUseOfDecl(Destructor, E->getExprLoc());
662   return Owned(E);
663 }
664 
getCurrentThisType()665 QualType Sema::getCurrentThisType() {
666   DeclContext *DC = getFunctionLevelDeclContext();
667   QualType ThisTy = CXXThisTypeOverride;
668   if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
669     if (method && method->isInstance())
670       ThisTy = method->getThisType(Context);
671   }
672 
673   return ThisTy;
674 }
675 
CXXThisScopeRAII(Sema & S,Decl * ContextDecl,unsigned CXXThisTypeQuals,bool Enabled)676 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
677                                          Decl *ContextDecl,
678                                          unsigned CXXThisTypeQuals,
679                                          bool Enabled)
680   : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
681 {
682   if (!Enabled || !ContextDecl)
683     return;
684 
685   CXXRecordDecl *Record = 0;
686   if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
687     Record = Template->getTemplatedDecl();
688   else
689     Record = cast<CXXRecordDecl>(ContextDecl);
690 
691   S.CXXThisTypeOverride
692     = S.Context.getPointerType(
693         S.Context.getRecordType(Record).withCVRQualifiers(CXXThisTypeQuals));
694 
695   this->Enabled = true;
696 }
697 
698 
~CXXThisScopeRAII()699 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
700   if (Enabled) {
701     S.CXXThisTypeOverride = OldCXXThisTypeOverride;
702   }
703 }
704 
CheckCXXThisCapture(SourceLocation Loc,bool Explicit)705 void Sema::CheckCXXThisCapture(SourceLocation Loc, bool Explicit) {
706   // We don't need to capture this in an unevaluated context.
707   if (ExprEvalContexts.back().Context == Unevaluated && !Explicit)
708     return;
709 
710   // Otherwise, check that we can capture 'this'.
711   unsigned NumClosures = 0;
712   for (unsigned idx = FunctionScopes.size() - 1; idx != 0; idx--) {
713     if (CapturingScopeInfo *CSI =
714             dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
715       if (CSI->CXXThisCaptureIndex != 0) {
716         // 'this' is already being captured; there isn't anything more to do.
717         break;
718       }
719 
720       if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
721           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
722           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
723           Explicit) {
724         // This closure can capture 'this'; continue looking upwards.
725         NumClosures++;
726         Explicit = false;
727         continue;
728       }
729       // This context can't implicitly capture 'this'; fail out.
730       Diag(Loc, diag::err_this_capture) << Explicit;
731       return;
732     }
733     break;
734   }
735 
736   // Mark that we're implicitly capturing 'this' in all the scopes we skipped.
737   // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated
738   // contexts.
739   for (unsigned idx = FunctionScopes.size() - 1;
740        NumClosures; --idx, --NumClosures) {
741     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
742     Expr *ThisExpr = 0;
743     QualType ThisTy = getCurrentThisType();
744     if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI)) {
745       // For lambda expressions, build a field and an initializing expression.
746       CXXRecordDecl *Lambda = LSI->Lambda;
747       FieldDecl *Field
748         = FieldDecl::Create(Context, Lambda, Loc, Loc, 0, ThisTy,
749                             Context.getTrivialTypeSourceInfo(ThisTy, Loc),
750                             0, false, ICIS_NoInit);
751       Field->setImplicit(true);
752       Field->setAccess(AS_private);
753       Lambda->addDecl(Field);
754       ThisExpr = new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/true);
755     }
756     bool isNested = NumClosures > 1;
757     CSI->addThisCapture(isNested, Loc, ThisTy, ThisExpr);
758   }
759 }
760 
ActOnCXXThis(SourceLocation Loc)761 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
762   /// C++ 9.3.2: In the body of a non-static member function, the keyword this
763   /// is a non-lvalue expression whose value is the address of the object for
764   /// which the function is called.
765 
766   QualType ThisTy = getCurrentThisType();
767   if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
768 
769   CheckCXXThisCapture(Loc);
770   return Owned(new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false));
771 }
772 
isThisOutsideMemberFunctionBody(QualType BaseType)773 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
774   // If we're outside the body of a member function, then we'll have a specified
775   // type for 'this'.
776   if (CXXThisTypeOverride.isNull())
777     return false;
778 
779   // Determine whether we're looking into a class that's currently being
780   // defined.
781   CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
782   return Class && Class->isBeingDefined();
783 }
784 
785 ExprResult
ActOnCXXTypeConstructExpr(ParsedType TypeRep,SourceLocation LParenLoc,MultiExprArg exprs,SourceLocation RParenLoc)786 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
787                                 SourceLocation LParenLoc,
788                                 MultiExprArg exprs,
789                                 SourceLocation RParenLoc) {
790   if (!TypeRep)
791     return ExprError();
792 
793   TypeSourceInfo *TInfo;
794   QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
795   if (!TInfo)
796     TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
797 
798   return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
799 }
800 
801 /// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
802 /// Can be interpreted either as function-style casting ("int(x)")
803 /// or class type construction ("ClassType(x,y,z)")
804 /// or creation of a value-initialized type ("int()").
805 ExprResult
BuildCXXTypeConstructExpr(TypeSourceInfo * TInfo,SourceLocation LParenLoc,MultiExprArg exprs,SourceLocation RParenLoc)806 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
807                                 SourceLocation LParenLoc,
808                                 MultiExprArg exprs,
809                                 SourceLocation RParenLoc) {
810   QualType Ty = TInfo->getType();
811   SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
812 
813   if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(exprs)) {
814     return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo,
815                                                     LParenLoc,
816                                                     exprs,
817                                                     RParenLoc));
818   }
819 
820   unsigned NumExprs = exprs.size();
821   Expr **Exprs = exprs.data();
822 
823   bool ListInitialization = LParenLoc.isInvalid();
824   assert((!ListInitialization || (NumExprs == 1 && isa<InitListExpr>(Exprs[0])))
825          && "List initialization must have initializer list as expression.");
826   SourceRange FullRange = SourceRange(TyBeginLoc,
827       ListInitialization ? Exprs[0]->getSourceRange().getEnd() : RParenLoc);
828 
829   // C++ [expr.type.conv]p1:
830   // If the expression list is a single expression, the type conversion
831   // expression is equivalent (in definedness, and if defined in meaning) to the
832   // corresponding cast expression.
833   if (NumExprs == 1 && !ListInitialization) {
834     Expr *Arg = Exprs[0];
835     return BuildCXXFunctionalCastExpr(TInfo, LParenLoc, Arg, RParenLoc);
836   }
837 
838   QualType ElemTy = Ty;
839   if (Ty->isArrayType()) {
840     if (!ListInitialization)
841       return ExprError(Diag(TyBeginLoc,
842                             diag::err_value_init_for_array_type) << FullRange);
843     ElemTy = Context.getBaseElementType(Ty);
844   }
845 
846   if (!Ty->isVoidType() &&
847       RequireCompleteType(TyBeginLoc, ElemTy,
848                           diag::err_invalid_incomplete_type_use, FullRange))
849     return ExprError();
850 
851   if (RequireNonAbstractType(TyBeginLoc, Ty,
852                              diag::err_allocation_of_abstract_type))
853     return ExprError();
854 
855   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
856   InitializationKind Kind
857     = NumExprs ? ListInitialization
858                     ? InitializationKind::CreateDirectList(TyBeginLoc)
859                     : InitializationKind::CreateDirect(TyBeginLoc,
860                                                        LParenLoc, RParenLoc)
861                : InitializationKind::CreateValue(TyBeginLoc,
862                                                  LParenLoc, RParenLoc);
863   InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs);
864   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, exprs);
865 
866   if (!Result.isInvalid() && ListInitialization &&
867       isa<InitListExpr>(Result.get())) {
868     // If the list-initialization doesn't involve a constructor call, we'll get
869     // the initializer-list (with corrected type) back, but that's not what we
870     // want, since it will be treated as an initializer list in further
871     // processing. Explicitly insert a cast here.
872     InitListExpr *List = cast<InitListExpr>(Result.take());
873     Result = Owned(CXXFunctionalCastExpr::Create(Context, List->getType(),
874                                     Expr::getValueKindForType(TInfo->getType()),
875                                                  TInfo, TyBeginLoc, CK_NoOp,
876                                                  List, /*Path=*/0, RParenLoc));
877   }
878 
879   // FIXME: Improve AST representation?
880   return Result;
881 }
882 
883 /// doesUsualArrayDeleteWantSize - Answers whether the usual
884 /// operator delete[] for the given type has a size_t parameter.
doesUsualArrayDeleteWantSize(Sema & S,SourceLocation loc,QualType allocType)885 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
886                                          QualType allocType) {
887   const RecordType *record =
888     allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
889   if (!record) return false;
890 
891   // Try to find an operator delete[] in class scope.
892 
893   DeclarationName deleteName =
894     S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
895   LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
896   S.LookupQualifiedName(ops, record->getDecl());
897 
898   // We're just doing this for information.
899   ops.suppressDiagnostics();
900 
901   // Very likely: there's no operator delete[].
902   if (ops.empty()) return false;
903 
904   // If it's ambiguous, it should be illegal to call operator delete[]
905   // on this thing, so it doesn't matter if we allocate extra space or not.
906   if (ops.isAmbiguous()) return false;
907 
908   LookupResult::Filter filter = ops.makeFilter();
909   while (filter.hasNext()) {
910     NamedDecl *del = filter.next()->getUnderlyingDecl();
911 
912     // C++0x [basic.stc.dynamic.deallocation]p2:
913     //   A template instance is never a usual deallocation function,
914     //   regardless of its signature.
915     if (isa<FunctionTemplateDecl>(del)) {
916       filter.erase();
917       continue;
918     }
919 
920     // C++0x [basic.stc.dynamic.deallocation]p2:
921     //   If class T does not declare [an operator delete[] with one
922     //   parameter] but does declare a member deallocation function
923     //   named operator delete[] with exactly two parameters, the
924     //   second of which has type std::size_t, then this function
925     //   is a usual deallocation function.
926     if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
927       filter.erase();
928       continue;
929     }
930   }
931   filter.done();
932 
933   if (!ops.isSingleResult()) return false;
934 
935   const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
936   return (del->getNumParams() == 2);
937 }
938 
939 /// \brief Parsed a C++ 'new' expression (C++ 5.3.4).
940 ///
941 /// E.g.:
942 /// @code new (memory) int[size][4] @endcode
943 /// or
944 /// @code ::new Foo(23, "hello") @endcode
945 ///
946 /// \param StartLoc The first location of the expression.
947 /// \param UseGlobal True if 'new' was prefixed with '::'.
948 /// \param PlacementLParen Opening paren of the placement arguments.
949 /// \param PlacementArgs Placement new arguments.
950 /// \param PlacementRParen Closing paren of the placement arguments.
951 /// \param TypeIdParens If the type is in parens, the source range.
952 /// \param D The type to be allocated, as well as array dimensions.
953 /// \param Initializer The initializing expression or initializer-list, or null
954 ///   if there is none.
955 ExprResult
ActOnCXXNew(SourceLocation StartLoc,bool UseGlobal,SourceLocation PlacementLParen,MultiExprArg PlacementArgs,SourceLocation PlacementRParen,SourceRange TypeIdParens,Declarator & D,Expr * Initializer)956 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
957                   SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
958                   SourceLocation PlacementRParen, SourceRange TypeIdParens,
959                   Declarator &D, Expr *Initializer) {
960   bool TypeContainsAuto = D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
961 
962   Expr *ArraySize = 0;
963   // If the specified type is an array, unwrap it and save the expression.
964   if (D.getNumTypeObjects() > 0 &&
965       D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
966      DeclaratorChunk &Chunk = D.getTypeObject(0);
967     if (TypeContainsAuto)
968       return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
969         << D.getSourceRange());
970     if (Chunk.Arr.hasStatic)
971       return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
972         << D.getSourceRange());
973     if (!Chunk.Arr.NumElts)
974       return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
975         << D.getSourceRange());
976 
977     ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
978     D.DropFirstTypeObject();
979   }
980 
981   // Every dimension shall be of constant size.
982   if (ArraySize) {
983     for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
984       if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
985         break;
986 
987       DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
988       if (Expr *NumElts = (Expr *)Array.NumElts) {
989         if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
990           Array.NumElts
991             = VerifyIntegerConstantExpression(NumElts, 0,
992                                               diag::err_new_array_nonconst)
993                 .take();
994           if (!Array.NumElts)
995             return ExprError();
996         }
997       }
998     }
999   }
1000 
1001   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0);
1002   QualType AllocType = TInfo->getType();
1003   if (D.isInvalidType())
1004     return ExprError();
1005 
1006   SourceRange DirectInitRange;
1007   if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1008     DirectInitRange = List->getSourceRange();
1009 
1010   return BuildCXXNew(StartLoc, UseGlobal,
1011                      PlacementLParen,
1012                      PlacementArgs,
1013                      PlacementRParen,
1014                      TypeIdParens,
1015                      AllocType,
1016                      TInfo,
1017                      ArraySize,
1018                      DirectInitRange,
1019                      Initializer,
1020                      TypeContainsAuto);
1021 }
1022 
isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,Expr * Init)1023 static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1024                                        Expr *Init) {
1025   if (!Init)
1026     return true;
1027   if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1028     return PLE->getNumExprs() == 0;
1029   if (isa<ImplicitValueInitExpr>(Init))
1030     return true;
1031   else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1032     return !CCE->isListInitialization() &&
1033            CCE->getConstructor()->isDefaultConstructor();
1034   else if (Style == CXXNewExpr::ListInit) {
1035     assert(isa<InitListExpr>(Init) &&
1036            "Shouldn't create list CXXConstructExprs for arrays.");
1037     return true;
1038   }
1039   return false;
1040 }
1041 
1042 ExprResult
BuildCXXNew(SourceLocation StartLoc,bool UseGlobal,SourceLocation PlacementLParen,MultiExprArg PlacementArgs,SourceLocation PlacementRParen,SourceRange TypeIdParens,QualType AllocType,TypeSourceInfo * AllocTypeInfo,Expr * ArraySize,SourceRange DirectInitRange,Expr * Initializer,bool TypeMayContainAuto)1043 Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal,
1044                   SourceLocation PlacementLParen,
1045                   MultiExprArg PlacementArgs,
1046                   SourceLocation PlacementRParen,
1047                   SourceRange TypeIdParens,
1048                   QualType AllocType,
1049                   TypeSourceInfo *AllocTypeInfo,
1050                   Expr *ArraySize,
1051                   SourceRange DirectInitRange,
1052                   Expr *Initializer,
1053                   bool TypeMayContainAuto) {
1054   SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1055 
1056   CXXNewExpr::InitializationStyle initStyle;
1057   if (DirectInitRange.isValid()) {
1058     assert(Initializer && "Have parens but no initializer.");
1059     initStyle = CXXNewExpr::CallInit;
1060   } else if (Initializer && isa<InitListExpr>(Initializer))
1061     initStyle = CXXNewExpr::ListInit;
1062   else {
1063     // In template instantiation, the initializer could be a CXXDefaultArgExpr
1064     // unwrapped from a CXXConstructExpr that was implicitly built. There is no
1065     // particularly sane way we can handle this (especially since it can even
1066     // occur for array new), so we throw the initializer away and have it be
1067     // rebuilt.
1068     if (Initializer && isa<CXXDefaultArgExpr>(Initializer))
1069       Initializer = 0;
1070     assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
1071             isa<CXXConstructExpr>(Initializer)) &&
1072            "Initializer expression that cannot have been implicitly created.");
1073     initStyle = CXXNewExpr::NoInit;
1074   }
1075 
1076   Expr **Inits = &Initializer;
1077   unsigned NumInits = Initializer ? 1 : 0;
1078   if (initStyle == CXXNewExpr::CallInit) {
1079     if (ParenListExpr *List = dyn_cast<ParenListExpr>(Initializer)) {
1080       Inits = List->getExprs();
1081       NumInits = List->getNumExprs();
1082     } else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Initializer)){
1083       if (!isa<CXXTemporaryObjectExpr>(CCE)) {
1084         // Can happen in template instantiation. Since this is just an implicit
1085         // construction, we just take it apart and rebuild it.
1086         Inits = CCE->getArgs();
1087         NumInits = CCE->getNumArgs();
1088       }
1089     }
1090   }
1091 
1092   // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
1093   AutoType *AT = 0;
1094   if (TypeMayContainAuto &&
1095       (AT = AllocType->getContainedAutoType()) && !AT->isDeduced()) {
1096     if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
1097       return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
1098                        << AllocType << TypeRange);
1099     if (initStyle == CXXNewExpr::ListInit)
1100       return ExprError(Diag(Inits[0]->getLocStart(),
1101                             diag::err_auto_new_requires_parens)
1102                        << AllocType << TypeRange);
1103     if (NumInits > 1) {
1104       Expr *FirstBad = Inits[1];
1105       return ExprError(Diag(FirstBad->getLocStart(),
1106                             diag::err_auto_new_ctor_multiple_expressions)
1107                        << AllocType << TypeRange);
1108     }
1109     Expr *Deduce = Inits[0];
1110     TypeSourceInfo *DeducedType = 0;
1111     if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
1112       return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
1113                        << AllocType << Deduce->getType()
1114                        << TypeRange << Deduce->getSourceRange());
1115     if (!DeducedType)
1116       return ExprError();
1117 
1118     AllocTypeInfo = DeducedType;
1119     AllocType = AllocTypeInfo->getType();
1120   }
1121 
1122   // Per C++0x [expr.new]p5, the type being constructed may be a
1123   // typedef of an array type.
1124   if (!ArraySize) {
1125     if (const ConstantArrayType *Array
1126                               = Context.getAsConstantArrayType(AllocType)) {
1127       ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
1128                                          Context.getSizeType(),
1129                                          TypeRange.getEnd());
1130       AllocType = Array->getElementType();
1131     }
1132   }
1133 
1134   if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
1135     return ExprError();
1136 
1137   if (initStyle == CXXNewExpr::ListInit && isStdInitializerList(AllocType, 0)) {
1138     Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(),
1139          diag::warn_dangling_std_initializer_list)
1140         << /*at end of FE*/0 << Inits[0]->getSourceRange();
1141   }
1142 
1143   // In ARC, infer 'retaining' for the allocated
1144   if (getLangOpts().ObjCAutoRefCount &&
1145       AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1146       AllocType->isObjCLifetimeType()) {
1147     AllocType = Context.getLifetimeQualifiedType(AllocType,
1148                                     AllocType->getObjCARCImplicitLifetime());
1149   }
1150 
1151   QualType ResultType = Context.getPointerType(AllocType);
1152 
1153   // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
1154   //   integral or enumeration type with a non-negative value."
1155   // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
1156   //   enumeration type, or a class type for which a single non-explicit
1157   //   conversion function to integral or unscoped enumeration type exists.
1158   if (ArraySize && !ArraySize->isTypeDependent()) {
1159     class SizeConvertDiagnoser : public ICEConvertDiagnoser {
1160       Expr *ArraySize;
1161 
1162     public:
1163       SizeConvertDiagnoser(Expr *ArraySize)
1164         : ICEConvertDiagnoser(false, false), ArraySize(ArraySize) { }
1165 
1166       virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
1167                                                QualType T) {
1168         return S.Diag(Loc, diag::err_array_size_not_integral)
1169                  << S.getLangOpts().CPlusPlus0x << T;
1170       }
1171 
1172       virtual DiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
1173                                                    QualType T) {
1174         return S.Diag(Loc, diag::err_array_size_incomplete_type)
1175                  << T << ArraySize->getSourceRange();
1176       }
1177 
1178       virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S,
1179                                                      SourceLocation Loc,
1180                                                      QualType T,
1181                                                      QualType ConvTy) {
1182         return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
1183       }
1184 
1185       virtual DiagnosticBuilder noteExplicitConv(Sema &S,
1186                                                  CXXConversionDecl *Conv,
1187                                                  QualType ConvTy) {
1188         return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1189                  << ConvTy->isEnumeralType() << ConvTy;
1190       }
1191 
1192       virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
1193                                                   QualType T) {
1194         return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
1195       }
1196 
1197       virtual DiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
1198                                               QualType ConvTy) {
1199         return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1200                  << ConvTy->isEnumeralType() << ConvTy;
1201       }
1202 
1203       virtual DiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
1204                                                    QualType T,
1205                                                    QualType ConvTy) {
1206         return S.Diag(Loc,
1207                       S.getLangOpts().CPlusPlus0x
1208                         ? diag::warn_cxx98_compat_array_size_conversion
1209                         : diag::ext_array_size_conversion)
1210                  << T << ConvTy->isEnumeralType() << ConvTy;
1211       }
1212     } SizeDiagnoser(ArraySize);
1213 
1214     ExprResult ConvertedSize
1215       = ConvertToIntegralOrEnumerationType(StartLoc, ArraySize, SizeDiagnoser,
1216                                            /*AllowScopedEnumerations*/ false);
1217     if (ConvertedSize.isInvalid())
1218       return ExprError();
1219 
1220     ArraySize = ConvertedSize.take();
1221     QualType SizeType = ArraySize->getType();
1222     if (!SizeType->isIntegralOrUnscopedEnumerationType())
1223       return ExprError();
1224 
1225     // C++98 [expr.new]p7:
1226     //   The expression in a direct-new-declarator shall have integral type
1227     //   with a non-negative value.
1228     //
1229     // Let's see if this is a constant < 0. If so, we reject it out of
1230     // hand. Otherwise, if it's not a constant, we must have an unparenthesized
1231     // array type.
1232     //
1233     // Note: such a construct has well-defined semantics in C++11: it throws
1234     // std::bad_array_new_length.
1235     if (!ArraySize->isValueDependent()) {
1236       llvm::APSInt Value;
1237       // We've already performed any required implicit conversion to integer or
1238       // unscoped enumeration type.
1239       if (ArraySize->isIntegerConstantExpr(Value, Context)) {
1240         if (Value < llvm::APSInt(
1241                         llvm::APInt::getNullValue(Value.getBitWidth()),
1242                                  Value.isUnsigned())) {
1243           if (getLangOpts().CPlusPlus0x)
1244             Diag(ArraySize->getLocStart(),
1245                  diag::warn_typecheck_negative_array_new_size)
1246               << ArraySize->getSourceRange();
1247           else
1248             return ExprError(Diag(ArraySize->getLocStart(),
1249                                   diag::err_typecheck_negative_array_size)
1250                              << ArraySize->getSourceRange());
1251         } else if (!AllocType->isDependentType()) {
1252           unsigned ActiveSizeBits =
1253             ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
1254           if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
1255             if (getLangOpts().CPlusPlus0x)
1256               Diag(ArraySize->getLocStart(),
1257                    diag::warn_array_new_too_large)
1258                 << Value.toString(10)
1259                 << ArraySize->getSourceRange();
1260             else
1261               return ExprError(Diag(ArraySize->getLocStart(),
1262                                     diag::err_array_too_large)
1263                                << Value.toString(10)
1264                                << ArraySize->getSourceRange());
1265           }
1266         }
1267       } else if (TypeIdParens.isValid()) {
1268         // Can't have dynamic array size when the type-id is in parentheses.
1269         Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
1270           << ArraySize->getSourceRange()
1271           << FixItHint::CreateRemoval(TypeIdParens.getBegin())
1272           << FixItHint::CreateRemoval(TypeIdParens.getEnd());
1273 
1274         TypeIdParens = SourceRange();
1275       }
1276     }
1277 
1278     // ARC: warn about ABI issues.
1279     if (getLangOpts().ObjCAutoRefCount) {
1280       QualType BaseAllocType = Context.getBaseElementType(AllocType);
1281       if (BaseAllocType.hasStrongOrWeakObjCLifetime())
1282         Diag(StartLoc, diag::warn_err_new_delete_object_array)
1283           << 0 << BaseAllocType;
1284     }
1285 
1286     // Note that we do *not* convert the argument in any way.  It can
1287     // be signed, larger than size_t, whatever.
1288   }
1289 
1290   FunctionDecl *OperatorNew = 0;
1291   FunctionDecl *OperatorDelete = 0;
1292   Expr **PlaceArgs = PlacementArgs.data();
1293   unsigned NumPlaceArgs = PlacementArgs.size();
1294 
1295   if (!AllocType->isDependentType() &&
1296       !Expr::hasAnyTypeDependentArguments(
1297         llvm::makeArrayRef(PlaceArgs, NumPlaceArgs)) &&
1298       FindAllocationFunctions(StartLoc,
1299                               SourceRange(PlacementLParen, PlacementRParen),
1300                               UseGlobal, AllocType, ArraySize, PlaceArgs,
1301                               NumPlaceArgs, OperatorNew, OperatorDelete))
1302     return ExprError();
1303 
1304   // If this is an array allocation, compute whether the usual array
1305   // deallocation function for the type has a size_t parameter.
1306   bool UsualArrayDeleteWantsSize = false;
1307   if (ArraySize && !AllocType->isDependentType())
1308     UsualArrayDeleteWantsSize
1309       = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
1310 
1311   SmallVector<Expr *, 8> AllPlaceArgs;
1312   if (OperatorNew) {
1313     // Add default arguments, if any.
1314     const FunctionProtoType *Proto =
1315       OperatorNew->getType()->getAs<FunctionProtoType>();
1316     VariadicCallType CallType =
1317       Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
1318 
1319     if (GatherArgumentsForCall(PlacementLParen, OperatorNew,
1320                                Proto, 1, PlaceArgs, NumPlaceArgs,
1321                                AllPlaceArgs, CallType))
1322       return ExprError();
1323 
1324     NumPlaceArgs = AllPlaceArgs.size();
1325     if (NumPlaceArgs > 0)
1326       PlaceArgs = &AllPlaceArgs[0];
1327 
1328     DiagnoseSentinelCalls(OperatorNew, PlacementLParen,
1329                           PlaceArgs, NumPlaceArgs);
1330 
1331     // FIXME: Missing call to CheckFunctionCall or equivalent
1332   }
1333 
1334   // Warn if the type is over-aligned and is being allocated by global operator
1335   // new.
1336   if (NumPlaceArgs == 0 && OperatorNew &&
1337       (OperatorNew->isImplicit() ||
1338        getSourceManager().isInSystemHeader(OperatorNew->getLocStart()))) {
1339     if (unsigned Align = Context.getPreferredTypeAlign(AllocType.getTypePtr())){
1340       unsigned SuitableAlign = Context.getTargetInfo().getSuitableAlign();
1341       if (Align > SuitableAlign)
1342         Diag(StartLoc, diag::warn_overaligned_type)
1343             << AllocType
1344             << unsigned(Align / Context.getCharWidth())
1345             << unsigned(SuitableAlign / Context.getCharWidth());
1346     }
1347   }
1348 
1349   QualType InitType = AllocType;
1350   // Array 'new' can't have any initializers except empty parentheses.
1351   // Initializer lists are also allowed, in C++11. Rely on the parser for the
1352   // dialect distinction.
1353   if (ResultType->isArrayType() || ArraySize) {
1354     if (!isLegalArrayNewInitializer(initStyle, Initializer)) {
1355       SourceRange InitRange(Inits[0]->getLocStart(),
1356                             Inits[NumInits - 1]->getLocEnd());
1357       Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
1358       return ExprError();
1359     }
1360     if (InitListExpr *ILE = dyn_cast_or_null<InitListExpr>(Initializer)) {
1361       // We do the initialization typechecking against the array type
1362       // corresponding to the number of initializers + 1 (to also check
1363       // default-initialization).
1364       unsigned NumElements = ILE->getNumInits() + 1;
1365       InitType = Context.getConstantArrayType(AllocType,
1366           llvm::APInt(Context.getTypeSize(Context.getSizeType()), NumElements),
1367                                               ArrayType::Normal, 0);
1368     }
1369   }
1370 
1371   if (!AllocType->isDependentType() &&
1372       !Expr::hasAnyTypeDependentArguments(
1373         llvm::makeArrayRef(Inits, NumInits))) {
1374     // C++11 [expr.new]p15:
1375     //   A new-expression that creates an object of type T initializes that
1376     //   object as follows:
1377     InitializationKind Kind
1378     //     - If the new-initializer is omitted, the object is default-
1379     //       initialized (8.5); if no initialization is performed,
1380     //       the object has indeterminate value
1381       = initStyle == CXXNewExpr::NoInit
1382           ? InitializationKind::CreateDefault(TypeRange.getBegin())
1383     //     - Otherwise, the new-initializer is interpreted according to the
1384     //       initialization rules of 8.5 for direct-initialization.
1385           : initStyle == CXXNewExpr::ListInit
1386               ? InitializationKind::CreateDirectList(TypeRange.getBegin())
1387               : InitializationKind::CreateDirect(TypeRange.getBegin(),
1388                                                  DirectInitRange.getBegin(),
1389                                                  DirectInitRange.getEnd());
1390 
1391     InitializedEntity Entity
1392       = InitializedEntity::InitializeNew(StartLoc, InitType);
1393     InitializationSequence InitSeq(*this, Entity, Kind, Inits, NumInits);
1394     ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
1395                                           MultiExprArg(Inits, NumInits));
1396     if (FullInit.isInvalid())
1397       return ExprError();
1398 
1399     // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
1400     // we don't want the initialized object to be destructed.
1401     if (CXXBindTemporaryExpr *Binder =
1402             dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
1403       FullInit = Owned(Binder->getSubExpr());
1404 
1405     Initializer = FullInit.take();
1406   }
1407 
1408   // Mark the new and delete operators as referenced.
1409   if (OperatorNew)
1410     MarkFunctionReferenced(StartLoc, OperatorNew);
1411   if (OperatorDelete)
1412     MarkFunctionReferenced(StartLoc, OperatorDelete);
1413 
1414   // C++0x [expr.new]p17:
1415   //   If the new expression creates an array of objects of class type,
1416   //   access and ambiguity control are done for the destructor.
1417   QualType BaseAllocType = Context.getBaseElementType(AllocType);
1418   if (ArraySize && !BaseAllocType->isDependentType()) {
1419     if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) {
1420       if (CXXDestructorDecl *dtor = LookupDestructor(
1421               cast<CXXRecordDecl>(BaseRecordType->getDecl()))) {
1422         MarkFunctionReferenced(StartLoc, dtor);
1423         CheckDestructorAccess(StartLoc, dtor,
1424                               PDiag(diag::err_access_dtor)
1425                                 << BaseAllocType);
1426         DiagnoseUseOfDecl(dtor, StartLoc);
1427       }
1428     }
1429   }
1430 
1431   return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
1432                                         OperatorDelete,
1433                                         UsualArrayDeleteWantsSize,
1434                                    llvm::makeArrayRef(PlaceArgs, NumPlaceArgs),
1435                                         TypeIdParens,
1436                                         ArraySize, initStyle, Initializer,
1437                                         ResultType, AllocTypeInfo,
1438                                         StartLoc, DirectInitRange));
1439 }
1440 
1441 /// \brief Checks that a type is suitable as the allocated type
1442 /// in a new-expression.
CheckAllocatedType(QualType AllocType,SourceLocation Loc,SourceRange R)1443 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
1444                               SourceRange R) {
1445   // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
1446   //   abstract class type or array thereof.
1447   if (AllocType->isFunctionType())
1448     return Diag(Loc, diag::err_bad_new_type)
1449       << AllocType << 0 << R;
1450   else if (AllocType->isReferenceType())
1451     return Diag(Loc, diag::err_bad_new_type)
1452       << AllocType << 1 << R;
1453   else if (!AllocType->isDependentType() &&
1454            RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R))
1455     return true;
1456   else if (RequireNonAbstractType(Loc, AllocType,
1457                                   diag::err_allocation_of_abstract_type))
1458     return true;
1459   else if (AllocType->isVariablyModifiedType())
1460     return Diag(Loc, diag::err_variably_modified_new_type)
1461              << AllocType;
1462   else if (unsigned AddressSpace = AllocType.getAddressSpace())
1463     return Diag(Loc, diag::err_address_space_qualified_new)
1464       << AllocType.getUnqualifiedType() << AddressSpace;
1465   else if (getLangOpts().ObjCAutoRefCount) {
1466     if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
1467       QualType BaseAllocType = Context.getBaseElementType(AT);
1468       if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1469           BaseAllocType->isObjCLifetimeType())
1470         return Diag(Loc, diag::err_arc_new_array_without_ownership)
1471           << BaseAllocType;
1472     }
1473   }
1474 
1475   return false;
1476 }
1477 
1478 /// \brief Determine whether the given function is a non-placement
1479 /// deallocation function.
isNonPlacementDeallocationFunction(FunctionDecl * FD)1480 static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) {
1481   if (FD->isInvalidDecl())
1482     return false;
1483 
1484   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1485     return Method->isUsualDeallocationFunction();
1486 
1487   return ((FD->getOverloadedOperator() == OO_Delete ||
1488            FD->getOverloadedOperator() == OO_Array_Delete) &&
1489           FD->getNumParams() == 1);
1490 }
1491 
1492 /// FindAllocationFunctions - Finds the overloads of operator new and delete
1493 /// that are appropriate for the allocation.
FindAllocationFunctions(SourceLocation StartLoc,SourceRange Range,bool UseGlobal,QualType AllocType,bool IsArray,Expr ** PlaceArgs,unsigned NumPlaceArgs,FunctionDecl * & OperatorNew,FunctionDecl * & OperatorDelete)1494 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
1495                                    bool UseGlobal, QualType AllocType,
1496                                    bool IsArray, Expr **PlaceArgs,
1497                                    unsigned NumPlaceArgs,
1498                                    FunctionDecl *&OperatorNew,
1499                                    FunctionDecl *&OperatorDelete) {
1500   // --- Choosing an allocation function ---
1501   // C++ 5.3.4p8 - 14 & 18
1502   // 1) If UseGlobal is true, only look in the global scope. Else, also look
1503   //   in the scope of the allocated class.
1504   // 2) If an array size is given, look for operator new[], else look for
1505   //   operator new.
1506   // 3) The first argument is always size_t. Append the arguments from the
1507   //   placement form.
1508 
1509   SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
1510   // We don't care about the actual value of this argument.
1511   // FIXME: Should the Sema create the expression and embed it in the syntax
1512   // tree? Or should the consumer just recalculate the value?
1513   IntegerLiteral Size(Context, llvm::APInt::getNullValue(
1514                       Context.getTargetInfo().getPointerWidth(0)),
1515                       Context.getSizeType(),
1516                       SourceLocation());
1517   AllocArgs[0] = &Size;
1518   std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
1519 
1520   // C++ [expr.new]p8:
1521   //   If the allocated type is a non-array type, the allocation
1522   //   function's name is operator new and the deallocation function's
1523   //   name is operator delete. If the allocated type is an array
1524   //   type, the allocation function's name is operator new[] and the
1525   //   deallocation function's name is operator delete[].
1526   DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
1527                                         IsArray ? OO_Array_New : OO_New);
1528   DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1529                                         IsArray ? OO_Array_Delete : OO_Delete);
1530 
1531   QualType AllocElemType = Context.getBaseElementType(AllocType);
1532 
1533   if (AllocElemType->isRecordType() && !UseGlobal) {
1534     CXXRecordDecl *Record
1535       = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1536     if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1537                           AllocArgs.size(), Record, /*AllowMissing=*/true,
1538                           OperatorNew))
1539       return true;
1540   }
1541   if (!OperatorNew) {
1542     // Didn't find a member overload. Look for a global one.
1543     DeclareGlobalNewDelete();
1544     DeclContext *TUDecl = Context.getTranslationUnitDecl();
1545     if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1546                           AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
1547                           OperatorNew))
1548       return true;
1549   }
1550 
1551   // We don't need an operator delete if we're running under
1552   // -fno-exceptions.
1553   if (!getLangOpts().Exceptions) {
1554     OperatorDelete = 0;
1555     return false;
1556   }
1557 
1558   // FindAllocationOverload can change the passed in arguments, so we need to
1559   // copy them back.
1560   if (NumPlaceArgs > 0)
1561     std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs);
1562 
1563   // C++ [expr.new]p19:
1564   //
1565   //   If the new-expression begins with a unary :: operator, the
1566   //   deallocation function's name is looked up in the global
1567   //   scope. Otherwise, if the allocated type is a class type T or an
1568   //   array thereof, the deallocation function's name is looked up in
1569   //   the scope of T. If this lookup fails to find the name, or if
1570   //   the allocated type is not a class type or array thereof, the
1571   //   deallocation function's name is looked up in the global scope.
1572   LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
1573   if (AllocElemType->isRecordType() && !UseGlobal) {
1574     CXXRecordDecl *RD
1575       = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1576     LookupQualifiedName(FoundDelete, RD);
1577   }
1578   if (FoundDelete.isAmbiguous())
1579     return true; // FIXME: clean up expressions?
1580 
1581   if (FoundDelete.empty()) {
1582     DeclareGlobalNewDelete();
1583     LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
1584   }
1585 
1586   FoundDelete.suppressDiagnostics();
1587 
1588   SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
1589 
1590   // Whether we're looking for a placement operator delete is dictated
1591   // by whether we selected a placement operator new, not by whether
1592   // we had explicit placement arguments.  This matters for things like
1593   //   struct A { void *operator new(size_t, int = 0); ... };
1594   //   A *a = new A()
1595   bool isPlacementNew = (NumPlaceArgs > 0 || OperatorNew->param_size() != 1);
1596 
1597   if (isPlacementNew) {
1598     // C++ [expr.new]p20:
1599     //   A declaration of a placement deallocation function matches the
1600     //   declaration of a placement allocation function if it has the
1601     //   same number of parameters and, after parameter transformations
1602     //   (8.3.5), all parameter types except the first are
1603     //   identical. [...]
1604     //
1605     // To perform this comparison, we compute the function type that
1606     // the deallocation function should have, and use that type both
1607     // for template argument deduction and for comparison purposes.
1608     //
1609     // FIXME: this comparison should ignore CC and the like.
1610     QualType ExpectedFunctionType;
1611     {
1612       const FunctionProtoType *Proto
1613         = OperatorNew->getType()->getAs<FunctionProtoType>();
1614 
1615       SmallVector<QualType, 4> ArgTypes;
1616       ArgTypes.push_back(Context.VoidPtrTy);
1617       for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I)
1618         ArgTypes.push_back(Proto->getArgType(I));
1619 
1620       FunctionProtoType::ExtProtoInfo EPI;
1621       EPI.Variadic = Proto->isVariadic();
1622 
1623       ExpectedFunctionType
1624         = Context.getFunctionType(Context.VoidTy, ArgTypes.data(),
1625                                   ArgTypes.size(), EPI);
1626     }
1627 
1628     for (LookupResult::iterator D = FoundDelete.begin(),
1629                              DEnd = FoundDelete.end();
1630          D != DEnd; ++D) {
1631       FunctionDecl *Fn = 0;
1632       if (FunctionTemplateDecl *FnTmpl
1633             = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
1634         // Perform template argument deduction to try to match the
1635         // expected function type.
1636         TemplateDeductionInfo Info(Context, StartLoc);
1637         if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
1638           continue;
1639       } else
1640         Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
1641 
1642       if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
1643         Matches.push_back(std::make_pair(D.getPair(), Fn));
1644     }
1645   } else {
1646     // C++ [expr.new]p20:
1647     //   [...] Any non-placement deallocation function matches a
1648     //   non-placement allocation function. [...]
1649     for (LookupResult::iterator D = FoundDelete.begin(),
1650                              DEnd = FoundDelete.end();
1651          D != DEnd; ++D) {
1652       if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
1653         if (isNonPlacementDeallocationFunction(Fn))
1654           Matches.push_back(std::make_pair(D.getPair(), Fn));
1655     }
1656   }
1657 
1658   // C++ [expr.new]p20:
1659   //   [...] If the lookup finds a single matching deallocation
1660   //   function, that function will be called; otherwise, no
1661   //   deallocation function will be called.
1662   if (Matches.size() == 1) {
1663     OperatorDelete = Matches[0].second;
1664 
1665     // C++0x [expr.new]p20:
1666     //   If the lookup finds the two-parameter form of a usual
1667     //   deallocation function (3.7.4.2) and that function, considered
1668     //   as a placement deallocation function, would have been
1669     //   selected as a match for the allocation function, the program
1670     //   is ill-formed.
1671     if (NumPlaceArgs && getLangOpts().CPlusPlus0x &&
1672         isNonPlacementDeallocationFunction(OperatorDelete)) {
1673       Diag(StartLoc, diag::err_placement_new_non_placement_delete)
1674         << SourceRange(PlaceArgs[0]->getLocStart(),
1675                        PlaceArgs[NumPlaceArgs - 1]->getLocEnd());
1676       Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
1677         << DeleteName;
1678     } else {
1679       CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
1680                             Matches[0].first);
1681     }
1682   }
1683 
1684   return false;
1685 }
1686 
1687 /// FindAllocationOverload - Find an fitting overload for the allocation
1688 /// function in the specified scope.
FindAllocationOverload(SourceLocation StartLoc,SourceRange Range,DeclarationName Name,Expr ** Args,unsigned NumArgs,DeclContext * Ctx,bool AllowMissing,FunctionDecl * & Operator,bool Diagnose)1689 bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
1690                                   DeclarationName Name, Expr** Args,
1691                                   unsigned NumArgs, DeclContext *Ctx,
1692                                   bool AllowMissing, FunctionDecl *&Operator,
1693                                   bool Diagnose) {
1694   LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
1695   LookupQualifiedName(R, Ctx);
1696   if (R.empty()) {
1697     if (AllowMissing || !Diagnose)
1698       return false;
1699     return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1700       << Name << Range;
1701   }
1702 
1703   if (R.isAmbiguous())
1704     return true;
1705 
1706   R.suppressDiagnostics();
1707 
1708   OverloadCandidateSet Candidates(StartLoc);
1709   for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
1710        Alloc != AllocEnd; ++Alloc) {
1711     // Even member operator new/delete are implicitly treated as
1712     // static, so don't use AddMemberCandidate.
1713     NamedDecl *D = (*Alloc)->getUnderlyingDecl();
1714 
1715     if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
1716       AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
1717                                    /*ExplicitTemplateArgs=*/0,
1718                                    llvm::makeArrayRef(Args, NumArgs),
1719                                    Candidates,
1720                                    /*SuppressUserConversions=*/false);
1721       continue;
1722     }
1723 
1724     FunctionDecl *Fn = cast<FunctionDecl>(D);
1725     AddOverloadCandidate(Fn, Alloc.getPair(),
1726                          llvm::makeArrayRef(Args, NumArgs), Candidates,
1727                          /*SuppressUserConversions=*/false);
1728   }
1729 
1730   // Do the resolution.
1731   OverloadCandidateSet::iterator Best;
1732   switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
1733   case OR_Success: {
1734     // Got one!
1735     FunctionDecl *FnDecl = Best->Function;
1736     MarkFunctionReferenced(StartLoc, FnDecl);
1737     // The first argument is size_t, and the first parameter must be size_t,
1738     // too. This is checked on declaration and can be assumed. (It can't be
1739     // asserted on, though, since invalid decls are left in there.)
1740     // Watch out for variadic allocator function.
1741     unsigned NumArgsInFnDecl = FnDecl->getNumParams();
1742     for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) {
1743       InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1744                                                        FnDecl->getParamDecl(i));
1745 
1746       if (!Diagnose && !CanPerformCopyInitialization(Entity, Owned(Args[i])))
1747         return true;
1748 
1749       ExprResult Result
1750         = PerformCopyInitialization(Entity, SourceLocation(), Owned(Args[i]));
1751       if (Result.isInvalid())
1752         return true;
1753 
1754       Args[i] = Result.takeAs<Expr>();
1755     }
1756 
1757     Operator = FnDecl;
1758 
1759     if (CheckAllocationAccess(StartLoc, Range, R.getNamingClass(),
1760                               Best->FoundDecl, Diagnose) == AR_inaccessible)
1761       return true;
1762 
1763     return false;
1764   }
1765 
1766   case OR_No_Viable_Function:
1767     if (Diagnose) {
1768       Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1769         << Name << Range;
1770       Candidates.NoteCandidates(*this, OCD_AllCandidates,
1771                                 llvm::makeArrayRef(Args, NumArgs));
1772     }
1773     return true;
1774 
1775   case OR_Ambiguous:
1776     if (Diagnose) {
1777       Diag(StartLoc, diag::err_ovl_ambiguous_call)
1778         << Name << Range;
1779       Candidates.NoteCandidates(*this, OCD_ViableCandidates,
1780                                 llvm::makeArrayRef(Args, NumArgs));
1781     }
1782     return true;
1783 
1784   case OR_Deleted: {
1785     if (Diagnose) {
1786       Diag(StartLoc, diag::err_ovl_deleted_call)
1787         << Best->Function->isDeleted()
1788         << Name
1789         << getDeletedOrUnavailableSuffix(Best->Function)
1790         << Range;
1791       Candidates.NoteCandidates(*this, OCD_AllCandidates,
1792                                 llvm::makeArrayRef(Args, NumArgs));
1793     }
1794     return true;
1795   }
1796   }
1797   llvm_unreachable("Unreachable, bad result from BestViableFunction");
1798 }
1799 
1800 
1801 /// DeclareGlobalNewDelete - Declare the global forms of operator new and
1802 /// delete. These are:
1803 /// @code
1804 ///   // C++03:
1805 ///   void* operator new(std::size_t) throw(std::bad_alloc);
1806 ///   void* operator new[](std::size_t) throw(std::bad_alloc);
1807 ///   void operator delete(void *) throw();
1808 ///   void operator delete[](void *) throw();
1809 ///   // C++0x:
1810 ///   void* operator new(std::size_t);
1811 ///   void* operator new[](std::size_t);
1812 ///   void operator delete(void *);
1813 ///   void operator delete[](void *);
1814 /// @endcode
1815 /// C++0x operator delete is implicitly noexcept.
1816 /// Note that the placement and nothrow forms of new are *not* implicitly
1817 /// declared. Their use requires including \<new\>.
DeclareGlobalNewDelete()1818 void Sema::DeclareGlobalNewDelete() {
1819   if (GlobalNewDeleteDeclared)
1820     return;
1821 
1822   // C++ [basic.std.dynamic]p2:
1823   //   [...] The following allocation and deallocation functions (18.4) are
1824   //   implicitly declared in global scope in each translation unit of a
1825   //   program
1826   //
1827   //     C++03:
1828   //     void* operator new(std::size_t) throw(std::bad_alloc);
1829   //     void* operator new[](std::size_t) throw(std::bad_alloc);
1830   //     void  operator delete(void*) throw();
1831   //     void  operator delete[](void*) throw();
1832   //     C++0x:
1833   //     void* operator new(std::size_t);
1834   //     void* operator new[](std::size_t);
1835   //     void  operator delete(void*);
1836   //     void  operator delete[](void*);
1837   //
1838   //   These implicit declarations introduce only the function names operator
1839   //   new, operator new[], operator delete, operator delete[].
1840   //
1841   // Here, we need to refer to std::bad_alloc, so we will implicitly declare
1842   // "std" or "bad_alloc" as necessary to form the exception specification.
1843   // However, we do not make these implicit declarations visible to name
1844   // lookup.
1845   // Note that the C++0x versions of operator delete are deallocation functions,
1846   // and thus are implicitly noexcept.
1847   if (!StdBadAlloc && !getLangOpts().CPlusPlus0x) {
1848     // The "std::bad_alloc" class has not yet been declared, so build it
1849     // implicitly.
1850     StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
1851                                         getOrCreateStdNamespace(),
1852                                         SourceLocation(), SourceLocation(),
1853                                       &PP.getIdentifierTable().get("bad_alloc"),
1854                                         0);
1855     getStdBadAlloc()->setImplicit(true);
1856   }
1857 
1858   GlobalNewDeleteDeclared = true;
1859 
1860   QualType VoidPtr = Context.getPointerType(Context.VoidTy);
1861   QualType SizeT = Context.getSizeType();
1862   bool AssumeSaneOperatorNew = getLangOpts().AssumeSaneOperatorNew;
1863 
1864   DeclareGlobalAllocationFunction(
1865       Context.DeclarationNames.getCXXOperatorName(OO_New),
1866       VoidPtr, SizeT, AssumeSaneOperatorNew);
1867   DeclareGlobalAllocationFunction(
1868       Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
1869       VoidPtr, SizeT, AssumeSaneOperatorNew);
1870   DeclareGlobalAllocationFunction(
1871       Context.DeclarationNames.getCXXOperatorName(OO_Delete),
1872       Context.VoidTy, VoidPtr);
1873   DeclareGlobalAllocationFunction(
1874       Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
1875       Context.VoidTy, VoidPtr);
1876 }
1877 
1878 /// DeclareGlobalAllocationFunction - Declares a single implicit global
1879 /// allocation function if it doesn't already exist.
DeclareGlobalAllocationFunction(DeclarationName Name,QualType Return,QualType Argument,bool AddMallocAttr)1880 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
1881                                            QualType Return, QualType Argument,
1882                                            bool AddMallocAttr) {
1883   DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
1884 
1885   // Check if this function is already declared.
1886   {
1887     DeclContext::lookup_iterator Alloc, AllocEnd;
1888     for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name);
1889          Alloc != AllocEnd; ++Alloc) {
1890       // Only look at non-template functions, as it is the predefined,
1891       // non-templated allocation function we are trying to declare here.
1892       if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
1893         QualType InitialParamType =
1894           Context.getCanonicalType(
1895             Func->getParamDecl(0)->getType().getUnqualifiedType());
1896         // FIXME: Do we need to check for default arguments here?
1897         if (Func->getNumParams() == 1 && InitialParamType == Argument) {
1898           if(AddMallocAttr && !Func->hasAttr<MallocAttr>())
1899             Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1900           return;
1901         }
1902       }
1903     }
1904   }
1905 
1906   QualType BadAllocType;
1907   bool HasBadAllocExceptionSpec
1908     = (Name.getCXXOverloadedOperator() == OO_New ||
1909        Name.getCXXOverloadedOperator() == OO_Array_New);
1910   if (HasBadAllocExceptionSpec && !getLangOpts().CPlusPlus0x) {
1911     assert(StdBadAlloc && "Must have std::bad_alloc declared");
1912     BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
1913   }
1914 
1915   FunctionProtoType::ExtProtoInfo EPI;
1916   if (HasBadAllocExceptionSpec) {
1917     if (!getLangOpts().CPlusPlus0x) {
1918       EPI.ExceptionSpecType = EST_Dynamic;
1919       EPI.NumExceptions = 1;
1920       EPI.Exceptions = &BadAllocType;
1921     }
1922   } else {
1923     EPI.ExceptionSpecType = getLangOpts().CPlusPlus0x ?
1924                                 EST_BasicNoexcept : EST_DynamicNone;
1925   }
1926 
1927   QualType FnType = Context.getFunctionType(Return, &Argument, 1, EPI);
1928   FunctionDecl *Alloc =
1929     FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
1930                          SourceLocation(), Name,
1931                          FnType, /*TInfo=*/0, SC_None,
1932                          SC_None, false, true);
1933   Alloc->setImplicit();
1934 
1935   if (AddMallocAttr)
1936     Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1937 
1938   ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
1939                                            SourceLocation(), 0,
1940                                            Argument, /*TInfo=*/0,
1941                                            SC_None, SC_None, 0);
1942   Alloc->setParams(Param);
1943 
1944   // FIXME: Also add this declaration to the IdentifierResolver, but
1945   // make sure it is at the end of the chain to coincide with the
1946   // global scope.
1947   Context.getTranslationUnitDecl()->addDecl(Alloc);
1948 }
1949 
FindDeallocationFunction(SourceLocation StartLoc,CXXRecordDecl * RD,DeclarationName Name,FunctionDecl * & Operator,bool Diagnose)1950 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
1951                                     DeclarationName Name,
1952                                     FunctionDecl* &Operator, bool Diagnose) {
1953   LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
1954   // Try to find operator delete/operator delete[] in class scope.
1955   LookupQualifiedName(Found, RD);
1956 
1957   if (Found.isAmbiguous())
1958     return true;
1959 
1960   Found.suppressDiagnostics();
1961 
1962   SmallVector<DeclAccessPair,4> Matches;
1963   for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1964        F != FEnd; ++F) {
1965     NamedDecl *ND = (*F)->getUnderlyingDecl();
1966 
1967     // Ignore template operator delete members from the check for a usual
1968     // deallocation function.
1969     if (isa<FunctionTemplateDecl>(ND))
1970       continue;
1971 
1972     if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
1973       Matches.push_back(F.getPair());
1974   }
1975 
1976   // There's exactly one suitable operator;  pick it.
1977   if (Matches.size() == 1) {
1978     Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
1979 
1980     if (Operator->isDeleted()) {
1981       if (Diagnose) {
1982         Diag(StartLoc, diag::err_deleted_function_use);
1983         NoteDeletedFunction(Operator);
1984       }
1985       return true;
1986     }
1987 
1988     if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
1989                               Matches[0], Diagnose) == AR_inaccessible)
1990       return true;
1991 
1992     return false;
1993 
1994   // We found multiple suitable operators;  complain about the ambiguity.
1995   } else if (!Matches.empty()) {
1996     if (Diagnose) {
1997       Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
1998         << Name << RD;
1999 
2000       for (SmallVectorImpl<DeclAccessPair>::iterator
2001              F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
2002         Diag((*F)->getUnderlyingDecl()->getLocation(),
2003              diag::note_member_declared_here) << Name;
2004     }
2005     return true;
2006   }
2007 
2008   // We did find operator delete/operator delete[] declarations, but
2009   // none of them were suitable.
2010   if (!Found.empty()) {
2011     if (Diagnose) {
2012       Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
2013         << Name << RD;
2014 
2015       for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
2016            F != FEnd; ++F)
2017         Diag((*F)->getUnderlyingDecl()->getLocation(),
2018              diag::note_member_declared_here) << Name;
2019     }
2020     return true;
2021   }
2022 
2023   // Look for a global declaration.
2024   DeclareGlobalNewDelete();
2025   DeclContext *TUDecl = Context.getTranslationUnitDecl();
2026 
2027   CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
2028   Expr* DeallocArgs[1];
2029   DeallocArgs[0] = &Null;
2030   if (FindAllocationOverload(StartLoc, SourceRange(), Name,
2031                              DeallocArgs, 1, TUDecl, !Diagnose,
2032                              Operator, Diagnose))
2033     return true;
2034 
2035   assert(Operator && "Did not find a deallocation function!");
2036   return false;
2037 }
2038 
2039 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
2040 /// @code ::delete ptr; @endcode
2041 /// or
2042 /// @code delete [] ptr; @endcode
2043 ExprResult
ActOnCXXDelete(SourceLocation StartLoc,bool UseGlobal,bool ArrayForm,Expr * ExE)2044 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
2045                      bool ArrayForm, Expr *ExE) {
2046   // C++ [expr.delete]p1:
2047   //   The operand shall have a pointer type, or a class type having a single
2048   //   conversion function to a pointer type. The result has type void.
2049   //
2050   // DR599 amends "pointer type" to "pointer to object type" in both cases.
2051 
2052   ExprResult Ex = Owned(ExE);
2053   FunctionDecl *OperatorDelete = 0;
2054   bool ArrayFormAsWritten = ArrayForm;
2055   bool UsualArrayDeleteWantsSize = false;
2056 
2057   if (!Ex.get()->isTypeDependent()) {
2058     // Perform lvalue-to-rvalue cast, if needed.
2059     Ex = DefaultLvalueConversion(Ex.take());
2060 
2061     QualType Type = Ex.get()->getType();
2062 
2063     if (const RecordType *Record = Type->getAs<RecordType>()) {
2064       if (RequireCompleteType(StartLoc, Type,
2065                               diag::err_delete_incomplete_class_type))
2066         return ExprError();
2067 
2068       SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions;
2069 
2070       CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2071       const UnresolvedSetImpl *Conversions = RD->getVisibleConversionFunctions();
2072       for (UnresolvedSetImpl::iterator I = Conversions->begin(),
2073              E = Conversions->end(); I != E; ++I) {
2074         NamedDecl *D = I.getDecl();
2075         if (isa<UsingShadowDecl>(D))
2076           D = cast<UsingShadowDecl>(D)->getTargetDecl();
2077 
2078         // Skip over templated conversion functions; they aren't considered.
2079         if (isa<FunctionTemplateDecl>(D))
2080           continue;
2081 
2082         CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
2083 
2084         QualType ConvType = Conv->getConversionType().getNonReferenceType();
2085         if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
2086           if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
2087             ObjectPtrConversions.push_back(Conv);
2088       }
2089       if (ObjectPtrConversions.size() == 1) {
2090         // We have a single conversion to a pointer-to-object type. Perform
2091         // that conversion.
2092         // TODO: don't redo the conversion calculation.
2093         ExprResult Res =
2094           PerformImplicitConversion(Ex.get(),
2095                             ObjectPtrConversions.front()->getConversionType(),
2096                                     AA_Converting);
2097         if (Res.isUsable()) {
2098           Ex = Res;
2099           Type = Ex.get()->getType();
2100         }
2101       }
2102       else if (ObjectPtrConversions.size() > 1) {
2103         Diag(StartLoc, diag::err_ambiguous_delete_operand)
2104               << Type << Ex.get()->getSourceRange();
2105         for (unsigned i= 0; i < ObjectPtrConversions.size(); i++)
2106           NoteOverloadCandidate(ObjectPtrConversions[i]);
2107         return ExprError();
2108       }
2109     }
2110 
2111     if (!Type->isPointerType())
2112       return ExprError(Diag(StartLoc, diag::err_delete_operand)
2113         << Type << Ex.get()->getSourceRange());
2114 
2115     QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
2116     QualType PointeeElem = Context.getBaseElementType(Pointee);
2117 
2118     if (unsigned AddressSpace = Pointee.getAddressSpace())
2119       return Diag(Ex.get()->getLocStart(),
2120                   diag::err_address_space_qualified_delete)
2121                << Pointee.getUnqualifiedType() << AddressSpace;
2122 
2123     CXXRecordDecl *PointeeRD = 0;
2124     if (Pointee->isVoidType() && !isSFINAEContext()) {
2125       // The C++ standard bans deleting a pointer to a non-object type, which
2126       // effectively bans deletion of "void*". However, most compilers support
2127       // this, so we treat it as a warning unless we're in a SFINAE context.
2128       Diag(StartLoc, diag::ext_delete_void_ptr_operand)
2129         << Type << Ex.get()->getSourceRange();
2130     } else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
2131       return ExprError(Diag(StartLoc, diag::err_delete_operand)
2132         << Type << Ex.get()->getSourceRange());
2133     } else if (!Pointee->isDependentType()) {
2134       if (!RequireCompleteType(StartLoc, Pointee,
2135                                diag::warn_delete_incomplete, Ex.get())) {
2136         if (const RecordType *RT = PointeeElem->getAs<RecordType>())
2137           PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
2138       }
2139     }
2140 
2141     // C++ [expr.delete]p2:
2142     //   [Note: a pointer to a const type can be the operand of a
2143     //   delete-expression; it is not necessary to cast away the constness
2144     //   (5.2.11) of the pointer expression before it is used as the operand
2145     //   of the delete-expression. ]
2146 
2147     if (Pointee->isArrayType() && !ArrayForm) {
2148       Diag(StartLoc, diag::warn_delete_array_type)
2149           << Type << Ex.get()->getSourceRange()
2150           << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
2151       ArrayForm = true;
2152     }
2153 
2154     DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2155                                       ArrayForm ? OO_Array_Delete : OO_Delete);
2156 
2157     if (PointeeRD) {
2158       if (!UseGlobal &&
2159           FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
2160                                    OperatorDelete))
2161         return ExprError();
2162 
2163       // If we're allocating an array of records, check whether the
2164       // usual operator delete[] has a size_t parameter.
2165       if (ArrayForm) {
2166         // If the user specifically asked to use the global allocator,
2167         // we'll need to do the lookup into the class.
2168         if (UseGlobal)
2169           UsualArrayDeleteWantsSize =
2170             doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
2171 
2172         // Otherwise, the usual operator delete[] should be the
2173         // function we just found.
2174         else if (isa<CXXMethodDecl>(OperatorDelete))
2175           UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
2176       }
2177 
2178       if (!PointeeRD->hasIrrelevantDestructor())
2179         if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2180           MarkFunctionReferenced(StartLoc,
2181                                     const_cast<CXXDestructorDecl*>(Dtor));
2182           DiagnoseUseOfDecl(Dtor, StartLoc);
2183         }
2184 
2185       // C++ [expr.delete]p3:
2186       //   In the first alternative (delete object), if the static type of the
2187       //   object to be deleted is different from its dynamic type, the static
2188       //   type shall be a base class of the dynamic type of the object to be
2189       //   deleted and the static type shall have a virtual destructor or the
2190       //   behavior is undefined.
2191       //
2192       // Note: a final class cannot be derived from, no issue there
2193       if (PointeeRD->isPolymorphic() && !PointeeRD->hasAttr<FinalAttr>()) {
2194         CXXDestructorDecl *dtor = PointeeRD->getDestructor();
2195         if (dtor && !dtor->isVirtual()) {
2196           if (PointeeRD->isAbstract()) {
2197             // If the class is abstract, we warn by default, because we're
2198             // sure the code has undefined behavior.
2199             Diag(StartLoc, diag::warn_delete_abstract_non_virtual_dtor)
2200                 << PointeeElem;
2201           } else if (!ArrayForm) {
2202             // Otherwise, if this is not an array delete, it's a bit suspect,
2203             // but not necessarily wrong.
2204             Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem;
2205           }
2206         }
2207       }
2208 
2209     } else if (getLangOpts().ObjCAutoRefCount &&
2210                PointeeElem->isObjCLifetimeType() &&
2211                (PointeeElem.getObjCLifetime() == Qualifiers::OCL_Strong ||
2212                 PointeeElem.getObjCLifetime() == Qualifiers::OCL_Weak) &&
2213                ArrayForm) {
2214       Diag(StartLoc, diag::warn_err_new_delete_object_array)
2215         << 1 << PointeeElem;
2216     }
2217 
2218     if (!OperatorDelete) {
2219       // Look for a global declaration.
2220       DeclareGlobalNewDelete();
2221       DeclContext *TUDecl = Context.getTranslationUnitDecl();
2222       Expr *Arg = Ex.get();
2223       if (!Context.hasSameType(Arg->getType(), Context.VoidPtrTy))
2224         Arg = ImplicitCastExpr::Create(Context, Context.VoidPtrTy,
2225                                        CK_BitCast, Arg, 0, VK_RValue);
2226       if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
2227                                  &Arg, 1, TUDecl, /*AllowMissing=*/false,
2228                                  OperatorDelete))
2229         return ExprError();
2230     }
2231 
2232     MarkFunctionReferenced(StartLoc, OperatorDelete);
2233 
2234     // Check access and ambiguity of operator delete and destructor.
2235     if (PointeeRD) {
2236       if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2237           CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
2238                       PDiag(diag::err_access_dtor) << PointeeElem);
2239       }
2240     }
2241 
2242   }
2243 
2244   return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
2245                                            ArrayFormAsWritten,
2246                                            UsualArrayDeleteWantsSize,
2247                                            OperatorDelete, Ex.take(), StartLoc));
2248 }
2249 
2250 /// \brief Check the use of the given variable as a C++ condition in an if,
2251 /// while, do-while, or switch statement.
CheckConditionVariable(VarDecl * ConditionVar,SourceLocation StmtLoc,bool ConvertToBoolean)2252 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
2253                                         SourceLocation StmtLoc,
2254                                         bool ConvertToBoolean) {
2255   QualType T = ConditionVar->getType();
2256 
2257   // C++ [stmt.select]p2:
2258   //   The declarator shall not specify a function or an array.
2259   if (T->isFunctionType())
2260     return ExprError(Diag(ConditionVar->getLocation(),
2261                           diag::err_invalid_use_of_function_type)
2262                        << ConditionVar->getSourceRange());
2263   else if (T->isArrayType())
2264     return ExprError(Diag(ConditionVar->getLocation(),
2265                           diag::err_invalid_use_of_array_type)
2266                      << ConditionVar->getSourceRange());
2267 
2268   ExprResult Condition =
2269     Owned(DeclRefExpr::Create(Context, NestedNameSpecifierLoc(),
2270                               SourceLocation(),
2271                               ConditionVar,
2272                               /*enclosing*/ false,
2273                               ConditionVar->getLocation(),
2274                               ConditionVar->getType().getNonReferenceType(),
2275                               VK_LValue));
2276 
2277   MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get()));
2278 
2279   if (ConvertToBoolean) {
2280     Condition = CheckBooleanCondition(Condition.take(), StmtLoc);
2281     if (Condition.isInvalid())
2282       return ExprError();
2283   }
2284 
2285   return Condition;
2286 }
2287 
2288 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
CheckCXXBooleanCondition(Expr * CondExpr)2289 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) {
2290   // C++ 6.4p4:
2291   // The value of a condition that is an initialized declaration in a statement
2292   // other than a switch statement is the value of the declared variable
2293   // implicitly converted to type bool. If that conversion is ill-formed, the
2294   // program is ill-formed.
2295   // The value of a condition that is an expression is the value of the
2296   // expression, implicitly converted to bool.
2297   //
2298   return PerformContextuallyConvertToBool(CondExpr);
2299 }
2300 
2301 /// Helper function to determine whether this is the (deprecated) C++
2302 /// conversion from a string literal to a pointer to non-const char or
2303 /// non-const wchar_t (for narrow and wide string literals,
2304 /// respectively).
2305 bool
IsStringLiteralToNonConstPointerConversion(Expr * From,QualType ToType)2306 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
2307   // Look inside the implicit cast, if it exists.
2308   if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
2309     From = Cast->getSubExpr();
2310 
2311   // A string literal (2.13.4) that is not a wide string literal can
2312   // be converted to an rvalue of type "pointer to char"; a wide
2313   // string literal can be converted to an rvalue of type "pointer
2314   // to wchar_t" (C++ 4.2p2).
2315   if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
2316     if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
2317       if (const BuiltinType *ToPointeeType
2318           = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
2319         // This conversion is considered only when there is an
2320         // explicit appropriate pointer target type (C++ 4.2p2).
2321         if (!ToPtrType->getPointeeType().hasQualifiers()) {
2322           switch (StrLit->getKind()) {
2323             case StringLiteral::UTF8:
2324             case StringLiteral::UTF16:
2325             case StringLiteral::UTF32:
2326               // We don't allow UTF literals to be implicitly converted
2327               break;
2328             case StringLiteral::Ascii:
2329               return (ToPointeeType->getKind() == BuiltinType::Char_U ||
2330                       ToPointeeType->getKind() == BuiltinType::Char_S);
2331             case StringLiteral::Wide:
2332               return ToPointeeType->isWideCharType();
2333           }
2334         }
2335       }
2336 
2337   return false;
2338 }
2339 
BuildCXXCastArgument(Sema & S,SourceLocation CastLoc,QualType Ty,CastKind Kind,CXXMethodDecl * Method,DeclAccessPair FoundDecl,bool HadMultipleCandidates,Expr * From)2340 static ExprResult BuildCXXCastArgument(Sema &S,
2341                                        SourceLocation CastLoc,
2342                                        QualType Ty,
2343                                        CastKind Kind,
2344                                        CXXMethodDecl *Method,
2345                                        DeclAccessPair FoundDecl,
2346                                        bool HadMultipleCandidates,
2347                                        Expr *From) {
2348   switch (Kind) {
2349   default: llvm_unreachable("Unhandled cast kind!");
2350   case CK_ConstructorConversion: {
2351     CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
2352     SmallVector<Expr*, 8> ConstructorArgs;
2353 
2354     if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs))
2355       return ExprError();
2356 
2357     S.CheckConstructorAccess(CastLoc, Constructor,
2358                              InitializedEntity::InitializeTemporary(Ty),
2359                              Constructor->getAccess());
2360 
2361     ExprResult Result
2362       = S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
2363                                 ConstructorArgs,
2364                                 HadMultipleCandidates, /*ZeroInit*/ false,
2365                                 CXXConstructExpr::CK_Complete, SourceRange());
2366     if (Result.isInvalid())
2367       return ExprError();
2368 
2369     return S.MaybeBindToTemporary(Result.takeAs<Expr>());
2370   }
2371 
2372   case CK_UserDefinedConversion: {
2373     assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
2374 
2375     // Create an implicit call expr that calls it.
2376     CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
2377     ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
2378                                                  HadMultipleCandidates);
2379     if (Result.isInvalid())
2380       return ExprError();
2381     // Record usage of conversion in an implicit cast.
2382     Result = S.Owned(ImplicitCastExpr::Create(S.Context,
2383                                               Result.get()->getType(),
2384                                               CK_UserDefinedConversion,
2385                                               Result.get(), 0,
2386                                               Result.get()->getValueKind()));
2387 
2388     S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ 0, FoundDecl);
2389 
2390     return S.MaybeBindToTemporary(Result.get());
2391   }
2392   }
2393 }
2394 
2395 /// PerformImplicitConversion - Perform an implicit conversion of the
2396 /// expression From to the type ToType using the pre-computed implicit
2397 /// conversion sequence ICS. Returns the converted
2398 /// expression. Action is the kind of conversion we're performing,
2399 /// used in the error message.
2400 ExprResult
PerformImplicitConversion(Expr * From,QualType ToType,const ImplicitConversionSequence & ICS,AssignmentAction Action,CheckedConversionKind CCK)2401 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2402                                 const ImplicitConversionSequence &ICS,
2403                                 AssignmentAction Action,
2404                                 CheckedConversionKind CCK) {
2405   switch (ICS.getKind()) {
2406   case ImplicitConversionSequence::StandardConversion: {
2407     ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
2408                                                Action, CCK);
2409     if (Res.isInvalid())
2410       return ExprError();
2411     From = Res.take();
2412     break;
2413   }
2414 
2415   case ImplicitConversionSequence::UserDefinedConversion: {
2416 
2417       FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
2418       CastKind CastKind;
2419       QualType BeforeToType;
2420       assert(FD && "FIXME: aggregate initialization from init list");
2421       if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
2422         CastKind = CK_UserDefinedConversion;
2423 
2424         // If the user-defined conversion is specified by a conversion function,
2425         // the initial standard conversion sequence converts the source type to
2426         // the implicit object parameter of the conversion function.
2427         BeforeToType = Context.getTagDeclType(Conv->getParent());
2428       } else {
2429         const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
2430         CastKind = CK_ConstructorConversion;
2431         // Do no conversion if dealing with ... for the first conversion.
2432         if (!ICS.UserDefined.EllipsisConversion) {
2433           // If the user-defined conversion is specified by a constructor, the
2434           // initial standard conversion sequence converts the source type to the
2435           // type required by the argument of the constructor
2436           BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
2437         }
2438       }
2439       // Watch out for elipsis conversion.
2440       if (!ICS.UserDefined.EllipsisConversion) {
2441         ExprResult Res =
2442           PerformImplicitConversion(From, BeforeToType,
2443                                     ICS.UserDefined.Before, AA_Converting,
2444                                     CCK);
2445         if (Res.isInvalid())
2446           return ExprError();
2447         From = Res.take();
2448       }
2449 
2450       ExprResult CastArg
2451         = BuildCXXCastArgument(*this,
2452                                From->getLocStart(),
2453                                ToType.getNonReferenceType(),
2454                                CastKind, cast<CXXMethodDecl>(FD),
2455                                ICS.UserDefined.FoundConversionFunction,
2456                                ICS.UserDefined.HadMultipleCandidates,
2457                                From);
2458 
2459       if (CastArg.isInvalid())
2460         return ExprError();
2461 
2462       From = CastArg.take();
2463 
2464       return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
2465                                        AA_Converting, CCK);
2466   }
2467 
2468   case ImplicitConversionSequence::AmbiguousConversion:
2469     ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
2470                           PDiag(diag::err_typecheck_ambiguous_condition)
2471                             << From->getSourceRange());
2472      return ExprError();
2473 
2474   case ImplicitConversionSequence::EllipsisConversion:
2475     llvm_unreachable("Cannot perform an ellipsis conversion");
2476 
2477   case ImplicitConversionSequence::BadConversion:
2478     return ExprError();
2479   }
2480 
2481   // Everything went well.
2482   return Owned(From);
2483 }
2484 
2485 /// PerformImplicitConversion - Perform an implicit conversion of the
2486 /// expression From to the type ToType by following the standard
2487 /// conversion sequence SCS. Returns the converted
2488 /// expression. Flavor is the context in which we're performing this
2489 /// conversion, for use in error messages.
2490 ExprResult
PerformImplicitConversion(Expr * From,QualType ToType,const StandardConversionSequence & SCS,AssignmentAction Action,CheckedConversionKind CCK)2491 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2492                                 const StandardConversionSequence& SCS,
2493                                 AssignmentAction Action,
2494                                 CheckedConversionKind CCK) {
2495   bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
2496 
2497   // Overall FIXME: we are recomputing too many types here and doing far too
2498   // much extra work. What this means is that we need to keep track of more
2499   // information that is computed when we try the implicit conversion initially,
2500   // so that we don't need to recompute anything here.
2501   QualType FromType = From->getType();
2502 
2503   if (SCS.CopyConstructor) {
2504     // FIXME: When can ToType be a reference type?
2505     assert(!ToType->isReferenceType());
2506     if (SCS.Second == ICK_Derived_To_Base) {
2507       SmallVector<Expr*, 8> ConstructorArgs;
2508       if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
2509                                   From, /*FIXME:ConstructLoc*/SourceLocation(),
2510                                   ConstructorArgs))
2511         return ExprError();
2512       return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2513                                    ToType, SCS.CopyConstructor,
2514                                    ConstructorArgs,
2515                                    /*HadMultipleCandidates*/ false,
2516                                    /*ZeroInit*/ false,
2517                                    CXXConstructExpr::CK_Complete,
2518                                    SourceRange());
2519     }
2520     return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2521                                  ToType, SCS.CopyConstructor,
2522                                  From, /*HadMultipleCandidates*/ false,
2523                                  /*ZeroInit*/ false,
2524                                  CXXConstructExpr::CK_Complete,
2525                                  SourceRange());
2526   }
2527 
2528   // Resolve overloaded function references.
2529   if (Context.hasSameType(FromType, Context.OverloadTy)) {
2530     DeclAccessPair Found;
2531     FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
2532                                                           true, Found);
2533     if (!Fn)
2534       return ExprError();
2535 
2536     if (DiagnoseUseOfDecl(Fn, From->getLocStart()))
2537       return ExprError();
2538 
2539     From = FixOverloadedFunctionReference(From, Found, Fn);
2540     FromType = From->getType();
2541   }
2542 
2543   // Perform the first implicit conversion.
2544   switch (SCS.First) {
2545   case ICK_Identity:
2546     // Nothing to do.
2547     break;
2548 
2549   case ICK_Lvalue_To_Rvalue: {
2550     assert(From->getObjectKind() != OK_ObjCProperty);
2551     FromType = FromType.getUnqualifiedType();
2552     ExprResult FromRes = DefaultLvalueConversion(From);
2553     assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!");
2554     From = FromRes.take();
2555     break;
2556   }
2557 
2558   case ICK_Array_To_Pointer:
2559     FromType = Context.getArrayDecayedType(FromType);
2560     From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
2561                              VK_RValue, /*BasePath=*/0, CCK).take();
2562     break;
2563 
2564   case ICK_Function_To_Pointer:
2565     FromType = Context.getPointerType(FromType);
2566     From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
2567                              VK_RValue, /*BasePath=*/0, CCK).take();
2568     break;
2569 
2570   default:
2571     llvm_unreachable("Improper first standard conversion");
2572   }
2573 
2574   // Perform the second implicit conversion
2575   switch (SCS.Second) {
2576   case ICK_Identity:
2577     // If both sides are functions (or pointers/references to them), there could
2578     // be incompatible exception declarations.
2579     if (CheckExceptionSpecCompatibility(From, ToType))
2580       return ExprError();
2581     // Nothing else to do.
2582     break;
2583 
2584   case ICK_NoReturn_Adjustment:
2585     // If both sides are functions (or pointers/references to them), there could
2586     // be incompatible exception declarations.
2587     if (CheckExceptionSpecCompatibility(From, ToType))
2588       return ExprError();
2589 
2590     From = ImpCastExprToType(From, ToType, CK_NoOp,
2591                              VK_RValue, /*BasePath=*/0, CCK).take();
2592     break;
2593 
2594   case ICK_Integral_Promotion:
2595   case ICK_Integral_Conversion:
2596     From = ImpCastExprToType(From, ToType, CK_IntegralCast,
2597                              VK_RValue, /*BasePath=*/0, CCK).take();
2598     break;
2599 
2600   case ICK_Floating_Promotion:
2601   case ICK_Floating_Conversion:
2602     From = ImpCastExprToType(From, ToType, CK_FloatingCast,
2603                              VK_RValue, /*BasePath=*/0, CCK).take();
2604     break;
2605 
2606   case ICK_Complex_Promotion:
2607   case ICK_Complex_Conversion: {
2608     QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
2609     QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
2610     CastKind CK;
2611     if (FromEl->isRealFloatingType()) {
2612       if (ToEl->isRealFloatingType())
2613         CK = CK_FloatingComplexCast;
2614       else
2615         CK = CK_FloatingComplexToIntegralComplex;
2616     } else if (ToEl->isRealFloatingType()) {
2617       CK = CK_IntegralComplexToFloatingComplex;
2618     } else {
2619       CK = CK_IntegralComplexCast;
2620     }
2621     From = ImpCastExprToType(From, ToType, CK,
2622                              VK_RValue, /*BasePath=*/0, CCK).take();
2623     break;
2624   }
2625 
2626   case ICK_Floating_Integral:
2627     if (ToType->isRealFloatingType())
2628       From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
2629                                VK_RValue, /*BasePath=*/0, CCK).take();
2630     else
2631       From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
2632                                VK_RValue, /*BasePath=*/0, CCK).take();
2633     break;
2634 
2635   case ICK_Compatible_Conversion:
2636       From = ImpCastExprToType(From, ToType, CK_NoOp,
2637                                VK_RValue, /*BasePath=*/0, CCK).take();
2638     break;
2639 
2640   case ICK_Writeback_Conversion:
2641   case ICK_Pointer_Conversion: {
2642     if (SCS.IncompatibleObjC && Action != AA_Casting) {
2643       // Diagnose incompatible Objective-C conversions
2644       if (Action == AA_Initializing || Action == AA_Assigning)
2645         Diag(From->getLocStart(),
2646              diag::ext_typecheck_convert_incompatible_pointer)
2647           << ToType << From->getType() << Action
2648           << From->getSourceRange() << 0;
2649       else
2650         Diag(From->getLocStart(),
2651              diag::ext_typecheck_convert_incompatible_pointer)
2652           << From->getType() << ToType << Action
2653           << From->getSourceRange() << 0;
2654 
2655       if (From->getType()->isObjCObjectPointerType() &&
2656           ToType->isObjCObjectPointerType())
2657         EmitRelatedResultTypeNote(From);
2658     }
2659     else if (getLangOpts().ObjCAutoRefCount &&
2660              !CheckObjCARCUnavailableWeakConversion(ToType,
2661                                                     From->getType())) {
2662       if (Action == AA_Initializing)
2663         Diag(From->getLocStart(),
2664              diag::err_arc_weak_unavailable_assign);
2665       else
2666         Diag(From->getLocStart(),
2667              diag::err_arc_convesion_of_weak_unavailable)
2668           << (Action == AA_Casting) << From->getType() << ToType
2669           << From->getSourceRange();
2670     }
2671 
2672     CastKind Kind = CK_Invalid;
2673     CXXCastPath BasePath;
2674     if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
2675       return ExprError();
2676 
2677     // Make sure we extend blocks if necessary.
2678     // FIXME: doing this here is really ugly.
2679     if (Kind == CK_BlockPointerToObjCPointerCast) {
2680       ExprResult E = From;
2681       (void) PrepareCastToObjCObjectPointer(E);
2682       From = E.take();
2683     }
2684 
2685     From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2686              .take();
2687     break;
2688   }
2689 
2690   case ICK_Pointer_Member: {
2691     CastKind Kind = CK_Invalid;
2692     CXXCastPath BasePath;
2693     if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
2694       return ExprError();
2695     if (CheckExceptionSpecCompatibility(From, ToType))
2696       return ExprError();
2697     From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2698              .take();
2699     break;
2700   }
2701 
2702   case ICK_Boolean_Conversion:
2703     // Perform half-to-boolean conversion via float.
2704     if (From->getType()->isHalfType()) {
2705       From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).take();
2706       FromType = Context.FloatTy;
2707     }
2708 
2709     From = ImpCastExprToType(From, Context.BoolTy,
2710                              ScalarTypeToBooleanCastKind(FromType),
2711                              VK_RValue, /*BasePath=*/0, CCK).take();
2712     break;
2713 
2714   case ICK_Derived_To_Base: {
2715     CXXCastPath BasePath;
2716     if (CheckDerivedToBaseConversion(From->getType(),
2717                                      ToType.getNonReferenceType(),
2718                                      From->getLocStart(),
2719                                      From->getSourceRange(),
2720                                      &BasePath,
2721                                      CStyle))
2722       return ExprError();
2723 
2724     From = ImpCastExprToType(From, ToType.getNonReferenceType(),
2725                       CK_DerivedToBase, From->getValueKind(),
2726                       &BasePath, CCK).take();
2727     break;
2728   }
2729 
2730   case ICK_Vector_Conversion:
2731     From = ImpCastExprToType(From, ToType, CK_BitCast,
2732                              VK_RValue, /*BasePath=*/0, CCK).take();
2733     break;
2734 
2735   case ICK_Vector_Splat:
2736     From = ImpCastExprToType(From, ToType, CK_VectorSplat,
2737                              VK_RValue, /*BasePath=*/0, CCK).take();
2738     break;
2739 
2740   case ICK_Complex_Real:
2741     // Case 1.  x -> _Complex y
2742     if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
2743       QualType ElType = ToComplex->getElementType();
2744       bool isFloatingComplex = ElType->isRealFloatingType();
2745 
2746       // x -> y
2747       if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
2748         // do nothing
2749       } else if (From->getType()->isRealFloatingType()) {
2750         From = ImpCastExprToType(From, ElType,
2751                 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).take();
2752       } else {
2753         assert(From->getType()->isIntegerType());
2754         From = ImpCastExprToType(From, ElType,
2755                 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).take();
2756       }
2757       // y -> _Complex y
2758       From = ImpCastExprToType(From, ToType,
2759                    isFloatingComplex ? CK_FloatingRealToComplex
2760                                      : CK_IntegralRealToComplex).take();
2761 
2762     // Case 2.  _Complex x -> y
2763     } else {
2764       const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
2765       assert(FromComplex);
2766 
2767       QualType ElType = FromComplex->getElementType();
2768       bool isFloatingComplex = ElType->isRealFloatingType();
2769 
2770       // _Complex x -> x
2771       From = ImpCastExprToType(From, ElType,
2772                    isFloatingComplex ? CK_FloatingComplexToReal
2773                                      : CK_IntegralComplexToReal,
2774                                VK_RValue, /*BasePath=*/0, CCK).take();
2775 
2776       // x -> y
2777       if (Context.hasSameUnqualifiedType(ElType, ToType)) {
2778         // do nothing
2779       } else if (ToType->isRealFloatingType()) {
2780         From = ImpCastExprToType(From, ToType,
2781                    isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
2782                                  VK_RValue, /*BasePath=*/0, CCK).take();
2783       } else {
2784         assert(ToType->isIntegerType());
2785         From = ImpCastExprToType(From, ToType,
2786                    isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
2787                                  VK_RValue, /*BasePath=*/0, CCK).take();
2788       }
2789     }
2790     break;
2791 
2792   case ICK_Block_Pointer_Conversion: {
2793     From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
2794                              VK_RValue, /*BasePath=*/0, CCK).take();
2795     break;
2796   }
2797 
2798   case ICK_TransparentUnionConversion: {
2799     ExprResult FromRes = Owned(From);
2800     Sema::AssignConvertType ConvTy =
2801       CheckTransparentUnionArgumentConstraints(ToType, FromRes);
2802     if (FromRes.isInvalid())
2803       return ExprError();
2804     From = FromRes.take();
2805     assert ((ConvTy == Sema::Compatible) &&
2806             "Improper transparent union conversion");
2807     (void)ConvTy;
2808     break;
2809   }
2810 
2811   case ICK_Lvalue_To_Rvalue:
2812   case ICK_Array_To_Pointer:
2813   case ICK_Function_To_Pointer:
2814   case ICK_Qualification:
2815   case ICK_Num_Conversion_Kinds:
2816     llvm_unreachable("Improper second standard conversion");
2817   }
2818 
2819   switch (SCS.Third) {
2820   case ICK_Identity:
2821     // Nothing to do.
2822     break;
2823 
2824   case ICK_Qualification: {
2825     // The qualification keeps the category of the inner expression, unless the
2826     // target type isn't a reference.
2827     ExprValueKind VK = ToType->isReferenceType() ?
2828                                   From->getValueKind() : VK_RValue;
2829     From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
2830                              CK_NoOp, VK, /*BasePath=*/0, CCK).take();
2831 
2832     if (SCS.DeprecatedStringLiteralToCharPtr &&
2833         !getLangOpts().WritableStrings)
2834       Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion)
2835         << ToType.getNonReferenceType();
2836 
2837     break;
2838     }
2839 
2840   default:
2841     llvm_unreachable("Improper third standard conversion");
2842   }
2843 
2844   // If this conversion sequence involved a scalar -> atomic conversion, perform
2845   // that conversion now.
2846   if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>())
2847     if (Context.hasSameType(ToAtomic->getValueType(), From->getType()))
2848       From = ImpCastExprToType(From, ToType, CK_NonAtomicToAtomic, VK_RValue, 0,
2849                                CCK).take();
2850 
2851   return Owned(From);
2852 }
2853 
ActOnUnaryTypeTrait(UnaryTypeTrait UTT,SourceLocation KWLoc,ParsedType Ty,SourceLocation RParen)2854 ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait UTT,
2855                                      SourceLocation KWLoc,
2856                                      ParsedType Ty,
2857                                      SourceLocation RParen) {
2858   TypeSourceInfo *TSInfo;
2859   QualType T = GetTypeFromParser(Ty, &TSInfo);
2860 
2861   if (!TSInfo)
2862     TSInfo = Context.getTrivialTypeSourceInfo(T);
2863   return BuildUnaryTypeTrait(UTT, KWLoc, TSInfo, RParen);
2864 }
2865 
2866 /// \brief Check the completeness of a type in a unary type trait.
2867 ///
2868 /// If the particular type trait requires a complete type, tries to complete
2869 /// it. If completing the type fails, a diagnostic is emitted and false
2870 /// returned. If completing the type succeeds or no completion was required,
2871 /// returns true.
CheckUnaryTypeTraitTypeCompleteness(Sema & S,UnaryTypeTrait UTT,SourceLocation Loc,QualType ArgTy)2872 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S,
2873                                                 UnaryTypeTrait UTT,
2874                                                 SourceLocation Loc,
2875                                                 QualType ArgTy) {
2876   // C++0x [meta.unary.prop]p3:
2877   //   For all of the class templates X declared in this Clause, instantiating
2878   //   that template with a template argument that is a class template
2879   //   specialization may result in the implicit instantiation of the template
2880   //   argument if and only if the semantics of X require that the argument
2881   //   must be a complete type.
2882   // We apply this rule to all the type trait expressions used to implement
2883   // these class templates. We also try to follow any GCC documented behavior
2884   // in these expressions to ensure portability of standard libraries.
2885   switch (UTT) {
2886     // is_complete_type somewhat obviously cannot require a complete type.
2887   case UTT_IsCompleteType:
2888     // Fall-through
2889 
2890     // These traits are modeled on the type predicates in C++0x
2891     // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
2892     // requiring a complete type, as whether or not they return true cannot be
2893     // impacted by the completeness of the type.
2894   case UTT_IsVoid:
2895   case UTT_IsIntegral:
2896   case UTT_IsFloatingPoint:
2897   case UTT_IsArray:
2898   case UTT_IsPointer:
2899   case UTT_IsLvalueReference:
2900   case UTT_IsRvalueReference:
2901   case UTT_IsMemberFunctionPointer:
2902   case UTT_IsMemberObjectPointer:
2903   case UTT_IsEnum:
2904   case UTT_IsUnion:
2905   case UTT_IsClass:
2906   case UTT_IsFunction:
2907   case UTT_IsReference:
2908   case UTT_IsArithmetic:
2909   case UTT_IsFundamental:
2910   case UTT_IsObject:
2911   case UTT_IsScalar:
2912   case UTT_IsCompound:
2913   case UTT_IsMemberPointer:
2914     // Fall-through
2915 
2916     // These traits are modeled on type predicates in C++0x [meta.unary.prop]
2917     // which requires some of its traits to have the complete type. However,
2918     // the completeness of the type cannot impact these traits' semantics, and
2919     // so they don't require it. This matches the comments on these traits in
2920     // Table 49.
2921   case UTT_IsConst:
2922   case UTT_IsVolatile:
2923   case UTT_IsSigned:
2924   case UTT_IsUnsigned:
2925     return true;
2926 
2927     // C++0x [meta.unary.prop] Table 49 requires the following traits to be
2928     // applied to a complete type.
2929   case UTT_IsTrivial:
2930   case UTT_IsTriviallyCopyable:
2931   case UTT_IsStandardLayout:
2932   case UTT_IsPOD:
2933   case UTT_IsLiteral:
2934   case UTT_IsEmpty:
2935   case UTT_IsPolymorphic:
2936   case UTT_IsAbstract:
2937     // Fall-through
2938 
2939   // These traits require a complete type.
2940   case UTT_IsFinal:
2941 
2942     // These trait expressions are designed to help implement predicates in
2943     // [meta.unary.prop] despite not being named the same. They are specified
2944     // by both GCC and the Embarcadero C++ compiler, and require the complete
2945     // type due to the overarching C++0x type predicates being implemented
2946     // requiring the complete type.
2947   case UTT_HasNothrowAssign:
2948   case UTT_HasNothrowConstructor:
2949   case UTT_HasNothrowCopy:
2950   case UTT_HasTrivialAssign:
2951   case UTT_HasTrivialDefaultConstructor:
2952   case UTT_HasTrivialCopy:
2953   case UTT_HasTrivialDestructor:
2954   case UTT_HasVirtualDestructor:
2955     // Arrays of unknown bound are expressly allowed.
2956     QualType ElTy = ArgTy;
2957     if (ArgTy->isIncompleteArrayType())
2958       ElTy = S.Context.getAsArrayType(ArgTy)->getElementType();
2959 
2960     // The void type is expressly allowed.
2961     if (ElTy->isVoidType())
2962       return true;
2963 
2964     return !S.RequireCompleteType(
2965       Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr);
2966   }
2967   llvm_unreachable("Type trait not handled by switch");
2968 }
2969 
EvaluateUnaryTypeTrait(Sema & Self,UnaryTypeTrait UTT,SourceLocation KeyLoc,QualType T)2970 static bool EvaluateUnaryTypeTrait(Sema &Self, UnaryTypeTrait UTT,
2971                                    SourceLocation KeyLoc, QualType T) {
2972   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
2973 
2974   ASTContext &C = Self.Context;
2975   switch(UTT) {
2976     // Type trait expressions corresponding to the primary type category
2977     // predicates in C++0x [meta.unary.cat].
2978   case UTT_IsVoid:
2979     return T->isVoidType();
2980   case UTT_IsIntegral:
2981     return T->isIntegralType(C);
2982   case UTT_IsFloatingPoint:
2983     return T->isFloatingType();
2984   case UTT_IsArray:
2985     return T->isArrayType();
2986   case UTT_IsPointer:
2987     return T->isPointerType();
2988   case UTT_IsLvalueReference:
2989     return T->isLValueReferenceType();
2990   case UTT_IsRvalueReference:
2991     return T->isRValueReferenceType();
2992   case UTT_IsMemberFunctionPointer:
2993     return T->isMemberFunctionPointerType();
2994   case UTT_IsMemberObjectPointer:
2995     return T->isMemberDataPointerType();
2996   case UTT_IsEnum:
2997     return T->isEnumeralType();
2998   case UTT_IsUnion:
2999     return T->isUnionType();
3000   case UTT_IsClass:
3001     return T->isClassType() || T->isStructureType() || T->isInterfaceType();
3002   case UTT_IsFunction:
3003     return T->isFunctionType();
3004 
3005     // Type trait expressions which correspond to the convenient composition
3006     // predicates in C++0x [meta.unary.comp].
3007   case UTT_IsReference:
3008     return T->isReferenceType();
3009   case UTT_IsArithmetic:
3010     return T->isArithmeticType() && !T->isEnumeralType();
3011   case UTT_IsFundamental:
3012     return T->isFundamentalType();
3013   case UTT_IsObject:
3014     return T->isObjectType();
3015   case UTT_IsScalar:
3016     // Note: semantic analysis depends on Objective-C lifetime types to be
3017     // considered scalar types. However, such types do not actually behave
3018     // like scalar types at run time (since they may require retain/release
3019     // operations), so we report them as non-scalar.
3020     if (T->isObjCLifetimeType()) {
3021       switch (T.getObjCLifetime()) {
3022       case Qualifiers::OCL_None:
3023       case Qualifiers::OCL_ExplicitNone:
3024         return true;
3025 
3026       case Qualifiers::OCL_Strong:
3027       case Qualifiers::OCL_Weak:
3028       case Qualifiers::OCL_Autoreleasing:
3029         return false;
3030       }
3031     }
3032 
3033     return T->isScalarType();
3034   case UTT_IsCompound:
3035     return T->isCompoundType();
3036   case UTT_IsMemberPointer:
3037     return T->isMemberPointerType();
3038 
3039     // Type trait expressions which correspond to the type property predicates
3040     // in C++0x [meta.unary.prop].
3041   case UTT_IsConst:
3042     return T.isConstQualified();
3043   case UTT_IsVolatile:
3044     return T.isVolatileQualified();
3045   case UTT_IsTrivial:
3046     return T.isTrivialType(Self.Context);
3047   case UTT_IsTriviallyCopyable:
3048     return T.isTriviallyCopyableType(Self.Context);
3049   case UTT_IsStandardLayout:
3050     return T->isStandardLayoutType();
3051   case UTT_IsPOD:
3052     return T.isPODType(Self.Context);
3053   case UTT_IsLiteral:
3054     return T->isLiteralType();
3055   case UTT_IsEmpty:
3056     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3057       return !RD->isUnion() && RD->isEmpty();
3058     return false;
3059   case UTT_IsPolymorphic:
3060     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3061       return RD->isPolymorphic();
3062     return false;
3063   case UTT_IsAbstract:
3064     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3065       return RD->isAbstract();
3066     return false;
3067   case UTT_IsFinal:
3068     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3069       return RD->hasAttr<FinalAttr>();
3070     return false;
3071   case UTT_IsSigned:
3072     return T->isSignedIntegerType();
3073   case UTT_IsUnsigned:
3074     return T->isUnsignedIntegerType();
3075 
3076     // Type trait expressions which query classes regarding their construction,
3077     // destruction, and copying. Rather than being based directly on the
3078     // related type predicates in the standard, they are specified by both
3079     // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
3080     // specifications.
3081     //
3082     //   1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
3083     //   2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
3084   case UTT_HasTrivialDefaultConstructor:
3085     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3086     //   If __is_pod (type) is true then the trait is true, else if type is
3087     //   a cv class or union type (or array thereof) with a trivial default
3088     //   constructor ([class.ctor]) then the trait is true, else it is false.
3089     if (T.isPODType(Self.Context))
3090       return true;
3091     if (const RecordType *RT =
3092           C.getBaseElementType(T)->getAs<RecordType>())
3093       return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDefaultConstructor();
3094     return false;
3095   case UTT_HasTrivialCopy:
3096     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3097     //   If __is_pod (type) is true or type is a reference type then
3098     //   the trait is true, else if type is a cv class or union type
3099     //   with a trivial copy constructor ([class.copy]) then the trait
3100     //   is true, else it is false.
3101     if (T.isPODType(Self.Context) || T->isReferenceType())
3102       return true;
3103     if (const RecordType *RT = T->getAs<RecordType>())
3104       return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyConstructor();
3105     return false;
3106   case UTT_HasTrivialAssign:
3107     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3108     //   If type is const qualified or is a reference type then the
3109     //   trait is false. Otherwise if __is_pod (type) is true then the
3110     //   trait is true, else if type is a cv class or union type with
3111     //   a trivial copy assignment ([class.copy]) then the trait is
3112     //   true, else it is false.
3113     // Note: the const and reference restrictions are interesting,
3114     // given that const and reference members don't prevent a class
3115     // from having a trivial copy assignment operator (but do cause
3116     // errors if the copy assignment operator is actually used, q.v.
3117     // [class.copy]p12).
3118 
3119     if (C.getBaseElementType(T).isConstQualified())
3120       return false;
3121     if (T.isPODType(Self.Context))
3122       return true;
3123     if (const RecordType *RT = T->getAs<RecordType>())
3124       return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyAssignment();
3125     return false;
3126   case UTT_HasTrivialDestructor:
3127     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3128     //   If __is_pod (type) is true or type is a reference type
3129     //   then the trait is true, else if type is a cv class or union
3130     //   type (or array thereof) with a trivial destructor
3131     //   ([class.dtor]) then the trait is true, else it is
3132     //   false.
3133     if (T.isPODType(Self.Context) || T->isReferenceType())
3134       return true;
3135 
3136     // Objective-C++ ARC: autorelease types don't require destruction.
3137     if (T->isObjCLifetimeType() &&
3138         T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
3139       return true;
3140 
3141     if (const RecordType *RT =
3142           C.getBaseElementType(T)->getAs<RecordType>())
3143       return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDestructor();
3144     return false;
3145   // TODO: Propagate nothrowness for implicitly declared special members.
3146   case UTT_HasNothrowAssign:
3147     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3148     //   If type is const qualified or is a reference type then the
3149     //   trait is false. Otherwise if __has_trivial_assign (type)
3150     //   is true then the trait is true, else if type is a cv class
3151     //   or union type with copy assignment operators that are known
3152     //   not to throw an exception then the trait is true, else it is
3153     //   false.
3154     if (C.getBaseElementType(T).isConstQualified())
3155       return false;
3156     if (T->isReferenceType())
3157       return false;
3158     if (T.isPODType(Self.Context) || T->isObjCLifetimeType())
3159       return true;
3160     if (const RecordType *RT = T->getAs<RecordType>()) {
3161       CXXRecordDecl* RD = cast<CXXRecordDecl>(RT->getDecl());
3162       if (RD->hasTrivialCopyAssignment())
3163         return true;
3164 
3165       bool FoundAssign = false;
3166       DeclarationName Name = C.DeclarationNames.getCXXOperatorName(OO_Equal);
3167       LookupResult Res(Self, DeclarationNameInfo(Name, KeyLoc),
3168                        Sema::LookupOrdinaryName);
3169       if (Self.LookupQualifiedName(Res, RD)) {
3170         Res.suppressDiagnostics();
3171         for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
3172              Op != OpEnd; ++Op) {
3173           if (isa<FunctionTemplateDecl>(*Op))
3174             continue;
3175 
3176           CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
3177           if (Operator->isCopyAssignmentOperator()) {
3178             FoundAssign = true;
3179             const FunctionProtoType *CPT
3180                 = Operator->getType()->getAs<FunctionProtoType>();
3181             CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3182             if (!CPT)
3183               return false;
3184             if (!CPT->isNothrow(Self.Context))
3185               return false;
3186           }
3187         }
3188       }
3189 
3190       return FoundAssign;
3191     }
3192     return false;
3193   case UTT_HasNothrowCopy:
3194     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3195     //   If __has_trivial_copy (type) is true then the trait is true, else
3196     //   if type is a cv class or union type with copy constructors that are
3197     //   known not to throw an exception then the trait is true, else it is
3198     //   false.
3199     if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
3200       return true;
3201     if (const RecordType *RT = T->getAs<RecordType>()) {
3202       CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3203       if (RD->hasTrivialCopyConstructor())
3204         return true;
3205 
3206       bool FoundConstructor = false;
3207       unsigned FoundTQs;
3208       DeclContext::lookup_const_iterator Con, ConEnd;
3209       for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
3210            Con != ConEnd; ++Con) {
3211         // A template constructor is never a copy constructor.
3212         // FIXME: However, it may actually be selected at the actual overload
3213         // resolution point.
3214         if (isa<FunctionTemplateDecl>(*Con))
3215           continue;
3216         CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
3217         if (Constructor->isCopyConstructor(FoundTQs)) {
3218           FoundConstructor = true;
3219           const FunctionProtoType *CPT
3220               = Constructor->getType()->getAs<FunctionProtoType>();
3221           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3222           if (!CPT)
3223             return false;
3224           // FIXME: check whether evaluating default arguments can throw.
3225           // For now, we'll be conservative and assume that they can throw.
3226           if (!CPT->isNothrow(Self.Context) || CPT->getNumArgs() > 1)
3227             return false;
3228         }
3229       }
3230 
3231       return FoundConstructor;
3232     }
3233     return false;
3234   case UTT_HasNothrowConstructor:
3235     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3236     //   If __has_trivial_constructor (type) is true then the trait is
3237     //   true, else if type is a cv class or union type (or array
3238     //   thereof) with a default constructor that is known not to
3239     //   throw an exception then the trait is true, else it is false.
3240     if (T.isPODType(C) || T->isObjCLifetimeType())
3241       return true;
3242     if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) {
3243       CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3244       if (RD->hasTrivialDefaultConstructor())
3245         return true;
3246 
3247       DeclContext::lookup_const_iterator Con, ConEnd;
3248       for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
3249            Con != ConEnd; ++Con) {
3250         // FIXME: In C++0x, a constructor template can be a default constructor.
3251         if (isa<FunctionTemplateDecl>(*Con))
3252           continue;
3253         CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
3254         if (Constructor->isDefaultConstructor()) {
3255           const FunctionProtoType *CPT
3256               = Constructor->getType()->getAs<FunctionProtoType>();
3257           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3258           if (!CPT)
3259             return false;
3260           // TODO: check whether evaluating default arguments can throw.
3261           // For now, we'll be conservative and assume that they can throw.
3262           return CPT->isNothrow(Self.Context) && CPT->getNumArgs() == 0;
3263         }
3264       }
3265     }
3266     return false;
3267   case UTT_HasVirtualDestructor:
3268     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3269     //   If type is a class type with a virtual destructor ([class.dtor])
3270     //   then the trait is true, else it is false.
3271     if (const RecordType *Record = T->getAs<RecordType>()) {
3272       CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
3273       if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
3274         return Destructor->isVirtual();
3275     }
3276     return false;
3277 
3278     // These type trait expressions are modeled on the specifications for the
3279     // Embarcadero C++0x type trait functions:
3280     //   http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
3281   case UTT_IsCompleteType:
3282     // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
3283     //   Returns True if and only if T is a complete type at the point of the
3284     //   function call.
3285     return !T->isIncompleteType();
3286   }
3287   llvm_unreachable("Type trait not covered by switch");
3288 }
3289 
BuildUnaryTypeTrait(UnaryTypeTrait UTT,SourceLocation KWLoc,TypeSourceInfo * TSInfo,SourceLocation RParen)3290 ExprResult Sema::BuildUnaryTypeTrait(UnaryTypeTrait UTT,
3291                                      SourceLocation KWLoc,
3292                                      TypeSourceInfo *TSInfo,
3293                                      SourceLocation RParen) {
3294   QualType T = TSInfo->getType();
3295   if (!CheckUnaryTypeTraitTypeCompleteness(*this, UTT, KWLoc, T))
3296     return ExprError();
3297 
3298   bool Value = false;
3299   if (!T->isDependentType())
3300     Value = EvaluateUnaryTypeTrait(*this, UTT, KWLoc, T);
3301 
3302   return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, UTT, TSInfo, Value,
3303                                                 RParen, Context.BoolTy));
3304 }
3305 
ActOnBinaryTypeTrait(BinaryTypeTrait BTT,SourceLocation KWLoc,ParsedType LhsTy,ParsedType RhsTy,SourceLocation RParen)3306 ExprResult Sema::ActOnBinaryTypeTrait(BinaryTypeTrait BTT,
3307                                       SourceLocation KWLoc,
3308                                       ParsedType LhsTy,
3309                                       ParsedType RhsTy,
3310                                       SourceLocation RParen) {
3311   TypeSourceInfo *LhsTSInfo;
3312   QualType LhsT = GetTypeFromParser(LhsTy, &LhsTSInfo);
3313   if (!LhsTSInfo)
3314     LhsTSInfo = Context.getTrivialTypeSourceInfo(LhsT);
3315 
3316   TypeSourceInfo *RhsTSInfo;
3317   QualType RhsT = GetTypeFromParser(RhsTy, &RhsTSInfo);
3318   if (!RhsTSInfo)
3319     RhsTSInfo = Context.getTrivialTypeSourceInfo(RhsT);
3320 
3321   return BuildBinaryTypeTrait(BTT, KWLoc, LhsTSInfo, RhsTSInfo, RParen);
3322 }
3323 
3324 /// \brief Determine whether T has a non-trivial Objective-C lifetime in
3325 /// ARC mode.
hasNontrivialObjCLifetime(QualType T)3326 static bool hasNontrivialObjCLifetime(QualType T) {
3327   switch (T.getObjCLifetime()) {
3328   case Qualifiers::OCL_ExplicitNone:
3329     return false;
3330 
3331   case Qualifiers::OCL_Strong:
3332   case Qualifiers::OCL_Weak:
3333   case Qualifiers::OCL_Autoreleasing:
3334     return true;
3335 
3336   case Qualifiers::OCL_None:
3337     return T->isObjCLifetimeType();
3338   }
3339 
3340   llvm_unreachable("Unknown ObjC lifetime qualifier");
3341 }
3342 
evaluateTypeTrait(Sema & S,TypeTrait Kind,SourceLocation KWLoc,ArrayRef<TypeSourceInfo * > Args,SourceLocation RParenLoc)3343 static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
3344                               ArrayRef<TypeSourceInfo *> Args,
3345                               SourceLocation RParenLoc) {
3346   switch (Kind) {
3347   case clang::TT_IsTriviallyConstructible: {
3348     // C++11 [meta.unary.prop]:
3349     //   is_trivially_constructible is defined as:
3350     //
3351     //     is_constructible<T, Args...>::value is true and the variable
3352     //     definition for is_constructible, as defined below, is known to call no
3353     //     operation that is not trivial.
3354     //
3355     //   The predicate condition for a template specialization
3356     //   is_constructible<T, Args...> shall be satisfied if and only if the
3357     //   following variable definition would be well-formed for some invented
3358     //   variable t:
3359     //
3360     //     T t(create<Args>()...);
3361     if (Args.empty()) {
3362       S.Diag(KWLoc, diag::err_type_trait_arity)
3363         << 1 << 1 << 1 << (int)Args.size();
3364       return false;
3365     }
3366 
3367     bool SawVoid = false;
3368     for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3369       if (Args[I]->getType()->isVoidType()) {
3370         SawVoid = true;
3371         continue;
3372       }
3373 
3374       if (!Args[I]->getType()->isIncompleteType() &&
3375         S.RequireCompleteType(KWLoc, Args[I]->getType(),
3376           diag::err_incomplete_type_used_in_type_trait_expr))
3377         return false;
3378     }
3379 
3380     // If any argument was 'void', of course it won't type-check.
3381     if (SawVoid)
3382       return false;
3383 
3384     llvm::SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs;
3385     llvm::SmallVector<Expr *, 2> ArgExprs;
3386     ArgExprs.reserve(Args.size() - 1);
3387     for (unsigned I = 1, N = Args.size(); I != N; ++I) {
3388       QualType T = Args[I]->getType();
3389       if (T->isObjectType() || T->isFunctionType())
3390         T = S.Context.getRValueReferenceType(T);
3391       OpaqueArgExprs.push_back(
3392         OpaqueValueExpr(Args[I]->getTypeLoc().getLocStart(),
3393                         T.getNonLValueExprType(S.Context),
3394                         Expr::getValueKindForType(T)));
3395       ArgExprs.push_back(&OpaqueArgExprs.back());
3396     }
3397 
3398     // Perform the initialization in an unevaluated context within a SFINAE
3399     // trap at translation unit scope.
3400     EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
3401     Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
3402     Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
3403     InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
3404     InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
3405                                                                  RParenLoc));
3406     InitializationSequence Init(S, To, InitKind,
3407                                 ArgExprs.begin(), ArgExprs.size());
3408     if (Init.Failed())
3409       return false;
3410 
3411     ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
3412     if (Result.isInvalid() || SFINAE.hasErrorOccurred())
3413       return false;
3414 
3415     // Under Objective-C ARC, if the destination has non-trivial Objective-C
3416     // lifetime, this is a non-trivial construction.
3417     if (S.getLangOpts().ObjCAutoRefCount &&
3418         hasNontrivialObjCLifetime(Args[0]->getType().getNonReferenceType()))
3419       return false;
3420 
3421     // The initialization succeeded; now make sure there are no non-trivial
3422     // calls.
3423     return !Result.get()->hasNonTrivialCall(S.Context);
3424   }
3425   }
3426 
3427   return false;
3428 }
3429 
BuildTypeTrait(TypeTrait Kind,SourceLocation KWLoc,ArrayRef<TypeSourceInfo * > Args,SourceLocation RParenLoc)3430 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
3431                                 ArrayRef<TypeSourceInfo *> Args,
3432                                 SourceLocation RParenLoc) {
3433   bool Dependent = false;
3434   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3435     if (Args[I]->getType()->isDependentType()) {
3436       Dependent = true;
3437       break;
3438     }
3439   }
3440 
3441   bool Value = false;
3442   if (!Dependent)
3443     Value = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
3444 
3445   return TypeTraitExpr::Create(Context, Context.BoolTy, KWLoc, Kind,
3446                                Args, RParenLoc, Value);
3447 }
3448 
ActOnTypeTrait(TypeTrait Kind,SourceLocation KWLoc,ArrayRef<ParsedType> Args,SourceLocation RParenLoc)3449 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
3450                                 ArrayRef<ParsedType> Args,
3451                                 SourceLocation RParenLoc) {
3452   llvm::SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
3453   ConvertedArgs.reserve(Args.size());
3454 
3455   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3456     TypeSourceInfo *TInfo;
3457     QualType T = GetTypeFromParser(Args[I], &TInfo);
3458     if (!TInfo)
3459       TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
3460 
3461     ConvertedArgs.push_back(TInfo);
3462   }
3463 
3464   return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
3465 }
3466 
EvaluateBinaryTypeTrait(Sema & Self,BinaryTypeTrait BTT,QualType LhsT,QualType RhsT,SourceLocation KeyLoc)3467 static bool EvaluateBinaryTypeTrait(Sema &Self, BinaryTypeTrait BTT,
3468                                     QualType LhsT, QualType RhsT,
3469                                     SourceLocation KeyLoc) {
3470   assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
3471          "Cannot evaluate traits of dependent types");
3472 
3473   switch(BTT) {
3474   case BTT_IsBaseOf: {
3475     // C++0x [meta.rel]p2
3476     // Base is a base class of Derived without regard to cv-qualifiers or
3477     // Base and Derived are not unions and name the same class type without
3478     // regard to cv-qualifiers.
3479 
3480     const RecordType *lhsRecord = LhsT->getAs<RecordType>();
3481     if (!lhsRecord) return false;
3482 
3483     const RecordType *rhsRecord = RhsT->getAs<RecordType>();
3484     if (!rhsRecord) return false;
3485 
3486     assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
3487              == (lhsRecord == rhsRecord));
3488 
3489     if (lhsRecord == rhsRecord)
3490       return !lhsRecord->getDecl()->isUnion();
3491 
3492     // C++0x [meta.rel]p2:
3493     //   If Base and Derived are class types and are different types
3494     //   (ignoring possible cv-qualifiers) then Derived shall be a
3495     //   complete type.
3496     if (Self.RequireCompleteType(KeyLoc, RhsT,
3497                           diag::err_incomplete_type_used_in_type_trait_expr))
3498       return false;
3499 
3500     return cast<CXXRecordDecl>(rhsRecord->getDecl())
3501       ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
3502   }
3503   case BTT_IsSame:
3504     return Self.Context.hasSameType(LhsT, RhsT);
3505   case BTT_TypeCompatible:
3506     return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
3507                                            RhsT.getUnqualifiedType());
3508   case BTT_IsConvertible:
3509   case BTT_IsConvertibleTo: {
3510     // C++0x [meta.rel]p4:
3511     //   Given the following function prototype:
3512     //
3513     //     template <class T>
3514     //       typename add_rvalue_reference<T>::type create();
3515     //
3516     //   the predicate condition for a template specialization
3517     //   is_convertible<From, To> shall be satisfied if and only if
3518     //   the return expression in the following code would be
3519     //   well-formed, including any implicit conversions to the return
3520     //   type of the function:
3521     //
3522     //     To test() {
3523     //       return create<From>();
3524     //     }
3525     //
3526     //   Access checking is performed as if in a context unrelated to To and
3527     //   From. Only the validity of the immediate context of the expression
3528     //   of the return-statement (including conversions to the return type)
3529     //   is considered.
3530     //
3531     // We model the initialization as a copy-initialization of a temporary
3532     // of the appropriate type, which for this expression is identical to the
3533     // return statement (since NRVO doesn't apply).
3534 
3535     // Functions aren't allowed to return function or array types.
3536     if (RhsT->isFunctionType() || RhsT->isArrayType())
3537       return false;
3538 
3539     // A return statement in a void function must have void type.
3540     if (RhsT->isVoidType())
3541       return LhsT->isVoidType();
3542 
3543     // A function definition requires a complete, non-abstract return type.
3544     if (Self.RequireCompleteType(KeyLoc, RhsT, 0) ||
3545         Self.RequireNonAbstractType(KeyLoc, RhsT, 0))
3546       return false;
3547 
3548     // Compute the result of add_rvalue_reference.
3549     if (LhsT->isObjectType() || LhsT->isFunctionType())
3550       LhsT = Self.Context.getRValueReferenceType(LhsT);
3551 
3552     // Build a fake source and destination for initialization.
3553     InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
3554     OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
3555                          Expr::getValueKindForType(LhsT));
3556     Expr *FromPtr = &From;
3557     InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
3558                                                            SourceLocation()));
3559 
3560     // Perform the initialization in an unevaluated context within a SFINAE
3561     // trap at translation unit scope.
3562     EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
3563     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
3564     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
3565     InitializationSequence Init(Self, To, Kind, &FromPtr, 1);
3566     if (Init.Failed())
3567       return false;
3568 
3569     ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
3570     return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
3571   }
3572 
3573   case BTT_IsTriviallyAssignable: {
3574     // C++11 [meta.unary.prop]p3:
3575     //   is_trivially_assignable is defined as:
3576     //     is_assignable<T, U>::value is true and the assignment, as defined by
3577     //     is_assignable, is known to call no operation that is not trivial
3578     //
3579     //   is_assignable is defined as:
3580     //     The expression declval<T>() = declval<U>() is well-formed when
3581     //     treated as an unevaluated operand (Clause 5).
3582     //
3583     //   For both, T and U shall be complete types, (possibly cv-qualified)
3584     //   void, or arrays of unknown bound.
3585     if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
3586         Self.RequireCompleteType(KeyLoc, LhsT,
3587           diag::err_incomplete_type_used_in_type_trait_expr))
3588       return false;
3589     if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
3590         Self.RequireCompleteType(KeyLoc, RhsT,
3591           diag::err_incomplete_type_used_in_type_trait_expr))
3592       return false;
3593 
3594     // cv void is never assignable.
3595     if (LhsT->isVoidType() || RhsT->isVoidType())
3596       return false;
3597 
3598     // Build expressions that emulate the effect of declval<T>() and
3599     // declval<U>().
3600     if (LhsT->isObjectType() || LhsT->isFunctionType())
3601       LhsT = Self.Context.getRValueReferenceType(LhsT);
3602     if (RhsT->isObjectType() || RhsT->isFunctionType())
3603       RhsT = Self.Context.getRValueReferenceType(RhsT);
3604     OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
3605                         Expr::getValueKindForType(LhsT));
3606     OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
3607                         Expr::getValueKindForType(RhsT));
3608 
3609     // Attempt the assignment in an unevaluated context within a SFINAE
3610     // trap at translation unit scope.
3611     EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
3612     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
3613     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
3614     ExprResult Result = Self.BuildBinOp(/*S=*/0, KeyLoc, BO_Assign, &Lhs, &Rhs);
3615     if (Result.isInvalid() || SFINAE.hasErrorOccurred())
3616       return false;
3617 
3618     // Under Objective-C ARC, if the destination has non-trivial Objective-C
3619     // lifetime, this is a non-trivial assignment.
3620     if (Self.getLangOpts().ObjCAutoRefCount &&
3621         hasNontrivialObjCLifetime(LhsT.getNonReferenceType()))
3622       return false;
3623 
3624     return !Result.get()->hasNonTrivialCall(Self.Context);
3625   }
3626   }
3627   llvm_unreachable("Unknown type trait or not implemented");
3628 }
3629 
BuildBinaryTypeTrait(BinaryTypeTrait BTT,SourceLocation KWLoc,TypeSourceInfo * LhsTSInfo,TypeSourceInfo * RhsTSInfo,SourceLocation RParen)3630 ExprResult Sema::BuildBinaryTypeTrait(BinaryTypeTrait BTT,
3631                                       SourceLocation KWLoc,
3632                                       TypeSourceInfo *LhsTSInfo,
3633                                       TypeSourceInfo *RhsTSInfo,
3634                                       SourceLocation RParen) {
3635   QualType LhsT = LhsTSInfo->getType();
3636   QualType RhsT = RhsTSInfo->getType();
3637 
3638   if (BTT == BTT_TypeCompatible) {
3639     if (getLangOpts().CPlusPlus) {
3640       Diag(KWLoc, diag::err_types_compatible_p_in_cplusplus)
3641         << SourceRange(KWLoc, RParen);
3642       return ExprError();
3643     }
3644   }
3645 
3646   bool Value = false;
3647   if (!LhsT->isDependentType() && !RhsT->isDependentType())
3648     Value = EvaluateBinaryTypeTrait(*this, BTT, LhsT, RhsT, KWLoc);
3649 
3650   // Select trait result type.
3651   QualType ResultType;
3652   switch (BTT) {
3653   case BTT_IsBaseOf:       ResultType = Context.BoolTy; break;
3654   case BTT_IsConvertible:  ResultType = Context.BoolTy; break;
3655   case BTT_IsSame:         ResultType = Context.BoolTy; break;
3656   case BTT_TypeCompatible: ResultType = Context.IntTy; break;
3657   case BTT_IsConvertibleTo: ResultType = Context.BoolTy; break;
3658   case BTT_IsTriviallyAssignable: ResultType = Context.BoolTy;
3659   }
3660 
3661   return Owned(new (Context) BinaryTypeTraitExpr(KWLoc, BTT, LhsTSInfo,
3662                                                  RhsTSInfo, Value, RParen,
3663                                                  ResultType));
3664 }
3665 
ActOnArrayTypeTrait(ArrayTypeTrait ATT,SourceLocation KWLoc,ParsedType Ty,Expr * DimExpr,SourceLocation RParen)3666 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
3667                                      SourceLocation KWLoc,
3668                                      ParsedType Ty,
3669                                      Expr* DimExpr,
3670                                      SourceLocation RParen) {
3671   TypeSourceInfo *TSInfo;
3672   QualType T = GetTypeFromParser(Ty, &TSInfo);
3673   if (!TSInfo)
3674     TSInfo = Context.getTrivialTypeSourceInfo(T);
3675 
3676   return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
3677 }
3678 
EvaluateArrayTypeTrait(Sema & Self,ArrayTypeTrait ATT,QualType T,Expr * DimExpr,SourceLocation KeyLoc)3679 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
3680                                            QualType T, Expr *DimExpr,
3681                                            SourceLocation KeyLoc) {
3682   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
3683 
3684   switch(ATT) {
3685   case ATT_ArrayRank:
3686     if (T->isArrayType()) {
3687       unsigned Dim = 0;
3688       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3689         ++Dim;
3690         T = AT->getElementType();
3691       }
3692       return Dim;
3693     }
3694     return 0;
3695 
3696   case ATT_ArrayExtent: {
3697     llvm::APSInt Value;
3698     uint64_t Dim;
3699     if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
3700           diag::err_dimension_expr_not_constant_integer,
3701           false).isInvalid())
3702       return 0;
3703     if (Value.isSigned() && Value.isNegative()) {
3704       Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
3705         << DimExpr->getSourceRange();
3706       return 0;
3707     }
3708     Dim = Value.getLimitedValue();
3709 
3710     if (T->isArrayType()) {
3711       unsigned D = 0;
3712       bool Matched = false;
3713       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3714         if (Dim == D) {
3715           Matched = true;
3716           break;
3717         }
3718         ++D;
3719         T = AT->getElementType();
3720       }
3721 
3722       if (Matched && T->isArrayType()) {
3723         if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
3724           return CAT->getSize().getLimitedValue();
3725       }
3726     }
3727     return 0;
3728   }
3729   }
3730   llvm_unreachable("Unknown type trait or not implemented");
3731 }
3732 
BuildArrayTypeTrait(ArrayTypeTrait ATT,SourceLocation KWLoc,TypeSourceInfo * TSInfo,Expr * DimExpr,SourceLocation RParen)3733 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
3734                                      SourceLocation KWLoc,
3735                                      TypeSourceInfo *TSInfo,
3736                                      Expr* DimExpr,
3737                                      SourceLocation RParen) {
3738   QualType T = TSInfo->getType();
3739 
3740   // FIXME: This should likely be tracked as an APInt to remove any host
3741   // assumptions about the width of size_t on the target.
3742   uint64_t Value = 0;
3743   if (!T->isDependentType())
3744     Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
3745 
3746   // While the specification for these traits from the Embarcadero C++
3747   // compiler's documentation says the return type is 'unsigned int', Clang
3748   // returns 'size_t'. On Windows, the primary platform for the Embarcadero
3749   // compiler, there is no difference. On several other platforms this is an
3750   // important distinction.
3751   return Owned(new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value,
3752                                                 DimExpr, RParen,
3753                                                 Context.getSizeType()));
3754 }
3755 
ActOnExpressionTrait(ExpressionTrait ET,SourceLocation KWLoc,Expr * Queried,SourceLocation RParen)3756 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
3757                                       SourceLocation KWLoc,
3758                                       Expr *Queried,
3759                                       SourceLocation RParen) {
3760   // If error parsing the expression, ignore.
3761   if (!Queried)
3762     return ExprError();
3763 
3764   ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
3765 
3766   return Result;
3767 }
3768 
EvaluateExpressionTrait(ExpressionTrait ET,Expr * E)3769 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
3770   switch (ET) {
3771   case ET_IsLValueExpr: return E->isLValue();
3772   case ET_IsRValueExpr: return E->isRValue();
3773   }
3774   llvm_unreachable("Expression trait not covered by switch");
3775 }
3776 
BuildExpressionTrait(ExpressionTrait ET,SourceLocation KWLoc,Expr * Queried,SourceLocation RParen)3777 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
3778                                       SourceLocation KWLoc,
3779                                       Expr *Queried,
3780                                       SourceLocation RParen) {
3781   if (Queried->isTypeDependent()) {
3782     // Delay type-checking for type-dependent expressions.
3783   } else if (Queried->getType()->isPlaceholderType()) {
3784     ExprResult PE = CheckPlaceholderExpr(Queried);
3785     if (PE.isInvalid()) return ExprError();
3786     return BuildExpressionTrait(ET, KWLoc, PE.take(), RParen);
3787   }
3788 
3789   bool Value = EvaluateExpressionTrait(ET, Queried);
3790 
3791   return Owned(new (Context) ExpressionTraitExpr(KWLoc, ET, Queried, Value,
3792                                                  RParen, Context.BoolTy));
3793 }
3794 
CheckPointerToMemberOperands(ExprResult & LHS,ExprResult & RHS,ExprValueKind & VK,SourceLocation Loc,bool isIndirect)3795 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
3796                                             ExprValueKind &VK,
3797                                             SourceLocation Loc,
3798                                             bool isIndirect) {
3799   assert(!LHS.get()->getType()->isPlaceholderType() &&
3800          !RHS.get()->getType()->isPlaceholderType() &&
3801          "placeholders should have been weeded out by now");
3802 
3803   // The LHS undergoes lvalue conversions if this is ->*.
3804   if (isIndirect) {
3805     LHS = DefaultLvalueConversion(LHS.take());
3806     if (LHS.isInvalid()) return QualType();
3807   }
3808 
3809   // The RHS always undergoes lvalue conversions.
3810   RHS = DefaultLvalueConversion(RHS.take());
3811   if (RHS.isInvalid()) return QualType();
3812 
3813   const char *OpSpelling = isIndirect ? "->*" : ".*";
3814   // C++ 5.5p2
3815   //   The binary operator .* [p3: ->*] binds its second operand, which shall
3816   //   be of type "pointer to member of T" (where T is a completely-defined
3817   //   class type) [...]
3818   QualType RHSType = RHS.get()->getType();
3819   const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
3820   if (!MemPtr) {
3821     Diag(Loc, diag::err_bad_memptr_rhs)
3822       << OpSpelling << RHSType << RHS.get()->getSourceRange();
3823     return QualType();
3824   }
3825 
3826   QualType Class(MemPtr->getClass(), 0);
3827 
3828   // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
3829   // member pointer points must be completely-defined. However, there is no
3830   // reason for this semantic distinction, and the rule is not enforced by
3831   // other compilers. Therefore, we do not check this property, as it is
3832   // likely to be considered a defect.
3833 
3834   // C++ 5.5p2
3835   //   [...] to its first operand, which shall be of class T or of a class of
3836   //   which T is an unambiguous and accessible base class. [p3: a pointer to
3837   //   such a class]
3838   QualType LHSType = LHS.get()->getType();
3839   if (isIndirect) {
3840     if (const PointerType *Ptr = LHSType->getAs<PointerType>())
3841       LHSType = Ptr->getPointeeType();
3842     else {
3843       Diag(Loc, diag::err_bad_memptr_lhs)
3844         << OpSpelling << 1 << LHSType
3845         << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
3846       return QualType();
3847     }
3848   }
3849 
3850   if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
3851     // If we want to check the hierarchy, we need a complete type.
3852     if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
3853                             OpSpelling, (int)isIndirect)) {
3854       return QualType();
3855     }
3856     CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3857                        /*DetectVirtual=*/false);
3858     // FIXME: Would it be useful to print full ambiguity paths, or is that
3859     // overkill?
3860     if (!IsDerivedFrom(LHSType, Class, Paths) ||
3861         Paths.isAmbiguous(Context.getCanonicalType(Class))) {
3862       Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
3863         << (int)isIndirect << LHS.get()->getType();
3864       return QualType();
3865     }
3866     // Cast LHS to type of use.
3867     QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
3868     ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind();
3869 
3870     CXXCastPath BasePath;
3871     BuildBasePathArray(Paths, BasePath);
3872     LHS = ImpCastExprToType(LHS.take(), UseType, CK_DerivedToBase, VK,
3873                             &BasePath);
3874   }
3875 
3876   if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
3877     // Diagnose use of pointer-to-member type which when used as
3878     // the functional cast in a pointer-to-member expression.
3879     Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
3880      return QualType();
3881   }
3882 
3883   // C++ 5.5p2
3884   //   The result is an object or a function of the type specified by the
3885   //   second operand.
3886   // The cv qualifiers are the union of those in the pointer and the left side,
3887   // in accordance with 5.5p5 and 5.2.5.
3888   QualType Result = MemPtr->getPointeeType();
3889   Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
3890 
3891   // C++0x [expr.mptr.oper]p6:
3892   //   In a .* expression whose object expression is an rvalue, the program is
3893   //   ill-formed if the second operand is a pointer to member function with
3894   //   ref-qualifier &. In a ->* expression or in a .* expression whose object
3895   //   expression is an lvalue, the program is ill-formed if the second operand
3896   //   is a pointer to member function with ref-qualifier &&.
3897   if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
3898     switch (Proto->getRefQualifier()) {
3899     case RQ_None:
3900       // Do nothing
3901       break;
3902 
3903     case RQ_LValue:
3904       if (!isIndirect && !LHS.get()->Classify(Context).isLValue())
3905         Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
3906           << RHSType << 1 << LHS.get()->getSourceRange();
3907       break;
3908 
3909     case RQ_RValue:
3910       if (isIndirect || !LHS.get()->Classify(Context).isRValue())
3911         Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
3912           << RHSType << 0 << LHS.get()->getSourceRange();
3913       break;
3914     }
3915   }
3916 
3917   // C++ [expr.mptr.oper]p6:
3918   //   The result of a .* expression whose second operand is a pointer
3919   //   to a data member is of the same value category as its
3920   //   first operand. The result of a .* expression whose second
3921   //   operand is a pointer to a member function is a prvalue. The
3922   //   result of an ->* expression is an lvalue if its second operand
3923   //   is a pointer to data member and a prvalue otherwise.
3924   if (Result->isFunctionType()) {
3925     VK = VK_RValue;
3926     return Context.BoundMemberTy;
3927   } else if (isIndirect) {
3928     VK = VK_LValue;
3929   } else {
3930     VK = LHS.get()->getValueKind();
3931   }
3932 
3933   return Result;
3934 }
3935 
3936 /// \brief Try to convert a type to another according to C++0x 5.16p3.
3937 ///
3938 /// This is part of the parameter validation for the ? operator. If either
3939 /// value operand is a class type, the two operands are attempted to be
3940 /// converted to each other. This function does the conversion in one direction.
3941 /// It returns true if the program is ill-formed and has already been diagnosed
3942 /// as such.
TryClassUnification(Sema & Self,Expr * From,Expr * To,SourceLocation QuestionLoc,bool & HaveConversion,QualType & ToType)3943 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
3944                                 SourceLocation QuestionLoc,
3945                                 bool &HaveConversion,
3946                                 QualType &ToType) {
3947   HaveConversion = false;
3948   ToType = To->getType();
3949 
3950   InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
3951                                                            SourceLocation());
3952   // C++0x 5.16p3
3953   //   The process for determining whether an operand expression E1 of type T1
3954   //   can be converted to match an operand expression E2 of type T2 is defined
3955   //   as follows:
3956   //   -- If E2 is an lvalue:
3957   bool ToIsLvalue = To->isLValue();
3958   if (ToIsLvalue) {
3959     //   E1 can be converted to match E2 if E1 can be implicitly converted to
3960     //   type "lvalue reference to T2", subject to the constraint that in the
3961     //   conversion the reference must bind directly to E1.
3962     QualType T = Self.Context.getLValueReferenceType(ToType);
3963     InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
3964 
3965     InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
3966     if (InitSeq.isDirectReferenceBinding()) {
3967       ToType = T;
3968       HaveConversion = true;
3969       return false;
3970     }
3971 
3972     if (InitSeq.isAmbiguous())
3973       return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
3974   }
3975 
3976   //   -- If E2 is an rvalue, or if the conversion above cannot be done:
3977   //      -- if E1 and E2 have class type, and the underlying class types are
3978   //         the same or one is a base class of the other:
3979   QualType FTy = From->getType();
3980   QualType TTy = To->getType();
3981   const RecordType *FRec = FTy->getAs<RecordType>();
3982   const RecordType *TRec = TTy->getAs<RecordType>();
3983   bool FDerivedFromT = FRec && TRec && FRec != TRec &&
3984                        Self.IsDerivedFrom(FTy, TTy);
3985   if (FRec && TRec &&
3986       (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
3987     //         E1 can be converted to match E2 if the class of T2 is the
3988     //         same type as, or a base class of, the class of T1, and
3989     //         [cv2 > cv1].
3990     if (FRec == TRec || FDerivedFromT) {
3991       if (TTy.isAtLeastAsQualifiedAs(FTy)) {
3992         InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
3993         InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
3994         if (InitSeq) {
3995           HaveConversion = true;
3996           return false;
3997         }
3998 
3999         if (InitSeq.isAmbiguous())
4000           return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
4001       }
4002     }
4003 
4004     return false;
4005   }
4006 
4007   //     -- Otherwise: E1 can be converted to match E2 if E1 can be
4008   //        implicitly converted to the type that expression E2 would have
4009   //        if E2 were converted to an rvalue (or the type it has, if E2 is
4010   //        an rvalue).
4011   //
4012   // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
4013   // to the array-to-pointer or function-to-pointer conversions.
4014   if (!TTy->getAs<TagType>())
4015     TTy = TTy.getUnqualifiedType();
4016 
4017   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
4018   InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
4019   HaveConversion = !InitSeq.Failed();
4020   ToType = TTy;
4021   if (InitSeq.isAmbiguous())
4022     return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
4023 
4024   return false;
4025 }
4026 
4027 /// \brief Try to find a common type for two according to C++0x 5.16p5.
4028 ///
4029 /// This is part of the parameter validation for the ? operator. If either
4030 /// value operand is a class type, overload resolution is used to find a
4031 /// conversion to a common type.
FindConditionalOverload(Sema & Self,ExprResult & LHS,ExprResult & RHS,SourceLocation QuestionLoc)4032 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
4033                                     SourceLocation QuestionLoc) {
4034   Expr *Args[2] = { LHS.get(), RHS.get() };
4035   OverloadCandidateSet CandidateSet(QuestionLoc);
4036   Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 2,
4037                                     CandidateSet);
4038 
4039   OverloadCandidateSet::iterator Best;
4040   switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
4041     case OR_Success: {
4042       // We found a match. Perform the conversions on the arguments and move on.
4043       ExprResult LHSRes =
4044         Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0],
4045                                        Best->Conversions[0], Sema::AA_Converting);
4046       if (LHSRes.isInvalid())
4047         break;
4048       LHS = LHSRes;
4049 
4050       ExprResult RHSRes =
4051         Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1],
4052                                        Best->Conversions[1], Sema::AA_Converting);
4053       if (RHSRes.isInvalid())
4054         break;
4055       RHS = RHSRes;
4056       if (Best->Function)
4057         Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
4058       return false;
4059     }
4060 
4061     case OR_No_Viable_Function:
4062 
4063       // Emit a better diagnostic if one of the expressions is a null pointer
4064       // constant and the other is a pointer type. In this case, the user most
4065       // likely forgot to take the address of the other expression.
4066       if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4067         return true;
4068 
4069       Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4070         << LHS.get()->getType() << RHS.get()->getType()
4071         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4072       return true;
4073 
4074     case OR_Ambiguous:
4075       Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
4076         << LHS.get()->getType() << RHS.get()->getType()
4077         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4078       // FIXME: Print the possible common types by printing the return types of
4079       // the viable candidates.
4080       break;
4081 
4082     case OR_Deleted:
4083       llvm_unreachable("Conditional operator has only built-in overloads");
4084   }
4085   return true;
4086 }
4087 
4088 /// \brief Perform an "extended" implicit conversion as returned by
4089 /// TryClassUnification.
ConvertForConditional(Sema & Self,ExprResult & E,QualType T)4090 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
4091   InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
4092   InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(),
4093                                                            SourceLocation());
4094   Expr *Arg = E.take();
4095   InitializationSequence InitSeq(Self, Entity, Kind, &Arg, 1);
4096   ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
4097   if (Result.isInvalid())
4098     return true;
4099 
4100   E = Result;
4101   return false;
4102 }
4103 
4104 /// \brief Check the operands of ?: under C++ semantics.
4105 ///
4106 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
4107 /// extension. In this case, LHS == Cond. (But they're not aliases.)
CXXCheckConditionalOperands(ExprResult & Cond,ExprResult & LHS,ExprResult & RHS,ExprValueKind & VK,ExprObjectKind & OK,SourceLocation QuestionLoc)4108 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
4109                                            ExprResult &RHS, ExprValueKind &VK,
4110                                            ExprObjectKind &OK,
4111                                            SourceLocation QuestionLoc) {
4112   // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
4113   // interface pointers.
4114 
4115   // C++11 [expr.cond]p1
4116   //   The first expression is contextually converted to bool.
4117   if (!Cond.get()->isTypeDependent()) {
4118     ExprResult CondRes = CheckCXXBooleanCondition(Cond.take());
4119     if (CondRes.isInvalid())
4120       return QualType();
4121     Cond = CondRes;
4122   }
4123 
4124   // Assume r-value.
4125   VK = VK_RValue;
4126   OK = OK_Ordinary;
4127 
4128   // Either of the arguments dependent?
4129   if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
4130     return Context.DependentTy;
4131 
4132   // C++11 [expr.cond]p2
4133   //   If either the second or the third operand has type (cv) void, ...
4134   QualType LTy = LHS.get()->getType();
4135   QualType RTy = RHS.get()->getType();
4136   bool LVoid = LTy->isVoidType();
4137   bool RVoid = RTy->isVoidType();
4138   if (LVoid || RVoid) {
4139     //   ... then the [l2r] conversions are performed on the second and third
4140     //   operands ...
4141     LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
4142     RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
4143     if (LHS.isInvalid() || RHS.isInvalid())
4144       return QualType();
4145 
4146     // Finish off the lvalue-to-rvalue conversion by copy-initializing a
4147     // temporary if necessary. DefaultFunctionArrayLvalueConversion doesn't
4148     // do this part for us.
4149     ExprResult &NonVoid = LVoid ? RHS : LHS;
4150     if (NonVoid.get()->getType()->isRecordType() &&
4151         NonVoid.get()->isGLValue()) {
4152       if (RequireNonAbstractType(QuestionLoc, NonVoid.get()->getType(),
4153                              diag::err_allocation_of_abstract_type))
4154         return QualType();
4155       InitializedEntity Entity =
4156           InitializedEntity::InitializeTemporary(NonVoid.get()->getType());
4157       NonVoid = PerformCopyInitialization(Entity, SourceLocation(), NonVoid);
4158       if (NonVoid.isInvalid())
4159         return QualType();
4160     }
4161 
4162     LTy = LHS.get()->getType();
4163     RTy = RHS.get()->getType();
4164 
4165     //   ... and one of the following shall hold:
4166     //   -- The second or the third operand (but not both) is a throw-
4167     //      expression; the result is of the type of the other and is a prvalue.
4168     bool LThrow = isa<CXXThrowExpr>(LHS.get());
4169     bool RThrow = isa<CXXThrowExpr>(RHS.get());
4170     if (LThrow && !RThrow)
4171       return RTy;
4172     if (RThrow && !LThrow)
4173       return LTy;
4174 
4175     //   -- Both the second and third operands have type void; the result is of
4176     //      type void and is a prvalue.
4177     if (LVoid && RVoid)
4178       return Context.VoidTy;
4179 
4180     // Neither holds, error.
4181     Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
4182       << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
4183       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4184     return QualType();
4185   }
4186 
4187   // Neither is void.
4188 
4189   // C++11 [expr.cond]p3
4190   //   Otherwise, if the second and third operand have different types, and
4191   //   either has (cv) class type [...] an attempt is made to convert each of
4192   //   those operands to the type of the other.
4193   if (!Context.hasSameType(LTy, RTy) &&
4194       (LTy->isRecordType() || RTy->isRecordType())) {
4195     ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
4196     // These return true if a single direction is already ambiguous.
4197     QualType L2RType, R2LType;
4198     bool HaveL2R, HaveR2L;
4199     if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
4200       return QualType();
4201     if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
4202       return QualType();
4203 
4204     //   If both can be converted, [...] the program is ill-formed.
4205     if (HaveL2R && HaveR2L) {
4206       Diag(QuestionLoc, diag::err_conditional_ambiguous)
4207         << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4208       return QualType();
4209     }
4210 
4211     //   If exactly one conversion is possible, that conversion is applied to
4212     //   the chosen operand and the converted operands are used in place of the
4213     //   original operands for the remainder of this section.
4214     if (HaveL2R) {
4215       if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
4216         return QualType();
4217       LTy = LHS.get()->getType();
4218     } else if (HaveR2L) {
4219       if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
4220         return QualType();
4221       RTy = RHS.get()->getType();
4222     }
4223   }
4224 
4225   // C++11 [expr.cond]p3
4226   //   if both are glvalues of the same value category and the same type except
4227   //   for cv-qualification, an attempt is made to convert each of those
4228   //   operands to the type of the other.
4229   ExprValueKind LVK = LHS.get()->getValueKind();
4230   ExprValueKind RVK = RHS.get()->getValueKind();
4231   if (!Context.hasSameType(LTy, RTy) &&
4232       Context.hasSameUnqualifiedType(LTy, RTy) &&
4233       LVK == RVK && LVK != VK_RValue) {
4234     // Since the unqualified types are reference-related and we require the
4235     // result to be as if a reference bound directly, the only conversion
4236     // we can perform is to add cv-qualifiers.
4237     Qualifiers LCVR = Qualifiers::fromCVRMask(LTy.getCVRQualifiers());
4238     Qualifiers RCVR = Qualifiers::fromCVRMask(RTy.getCVRQualifiers());
4239     if (RCVR.isStrictSupersetOf(LCVR)) {
4240       LHS = ImpCastExprToType(LHS.take(), RTy, CK_NoOp, LVK);
4241       LTy = LHS.get()->getType();
4242     }
4243     else if (LCVR.isStrictSupersetOf(RCVR)) {
4244       RHS = ImpCastExprToType(RHS.take(), LTy, CK_NoOp, RVK);
4245       RTy = RHS.get()->getType();
4246     }
4247   }
4248 
4249   // C++11 [expr.cond]p4
4250   //   If the second and third operands are glvalues of the same value
4251   //   category and have the same type, the result is of that type and
4252   //   value category and it is a bit-field if the second or the third
4253   //   operand is a bit-field, or if both are bit-fields.
4254   // We only extend this to bitfields, not to the crazy other kinds of
4255   // l-values.
4256   bool Same = Context.hasSameType(LTy, RTy);
4257   if (Same && LVK == RVK && LVK != VK_RValue &&
4258       LHS.get()->isOrdinaryOrBitFieldObject() &&
4259       RHS.get()->isOrdinaryOrBitFieldObject()) {
4260     VK = LHS.get()->getValueKind();
4261     if (LHS.get()->getObjectKind() == OK_BitField ||
4262         RHS.get()->getObjectKind() == OK_BitField)
4263       OK = OK_BitField;
4264     return LTy;
4265   }
4266 
4267   // C++11 [expr.cond]p5
4268   //   Otherwise, the result is a prvalue. If the second and third operands
4269   //   do not have the same type, and either has (cv) class type, ...
4270   if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
4271     //   ... overload resolution is used to determine the conversions (if any)
4272     //   to be applied to the operands. If the overload resolution fails, the
4273     //   program is ill-formed.
4274     if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
4275       return QualType();
4276   }
4277 
4278   // C++11 [expr.cond]p6
4279   //   Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
4280   //   conversions are performed on the second and third operands.
4281   LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
4282   RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
4283   if (LHS.isInvalid() || RHS.isInvalid())
4284     return QualType();
4285   LTy = LHS.get()->getType();
4286   RTy = RHS.get()->getType();
4287 
4288   //   After those conversions, one of the following shall hold:
4289   //   -- The second and third operands have the same type; the result
4290   //      is of that type. If the operands have class type, the result
4291   //      is a prvalue temporary of the result type, which is
4292   //      copy-initialized from either the second operand or the third
4293   //      operand depending on the value of the first operand.
4294   if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
4295     if (LTy->isRecordType()) {
4296       // The operands have class type. Make a temporary copy.
4297       if (RequireNonAbstractType(QuestionLoc, LTy,
4298                                  diag::err_allocation_of_abstract_type))
4299         return QualType();
4300       InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
4301 
4302       ExprResult LHSCopy = PerformCopyInitialization(Entity,
4303                                                      SourceLocation(),
4304                                                      LHS);
4305       if (LHSCopy.isInvalid())
4306         return QualType();
4307 
4308       ExprResult RHSCopy = PerformCopyInitialization(Entity,
4309                                                      SourceLocation(),
4310                                                      RHS);
4311       if (RHSCopy.isInvalid())
4312         return QualType();
4313 
4314       LHS = LHSCopy;
4315       RHS = RHSCopy;
4316     }
4317 
4318     return LTy;
4319   }
4320 
4321   // Extension: conditional operator involving vector types.
4322   if (LTy->isVectorType() || RTy->isVectorType())
4323     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
4324 
4325   //   -- The second and third operands have arithmetic or enumeration type;
4326   //      the usual arithmetic conversions are performed to bring them to a
4327   //      common type, and the result is of that type.
4328   if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
4329     UsualArithmeticConversions(LHS, RHS);
4330     if (LHS.isInvalid() || RHS.isInvalid())
4331       return QualType();
4332     return LHS.get()->getType();
4333   }
4334 
4335   //   -- The second and third operands have pointer type, or one has pointer
4336   //      type and the other is a null pointer constant, or both are null
4337   //      pointer constants, at least one of which is non-integral; pointer
4338   //      conversions and qualification conversions are performed to bring them
4339   //      to their composite pointer type. The result is of the composite
4340   //      pointer type.
4341   //   -- The second and third operands have pointer to member type, or one has
4342   //      pointer to member type and the other is a null pointer constant;
4343   //      pointer to member conversions and qualification conversions are
4344   //      performed to bring them to a common type, whose cv-qualification
4345   //      shall match the cv-qualification of either the second or the third
4346   //      operand. The result is of the common type.
4347   bool NonStandardCompositeType = false;
4348   QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
4349                               isSFINAEContext()? 0 : &NonStandardCompositeType);
4350   if (!Composite.isNull()) {
4351     if (NonStandardCompositeType)
4352       Diag(QuestionLoc,
4353            diag::ext_typecheck_cond_incompatible_operands_nonstandard)
4354         << LTy << RTy << Composite
4355         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4356 
4357     return Composite;
4358   }
4359 
4360   // Similarly, attempt to find composite type of two objective-c pointers.
4361   Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
4362   if (!Composite.isNull())
4363     return Composite;
4364 
4365   // Check if we are using a null with a non-pointer type.
4366   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4367     return QualType();
4368 
4369   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4370     << LHS.get()->getType() << RHS.get()->getType()
4371     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4372   return QualType();
4373 }
4374 
4375 /// \brief Find a merged pointer type and convert the two expressions to it.
4376 ///
4377 /// This finds the composite pointer type (or member pointer type) for @p E1
4378 /// and @p E2 according to C++11 5.9p2. It converts both expressions to this
4379 /// type and returns it.
4380 /// It does not emit diagnostics.
4381 ///
4382 /// \param Loc The location of the operator requiring these two expressions to
4383 /// be converted to the composite pointer type.
4384 ///
4385 /// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
4386 /// a non-standard (but still sane) composite type to which both expressions
4387 /// can be converted. When such a type is chosen, \c *NonStandardCompositeType
4388 /// will be set true.
FindCompositePointerType(SourceLocation Loc,Expr * & E1,Expr * & E2,bool * NonStandardCompositeType)4389 QualType Sema::FindCompositePointerType(SourceLocation Loc,
4390                                         Expr *&E1, Expr *&E2,
4391                                         bool *NonStandardCompositeType) {
4392   if (NonStandardCompositeType)
4393     *NonStandardCompositeType = false;
4394 
4395   assert(getLangOpts().CPlusPlus && "This function assumes C++");
4396   QualType T1 = E1->getType(), T2 = E2->getType();
4397 
4398   // C++11 5.9p2
4399   //   Pointer conversions and qualification conversions are performed on
4400   //   pointer operands to bring them to their composite pointer type. If
4401   //   one operand is a null pointer constant, the composite pointer type is
4402   //   std::nullptr_t if the other operand is also a null pointer constant or,
4403   //   if the other operand is a pointer, the type of the other operand.
4404   if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
4405       !T2->isAnyPointerType() && !T2->isMemberPointerType()) {
4406     if (T1->isNullPtrType() &&
4407         E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4408       E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
4409       return T1;
4410     }
4411     if (T2->isNullPtrType() &&
4412         E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4413       E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
4414       return T2;
4415     }
4416     return QualType();
4417   }
4418 
4419   if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4420     if (T2->isMemberPointerType())
4421       E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).take();
4422     else
4423       E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
4424     return T2;
4425   }
4426   if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4427     if (T1->isMemberPointerType())
4428       E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).take();
4429     else
4430       E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
4431     return T1;
4432   }
4433 
4434   // Now both have to be pointers or member pointers.
4435   if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
4436       (!T2->isPointerType() && !T2->isMemberPointerType()))
4437     return QualType();
4438 
4439   //   Otherwise, of one of the operands has type "pointer to cv1 void," then
4440   //   the other has type "pointer to cv2 T" and the composite pointer type is
4441   //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
4442   //   Otherwise, the composite pointer type is a pointer type similar to the
4443   //   type of one of the operands, with a cv-qualification signature that is
4444   //   the union of the cv-qualification signatures of the operand types.
4445   // In practice, the first part here is redundant; it's subsumed by the second.
4446   // What we do here is, we build the two possible composite types, and try the
4447   // conversions in both directions. If only one works, or if the two composite
4448   // types are the same, we have succeeded.
4449   // FIXME: extended qualifiers?
4450   typedef SmallVector<unsigned, 4> QualifierVector;
4451   QualifierVector QualifierUnion;
4452   typedef SmallVector<std::pair<const Type *, const Type *>, 4>
4453       ContainingClassVector;
4454   ContainingClassVector MemberOfClass;
4455   QualType Composite1 = Context.getCanonicalType(T1),
4456            Composite2 = Context.getCanonicalType(T2);
4457   unsigned NeedConstBefore = 0;
4458   do {
4459     const PointerType *Ptr1, *Ptr2;
4460     if ((Ptr1 = Composite1->getAs<PointerType>()) &&
4461         (Ptr2 = Composite2->getAs<PointerType>())) {
4462       Composite1 = Ptr1->getPointeeType();
4463       Composite2 = Ptr2->getPointeeType();
4464 
4465       // If we're allowed to create a non-standard composite type, keep track
4466       // of where we need to fill in additional 'const' qualifiers.
4467       if (NonStandardCompositeType &&
4468           Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
4469         NeedConstBefore = QualifierUnion.size();
4470 
4471       QualifierUnion.push_back(
4472                  Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
4473       MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
4474       continue;
4475     }
4476 
4477     const MemberPointerType *MemPtr1, *MemPtr2;
4478     if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
4479         (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
4480       Composite1 = MemPtr1->getPointeeType();
4481       Composite2 = MemPtr2->getPointeeType();
4482 
4483       // If we're allowed to create a non-standard composite type, keep track
4484       // of where we need to fill in additional 'const' qualifiers.
4485       if (NonStandardCompositeType &&
4486           Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
4487         NeedConstBefore = QualifierUnion.size();
4488 
4489       QualifierUnion.push_back(
4490                  Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
4491       MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
4492                                              MemPtr2->getClass()));
4493       continue;
4494     }
4495 
4496     // FIXME: block pointer types?
4497 
4498     // Cannot unwrap any more types.
4499     break;
4500   } while (true);
4501 
4502   if (NeedConstBefore && NonStandardCompositeType) {
4503     // Extension: Add 'const' to qualifiers that come before the first qualifier
4504     // mismatch, so that our (non-standard!) composite type meets the
4505     // requirements of C++ [conv.qual]p4 bullet 3.
4506     for (unsigned I = 0; I != NeedConstBefore; ++I) {
4507       if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
4508         QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
4509         *NonStandardCompositeType = true;
4510       }
4511     }
4512   }
4513 
4514   // Rewrap the composites as pointers or member pointers with the union CVRs.
4515   ContainingClassVector::reverse_iterator MOC
4516     = MemberOfClass.rbegin();
4517   for (QualifierVector::reverse_iterator
4518          I = QualifierUnion.rbegin(),
4519          E = QualifierUnion.rend();
4520        I != E; (void)++I, ++MOC) {
4521     Qualifiers Quals = Qualifiers::fromCVRMask(*I);
4522     if (MOC->first && MOC->second) {
4523       // Rebuild member pointer type
4524       Composite1 = Context.getMemberPointerType(
4525                                     Context.getQualifiedType(Composite1, Quals),
4526                                     MOC->first);
4527       Composite2 = Context.getMemberPointerType(
4528                                     Context.getQualifiedType(Composite2, Quals),
4529                                     MOC->second);
4530     } else {
4531       // Rebuild pointer type
4532       Composite1
4533         = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
4534       Composite2
4535         = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
4536     }
4537   }
4538 
4539   // Try to convert to the first composite pointer type.
4540   InitializedEntity Entity1
4541     = InitializedEntity::InitializeTemporary(Composite1);
4542   InitializationKind Kind
4543     = InitializationKind::CreateCopy(Loc, SourceLocation());
4544   InitializationSequence E1ToC1(*this, Entity1, Kind, &E1, 1);
4545   InitializationSequence E2ToC1(*this, Entity1, Kind, &E2, 1);
4546 
4547   if (E1ToC1 && E2ToC1) {
4548     // Conversion to Composite1 is viable.
4549     if (!Context.hasSameType(Composite1, Composite2)) {
4550       // Composite2 is a different type from Composite1. Check whether
4551       // Composite2 is also viable.
4552       InitializedEntity Entity2
4553         = InitializedEntity::InitializeTemporary(Composite2);
4554       InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
4555       InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
4556       if (E1ToC2 && E2ToC2) {
4557         // Both Composite1 and Composite2 are viable and are different;
4558         // this is an ambiguity.
4559         return QualType();
4560       }
4561     }
4562 
4563     // Convert E1 to Composite1
4564     ExprResult E1Result
4565       = E1ToC1.Perform(*this, Entity1, Kind, E1);
4566     if (E1Result.isInvalid())
4567       return QualType();
4568     E1 = E1Result.takeAs<Expr>();
4569 
4570     // Convert E2 to Composite1
4571     ExprResult E2Result
4572       = E2ToC1.Perform(*this, Entity1, Kind, E2);
4573     if (E2Result.isInvalid())
4574       return QualType();
4575     E2 = E2Result.takeAs<Expr>();
4576 
4577     return Composite1;
4578   }
4579 
4580   // Check whether Composite2 is viable.
4581   InitializedEntity Entity2
4582     = InitializedEntity::InitializeTemporary(Composite2);
4583   InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
4584   InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
4585   if (!E1ToC2 || !E2ToC2)
4586     return QualType();
4587 
4588   // Convert E1 to Composite2
4589   ExprResult E1Result
4590     = E1ToC2.Perform(*this, Entity2, Kind, E1);
4591   if (E1Result.isInvalid())
4592     return QualType();
4593   E1 = E1Result.takeAs<Expr>();
4594 
4595   // Convert E2 to Composite2
4596   ExprResult E2Result
4597     = E2ToC2.Perform(*this, Entity2, Kind, E2);
4598   if (E2Result.isInvalid())
4599     return QualType();
4600   E2 = E2Result.takeAs<Expr>();
4601 
4602   return Composite2;
4603 }
4604 
MaybeBindToTemporary(Expr * E)4605 ExprResult Sema::MaybeBindToTemporary(Expr *E) {
4606   if (!E)
4607     return ExprError();
4608 
4609   assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
4610 
4611   // If the result is a glvalue, we shouldn't bind it.
4612   if (!E->isRValue())
4613     return Owned(E);
4614 
4615   // In ARC, calls that return a retainable type can return retained,
4616   // in which case we have to insert a consuming cast.
4617   if (getLangOpts().ObjCAutoRefCount &&
4618       E->getType()->isObjCRetainableType()) {
4619 
4620     bool ReturnsRetained;
4621 
4622     // For actual calls, we compute this by examining the type of the
4623     // called value.
4624     if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
4625       Expr *Callee = Call->getCallee()->IgnoreParens();
4626       QualType T = Callee->getType();
4627 
4628       if (T == Context.BoundMemberTy) {
4629         // Handle pointer-to-members.
4630         if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
4631           T = BinOp->getRHS()->getType();
4632         else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
4633           T = Mem->getMemberDecl()->getType();
4634       }
4635 
4636       if (const PointerType *Ptr = T->getAs<PointerType>())
4637         T = Ptr->getPointeeType();
4638       else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
4639         T = Ptr->getPointeeType();
4640       else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
4641         T = MemPtr->getPointeeType();
4642 
4643       const FunctionType *FTy = T->getAs<FunctionType>();
4644       assert(FTy && "call to value not of function type?");
4645       ReturnsRetained = FTy->getExtInfo().getProducesResult();
4646 
4647     // ActOnStmtExpr arranges things so that StmtExprs of retainable
4648     // type always produce a +1 object.
4649     } else if (isa<StmtExpr>(E)) {
4650       ReturnsRetained = true;
4651 
4652     // We hit this case with the lambda conversion-to-block optimization;
4653     // we don't want any extra casts here.
4654     } else if (isa<CastExpr>(E) &&
4655                isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
4656       return Owned(E);
4657 
4658     // For message sends and property references, we try to find an
4659     // actual method.  FIXME: we should infer retention by selector in
4660     // cases where we don't have an actual method.
4661     } else {
4662       ObjCMethodDecl *D = 0;
4663       if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
4664         D = Send->getMethodDecl();
4665       } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
4666         D = BoxedExpr->getBoxingMethod();
4667       } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
4668         D = ArrayLit->getArrayWithObjectsMethod();
4669       } else if (ObjCDictionaryLiteral *DictLit
4670                                         = dyn_cast<ObjCDictionaryLiteral>(E)) {
4671         D = DictLit->getDictWithObjectsMethod();
4672       }
4673 
4674       ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
4675 
4676       // Don't do reclaims on performSelector calls; despite their
4677       // return type, the invoked method doesn't necessarily actually
4678       // return an object.
4679       if (!ReturnsRetained &&
4680           D && D->getMethodFamily() == OMF_performSelector)
4681         return Owned(E);
4682     }
4683 
4684     // Don't reclaim an object of Class type.
4685     if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
4686       return Owned(E);
4687 
4688     ExprNeedsCleanups = true;
4689 
4690     CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
4691                                    : CK_ARCReclaimReturnedObject);
4692     return Owned(ImplicitCastExpr::Create(Context, E->getType(), ck, E, 0,
4693                                           VK_RValue));
4694   }
4695 
4696   if (!getLangOpts().CPlusPlus)
4697     return Owned(E);
4698 
4699   // Search for the base element type (cf. ASTContext::getBaseElementType) with
4700   // a fast path for the common case that the type is directly a RecordType.
4701   const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
4702   const RecordType *RT = 0;
4703   while (!RT) {
4704     switch (T->getTypeClass()) {
4705     case Type::Record:
4706       RT = cast<RecordType>(T);
4707       break;
4708     case Type::ConstantArray:
4709     case Type::IncompleteArray:
4710     case Type::VariableArray:
4711     case Type::DependentSizedArray:
4712       T = cast<ArrayType>(T)->getElementType().getTypePtr();
4713       break;
4714     default:
4715       return Owned(E);
4716     }
4717   }
4718 
4719   // That should be enough to guarantee that this type is complete, if we're
4720   // not processing a decltype expression.
4721   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4722   if (RD->isInvalidDecl() || RD->isDependentContext())
4723     return Owned(E);
4724 
4725   bool IsDecltype = ExprEvalContexts.back().IsDecltype;
4726   CXXDestructorDecl *Destructor = IsDecltype ? 0 : LookupDestructor(RD);
4727 
4728   if (Destructor) {
4729     MarkFunctionReferenced(E->getExprLoc(), Destructor);
4730     CheckDestructorAccess(E->getExprLoc(), Destructor,
4731                           PDiag(diag::err_access_dtor_temp)
4732                             << E->getType());
4733     DiagnoseUseOfDecl(Destructor, E->getExprLoc());
4734 
4735     // If destructor is trivial, we can avoid the extra copy.
4736     if (Destructor->isTrivial())
4737       return Owned(E);
4738 
4739     // We need a cleanup, but we don't need to remember the temporary.
4740     ExprNeedsCleanups = true;
4741   }
4742 
4743   CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
4744   CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
4745 
4746   if (IsDecltype)
4747     ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
4748 
4749   return Owned(Bind);
4750 }
4751 
4752 ExprResult
MaybeCreateExprWithCleanups(ExprResult SubExpr)4753 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
4754   if (SubExpr.isInvalid())
4755     return ExprError();
4756 
4757   return Owned(MaybeCreateExprWithCleanups(SubExpr.take()));
4758 }
4759 
MaybeCreateExprWithCleanups(Expr * SubExpr)4760 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
4761   assert(SubExpr && "sub expression can't be null!");
4762 
4763   CleanupVarDeclMarking();
4764 
4765   unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
4766   assert(ExprCleanupObjects.size() >= FirstCleanup);
4767   assert(ExprNeedsCleanups || ExprCleanupObjects.size() == FirstCleanup);
4768   if (!ExprNeedsCleanups)
4769     return SubExpr;
4770 
4771   ArrayRef<ExprWithCleanups::CleanupObject> Cleanups
4772     = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
4773                          ExprCleanupObjects.size() - FirstCleanup);
4774 
4775   Expr *E = ExprWithCleanups::Create(Context, SubExpr, Cleanups);
4776   DiscardCleanupsInEvaluationContext();
4777 
4778   return E;
4779 }
4780 
MaybeCreateStmtWithCleanups(Stmt * SubStmt)4781 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
4782   assert(SubStmt && "sub statement can't be null!");
4783 
4784   CleanupVarDeclMarking();
4785 
4786   if (!ExprNeedsCleanups)
4787     return SubStmt;
4788 
4789   // FIXME: In order to attach the temporaries, wrap the statement into
4790   // a StmtExpr; currently this is only used for asm statements.
4791   // This is hacky, either create a new CXXStmtWithTemporaries statement or
4792   // a new AsmStmtWithTemporaries.
4793   CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, &SubStmt, 1,
4794                                                       SourceLocation(),
4795                                                       SourceLocation());
4796   Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
4797                                    SourceLocation());
4798   return MaybeCreateExprWithCleanups(E);
4799 }
4800 
4801 /// Process the expression contained within a decltype. For such expressions,
4802 /// certain semantic checks on temporaries are delayed until this point, and
4803 /// are omitted for the 'topmost' call in the decltype expression. If the
4804 /// topmost call bound a temporary, strip that temporary off the expression.
ActOnDecltypeExpression(Expr * E)4805 ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
4806   ExpressionEvaluationContextRecord &Rec = ExprEvalContexts.back();
4807   assert(Rec.IsDecltype && "not in a decltype expression");
4808 
4809   // C++11 [expr.call]p11:
4810   //   If a function call is a prvalue of object type,
4811   // -- if the function call is either
4812   //   -- the operand of a decltype-specifier, or
4813   //   -- the right operand of a comma operator that is the operand of a
4814   //      decltype-specifier,
4815   //   a temporary object is not introduced for the prvalue.
4816 
4817   // Recursively rebuild ParenExprs and comma expressions to strip out the
4818   // outermost CXXBindTemporaryExpr, if any.
4819   if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
4820     ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
4821     if (SubExpr.isInvalid())
4822       return ExprError();
4823     if (SubExpr.get() == PE->getSubExpr())
4824       return Owned(E);
4825     return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.take());
4826   }
4827   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4828     if (BO->getOpcode() == BO_Comma) {
4829       ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
4830       if (RHS.isInvalid())
4831         return ExprError();
4832       if (RHS.get() == BO->getRHS())
4833         return Owned(E);
4834       return Owned(new (Context) BinaryOperator(BO->getLHS(), RHS.take(),
4835                                                 BO_Comma, BO->getType(),
4836                                                 BO->getValueKind(),
4837                                                 BO->getObjectKind(),
4838                                                 BO->getOperatorLoc()));
4839     }
4840   }
4841 
4842   CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
4843   if (TopBind)
4844     E = TopBind->getSubExpr();
4845 
4846   // Disable the special decltype handling now.
4847   Rec.IsDecltype = false;
4848 
4849   // In MS mode, don't perform any extra checking of call return types within a
4850   // decltype expression.
4851   if (getLangOpts().MicrosoftMode)
4852     return Owned(E);
4853 
4854   // Perform the semantic checks we delayed until this point.
4855   CallExpr *TopCall = dyn_cast<CallExpr>(E);
4856   for (unsigned I = 0, N = Rec.DelayedDecltypeCalls.size(); I != N; ++I) {
4857     CallExpr *Call = Rec.DelayedDecltypeCalls[I];
4858     if (Call == TopCall)
4859       continue;
4860 
4861     if (CheckCallReturnType(Call->getCallReturnType(),
4862                             Call->getLocStart(),
4863                             Call, Call->getDirectCallee()))
4864       return ExprError();
4865   }
4866 
4867   // Now all relevant types are complete, check the destructors are accessible
4868   // and non-deleted, and annotate them on the temporaries.
4869   for (unsigned I = 0, N = Rec.DelayedDecltypeBinds.size(); I != N; ++I) {
4870     CXXBindTemporaryExpr *Bind = Rec.DelayedDecltypeBinds[I];
4871     if (Bind == TopBind)
4872       continue;
4873 
4874     CXXTemporary *Temp = Bind->getTemporary();
4875 
4876     CXXRecordDecl *RD =
4877       Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
4878     CXXDestructorDecl *Destructor = LookupDestructor(RD);
4879     Temp->setDestructor(Destructor);
4880 
4881     MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
4882     CheckDestructorAccess(Bind->getExprLoc(), Destructor,
4883                           PDiag(diag::err_access_dtor_temp)
4884                             << Bind->getType());
4885     DiagnoseUseOfDecl(Destructor, Bind->getExprLoc());
4886 
4887     // We need a cleanup, but we don't need to remember the temporary.
4888     ExprNeedsCleanups = true;
4889   }
4890 
4891   // Possibly strip off the top CXXBindTemporaryExpr.
4892   return Owned(E);
4893 }
4894 
4895 ExprResult
ActOnStartCXXMemberReference(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,ParsedType & ObjectType,bool & MayBePseudoDestructor)4896 Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
4897                                    tok::TokenKind OpKind, ParsedType &ObjectType,
4898                                    bool &MayBePseudoDestructor) {
4899   // Since this might be a postfix expression, get rid of ParenListExprs.
4900   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
4901   if (Result.isInvalid()) return ExprError();
4902   Base = Result.get();
4903 
4904   Result = CheckPlaceholderExpr(Base);
4905   if (Result.isInvalid()) return ExprError();
4906   Base = Result.take();
4907 
4908   QualType BaseType = Base->getType();
4909   MayBePseudoDestructor = false;
4910   if (BaseType->isDependentType()) {
4911     // If we have a pointer to a dependent type and are using the -> operator,
4912     // the object type is the type that the pointer points to. We might still
4913     // have enough information about that type to do something useful.
4914     if (OpKind == tok::arrow)
4915       if (const PointerType *Ptr = BaseType->getAs<PointerType>())
4916         BaseType = Ptr->getPointeeType();
4917 
4918     ObjectType = ParsedType::make(BaseType);
4919     MayBePseudoDestructor = true;
4920     return Owned(Base);
4921   }
4922 
4923   // C++ [over.match.oper]p8:
4924   //   [...] When operator->returns, the operator-> is applied  to the value
4925   //   returned, with the original second operand.
4926   if (OpKind == tok::arrow) {
4927     // The set of types we've considered so far.
4928     llvm::SmallPtrSet<CanQualType,8> CTypes;
4929     SmallVector<SourceLocation, 8> Locations;
4930     CTypes.insert(Context.getCanonicalType(BaseType));
4931 
4932     while (BaseType->isRecordType()) {
4933       Result = BuildOverloadedArrowExpr(S, Base, OpLoc);
4934       if (Result.isInvalid())
4935         return ExprError();
4936       Base = Result.get();
4937       if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
4938         Locations.push_back(OpCall->getDirectCallee()->getLocation());
4939       BaseType = Base->getType();
4940       CanQualType CBaseType = Context.getCanonicalType(BaseType);
4941       if (!CTypes.insert(CBaseType)) {
4942         Diag(OpLoc, diag::err_operator_arrow_circular);
4943         for (unsigned i = 0; i < Locations.size(); i++)
4944           Diag(Locations[i], diag::note_declared_at);
4945         return ExprError();
4946       }
4947     }
4948 
4949     if (BaseType->isPointerType() || BaseType->isObjCObjectPointerType())
4950       BaseType = BaseType->getPointeeType();
4951   }
4952 
4953   // Objective-C properties allow "." access on Objective-C pointer types,
4954   // so adjust the base type to the object type itself.
4955   if (BaseType->isObjCObjectPointerType())
4956     BaseType = BaseType->getPointeeType();
4957 
4958   // C++ [basic.lookup.classref]p2:
4959   //   [...] If the type of the object expression is of pointer to scalar
4960   //   type, the unqualified-id is looked up in the context of the complete
4961   //   postfix-expression.
4962   //
4963   // This also indicates that we could be parsing a pseudo-destructor-name.
4964   // Note that Objective-C class and object types can be pseudo-destructor
4965   // expressions or normal member (ivar or property) access expressions.
4966   if (BaseType->isObjCObjectOrInterfaceType()) {
4967     MayBePseudoDestructor = true;
4968   } else if (!BaseType->isRecordType()) {
4969     ObjectType = ParsedType();
4970     MayBePseudoDestructor = true;
4971     return Owned(Base);
4972   }
4973 
4974   // The object type must be complete (or dependent), or
4975   // C++11 [expr.prim.general]p3:
4976   //   Unlike the object expression in other contexts, *this is not required to
4977   //   be of complete type for purposes of class member access (5.2.5) outside
4978   //   the member function body.
4979   if (!BaseType->isDependentType() &&
4980       !isThisOutsideMemberFunctionBody(BaseType) &&
4981       RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access))
4982     return ExprError();
4983 
4984   // C++ [basic.lookup.classref]p2:
4985   //   If the id-expression in a class member access (5.2.5) is an
4986   //   unqualified-id, and the type of the object expression is of a class
4987   //   type C (or of pointer to a class type C), the unqualified-id is looked
4988   //   up in the scope of class C. [...]
4989   ObjectType = ParsedType::make(BaseType);
4990   return Base;
4991 }
4992 
DiagnoseDtorReference(SourceLocation NameLoc,Expr * MemExpr)4993 ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
4994                                                    Expr *MemExpr) {
4995   SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
4996   Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
4997     << isa<CXXPseudoDestructorExpr>(MemExpr)
4998     << FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
4999 
5000   return ActOnCallExpr(/*Scope*/ 0,
5001                        MemExpr,
5002                        /*LPLoc*/ ExpectedLParenLoc,
5003                        MultiExprArg(),
5004                        /*RPLoc*/ ExpectedLParenLoc);
5005 }
5006 
CheckArrow(Sema & S,QualType & ObjectType,Expr * & Base,tok::TokenKind & OpKind,SourceLocation OpLoc)5007 static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base,
5008                    tok::TokenKind& OpKind, SourceLocation OpLoc) {
5009   if (Base->hasPlaceholderType()) {
5010     ExprResult result = S.CheckPlaceholderExpr(Base);
5011     if (result.isInvalid()) return true;
5012     Base = result.take();
5013   }
5014   ObjectType = Base->getType();
5015 
5016   // C++ [expr.pseudo]p2:
5017   //   The left-hand side of the dot operator shall be of scalar type. The
5018   //   left-hand side of the arrow operator shall be of pointer to scalar type.
5019   //   This scalar type is the object type.
5020   // Note that this is rather different from the normal handling for the
5021   // arrow operator.
5022   if (OpKind == tok::arrow) {
5023     if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
5024       ObjectType = Ptr->getPointeeType();
5025     } else if (!Base->isTypeDependent()) {
5026       // The user wrote "p->" when she probably meant "p."; fix it.
5027       S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
5028         << ObjectType << true
5029         << FixItHint::CreateReplacement(OpLoc, ".");
5030       if (S.isSFINAEContext())
5031         return true;
5032 
5033       OpKind = tok::period;
5034     }
5035   }
5036 
5037   return false;
5038 }
5039 
BuildPseudoDestructorExpr(Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,const CXXScopeSpec & SS,TypeSourceInfo * ScopeTypeInfo,SourceLocation CCLoc,SourceLocation TildeLoc,PseudoDestructorTypeStorage Destructed,bool HasTrailingLParen)5040 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
5041                                            SourceLocation OpLoc,
5042                                            tok::TokenKind OpKind,
5043                                            const CXXScopeSpec &SS,
5044                                            TypeSourceInfo *ScopeTypeInfo,
5045                                            SourceLocation CCLoc,
5046                                            SourceLocation TildeLoc,
5047                                          PseudoDestructorTypeStorage Destructed,
5048                                            bool HasTrailingLParen) {
5049   TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
5050 
5051   QualType ObjectType;
5052   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5053     return ExprError();
5054 
5055   if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
5056       !ObjectType->isVectorType()) {
5057     if (getLangOpts().MicrosoftMode && ObjectType->isVoidType())
5058       Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
5059     else
5060       Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
5061         << ObjectType << Base->getSourceRange();
5062     return ExprError();
5063   }
5064 
5065   // C++ [expr.pseudo]p2:
5066   //   [...] The cv-unqualified versions of the object type and of the type
5067   //   designated by the pseudo-destructor-name shall be the same type.
5068   if (DestructedTypeInfo) {
5069     QualType DestructedType = DestructedTypeInfo->getType();
5070     SourceLocation DestructedTypeStart
5071       = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
5072     if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
5073       if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
5074         Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
5075           << ObjectType << DestructedType << Base->getSourceRange()
5076           << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
5077 
5078         // Recover by setting the destructed type to the object type.
5079         DestructedType = ObjectType;
5080         DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
5081                                                            DestructedTypeStart);
5082         Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5083       } else if (DestructedType.getObjCLifetime() !=
5084                                                 ObjectType.getObjCLifetime()) {
5085 
5086         if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
5087           // Okay: just pretend that the user provided the correctly-qualified
5088           // type.
5089         } else {
5090           Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
5091             << ObjectType << DestructedType << Base->getSourceRange()
5092             << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
5093         }
5094 
5095         // Recover by setting the destructed type to the object type.
5096         DestructedType = ObjectType;
5097         DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
5098                                                            DestructedTypeStart);
5099         Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5100       }
5101     }
5102   }
5103 
5104   // C++ [expr.pseudo]p2:
5105   //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
5106   //   form
5107   //
5108   //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
5109   //
5110   //   shall designate the same scalar type.
5111   if (ScopeTypeInfo) {
5112     QualType ScopeType = ScopeTypeInfo->getType();
5113     if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
5114         !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
5115 
5116       Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
5117            diag::err_pseudo_dtor_type_mismatch)
5118         << ObjectType << ScopeType << Base->getSourceRange()
5119         << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
5120 
5121       ScopeType = QualType();
5122       ScopeTypeInfo = 0;
5123     }
5124   }
5125 
5126   Expr *Result
5127     = new (Context) CXXPseudoDestructorExpr(Context, Base,
5128                                             OpKind == tok::arrow, OpLoc,
5129                                             SS.getWithLocInContext(Context),
5130                                             ScopeTypeInfo,
5131                                             CCLoc,
5132                                             TildeLoc,
5133                                             Destructed);
5134 
5135   if (HasTrailingLParen)
5136     return Owned(Result);
5137 
5138   return DiagnoseDtorReference(Destructed.getLocation(), Result);
5139 }
5140 
ActOnPseudoDestructorExpr(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,CXXScopeSpec & SS,UnqualifiedId & FirstTypeName,SourceLocation CCLoc,SourceLocation TildeLoc,UnqualifiedId & SecondTypeName,bool HasTrailingLParen)5141 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
5142                                            SourceLocation OpLoc,
5143                                            tok::TokenKind OpKind,
5144                                            CXXScopeSpec &SS,
5145                                            UnqualifiedId &FirstTypeName,
5146                                            SourceLocation CCLoc,
5147                                            SourceLocation TildeLoc,
5148                                            UnqualifiedId &SecondTypeName,
5149                                            bool HasTrailingLParen) {
5150   assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5151           FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
5152          "Invalid first type name in pseudo-destructor");
5153   assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5154           SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
5155          "Invalid second type name in pseudo-destructor");
5156 
5157   QualType ObjectType;
5158   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5159     return ExprError();
5160 
5161   // Compute the object type that we should use for name lookup purposes. Only
5162   // record types and dependent types matter.
5163   ParsedType ObjectTypePtrForLookup;
5164   if (!SS.isSet()) {
5165     if (ObjectType->isRecordType())
5166       ObjectTypePtrForLookup = ParsedType::make(ObjectType);
5167     else if (ObjectType->isDependentType())
5168       ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
5169   }
5170 
5171   // Convert the name of the type being destructed (following the ~) into a
5172   // type (with source-location information).
5173   QualType DestructedType;
5174   TypeSourceInfo *DestructedTypeInfo = 0;
5175   PseudoDestructorTypeStorage Destructed;
5176   if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
5177     ParsedType T = getTypeName(*SecondTypeName.Identifier,
5178                                SecondTypeName.StartLocation,
5179                                S, &SS, true, false, ObjectTypePtrForLookup);
5180     if (!T &&
5181         ((SS.isSet() && !computeDeclContext(SS, false)) ||
5182          (!SS.isSet() && ObjectType->isDependentType()))) {
5183       // The name of the type being destroyed is a dependent name, and we
5184       // couldn't find anything useful in scope. Just store the identifier and
5185       // it's location, and we'll perform (qualified) name lookup again at
5186       // template instantiation time.
5187       Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
5188                                                SecondTypeName.StartLocation);
5189     } else if (!T) {
5190       Diag(SecondTypeName.StartLocation,
5191            diag::err_pseudo_dtor_destructor_non_type)
5192         << SecondTypeName.Identifier << ObjectType;
5193       if (isSFINAEContext())
5194         return ExprError();
5195 
5196       // Recover by assuming we had the right type all along.
5197       DestructedType = ObjectType;
5198     } else
5199       DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
5200   } else {
5201     // Resolve the template-id to a type.
5202     TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
5203     ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5204                                        TemplateId->NumArgs);
5205     TypeResult T = ActOnTemplateIdType(TemplateId->SS,
5206                                        TemplateId->TemplateKWLoc,
5207                                        TemplateId->Template,
5208                                        TemplateId->TemplateNameLoc,
5209                                        TemplateId->LAngleLoc,
5210                                        TemplateArgsPtr,
5211                                        TemplateId->RAngleLoc);
5212     if (T.isInvalid() || !T.get()) {
5213       // Recover by assuming we had the right type all along.
5214       DestructedType = ObjectType;
5215     } else
5216       DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
5217   }
5218 
5219   // If we've performed some kind of recovery, (re-)build the type source
5220   // information.
5221   if (!DestructedType.isNull()) {
5222     if (!DestructedTypeInfo)
5223       DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
5224                                                   SecondTypeName.StartLocation);
5225     Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5226   }
5227 
5228   // Convert the name of the scope type (the type prior to '::') into a type.
5229   TypeSourceInfo *ScopeTypeInfo = 0;
5230   QualType ScopeType;
5231   if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5232       FirstTypeName.Identifier) {
5233     if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
5234       ParsedType T = getTypeName(*FirstTypeName.Identifier,
5235                                  FirstTypeName.StartLocation,
5236                                  S, &SS, true, false, ObjectTypePtrForLookup);
5237       if (!T) {
5238         Diag(FirstTypeName.StartLocation,
5239              diag::err_pseudo_dtor_destructor_non_type)
5240           << FirstTypeName.Identifier << ObjectType;
5241 
5242         if (isSFINAEContext())
5243           return ExprError();
5244 
5245         // Just drop this type. It's unnecessary anyway.
5246         ScopeType = QualType();
5247       } else
5248         ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
5249     } else {
5250       // Resolve the template-id to a type.
5251       TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
5252       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5253                                          TemplateId->NumArgs);
5254       TypeResult T = ActOnTemplateIdType(TemplateId->SS,
5255                                          TemplateId->TemplateKWLoc,
5256                                          TemplateId->Template,
5257                                          TemplateId->TemplateNameLoc,
5258                                          TemplateId->LAngleLoc,
5259                                          TemplateArgsPtr,
5260                                          TemplateId->RAngleLoc);
5261       if (T.isInvalid() || !T.get()) {
5262         // Recover by dropping this type.
5263         ScopeType = QualType();
5264       } else
5265         ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
5266     }
5267   }
5268 
5269   if (!ScopeType.isNull() && !ScopeTypeInfo)
5270     ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
5271                                                   FirstTypeName.StartLocation);
5272 
5273 
5274   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
5275                                    ScopeTypeInfo, CCLoc, TildeLoc,
5276                                    Destructed, HasTrailingLParen);
5277 }
5278 
ActOnPseudoDestructorExpr(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,SourceLocation TildeLoc,const DeclSpec & DS,bool HasTrailingLParen)5279 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
5280                                            SourceLocation OpLoc,
5281                                            tok::TokenKind OpKind,
5282                                            SourceLocation TildeLoc,
5283                                            const DeclSpec& DS,
5284                                            bool HasTrailingLParen) {
5285   QualType ObjectType;
5286   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5287     return ExprError();
5288 
5289   QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
5290 
5291   TypeLocBuilder TLB;
5292   DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
5293   DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
5294   TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
5295   PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
5296 
5297   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
5298                                    0, SourceLocation(), TildeLoc,
5299                                    Destructed, HasTrailingLParen);
5300 }
5301 
BuildCXXMemberCallExpr(Expr * E,NamedDecl * FoundDecl,CXXConversionDecl * Method,bool HadMultipleCandidates)5302 ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
5303                                         CXXConversionDecl *Method,
5304                                         bool HadMultipleCandidates) {
5305   if (Method->getParent()->isLambda() &&
5306       Method->getConversionType()->isBlockPointerType()) {
5307     // This is a lambda coversion to block pointer; check if the argument
5308     // is a LambdaExpr.
5309     Expr *SubE = E;
5310     CastExpr *CE = dyn_cast<CastExpr>(SubE);
5311     if (CE && CE->getCastKind() == CK_NoOp)
5312       SubE = CE->getSubExpr();
5313     SubE = SubE->IgnoreParens();
5314     if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
5315       SubE = BE->getSubExpr();
5316     if (isa<LambdaExpr>(SubE)) {
5317       // For the conversion to block pointer on a lambda expression, we
5318       // construct a special BlockLiteral instead; this doesn't really make
5319       // a difference in ARC, but outside of ARC the resulting block literal
5320       // follows the normal lifetime rules for block literals instead of being
5321       // autoreleased.
5322       DiagnosticErrorTrap Trap(Diags);
5323       ExprResult Exp = BuildBlockForLambdaConversion(E->getExprLoc(),
5324                                                      E->getExprLoc(),
5325                                                      Method, E);
5326       if (Exp.isInvalid())
5327         Diag(E->getExprLoc(), diag::note_lambda_to_block_conv);
5328       return Exp;
5329     }
5330   }
5331 
5332 
5333   ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/0,
5334                                           FoundDecl, Method);
5335   if (Exp.isInvalid())
5336     return true;
5337 
5338   MemberExpr *ME =
5339       new (Context) MemberExpr(Exp.take(), /*IsArrow=*/false, Method,
5340                                SourceLocation(), Context.BoundMemberTy,
5341                                VK_RValue, OK_Ordinary);
5342   if (HadMultipleCandidates)
5343     ME->setHadMultipleCandidates(true);
5344 
5345   QualType ResultType = Method->getResultType();
5346   ExprValueKind VK = Expr::getValueKindForType(ResultType);
5347   ResultType = ResultType.getNonLValueExprType(Context);
5348 
5349   MarkFunctionReferenced(Exp.get()->getLocStart(), Method);
5350   CXXMemberCallExpr *CE =
5351     new (Context) CXXMemberCallExpr(Context, ME, MultiExprArg(), ResultType, VK,
5352                                     Exp.get()->getLocEnd());
5353   return CE;
5354 }
5355 
BuildCXXNoexceptExpr(SourceLocation KeyLoc,Expr * Operand,SourceLocation RParen)5356 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
5357                                       SourceLocation RParen) {
5358   CanThrowResult CanThrow = canThrow(Operand);
5359   return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand,
5360                                              CanThrow, KeyLoc, RParen));
5361 }
5362 
ActOnNoexceptExpr(SourceLocation KeyLoc,SourceLocation,Expr * Operand,SourceLocation RParen)5363 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
5364                                    Expr *Operand, SourceLocation RParen) {
5365   return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
5366 }
5367 
IsSpecialDiscardedValue(Expr * E)5368 static bool IsSpecialDiscardedValue(Expr *E) {
5369   // In C++11, discarded-value expressions of a certain form are special,
5370   // according to [expr]p10:
5371   //   The lvalue-to-rvalue conversion (4.1) is applied only if the
5372   //   expression is an lvalue of volatile-qualified type and it has
5373   //   one of the following forms:
5374   E = E->IgnoreParens();
5375 
5376   //   - id-expression (5.1.1),
5377   if (isa<DeclRefExpr>(E))
5378     return true;
5379 
5380   //   - subscripting (5.2.1),
5381   if (isa<ArraySubscriptExpr>(E))
5382     return true;
5383 
5384   //   - class member access (5.2.5),
5385   if (isa<MemberExpr>(E))
5386     return true;
5387 
5388   //   - indirection (5.3.1),
5389   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
5390     if (UO->getOpcode() == UO_Deref)
5391       return true;
5392 
5393   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5394     //   - pointer-to-member operation (5.5),
5395     if (BO->isPtrMemOp())
5396       return true;
5397 
5398     //   - comma expression (5.18) where the right operand is one of the above.
5399     if (BO->getOpcode() == BO_Comma)
5400       return IsSpecialDiscardedValue(BO->getRHS());
5401   }
5402 
5403   //   - conditional expression (5.16) where both the second and the third
5404   //     operands are one of the above, or
5405   if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
5406     return IsSpecialDiscardedValue(CO->getTrueExpr()) &&
5407            IsSpecialDiscardedValue(CO->getFalseExpr());
5408   // The related edge case of "*x ?: *x".
5409   if (BinaryConditionalOperator *BCO =
5410           dyn_cast<BinaryConditionalOperator>(E)) {
5411     if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
5412       return IsSpecialDiscardedValue(OVE->getSourceExpr()) &&
5413              IsSpecialDiscardedValue(BCO->getFalseExpr());
5414   }
5415 
5416   // Objective-C++ extensions to the rule.
5417   if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E))
5418     return true;
5419 
5420   return false;
5421 }
5422 
5423 /// Perform the conversions required for an expression used in a
5424 /// context that ignores the result.
IgnoredValueConversions(Expr * E)5425 ExprResult Sema::IgnoredValueConversions(Expr *E) {
5426   if (E->hasPlaceholderType()) {
5427     ExprResult result = CheckPlaceholderExpr(E);
5428     if (result.isInvalid()) return Owned(E);
5429     E = result.take();
5430   }
5431 
5432   // C99 6.3.2.1:
5433   //   [Except in specific positions,] an lvalue that does not have
5434   //   array type is converted to the value stored in the
5435   //   designated object (and is no longer an lvalue).
5436   if (E->isRValue()) {
5437     // In C, function designators (i.e. expressions of function type)
5438     // are r-values, but we still want to do function-to-pointer decay
5439     // on them.  This is both technically correct and convenient for
5440     // some clients.
5441     if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
5442       return DefaultFunctionArrayConversion(E);
5443 
5444     return Owned(E);
5445   }
5446 
5447   if (getLangOpts().CPlusPlus)  {
5448     // The C++11 standard defines the notion of a discarded-value expression;
5449     // normally, we don't need to do anything to handle it, but if it is a
5450     // volatile lvalue with a special form, we perform an lvalue-to-rvalue
5451     // conversion.
5452     if (getLangOpts().CPlusPlus0x && E->isGLValue() &&
5453         E->getType().isVolatileQualified() &&
5454         IsSpecialDiscardedValue(E)) {
5455       ExprResult Res = DefaultLvalueConversion(E);
5456       if (Res.isInvalid())
5457         return Owned(E);
5458       E = Res.take();
5459     }
5460     return Owned(E);
5461   }
5462 
5463   // GCC seems to also exclude expressions of incomplete enum type.
5464   if (const EnumType *T = E->getType()->getAs<EnumType>()) {
5465     if (!T->getDecl()->isComplete()) {
5466       // FIXME: stupid workaround for a codegen bug!
5467       E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).take();
5468       return Owned(E);
5469     }
5470   }
5471 
5472   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
5473   if (Res.isInvalid())
5474     return Owned(E);
5475   E = Res.take();
5476 
5477   if (!E->getType()->isVoidType())
5478     RequireCompleteType(E->getExprLoc(), E->getType(),
5479                         diag::err_incomplete_type);
5480   return Owned(E);
5481 }
5482 
ActOnFinishFullExpr(Expr * FE,SourceLocation CC)5483 ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC) {
5484   ExprResult FullExpr = Owned(FE);
5485 
5486   if (!FullExpr.get())
5487     return ExprError();
5488 
5489   if (DiagnoseUnexpandedParameterPack(FullExpr.get()))
5490     return ExprError();
5491 
5492   // Top-level message sends default to 'id' when we're in a debugger.
5493   if (getLangOpts().DebuggerCastResultToId &&
5494       FullExpr.get()->getType() == Context.UnknownAnyTy &&
5495       isa<ObjCMessageExpr>(FullExpr.get())) {
5496     FullExpr = forceUnknownAnyToType(FullExpr.take(), Context.getObjCIdType());
5497     if (FullExpr.isInvalid())
5498       return ExprError();
5499   }
5500 
5501   FullExpr = CheckPlaceholderExpr(FullExpr.take());
5502   if (FullExpr.isInvalid())
5503     return ExprError();
5504 
5505   FullExpr = IgnoredValueConversions(FullExpr.take());
5506   if (FullExpr.isInvalid())
5507     return ExprError();
5508 
5509   CheckImplicitConversions(FullExpr.get(), CC);
5510   return MaybeCreateExprWithCleanups(FullExpr);
5511 }
5512 
ActOnFinishFullStmt(Stmt * FullStmt)5513 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
5514   if (!FullStmt) return StmtError();
5515 
5516   return MaybeCreateStmtWithCleanups(FullStmt);
5517 }
5518 
5519 Sema::IfExistsResult
CheckMicrosoftIfExistsSymbol(Scope * S,CXXScopeSpec & SS,const DeclarationNameInfo & TargetNameInfo)5520 Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
5521                                    CXXScopeSpec &SS,
5522                                    const DeclarationNameInfo &TargetNameInfo) {
5523   DeclarationName TargetName = TargetNameInfo.getName();
5524   if (!TargetName)
5525     return IER_DoesNotExist;
5526 
5527   // If the name itself is dependent, then the result is dependent.
5528   if (TargetName.isDependentName())
5529     return IER_Dependent;
5530 
5531   // Do the redeclaration lookup in the current scope.
5532   LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
5533                  Sema::NotForRedeclaration);
5534   LookupParsedName(R, S, &SS);
5535   R.suppressDiagnostics();
5536 
5537   switch (R.getResultKind()) {
5538   case LookupResult::Found:
5539   case LookupResult::FoundOverloaded:
5540   case LookupResult::FoundUnresolvedValue:
5541   case LookupResult::Ambiguous:
5542     return IER_Exists;
5543 
5544   case LookupResult::NotFound:
5545     return IER_DoesNotExist;
5546 
5547   case LookupResult::NotFoundInCurrentInstantiation:
5548     return IER_Dependent;
5549   }
5550 
5551   llvm_unreachable("Invalid LookupResult Kind!");
5552 }
5553 
5554 Sema::IfExistsResult
CheckMicrosoftIfExistsSymbol(Scope * S,SourceLocation KeywordLoc,bool IsIfExists,CXXScopeSpec & SS,UnqualifiedId & Name)5555 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
5556                                    bool IsIfExists, CXXScopeSpec &SS,
5557                                    UnqualifiedId &Name) {
5558   DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5559 
5560   // Check for unexpanded parameter packs.
5561   SmallVector<UnexpandedParameterPack, 4> Unexpanded;
5562   collectUnexpandedParameterPacks(SS, Unexpanded);
5563   collectUnexpandedParameterPacks(TargetNameInfo, Unexpanded);
5564   if (!Unexpanded.empty()) {
5565     DiagnoseUnexpandedParameterPacks(KeywordLoc,
5566                                      IsIfExists? UPPC_IfExists
5567                                                : UPPC_IfNotExists,
5568                                      Unexpanded);
5569     return IER_Error;
5570   }
5571 
5572   return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
5573 }
5574