1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief Implements semantic analysis for C++ expressions.
12 ///
13 //===----------------------------------------------------------------------===//
14
15 #include "clang/Sema/SemaInternal.h"
16 #include "clang/Sema/DeclSpec.h"
17 #include "clang/Sema/Initialization.h"
18 #include "clang/Sema/Lookup.h"
19 #include "clang/Sema/ParsedTemplate.h"
20 #include "clang/Sema/ScopeInfo.h"
21 #include "clang/Sema/Scope.h"
22 #include "clang/Sema/TemplateDeduction.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/CXXInheritance.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/AST/ExprCXX.h"
28 #include "clang/AST/ExprObjC.h"
29 #include "clang/AST/TypeLoc.h"
30 #include "clang/Basic/PartialDiagnostic.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Lex/Preprocessor.h"
33 #include "TypeLocBuilder.h"
34 #include "llvm/ADT/APInt.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/Support/ErrorHandling.h"
37 using namespace clang;
38 using namespace sema;
39
getDestructorName(SourceLocation TildeLoc,IdentifierInfo & II,SourceLocation NameLoc,Scope * S,CXXScopeSpec & SS,ParsedType ObjectTypePtr,bool EnteringContext)40 ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
41 IdentifierInfo &II,
42 SourceLocation NameLoc,
43 Scope *S, CXXScopeSpec &SS,
44 ParsedType ObjectTypePtr,
45 bool EnteringContext) {
46 // Determine where to perform name lookup.
47
48 // FIXME: This area of the standard is very messy, and the current
49 // wording is rather unclear about which scopes we search for the
50 // destructor name; see core issues 399 and 555. Issue 399 in
51 // particular shows where the current description of destructor name
52 // lookup is completely out of line with existing practice, e.g.,
53 // this appears to be ill-formed:
54 //
55 // namespace N {
56 // template <typename T> struct S {
57 // ~S();
58 // };
59 // }
60 //
61 // void f(N::S<int>* s) {
62 // s->N::S<int>::~S();
63 // }
64 //
65 // See also PR6358 and PR6359.
66 // For this reason, we're currently only doing the C++03 version of this
67 // code; the C++0x version has to wait until we get a proper spec.
68 QualType SearchType;
69 DeclContext *LookupCtx = 0;
70 bool isDependent = false;
71 bool LookInScope = false;
72
73 // If we have an object type, it's because we are in a
74 // pseudo-destructor-expression or a member access expression, and
75 // we know what type we're looking for.
76 if (ObjectTypePtr)
77 SearchType = GetTypeFromParser(ObjectTypePtr);
78
79 if (SS.isSet()) {
80 NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
81
82 bool AlreadySearched = false;
83 bool LookAtPrefix = true;
84 // C++ [basic.lookup.qual]p6:
85 // If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
86 // the type-names are looked up as types in the scope designated by the
87 // nested-name-specifier. In a qualified-id of the form:
88 //
89 // ::[opt] nested-name-specifier ~ class-name
90 //
91 // where the nested-name-specifier designates a namespace scope, and in
92 // a qualified-id of the form:
93 //
94 // ::opt nested-name-specifier class-name :: ~ class-name
95 //
96 // the class-names are looked up as types in the scope designated by
97 // the nested-name-specifier.
98 //
99 // Here, we check the first case (completely) and determine whether the
100 // code below is permitted to look at the prefix of the
101 // nested-name-specifier.
102 DeclContext *DC = computeDeclContext(SS, EnteringContext);
103 if (DC && DC->isFileContext()) {
104 AlreadySearched = true;
105 LookupCtx = DC;
106 isDependent = false;
107 } else if (DC && isa<CXXRecordDecl>(DC))
108 LookAtPrefix = false;
109
110 // The second case from the C++03 rules quoted further above.
111 NestedNameSpecifier *Prefix = 0;
112 if (AlreadySearched) {
113 // Nothing left to do.
114 } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
115 CXXScopeSpec PrefixSS;
116 PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
117 LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
118 isDependent = isDependentScopeSpecifier(PrefixSS);
119 } else if (ObjectTypePtr) {
120 LookupCtx = computeDeclContext(SearchType);
121 isDependent = SearchType->isDependentType();
122 } else {
123 LookupCtx = computeDeclContext(SS, EnteringContext);
124 isDependent = LookupCtx && LookupCtx->isDependentContext();
125 }
126
127 LookInScope = false;
128 } else if (ObjectTypePtr) {
129 // C++ [basic.lookup.classref]p3:
130 // If the unqualified-id is ~type-name, the type-name is looked up
131 // in the context of the entire postfix-expression. If the type T
132 // of the object expression is of a class type C, the type-name is
133 // also looked up in the scope of class C. At least one of the
134 // lookups shall find a name that refers to (possibly
135 // cv-qualified) T.
136 LookupCtx = computeDeclContext(SearchType);
137 isDependent = SearchType->isDependentType();
138 assert((isDependent || !SearchType->isIncompleteType()) &&
139 "Caller should have completed object type");
140
141 LookInScope = true;
142 } else {
143 // Perform lookup into the current scope (only).
144 LookInScope = true;
145 }
146
147 TypeDecl *NonMatchingTypeDecl = 0;
148 LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
149 for (unsigned Step = 0; Step != 2; ++Step) {
150 // Look for the name first in the computed lookup context (if we
151 // have one) and, if that fails to find a match, in the scope (if
152 // we're allowed to look there).
153 Found.clear();
154 if (Step == 0 && LookupCtx)
155 LookupQualifiedName(Found, LookupCtx);
156 else if (Step == 1 && LookInScope && S)
157 LookupName(Found, S);
158 else
159 continue;
160
161 // FIXME: Should we be suppressing ambiguities here?
162 if (Found.isAmbiguous())
163 return ParsedType();
164
165 if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
166 QualType T = Context.getTypeDeclType(Type);
167
168 if (SearchType.isNull() || SearchType->isDependentType() ||
169 Context.hasSameUnqualifiedType(T, SearchType)) {
170 // We found our type!
171
172 return ParsedType::make(T);
173 }
174
175 if (!SearchType.isNull())
176 NonMatchingTypeDecl = Type;
177 }
178
179 // If the name that we found is a class template name, and it is
180 // the same name as the template name in the last part of the
181 // nested-name-specifier (if present) or the object type, then
182 // this is the destructor for that class.
183 // FIXME: This is a workaround until we get real drafting for core
184 // issue 399, for which there isn't even an obvious direction.
185 if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
186 QualType MemberOfType;
187 if (SS.isSet()) {
188 if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
189 // Figure out the type of the context, if it has one.
190 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
191 MemberOfType = Context.getTypeDeclType(Record);
192 }
193 }
194 if (MemberOfType.isNull())
195 MemberOfType = SearchType;
196
197 if (MemberOfType.isNull())
198 continue;
199
200 // We're referring into a class template specialization. If the
201 // class template we found is the same as the template being
202 // specialized, we found what we are looking for.
203 if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
204 if (ClassTemplateSpecializationDecl *Spec
205 = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
206 if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
207 Template->getCanonicalDecl())
208 return ParsedType::make(MemberOfType);
209 }
210
211 continue;
212 }
213
214 // We're referring to an unresolved class template
215 // specialization. Determine whether we class template we found
216 // is the same as the template being specialized or, if we don't
217 // know which template is being specialized, that it at least
218 // has the same name.
219 if (const TemplateSpecializationType *SpecType
220 = MemberOfType->getAs<TemplateSpecializationType>()) {
221 TemplateName SpecName = SpecType->getTemplateName();
222
223 // The class template we found is the same template being
224 // specialized.
225 if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
226 if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
227 return ParsedType::make(MemberOfType);
228
229 continue;
230 }
231
232 // The class template we found has the same name as the
233 // (dependent) template name being specialized.
234 if (DependentTemplateName *DepTemplate
235 = SpecName.getAsDependentTemplateName()) {
236 if (DepTemplate->isIdentifier() &&
237 DepTemplate->getIdentifier() == Template->getIdentifier())
238 return ParsedType::make(MemberOfType);
239
240 continue;
241 }
242 }
243 }
244 }
245
246 if (isDependent) {
247 // We didn't find our type, but that's okay: it's dependent
248 // anyway.
249
250 // FIXME: What if we have no nested-name-specifier?
251 QualType T = CheckTypenameType(ETK_None, SourceLocation(),
252 SS.getWithLocInContext(Context),
253 II, NameLoc);
254 return ParsedType::make(T);
255 }
256
257 if (NonMatchingTypeDecl) {
258 QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
259 Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
260 << T << SearchType;
261 Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
262 << T;
263 } else if (ObjectTypePtr)
264 Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
265 << &II;
266 else
267 Diag(NameLoc, diag::err_destructor_class_name);
268
269 return ParsedType();
270 }
271
getDestructorType(const DeclSpec & DS,ParsedType ObjectType)272 ParsedType Sema::getDestructorType(const DeclSpec& DS, ParsedType ObjectType) {
273 if (DS.getTypeSpecType() == DeclSpec::TST_error || !ObjectType)
274 return ParsedType();
275 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype
276 && "only get destructor types from declspecs");
277 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
278 QualType SearchType = GetTypeFromParser(ObjectType);
279 if (SearchType->isDependentType() || Context.hasSameUnqualifiedType(SearchType, T)) {
280 return ParsedType::make(T);
281 }
282
283 Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
284 << T << SearchType;
285 return ParsedType();
286 }
287
288 /// \brief Build a C++ typeid expression with a type operand.
BuildCXXTypeId(QualType TypeInfoType,SourceLocation TypeidLoc,TypeSourceInfo * Operand,SourceLocation RParenLoc)289 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
290 SourceLocation TypeidLoc,
291 TypeSourceInfo *Operand,
292 SourceLocation RParenLoc) {
293 // C++ [expr.typeid]p4:
294 // The top-level cv-qualifiers of the lvalue expression or the type-id
295 // that is the operand of typeid are always ignored.
296 // If the type of the type-id is a class type or a reference to a class
297 // type, the class shall be completely-defined.
298 Qualifiers Quals;
299 QualType T
300 = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
301 Quals);
302 if (T->getAs<RecordType>() &&
303 RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
304 return ExprError();
305
306 return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
307 Operand,
308 SourceRange(TypeidLoc, RParenLoc)));
309 }
310
311 /// \brief Build a C++ typeid expression with an expression operand.
BuildCXXTypeId(QualType TypeInfoType,SourceLocation TypeidLoc,Expr * E,SourceLocation RParenLoc)312 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
313 SourceLocation TypeidLoc,
314 Expr *E,
315 SourceLocation RParenLoc) {
316 if (E && !E->isTypeDependent()) {
317 if (E->getType()->isPlaceholderType()) {
318 ExprResult result = CheckPlaceholderExpr(E);
319 if (result.isInvalid()) return ExprError();
320 E = result.take();
321 }
322
323 QualType T = E->getType();
324 if (const RecordType *RecordT = T->getAs<RecordType>()) {
325 CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
326 // C++ [expr.typeid]p3:
327 // [...] If the type of the expression is a class type, the class
328 // shall be completely-defined.
329 if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
330 return ExprError();
331
332 // C++ [expr.typeid]p3:
333 // When typeid is applied to an expression other than an glvalue of a
334 // polymorphic class type [...] [the] expression is an unevaluated
335 // operand. [...]
336 if (RecordD->isPolymorphic() && E->isGLValue()) {
337 // The subexpression is potentially evaluated; switch the context
338 // and recheck the subexpression.
339 ExprResult Result = TranformToPotentiallyEvaluated(E);
340 if (Result.isInvalid()) return ExprError();
341 E = Result.take();
342
343 // We require a vtable to query the type at run time.
344 MarkVTableUsed(TypeidLoc, RecordD);
345 }
346 }
347
348 // C++ [expr.typeid]p4:
349 // [...] If the type of the type-id is a reference to a possibly
350 // cv-qualified type, the result of the typeid expression refers to a
351 // std::type_info object representing the cv-unqualified referenced
352 // type.
353 Qualifiers Quals;
354 QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
355 if (!Context.hasSameType(T, UnqualT)) {
356 T = UnqualT;
357 E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).take();
358 }
359 }
360
361 return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
362 E,
363 SourceRange(TypeidLoc, RParenLoc)));
364 }
365
366 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
367 ExprResult
ActOnCXXTypeid(SourceLocation OpLoc,SourceLocation LParenLoc,bool isType,void * TyOrExpr,SourceLocation RParenLoc)368 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
369 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
370 // Find the std::type_info type.
371 if (!getStdNamespace())
372 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
373
374 if (!CXXTypeInfoDecl) {
375 IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
376 LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
377 LookupQualifiedName(R, getStdNamespace());
378 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
379 // Microsoft's typeinfo doesn't have type_info in std but in the global
380 // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
381 if (!CXXTypeInfoDecl && LangOpts.MicrosoftMode) {
382 LookupQualifiedName(R, Context.getTranslationUnitDecl());
383 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
384 }
385 if (!CXXTypeInfoDecl)
386 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
387 }
388
389 if (!getLangOpts().RTTI) {
390 return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
391 }
392
393 QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
394
395 if (isType) {
396 // The operand is a type; handle it as such.
397 TypeSourceInfo *TInfo = 0;
398 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
399 &TInfo);
400 if (T.isNull())
401 return ExprError();
402
403 if (!TInfo)
404 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
405
406 return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
407 }
408
409 // The operand is an expression.
410 return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
411 }
412
413 /// Retrieve the UuidAttr associated with QT.
GetUuidAttrOfType(QualType QT)414 static UuidAttr *GetUuidAttrOfType(QualType QT) {
415 // Optionally remove one level of pointer, reference or array indirection.
416 const Type *Ty = QT.getTypePtr();
417 if (QT->isPointerType() || QT->isReferenceType())
418 Ty = QT->getPointeeType().getTypePtr();
419 else if (QT->isArrayType())
420 Ty = cast<ArrayType>(QT)->getElementType().getTypePtr();
421
422 // Loop all record redeclaration looking for an uuid attribute.
423 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
424 for (CXXRecordDecl::redecl_iterator I = RD->redecls_begin(),
425 E = RD->redecls_end(); I != E; ++I) {
426 if (UuidAttr *Uuid = I->getAttr<UuidAttr>())
427 return Uuid;
428 }
429
430 return 0;
431 }
432
433 /// \brief Build a Microsoft __uuidof expression with a type operand.
BuildCXXUuidof(QualType TypeInfoType,SourceLocation TypeidLoc,TypeSourceInfo * Operand,SourceLocation RParenLoc)434 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
435 SourceLocation TypeidLoc,
436 TypeSourceInfo *Operand,
437 SourceLocation RParenLoc) {
438 if (!Operand->getType()->isDependentType()) {
439 if (!GetUuidAttrOfType(Operand->getType()))
440 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
441 }
442
443 // FIXME: add __uuidof semantic analysis for type operand.
444 return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
445 Operand,
446 SourceRange(TypeidLoc, RParenLoc)));
447 }
448
449 /// \brief Build a Microsoft __uuidof expression with an expression operand.
BuildCXXUuidof(QualType TypeInfoType,SourceLocation TypeidLoc,Expr * E,SourceLocation RParenLoc)450 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
451 SourceLocation TypeidLoc,
452 Expr *E,
453 SourceLocation RParenLoc) {
454 if (!E->getType()->isDependentType()) {
455 if (!GetUuidAttrOfType(E->getType()) &&
456 !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
457 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
458 }
459 // FIXME: add __uuidof semantic analysis for type operand.
460 return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
461 E,
462 SourceRange(TypeidLoc, RParenLoc)));
463 }
464
465 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
466 ExprResult
ActOnCXXUuidof(SourceLocation OpLoc,SourceLocation LParenLoc,bool isType,void * TyOrExpr,SourceLocation RParenLoc)467 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
468 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
469 // If MSVCGuidDecl has not been cached, do the lookup.
470 if (!MSVCGuidDecl) {
471 IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
472 LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
473 LookupQualifiedName(R, Context.getTranslationUnitDecl());
474 MSVCGuidDecl = R.getAsSingle<RecordDecl>();
475 if (!MSVCGuidDecl)
476 return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
477 }
478
479 QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
480
481 if (isType) {
482 // The operand is a type; handle it as such.
483 TypeSourceInfo *TInfo = 0;
484 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
485 &TInfo);
486 if (T.isNull())
487 return ExprError();
488
489 if (!TInfo)
490 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
491
492 return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
493 }
494
495 // The operand is an expression.
496 return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
497 }
498
499 /// ActOnCXXBoolLiteral - Parse {true,false} literals.
500 ExprResult
ActOnCXXBoolLiteral(SourceLocation OpLoc,tok::TokenKind Kind)501 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
502 assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
503 "Unknown C++ Boolean value!");
504 return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
505 Context.BoolTy, OpLoc));
506 }
507
508 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
509 ExprResult
ActOnCXXNullPtrLiteral(SourceLocation Loc)510 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
511 return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
512 }
513
514 /// ActOnCXXThrow - Parse throw expressions.
515 ExprResult
ActOnCXXThrow(Scope * S,SourceLocation OpLoc,Expr * Ex)516 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
517 bool IsThrownVarInScope = false;
518 if (Ex) {
519 // C++0x [class.copymove]p31:
520 // When certain criteria are met, an implementation is allowed to omit the
521 // copy/move construction of a class object [...]
522 //
523 // - in a throw-expression, when the operand is the name of a
524 // non-volatile automatic object (other than a function or catch-
525 // clause parameter) whose scope does not extend beyond the end of the
526 // innermost enclosing try-block (if there is one), the copy/move
527 // operation from the operand to the exception object (15.1) can be
528 // omitted by constructing the automatic object directly into the
529 // exception object
530 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
531 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
532 if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
533 for( ; S; S = S->getParent()) {
534 if (S->isDeclScope(Var)) {
535 IsThrownVarInScope = true;
536 break;
537 }
538
539 if (S->getFlags() &
540 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
541 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
542 Scope::TryScope))
543 break;
544 }
545 }
546 }
547 }
548
549 return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
550 }
551
BuildCXXThrow(SourceLocation OpLoc,Expr * Ex,bool IsThrownVarInScope)552 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
553 bool IsThrownVarInScope) {
554 // Don't report an error if 'throw' is used in system headers.
555 if (!getLangOpts().CXXExceptions &&
556 !getSourceManager().isInSystemHeader(OpLoc))
557 Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
558
559 if (Ex && !Ex->isTypeDependent()) {
560 ExprResult ExRes = CheckCXXThrowOperand(OpLoc, Ex, IsThrownVarInScope);
561 if (ExRes.isInvalid())
562 return ExprError();
563 Ex = ExRes.take();
564 }
565
566 return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc,
567 IsThrownVarInScope));
568 }
569
570 /// CheckCXXThrowOperand - Validate the operand of a throw.
CheckCXXThrowOperand(SourceLocation ThrowLoc,Expr * E,bool IsThrownVarInScope)571 ExprResult Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *E,
572 bool IsThrownVarInScope) {
573 // C++ [except.throw]p3:
574 // A throw-expression initializes a temporary object, called the exception
575 // object, the type of which is determined by removing any top-level
576 // cv-qualifiers from the static type of the operand of throw and adjusting
577 // the type from "array of T" or "function returning T" to "pointer to T"
578 // or "pointer to function returning T", [...]
579 if (E->getType().hasQualifiers())
580 E = ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
581 E->getValueKind()).take();
582
583 ExprResult Res = DefaultFunctionArrayConversion(E);
584 if (Res.isInvalid())
585 return ExprError();
586 E = Res.take();
587
588 // If the type of the exception would be an incomplete type or a pointer
589 // to an incomplete type other than (cv) void the program is ill-formed.
590 QualType Ty = E->getType();
591 bool isPointer = false;
592 if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
593 Ty = Ptr->getPointeeType();
594 isPointer = true;
595 }
596 if (!isPointer || !Ty->isVoidType()) {
597 if (RequireCompleteType(ThrowLoc, Ty,
598 isPointer? diag::err_throw_incomplete_ptr
599 : diag::err_throw_incomplete,
600 E->getSourceRange()))
601 return ExprError();
602
603 if (RequireNonAbstractType(ThrowLoc, E->getType(),
604 diag::err_throw_abstract_type, E))
605 return ExprError();
606 }
607
608 // Initialize the exception result. This implicitly weeds out
609 // abstract types or types with inaccessible copy constructors.
610
611 // C++0x [class.copymove]p31:
612 // When certain criteria are met, an implementation is allowed to omit the
613 // copy/move construction of a class object [...]
614 //
615 // - in a throw-expression, when the operand is the name of a
616 // non-volatile automatic object (other than a function or catch-clause
617 // parameter) whose scope does not extend beyond the end of the
618 // innermost enclosing try-block (if there is one), the copy/move
619 // operation from the operand to the exception object (15.1) can be
620 // omitted by constructing the automatic object directly into the
621 // exception object
622 const VarDecl *NRVOVariable = 0;
623 if (IsThrownVarInScope)
624 NRVOVariable = getCopyElisionCandidate(QualType(), E, false);
625
626 InitializedEntity Entity =
627 InitializedEntity::InitializeException(ThrowLoc, E->getType(),
628 /*NRVO=*/NRVOVariable != 0);
629 Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable,
630 QualType(), E,
631 IsThrownVarInScope);
632 if (Res.isInvalid())
633 return ExprError();
634 E = Res.take();
635
636 // If the exception has class type, we need additional handling.
637 const RecordType *RecordTy = Ty->getAs<RecordType>();
638 if (!RecordTy)
639 return Owned(E);
640 CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
641
642 // If we are throwing a polymorphic class type or pointer thereof,
643 // exception handling will make use of the vtable.
644 MarkVTableUsed(ThrowLoc, RD);
645
646 // If a pointer is thrown, the referenced object will not be destroyed.
647 if (isPointer)
648 return Owned(E);
649
650 // If the class has a destructor, we must be able to call it.
651 if (RD->hasIrrelevantDestructor())
652 return Owned(E);
653
654 CXXDestructorDecl *Destructor = LookupDestructor(RD);
655 if (!Destructor)
656 return Owned(E);
657
658 MarkFunctionReferenced(E->getExprLoc(), Destructor);
659 CheckDestructorAccess(E->getExprLoc(), Destructor,
660 PDiag(diag::err_access_dtor_exception) << Ty);
661 DiagnoseUseOfDecl(Destructor, E->getExprLoc());
662 return Owned(E);
663 }
664
getCurrentThisType()665 QualType Sema::getCurrentThisType() {
666 DeclContext *DC = getFunctionLevelDeclContext();
667 QualType ThisTy = CXXThisTypeOverride;
668 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
669 if (method && method->isInstance())
670 ThisTy = method->getThisType(Context);
671 }
672
673 return ThisTy;
674 }
675
CXXThisScopeRAII(Sema & S,Decl * ContextDecl,unsigned CXXThisTypeQuals,bool Enabled)676 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
677 Decl *ContextDecl,
678 unsigned CXXThisTypeQuals,
679 bool Enabled)
680 : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
681 {
682 if (!Enabled || !ContextDecl)
683 return;
684
685 CXXRecordDecl *Record = 0;
686 if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
687 Record = Template->getTemplatedDecl();
688 else
689 Record = cast<CXXRecordDecl>(ContextDecl);
690
691 S.CXXThisTypeOverride
692 = S.Context.getPointerType(
693 S.Context.getRecordType(Record).withCVRQualifiers(CXXThisTypeQuals));
694
695 this->Enabled = true;
696 }
697
698
~CXXThisScopeRAII()699 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
700 if (Enabled) {
701 S.CXXThisTypeOverride = OldCXXThisTypeOverride;
702 }
703 }
704
CheckCXXThisCapture(SourceLocation Loc,bool Explicit)705 void Sema::CheckCXXThisCapture(SourceLocation Loc, bool Explicit) {
706 // We don't need to capture this in an unevaluated context.
707 if (ExprEvalContexts.back().Context == Unevaluated && !Explicit)
708 return;
709
710 // Otherwise, check that we can capture 'this'.
711 unsigned NumClosures = 0;
712 for (unsigned idx = FunctionScopes.size() - 1; idx != 0; idx--) {
713 if (CapturingScopeInfo *CSI =
714 dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
715 if (CSI->CXXThisCaptureIndex != 0) {
716 // 'this' is already being captured; there isn't anything more to do.
717 break;
718 }
719
720 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
721 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
722 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
723 Explicit) {
724 // This closure can capture 'this'; continue looking upwards.
725 NumClosures++;
726 Explicit = false;
727 continue;
728 }
729 // This context can't implicitly capture 'this'; fail out.
730 Diag(Loc, diag::err_this_capture) << Explicit;
731 return;
732 }
733 break;
734 }
735
736 // Mark that we're implicitly capturing 'this' in all the scopes we skipped.
737 // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated
738 // contexts.
739 for (unsigned idx = FunctionScopes.size() - 1;
740 NumClosures; --idx, --NumClosures) {
741 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
742 Expr *ThisExpr = 0;
743 QualType ThisTy = getCurrentThisType();
744 if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI)) {
745 // For lambda expressions, build a field and an initializing expression.
746 CXXRecordDecl *Lambda = LSI->Lambda;
747 FieldDecl *Field
748 = FieldDecl::Create(Context, Lambda, Loc, Loc, 0, ThisTy,
749 Context.getTrivialTypeSourceInfo(ThisTy, Loc),
750 0, false, ICIS_NoInit);
751 Field->setImplicit(true);
752 Field->setAccess(AS_private);
753 Lambda->addDecl(Field);
754 ThisExpr = new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/true);
755 }
756 bool isNested = NumClosures > 1;
757 CSI->addThisCapture(isNested, Loc, ThisTy, ThisExpr);
758 }
759 }
760
ActOnCXXThis(SourceLocation Loc)761 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
762 /// C++ 9.3.2: In the body of a non-static member function, the keyword this
763 /// is a non-lvalue expression whose value is the address of the object for
764 /// which the function is called.
765
766 QualType ThisTy = getCurrentThisType();
767 if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
768
769 CheckCXXThisCapture(Loc);
770 return Owned(new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false));
771 }
772
isThisOutsideMemberFunctionBody(QualType BaseType)773 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
774 // If we're outside the body of a member function, then we'll have a specified
775 // type for 'this'.
776 if (CXXThisTypeOverride.isNull())
777 return false;
778
779 // Determine whether we're looking into a class that's currently being
780 // defined.
781 CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
782 return Class && Class->isBeingDefined();
783 }
784
785 ExprResult
ActOnCXXTypeConstructExpr(ParsedType TypeRep,SourceLocation LParenLoc,MultiExprArg exprs,SourceLocation RParenLoc)786 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
787 SourceLocation LParenLoc,
788 MultiExprArg exprs,
789 SourceLocation RParenLoc) {
790 if (!TypeRep)
791 return ExprError();
792
793 TypeSourceInfo *TInfo;
794 QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
795 if (!TInfo)
796 TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
797
798 return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
799 }
800
801 /// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
802 /// Can be interpreted either as function-style casting ("int(x)")
803 /// or class type construction ("ClassType(x,y,z)")
804 /// or creation of a value-initialized type ("int()").
805 ExprResult
BuildCXXTypeConstructExpr(TypeSourceInfo * TInfo,SourceLocation LParenLoc,MultiExprArg exprs,SourceLocation RParenLoc)806 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
807 SourceLocation LParenLoc,
808 MultiExprArg exprs,
809 SourceLocation RParenLoc) {
810 QualType Ty = TInfo->getType();
811 SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
812
813 if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(exprs)) {
814 return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo,
815 LParenLoc,
816 exprs,
817 RParenLoc));
818 }
819
820 unsigned NumExprs = exprs.size();
821 Expr **Exprs = exprs.data();
822
823 bool ListInitialization = LParenLoc.isInvalid();
824 assert((!ListInitialization || (NumExprs == 1 && isa<InitListExpr>(Exprs[0])))
825 && "List initialization must have initializer list as expression.");
826 SourceRange FullRange = SourceRange(TyBeginLoc,
827 ListInitialization ? Exprs[0]->getSourceRange().getEnd() : RParenLoc);
828
829 // C++ [expr.type.conv]p1:
830 // If the expression list is a single expression, the type conversion
831 // expression is equivalent (in definedness, and if defined in meaning) to the
832 // corresponding cast expression.
833 if (NumExprs == 1 && !ListInitialization) {
834 Expr *Arg = Exprs[0];
835 return BuildCXXFunctionalCastExpr(TInfo, LParenLoc, Arg, RParenLoc);
836 }
837
838 QualType ElemTy = Ty;
839 if (Ty->isArrayType()) {
840 if (!ListInitialization)
841 return ExprError(Diag(TyBeginLoc,
842 diag::err_value_init_for_array_type) << FullRange);
843 ElemTy = Context.getBaseElementType(Ty);
844 }
845
846 if (!Ty->isVoidType() &&
847 RequireCompleteType(TyBeginLoc, ElemTy,
848 diag::err_invalid_incomplete_type_use, FullRange))
849 return ExprError();
850
851 if (RequireNonAbstractType(TyBeginLoc, Ty,
852 diag::err_allocation_of_abstract_type))
853 return ExprError();
854
855 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
856 InitializationKind Kind
857 = NumExprs ? ListInitialization
858 ? InitializationKind::CreateDirectList(TyBeginLoc)
859 : InitializationKind::CreateDirect(TyBeginLoc,
860 LParenLoc, RParenLoc)
861 : InitializationKind::CreateValue(TyBeginLoc,
862 LParenLoc, RParenLoc);
863 InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs);
864 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, exprs);
865
866 if (!Result.isInvalid() && ListInitialization &&
867 isa<InitListExpr>(Result.get())) {
868 // If the list-initialization doesn't involve a constructor call, we'll get
869 // the initializer-list (with corrected type) back, but that's not what we
870 // want, since it will be treated as an initializer list in further
871 // processing. Explicitly insert a cast here.
872 InitListExpr *List = cast<InitListExpr>(Result.take());
873 Result = Owned(CXXFunctionalCastExpr::Create(Context, List->getType(),
874 Expr::getValueKindForType(TInfo->getType()),
875 TInfo, TyBeginLoc, CK_NoOp,
876 List, /*Path=*/0, RParenLoc));
877 }
878
879 // FIXME: Improve AST representation?
880 return Result;
881 }
882
883 /// doesUsualArrayDeleteWantSize - Answers whether the usual
884 /// operator delete[] for the given type has a size_t parameter.
doesUsualArrayDeleteWantSize(Sema & S,SourceLocation loc,QualType allocType)885 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
886 QualType allocType) {
887 const RecordType *record =
888 allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
889 if (!record) return false;
890
891 // Try to find an operator delete[] in class scope.
892
893 DeclarationName deleteName =
894 S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
895 LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
896 S.LookupQualifiedName(ops, record->getDecl());
897
898 // We're just doing this for information.
899 ops.suppressDiagnostics();
900
901 // Very likely: there's no operator delete[].
902 if (ops.empty()) return false;
903
904 // If it's ambiguous, it should be illegal to call operator delete[]
905 // on this thing, so it doesn't matter if we allocate extra space or not.
906 if (ops.isAmbiguous()) return false;
907
908 LookupResult::Filter filter = ops.makeFilter();
909 while (filter.hasNext()) {
910 NamedDecl *del = filter.next()->getUnderlyingDecl();
911
912 // C++0x [basic.stc.dynamic.deallocation]p2:
913 // A template instance is never a usual deallocation function,
914 // regardless of its signature.
915 if (isa<FunctionTemplateDecl>(del)) {
916 filter.erase();
917 continue;
918 }
919
920 // C++0x [basic.stc.dynamic.deallocation]p2:
921 // If class T does not declare [an operator delete[] with one
922 // parameter] but does declare a member deallocation function
923 // named operator delete[] with exactly two parameters, the
924 // second of which has type std::size_t, then this function
925 // is a usual deallocation function.
926 if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
927 filter.erase();
928 continue;
929 }
930 }
931 filter.done();
932
933 if (!ops.isSingleResult()) return false;
934
935 const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
936 return (del->getNumParams() == 2);
937 }
938
939 /// \brief Parsed a C++ 'new' expression (C++ 5.3.4).
940 ///
941 /// E.g.:
942 /// @code new (memory) int[size][4] @endcode
943 /// or
944 /// @code ::new Foo(23, "hello") @endcode
945 ///
946 /// \param StartLoc The first location of the expression.
947 /// \param UseGlobal True if 'new' was prefixed with '::'.
948 /// \param PlacementLParen Opening paren of the placement arguments.
949 /// \param PlacementArgs Placement new arguments.
950 /// \param PlacementRParen Closing paren of the placement arguments.
951 /// \param TypeIdParens If the type is in parens, the source range.
952 /// \param D The type to be allocated, as well as array dimensions.
953 /// \param Initializer The initializing expression or initializer-list, or null
954 /// if there is none.
955 ExprResult
ActOnCXXNew(SourceLocation StartLoc,bool UseGlobal,SourceLocation PlacementLParen,MultiExprArg PlacementArgs,SourceLocation PlacementRParen,SourceRange TypeIdParens,Declarator & D,Expr * Initializer)956 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
957 SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
958 SourceLocation PlacementRParen, SourceRange TypeIdParens,
959 Declarator &D, Expr *Initializer) {
960 bool TypeContainsAuto = D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
961
962 Expr *ArraySize = 0;
963 // If the specified type is an array, unwrap it and save the expression.
964 if (D.getNumTypeObjects() > 0 &&
965 D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
966 DeclaratorChunk &Chunk = D.getTypeObject(0);
967 if (TypeContainsAuto)
968 return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
969 << D.getSourceRange());
970 if (Chunk.Arr.hasStatic)
971 return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
972 << D.getSourceRange());
973 if (!Chunk.Arr.NumElts)
974 return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
975 << D.getSourceRange());
976
977 ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
978 D.DropFirstTypeObject();
979 }
980
981 // Every dimension shall be of constant size.
982 if (ArraySize) {
983 for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
984 if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
985 break;
986
987 DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
988 if (Expr *NumElts = (Expr *)Array.NumElts) {
989 if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
990 Array.NumElts
991 = VerifyIntegerConstantExpression(NumElts, 0,
992 diag::err_new_array_nonconst)
993 .take();
994 if (!Array.NumElts)
995 return ExprError();
996 }
997 }
998 }
999 }
1000
1001 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0);
1002 QualType AllocType = TInfo->getType();
1003 if (D.isInvalidType())
1004 return ExprError();
1005
1006 SourceRange DirectInitRange;
1007 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1008 DirectInitRange = List->getSourceRange();
1009
1010 return BuildCXXNew(StartLoc, UseGlobal,
1011 PlacementLParen,
1012 PlacementArgs,
1013 PlacementRParen,
1014 TypeIdParens,
1015 AllocType,
1016 TInfo,
1017 ArraySize,
1018 DirectInitRange,
1019 Initializer,
1020 TypeContainsAuto);
1021 }
1022
isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,Expr * Init)1023 static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1024 Expr *Init) {
1025 if (!Init)
1026 return true;
1027 if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1028 return PLE->getNumExprs() == 0;
1029 if (isa<ImplicitValueInitExpr>(Init))
1030 return true;
1031 else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1032 return !CCE->isListInitialization() &&
1033 CCE->getConstructor()->isDefaultConstructor();
1034 else if (Style == CXXNewExpr::ListInit) {
1035 assert(isa<InitListExpr>(Init) &&
1036 "Shouldn't create list CXXConstructExprs for arrays.");
1037 return true;
1038 }
1039 return false;
1040 }
1041
1042 ExprResult
BuildCXXNew(SourceLocation StartLoc,bool UseGlobal,SourceLocation PlacementLParen,MultiExprArg PlacementArgs,SourceLocation PlacementRParen,SourceRange TypeIdParens,QualType AllocType,TypeSourceInfo * AllocTypeInfo,Expr * ArraySize,SourceRange DirectInitRange,Expr * Initializer,bool TypeMayContainAuto)1043 Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal,
1044 SourceLocation PlacementLParen,
1045 MultiExprArg PlacementArgs,
1046 SourceLocation PlacementRParen,
1047 SourceRange TypeIdParens,
1048 QualType AllocType,
1049 TypeSourceInfo *AllocTypeInfo,
1050 Expr *ArraySize,
1051 SourceRange DirectInitRange,
1052 Expr *Initializer,
1053 bool TypeMayContainAuto) {
1054 SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1055
1056 CXXNewExpr::InitializationStyle initStyle;
1057 if (DirectInitRange.isValid()) {
1058 assert(Initializer && "Have parens but no initializer.");
1059 initStyle = CXXNewExpr::CallInit;
1060 } else if (Initializer && isa<InitListExpr>(Initializer))
1061 initStyle = CXXNewExpr::ListInit;
1062 else {
1063 // In template instantiation, the initializer could be a CXXDefaultArgExpr
1064 // unwrapped from a CXXConstructExpr that was implicitly built. There is no
1065 // particularly sane way we can handle this (especially since it can even
1066 // occur for array new), so we throw the initializer away and have it be
1067 // rebuilt.
1068 if (Initializer && isa<CXXDefaultArgExpr>(Initializer))
1069 Initializer = 0;
1070 assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
1071 isa<CXXConstructExpr>(Initializer)) &&
1072 "Initializer expression that cannot have been implicitly created.");
1073 initStyle = CXXNewExpr::NoInit;
1074 }
1075
1076 Expr **Inits = &Initializer;
1077 unsigned NumInits = Initializer ? 1 : 0;
1078 if (initStyle == CXXNewExpr::CallInit) {
1079 if (ParenListExpr *List = dyn_cast<ParenListExpr>(Initializer)) {
1080 Inits = List->getExprs();
1081 NumInits = List->getNumExprs();
1082 } else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Initializer)){
1083 if (!isa<CXXTemporaryObjectExpr>(CCE)) {
1084 // Can happen in template instantiation. Since this is just an implicit
1085 // construction, we just take it apart and rebuild it.
1086 Inits = CCE->getArgs();
1087 NumInits = CCE->getNumArgs();
1088 }
1089 }
1090 }
1091
1092 // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
1093 AutoType *AT = 0;
1094 if (TypeMayContainAuto &&
1095 (AT = AllocType->getContainedAutoType()) && !AT->isDeduced()) {
1096 if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
1097 return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
1098 << AllocType << TypeRange);
1099 if (initStyle == CXXNewExpr::ListInit)
1100 return ExprError(Diag(Inits[0]->getLocStart(),
1101 diag::err_auto_new_requires_parens)
1102 << AllocType << TypeRange);
1103 if (NumInits > 1) {
1104 Expr *FirstBad = Inits[1];
1105 return ExprError(Diag(FirstBad->getLocStart(),
1106 diag::err_auto_new_ctor_multiple_expressions)
1107 << AllocType << TypeRange);
1108 }
1109 Expr *Deduce = Inits[0];
1110 TypeSourceInfo *DeducedType = 0;
1111 if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
1112 return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
1113 << AllocType << Deduce->getType()
1114 << TypeRange << Deduce->getSourceRange());
1115 if (!DeducedType)
1116 return ExprError();
1117
1118 AllocTypeInfo = DeducedType;
1119 AllocType = AllocTypeInfo->getType();
1120 }
1121
1122 // Per C++0x [expr.new]p5, the type being constructed may be a
1123 // typedef of an array type.
1124 if (!ArraySize) {
1125 if (const ConstantArrayType *Array
1126 = Context.getAsConstantArrayType(AllocType)) {
1127 ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
1128 Context.getSizeType(),
1129 TypeRange.getEnd());
1130 AllocType = Array->getElementType();
1131 }
1132 }
1133
1134 if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
1135 return ExprError();
1136
1137 if (initStyle == CXXNewExpr::ListInit && isStdInitializerList(AllocType, 0)) {
1138 Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(),
1139 diag::warn_dangling_std_initializer_list)
1140 << /*at end of FE*/0 << Inits[0]->getSourceRange();
1141 }
1142
1143 // In ARC, infer 'retaining' for the allocated
1144 if (getLangOpts().ObjCAutoRefCount &&
1145 AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1146 AllocType->isObjCLifetimeType()) {
1147 AllocType = Context.getLifetimeQualifiedType(AllocType,
1148 AllocType->getObjCARCImplicitLifetime());
1149 }
1150
1151 QualType ResultType = Context.getPointerType(AllocType);
1152
1153 // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
1154 // integral or enumeration type with a non-negative value."
1155 // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
1156 // enumeration type, or a class type for which a single non-explicit
1157 // conversion function to integral or unscoped enumeration type exists.
1158 if (ArraySize && !ArraySize->isTypeDependent()) {
1159 class SizeConvertDiagnoser : public ICEConvertDiagnoser {
1160 Expr *ArraySize;
1161
1162 public:
1163 SizeConvertDiagnoser(Expr *ArraySize)
1164 : ICEConvertDiagnoser(false, false), ArraySize(ArraySize) { }
1165
1166 virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
1167 QualType T) {
1168 return S.Diag(Loc, diag::err_array_size_not_integral)
1169 << S.getLangOpts().CPlusPlus0x << T;
1170 }
1171
1172 virtual DiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
1173 QualType T) {
1174 return S.Diag(Loc, diag::err_array_size_incomplete_type)
1175 << T << ArraySize->getSourceRange();
1176 }
1177
1178 virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S,
1179 SourceLocation Loc,
1180 QualType T,
1181 QualType ConvTy) {
1182 return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
1183 }
1184
1185 virtual DiagnosticBuilder noteExplicitConv(Sema &S,
1186 CXXConversionDecl *Conv,
1187 QualType ConvTy) {
1188 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1189 << ConvTy->isEnumeralType() << ConvTy;
1190 }
1191
1192 virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
1193 QualType T) {
1194 return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
1195 }
1196
1197 virtual DiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
1198 QualType ConvTy) {
1199 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1200 << ConvTy->isEnumeralType() << ConvTy;
1201 }
1202
1203 virtual DiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
1204 QualType T,
1205 QualType ConvTy) {
1206 return S.Diag(Loc,
1207 S.getLangOpts().CPlusPlus0x
1208 ? diag::warn_cxx98_compat_array_size_conversion
1209 : diag::ext_array_size_conversion)
1210 << T << ConvTy->isEnumeralType() << ConvTy;
1211 }
1212 } SizeDiagnoser(ArraySize);
1213
1214 ExprResult ConvertedSize
1215 = ConvertToIntegralOrEnumerationType(StartLoc, ArraySize, SizeDiagnoser,
1216 /*AllowScopedEnumerations*/ false);
1217 if (ConvertedSize.isInvalid())
1218 return ExprError();
1219
1220 ArraySize = ConvertedSize.take();
1221 QualType SizeType = ArraySize->getType();
1222 if (!SizeType->isIntegralOrUnscopedEnumerationType())
1223 return ExprError();
1224
1225 // C++98 [expr.new]p7:
1226 // The expression in a direct-new-declarator shall have integral type
1227 // with a non-negative value.
1228 //
1229 // Let's see if this is a constant < 0. If so, we reject it out of
1230 // hand. Otherwise, if it's not a constant, we must have an unparenthesized
1231 // array type.
1232 //
1233 // Note: such a construct has well-defined semantics in C++11: it throws
1234 // std::bad_array_new_length.
1235 if (!ArraySize->isValueDependent()) {
1236 llvm::APSInt Value;
1237 // We've already performed any required implicit conversion to integer or
1238 // unscoped enumeration type.
1239 if (ArraySize->isIntegerConstantExpr(Value, Context)) {
1240 if (Value < llvm::APSInt(
1241 llvm::APInt::getNullValue(Value.getBitWidth()),
1242 Value.isUnsigned())) {
1243 if (getLangOpts().CPlusPlus0x)
1244 Diag(ArraySize->getLocStart(),
1245 diag::warn_typecheck_negative_array_new_size)
1246 << ArraySize->getSourceRange();
1247 else
1248 return ExprError(Diag(ArraySize->getLocStart(),
1249 diag::err_typecheck_negative_array_size)
1250 << ArraySize->getSourceRange());
1251 } else if (!AllocType->isDependentType()) {
1252 unsigned ActiveSizeBits =
1253 ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
1254 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
1255 if (getLangOpts().CPlusPlus0x)
1256 Diag(ArraySize->getLocStart(),
1257 diag::warn_array_new_too_large)
1258 << Value.toString(10)
1259 << ArraySize->getSourceRange();
1260 else
1261 return ExprError(Diag(ArraySize->getLocStart(),
1262 diag::err_array_too_large)
1263 << Value.toString(10)
1264 << ArraySize->getSourceRange());
1265 }
1266 }
1267 } else if (TypeIdParens.isValid()) {
1268 // Can't have dynamic array size when the type-id is in parentheses.
1269 Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
1270 << ArraySize->getSourceRange()
1271 << FixItHint::CreateRemoval(TypeIdParens.getBegin())
1272 << FixItHint::CreateRemoval(TypeIdParens.getEnd());
1273
1274 TypeIdParens = SourceRange();
1275 }
1276 }
1277
1278 // ARC: warn about ABI issues.
1279 if (getLangOpts().ObjCAutoRefCount) {
1280 QualType BaseAllocType = Context.getBaseElementType(AllocType);
1281 if (BaseAllocType.hasStrongOrWeakObjCLifetime())
1282 Diag(StartLoc, diag::warn_err_new_delete_object_array)
1283 << 0 << BaseAllocType;
1284 }
1285
1286 // Note that we do *not* convert the argument in any way. It can
1287 // be signed, larger than size_t, whatever.
1288 }
1289
1290 FunctionDecl *OperatorNew = 0;
1291 FunctionDecl *OperatorDelete = 0;
1292 Expr **PlaceArgs = PlacementArgs.data();
1293 unsigned NumPlaceArgs = PlacementArgs.size();
1294
1295 if (!AllocType->isDependentType() &&
1296 !Expr::hasAnyTypeDependentArguments(
1297 llvm::makeArrayRef(PlaceArgs, NumPlaceArgs)) &&
1298 FindAllocationFunctions(StartLoc,
1299 SourceRange(PlacementLParen, PlacementRParen),
1300 UseGlobal, AllocType, ArraySize, PlaceArgs,
1301 NumPlaceArgs, OperatorNew, OperatorDelete))
1302 return ExprError();
1303
1304 // If this is an array allocation, compute whether the usual array
1305 // deallocation function for the type has a size_t parameter.
1306 bool UsualArrayDeleteWantsSize = false;
1307 if (ArraySize && !AllocType->isDependentType())
1308 UsualArrayDeleteWantsSize
1309 = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
1310
1311 SmallVector<Expr *, 8> AllPlaceArgs;
1312 if (OperatorNew) {
1313 // Add default arguments, if any.
1314 const FunctionProtoType *Proto =
1315 OperatorNew->getType()->getAs<FunctionProtoType>();
1316 VariadicCallType CallType =
1317 Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
1318
1319 if (GatherArgumentsForCall(PlacementLParen, OperatorNew,
1320 Proto, 1, PlaceArgs, NumPlaceArgs,
1321 AllPlaceArgs, CallType))
1322 return ExprError();
1323
1324 NumPlaceArgs = AllPlaceArgs.size();
1325 if (NumPlaceArgs > 0)
1326 PlaceArgs = &AllPlaceArgs[0];
1327
1328 DiagnoseSentinelCalls(OperatorNew, PlacementLParen,
1329 PlaceArgs, NumPlaceArgs);
1330
1331 // FIXME: Missing call to CheckFunctionCall or equivalent
1332 }
1333
1334 // Warn if the type is over-aligned and is being allocated by global operator
1335 // new.
1336 if (NumPlaceArgs == 0 && OperatorNew &&
1337 (OperatorNew->isImplicit() ||
1338 getSourceManager().isInSystemHeader(OperatorNew->getLocStart()))) {
1339 if (unsigned Align = Context.getPreferredTypeAlign(AllocType.getTypePtr())){
1340 unsigned SuitableAlign = Context.getTargetInfo().getSuitableAlign();
1341 if (Align > SuitableAlign)
1342 Diag(StartLoc, diag::warn_overaligned_type)
1343 << AllocType
1344 << unsigned(Align / Context.getCharWidth())
1345 << unsigned(SuitableAlign / Context.getCharWidth());
1346 }
1347 }
1348
1349 QualType InitType = AllocType;
1350 // Array 'new' can't have any initializers except empty parentheses.
1351 // Initializer lists are also allowed, in C++11. Rely on the parser for the
1352 // dialect distinction.
1353 if (ResultType->isArrayType() || ArraySize) {
1354 if (!isLegalArrayNewInitializer(initStyle, Initializer)) {
1355 SourceRange InitRange(Inits[0]->getLocStart(),
1356 Inits[NumInits - 1]->getLocEnd());
1357 Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
1358 return ExprError();
1359 }
1360 if (InitListExpr *ILE = dyn_cast_or_null<InitListExpr>(Initializer)) {
1361 // We do the initialization typechecking against the array type
1362 // corresponding to the number of initializers + 1 (to also check
1363 // default-initialization).
1364 unsigned NumElements = ILE->getNumInits() + 1;
1365 InitType = Context.getConstantArrayType(AllocType,
1366 llvm::APInt(Context.getTypeSize(Context.getSizeType()), NumElements),
1367 ArrayType::Normal, 0);
1368 }
1369 }
1370
1371 if (!AllocType->isDependentType() &&
1372 !Expr::hasAnyTypeDependentArguments(
1373 llvm::makeArrayRef(Inits, NumInits))) {
1374 // C++11 [expr.new]p15:
1375 // A new-expression that creates an object of type T initializes that
1376 // object as follows:
1377 InitializationKind Kind
1378 // - If the new-initializer is omitted, the object is default-
1379 // initialized (8.5); if no initialization is performed,
1380 // the object has indeterminate value
1381 = initStyle == CXXNewExpr::NoInit
1382 ? InitializationKind::CreateDefault(TypeRange.getBegin())
1383 // - Otherwise, the new-initializer is interpreted according to the
1384 // initialization rules of 8.5 for direct-initialization.
1385 : initStyle == CXXNewExpr::ListInit
1386 ? InitializationKind::CreateDirectList(TypeRange.getBegin())
1387 : InitializationKind::CreateDirect(TypeRange.getBegin(),
1388 DirectInitRange.getBegin(),
1389 DirectInitRange.getEnd());
1390
1391 InitializedEntity Entity
1392 = InitializedEntity::InitializeNew(StartLoc, InitType);
1393 InitializationSequence InitSeq(*this, Entity, Kind, Inits, NumInits);
1394 ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
1395 MultiExprArg(Inits, NumInits));
1396 if (FullInit.isInvalid())
1397 return ExprError();
1398
1399 // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
1400 // we don't want the initialized object to be destructed.
1401 if (CXXBindTemporaryExpr *Binder =
1402 dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
1403 FullInit = Owned(Binder->getSubExpr());
1404
1405 Initializer = FullInit.take();
1406 }
1407
1408 // Mark the new and delete operators as referenced.
1409 if (OperatorNew)
1410 MarkFunctionReferenced(StartLoc, OperatorNew);
1411 if (OperatorDelete)
1412 MarkFunctionReferenced(StartLoc, OperatorDelete);
1413
1414 // C++0x [expr.new]p17:
1415 // If the new expression creates an array of objects of class type,
1416 // access and ambiguity control are done for the destructor.
1417 QualType BaseAllocType = Context.getBaseElementType(AllocType);
1418 if (ArraySize && !BaseAllocType->isDependentType()) {
1419 if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) {
1420 if (CXXDestructorDecl *dtor = LookupDestructor(
1421 cast<CXXRecordDecl>(BaseRecordType->getDecl()))) {
1422 MarkFunctionReferenced(StartLoc, dtor);
1423 CheckDestructorAccess(StartLoc, dtor,
1424 PDiag(diag::err_access_dtor)
1425 << BaseAllocType);
1426 DiagnoseUseOfDecl(dtor, StartLoc);
1427 }
1428 }
1429 }
1430
1431 return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
1432 OperatorDelete,
1433 UsualArrayDeleteWantsSize,
1434 llvm::makeArrayRef(PlaceArgs, NumPlaceArgs),
1435 TypeIdParens,
1436 ArraySize, initStyle, Initializer,
1437 ResultType, AllocTypeInfo,
1438 StartLoc, DirectInitRange));
1439 }
1440
1441 /// \brief Checks that a type is suitable as the allocated type
1442 /// in a new-expression.
CheckAllocatedType(QualType AllocType,SourceLocation Loc,SourceRange R)1443 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
1444 SourceRange R) {
1445 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
1446 // abstract class type or array thereof.
1447 if (AllocType->isFunctionType())
1448 return Diag(Loc, diag::err_bad_new_type)
1449 << AllocType << 0 << R;
1450 else if (AllocType->isReferenceType())
1451 return Diag(Loc, diag::err_bad_new_type)
1452 << AllocType << 1 << R;
1453 else if (!AllocType->isDependentType() &&
1454 RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R))
1455 return true;
1456 else if (RequireNonAbstractType(Loc, AllocType,
1457 diag::err_allocation_of_abstract_type))
1458 return true;
1459 else if (AllocType->isVariablyModifiedType())
1460 return Diag(Loc, diag::err_variably_modified_new_type)
1461 << AllocType;
1462 else if (unsigned AddressSpace = AllocType.getAddressSpace())
1463 return Diag(Loc, diag::err_address_space_qualified_new)
1464 << AllocType.getUnqualifiedType() << AddressSpace;
1465 else if (getLangOpts().ObjCAutoRefCount) {
1466 if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
1467 QualType BaseAllocType = Context.getBaseElementType(AT);
1468 if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1469 BaseAllocType->isObjCLifetimeType())
1470 return Diag(Loc, diag::err_arc_new_array_without_ownership)
1471 << BaseAllocType;
1472 }
1473 }
1474
1475 return false;
1476 }
1477
1478 /// \brief Determine whether the given function is a non-placement
1479 /// deallocation function.
isNonPlacementDeallocationFunction(FunctionDecl * FD)1480 static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) {
1481 if (FD->isInvalidDecl())
1482 return false;
1483
1484 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1485 return Method->isUsualDeallocationFunction();
1486
1487 return ((FD->getOverloadedOperator() == OO_Delete ||
1488 FD->getOverloadedOperator() == OO_Array_Delete) &&
1489 FD->getNumParams() == 1);
1490 }
1491
1492 /// FindAllocationFunctions - Finds the overloads of operator new and delete
1493 /// that are appropriate for the allocation.
FindAllocationFunctions(SourceLocation StartLoc,SourceRange Range,bool UseGlobal,QualType AllocType,bool IsArray,Expr ** PlaceArgs,unsigned NumPlaceArgs,FunctionDecl * & OperatorNew,FunctionDecl * & OperatorDelete)1494 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
1495 bool UseGlobal, QualType AllocType,
1496 bool IsArray, Expr **PlaceArgs,
1497 unsigned NumPlaceArgs,
1498 FunctionDecl *&OperatorNew,
1499 FunctionDecl *&OperatorDelete) {
1500 // --- Choosing an allocation function ---
1501 // C++ 5.3.4p8 - 14 & 18
1502 // 1) If UseGlobal is true, only look in the global scope. Else, also look
1503 // in the scope of the allocated class.
1504 // 2) If an array size is given, look for operator new[], else look for
1505 // operator new.
1506 // 3) The first argument is always size_t. Append the arguments from the
1507 // placement form.
1508
1509 SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
1510 // We don't care about the actual value of this argument.
1511 // FIXME: Should the Sema create the expression and embed it in the syntax
1512 // tree? Or should the consumer just recalculate the value?
1513 IntegerLiteral Size(Context, llvm::APInt::getNullValue(
1514 Context.getTargetInfo().getPointerWidth(0)),
1515 Context.getSizeType(),
1516 SourceLocation());
1517 AllocArgs[0] = &Size;
1518 std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
1519
1520 // C++ [expr.new]p8:
1521 // If the allocated type is a non-array type, the allocation
1522 // function's name is operator new and the deallocation function's
1523 // name is operator delete. If the allocated type is an array
1524 // type, the allocation function's name is operator new[] and the
1525 // deallocation function's name is operator delete[].
1526 DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
1527 IsArray ? OO_Array_New : OO_New);
1528 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1529 IsArray ? OO_Array_Delete : OO_Delete);
1530
1531 QualType AllocElemType = Context.getBaseElementType(AllocType);
1532
1533 if (AllocElemType->isRecordType() && !UseGlobal) {
1534 CXXRecordDecl *Record
1535 = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1536 if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1537 AllocArgs.size(), Record, /*AllowMissing=*/true,
1538 OperatorNew))
1539 return true;
1540 }
1541 if (!OperatorNew) {
1542 // Didn't find a member overload. Look for a global one.
1543 DeclareGlobalNewDelete();
1544 DeclContext *TUDecl = Context.getTranslationUnitDecl();
1545 if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1546 AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
1547 OperatorNew))
1548 return true;
1549 }
1550
1551 // We don't need an operator delete if we're running under
1552 // -fno-exceptions.
1553 if (!getLangOpts().Exceptions) {
1554 OperatorDelete = 0;
1555 return false;
1556 }
1557
1558 // FindAllocationOverload can change the passed in arguments, so we need to
1559 // copy them back.
1560 if (NumPlaceArgs > 0)
1561 std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs);
1562
1563 // C++ [expr.new]p19:
1564 //
1565 // If the new-expression begins with a unary :: operator, the
1566 // deallocation function's name is looked up in the global
1567 // scope. Otherwise, if the allocated type is a class type T or an
1568 // array thereof, the deallocation function's name is looked up in
1569 // the scope of T. If this lookup fails to find the name, or if
1570 // the allocated type is not a class type or array thereof, the
1571 // deallocation function's name is looked up in the global scope.
1572 LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
1573 if (AllocElemType->isRecordType() && !UseGlobal) {
1574 CXXRecordDecl *RD
1575 = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1576 LookupQualifiedName(FoundDelete, RD);
1577 }
1578 if (FoundDelete.isAmbiguous())
1579 return true; // FIXME: clean up expressions?
1580
1581 if (FoundDelete.empty()) {
1582 DeclareGlobalNewDelete();
1583 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
1584 }
1585
1586 FoundDelete.suppressDiagnostics();
1587
1588 SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
1589
1590 // Whether we're looking for a placement operator delete is dictated
1591 // by whether we selected a placement operator new, not by whether
1592 // we had explicit placement arguments. This matters for things like
1593 // struct A { void *operator new(size_t, int = 0); ... };
1594 // A *a = new A()
1595 bool isPlacementNew = (NumPlaceArgs > 0 || OperatorNew->param_size() != 1);
1596
1597 if (isPlacementNew) {
1598 // C++ [expr.new]p20:
1599 // A declaration of a placement deallocation function matches the
1600 // declaration of a placement allocation function if it has the
1601 // same number of parameters and, after parameter transformations
1602 // (8.3.5), all parameter types except the first are
1603 // identical. [...]
1604 //
1605 // To perform this comparison, we compute the function type that
1606 // the deallocation function should have, and use that type both
1607 // for template argument deduction and for comparison purposes.
1608 //
1609 // FIXME: this comparison should ignore CC and the like.
1610 QualType ExpectedFunctionType;
1611 {
1612 const FunctionProtoType *Proto
1613 = OperatorNew->getType()->getAs<FunctionProtoType>();
1614
1615 SmallVector<QualType, 4> ArgTypes;
1616 ArgTypes.push_back(Context.VoidPtrTy);
1617 for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I)
1618 ArgTypes.push_back(Proto->getArgType(I));
1619
1620 FunctionProtoType::ExtProtoInfo EPI;
1621 EPI.Variadic = Proto->isVariadic();
1622
1623 ExpectedFunctionType
1624 = Context.getFunctionType(Context.VoidTy, ArgTypes.data(),
1625 ArgTypes.size(), EPI);
1626 }
1627
1628 for (LookupResult::iterator D = FoundDelete.begin(),
1629 DEnd = FoundDelete.end();
1630 D != DEnd; ++D) {
1631 FunctionDecl *Fn = 0;
1632 if (FunctionTemplateDecl *FnTmpl
1633 = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
1634 // Perform template argument deduction to try to match the
1635 // expected function type.
1636 TemplateDeductionInfo Info(Context, StartLoc);
1637 if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
1638 continue;
1639 } else
1640 Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
1641
1642 if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
1643 Matches.push_back(std::make_pair(D.getPair(), Fn));
1644 }
1645 } else {
1646 // C++ [expr.new]p20:
1647 // [...] Any non-placement deallocation function matches a
1648 // non-placement allocation function. [...]
1649 for (LookupResult::iterator D = FoundDelete.begin(),
1650 DEnd = FoundDelete.end();
1651 D != DEnd; ++D) {
1652 if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
1653 if (isNonPlacementDeallocationFunction(Fn))
1654 Matches.push_back(std::make_pair(D.getPair(), Fn));
1655 }
1656 }
1657
1658 // C++ [expr.new]p20:
1659 // [...] If the lookup finds a single matching deallocation
1660 // function, that function will be called; otherwise, no
1661 // deallocation function will be called.
1662 if (Matches.size() == 1) {
1663 OperatorDelete = Matches[0].second;
1664
1665 // C++0x [expr.new]p20:
1666 // If the lookup finds the two-parameter form of a usual
1667 // deallocation function (3.7.4.2) and that function, considered
1668 // as a placement deallocation function, would have been
1669 // selected as a match for the allocation function, the program
1670 // is ill-formed.
1671 if (NumPlaceArgs && getLangOpts().CPlusPlus0x &&
1672 isNonPlacementDeallocationFunction(OperatorDelete)) {
1673 Diag(StartLoc, diag::err_placement_new_non_placement_delete)
1674 << SourceRange(PlaceArgs[0]->getLocStart(),
1675 PlaceArgs[NumPlaceArgs - 1]->getLocEnd());
1676 Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
1677 << DeleteName;
1678 } else {
1679 CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
1680 Matches[0].first);
1681 }
1682 }
1683
1684 return false;
1685 }
1686
1687 /// FindAllocationOverload - Find an fitting overload for the allocation
1688 /// function in the specified scope.
FindAllocationOverload(SourceLocation StartLoc,SourceRange Range,DeclarationName Name,Expr ** Args,unsigned NumArgs,DeclContext * Ctx,bool AllowMissing,FunctionDecl * & Operator,bool Diagnose)1689 bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
1690 DeclarationName Name, Expr** Args,
1691 unsigned NumArgs, DeclContext *Ctx,
1692 bool AllowMissing, FunctionDecl *&Operator,
1693 bool Diagnose) {
1694 LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
1695 LookupQualifiedName(R, Ctx);
1696 if (R.empty()) {
1697 if (AllowMissing || !Diagnose)
1698 return false;
1699 return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1700 << Name << Range;
1701 }
1702
1703 if (R.isAmbiguous())
1704 return true;
1705
1706 R.suppressDiagnostics();
1707
1708 OverloadCandidateSet Candidates(StartLoc);
1709 for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
1710 Alloc != AllocEnd; ++Alloc) {
1711 // Even member operator new/delete are implicitly treated as
1712 // static, so don't use AddMemberCandidate.
1713 NamedDecl *D = (*Alloc)->getUnderlyingDecl();
1714
1715 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
1716 AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
1717 /*ExplicitTemplateArgs=*/0,
1718 llvm::makeArrayRef(Args, NumArgs),
1719 Candidates,
1720 /*SuppressUserConversions=*/false);
1721 continue;
1722 }
1723
1724 FunctionDecl *Fn = cast<FunctionDecl>(D);
1725 AddOverloadCandidate(Fn, Alloc.getPair(),
1726 llvm::makeArrayRef(Args, NumArgs), Candidates,
1727 /*SuppressUserConversions=*/false);
1728 }
1729
1730 // Do the resolution.
1731 OverloadCandidateSet::iterator Best;
1732 switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
1733 case OR_Success: {
1734 // Got one!
1735 FunctionDecl *FnDecl = Best->Function;
1736 MarkFunctionReferenced(StartLoc, FnDecl);
1737 // The first argument is size_t, and the first parameter must be size_t,
1738 // too. This is checked on declaration and can be assumed. (It can't be
1739 // asserted on, though, since invalid decls are left in there.)
1740 // Watch out for variadic allocator function.
1741 unsigned NumArgsInFnDecl = FnDecl->getNumParams();
1742 for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) {
1743 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1744 FnDecl->getParamDecl(i));
1745
1746 if (!Diagnose && !CanPerformCopyInitialization(Entity, Owned(Args[i])))
1747 return true;
1748
1749 ExprResult Result
1750 = PerformCopyInitialization(Entity, SourceLocation(), Owned(Args[i]));
1751 if (Result.isInvalid())
1752 return true;
1753
1754 Args[i] = Result.takeAs<Expr>();
1755 }
1756
1757 Operator = FnDecl;
1758
1759 if (CheckAllocationAccess(StartLoc, Range, R.getNamingClass(),
1760 Best->FoundDecl, Diagnose) == AR_inaccessible)
1761 return true;
1762
1763 return false;
1764 }
1765
1766 case OR_No_Viable_Function:
1767 if (Diagnose) {
1768 Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1769 << Name << Range;
1770 Candidates.NoteCandidates(*this, OCD_AllCandidates,
1771 llvm::makeArrayRef(Args, NumArgs));
1772 }
1773 return true;
1774
1775 case OR_Ambiguous:
1776 if (Diagnose) {
1777 Diag(StartLoc, diag::err_ovl_ambiguous_call)
1778 << Name << Range;
1779 Candidates.NoteCandidates(*this, OCD_ViableCandidates,
1780 llvm::makeArrayRef(Args, NumArgs));
1781 }
1782 return true;
1783
1784 case OR_Deleted: {
1785 if (Diagnose) {
1786 Diag(StartLoc, diag::err_ovl_deleted_call)
1787 << Best->Function->isDeleted()
1788 << Name
1789 << getDeletedOrUnavailableSuffix(Best->Function)
1790 << Range;
1791 Candidates.NoteCandidates(*this, OCD_AllCandidates,
1792 llvm::makeArrayRef(Args, NumArgs));
1793 }
1794 return true;
1795 }
1796 }
1797 llvm_unreachable("Unreachable, bad result from BestViableFunction");
1798 }
1799
1800
1801 /// DeclareGlobalNewDelete - Declare the global forms of operator new and
1802 /// delete. These are:
1803 /// @code
1804 /// // C++03:
1805 /// void* operator new(std::size_t) throw(std::bad_alloc);
1806 /// void* operator new[](std::size_t) throw(std::bad_alloc);
1807 /// void operator delete(void *) throw();
1808 /// void operator delete[](void *) throw();
1809 /// // C++0x:
1810 /// void* operator new(std::size_t);
1811 /// void* operator new[](std::size_t);
1812 /// void operator delete(void *);
1813 /// void operator delete[](void *);
1814 /// @endcode
1815 /// C++0x operator delete is implicitly noexcept.
1816 /// Note that the placement and nothrow forms of new are *not* implicitly
1817 /// declared. Their use requires including \<new\>.
DeclareGlobalNewDelete()1818 void Sema::DeclareGlobalNewDelete() {
1819 if (GlobalNewDeleteDeclared)
1820 return;
1821
1822 // C++ [basic.std.dynamic]p2:
1823 // [...] The following allocation and deallocation functions (18.4) are
1824 // implicitly declared in global scope in each translation unit of a
1825 // program
1826 //
1827 // C++03:
1828 // void* operator new(std::size_t) throw(std::bad_alloc);
1829 // void* operator new[](std::size_t) throw(std::bad_alloc);
1830 // void operator delete(void*) throw();
1831 // void operator delete[](void*) throw();
1832 // C++0x:
1833 // void* operator new(std::size_t);
1834 // void* operator new[](std::size_t);
1835 // void operator delete(void*);
1836 // void operator delete[](void*);
1837 //
1838 // These implicit declarations introduce only the function names operator
1839 // new, operator new[], operator delete, operator delete[].
1840 //
1841 // Here, we need to refer to std::bad_alloc, so we will implicitly declare
1842 // "std" or "bad_alloc" as necessary to form the exception specification.
1843 // However, we do not make these implicit declarations visible to name
1844 // lookup.
1845 // Note that the C++0x versions of operator delete are deallocation functions,
1846 // and thus are implicitly noexcept.
1847 if (!StdBadAlloc && !getLangOpts().CPlusPlus0x) {
1848 // The "std::bad_alloc" class has not yet been declared, so build it
1849 // implicitly.
1850 StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
1851 getOrCreateStdNamespace(),
1852 SourceLocation(), SourceLocation(),
1853 &PP.getIdentifierTable().get("bad_alloc"),
1854 0);
1855 getStdBadAlloc()->setImplicit(true);
1856 }
1857
1858 GlobalNewDeleteDeclared = true;
1859
1860 QualType VoidPtr = Context.getPointerType(Context.VoidTy);
1861 QualType SizeT = Context.getSizeType();
1862 bool AssumeSaneOperatorNew = getLangOpts().AssumeSaneOperatorNew;
1863
1864 DeclareGlobalAllocationFunction(
1865 Context.DeclarationNames.getCXXOperatorName(OO_New),
1866 VoidPtr, SizeT, AssumeSaneOperatorNew);
1867 DeclareGlobalAllocationFunction(
1868 Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
1869 VoidPtr, SizeT, AssumeSaneOperatorNew);
1870 DeclareGlobalAllocationFunction(
1871 Context.DeclarationNames.getCXXOperatorName(OO_Delete),
1872 Context.VoidTy, VoidPtr);
1873 DeclareGlobalAllocationFunction(
1874 Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
1875 Context.VoidTy, VoidPtr);
1876 }
1877
1878 /// DeclareGlobalAllocationFunction - Declares a single implicit global
1879 /// allocation function if it doesn't already exist.
DeclareGlobalAllocationFunction(DeclarationName Name,QualType Return,QualType Argument,bool AddMallocAttr)1880 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
1881 QualType Return, QualType Argument,
1882 bool AddMallocAttr) {
1883 DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
1884
1885 // Check if this function is already declared.
1886 {
1887 DeclContext::lookup_iterator Alloc, AllocEnd;
1888 for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name);
1889 Alloc != AllocEnd; ++Alloc) {
1890 // Only look at non-template functions, as it is the predefined,
1891 // non-templated allocation function we are trying to declare here.
1892 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
1893 QualType InitialParamType =
1894 Context.getCanonicalType(
1895 Func->getParamDecl(0)->getType().getUnqualifiedType());
1896 // FIXME: Do we need to check for default arguments here?
1897 if (Func->getNumParams() == 1 && InitialParamType == Argument) {
1898 if(AddMallocAttr && !Func->hasAttr<MallocAttr>())
1899 Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1900 return;
1901 }
1902 }
1903 }
1904 }
1905
1906 QualType BadAllocType;
1907 bool HasBadAllocExceptionSpec
1908 = (Name.getCXXOverloadedOperator() == OO_New ||
1909 Name.getCXXOverloadedOperator() == OO_Array_New);
1910 if (HasBadAllocExceptionSpec && !getLangOpts().CPlusPlus0x) {
1911 assert(StdBadAlloc && "Must have std::bad_alloc declared");
1912 BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
1913 }
1914
1915 FunctionProtoType::ExtProtoInfo EPI;
1916 if (HasBadAllocExceptionSpec) {
1917 if (!getLangOpts().CPlusPlus0x) {
1918 EPI.ExceptionSpecType = EST_Dynamic;
1919 EPI.NumExceptions = 1;
1920 EPI.Exceptions = &BadAllocType;
1921 }
1922 } else {
1923 EPI.ExceptionSpecType = getLangOpts().CPlusPlus0x ?
1924 EST_BasicNoexcept : EST_DynamicNone;
1925 }
1926
1927 QualType FnType = Context.getFunctionType(Return, &Argument, 1, EPI);
1928 FunctionDecl *Alloc =
1929 FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
1930 SourceLocation(), Name,
1931 FnType, /*TInfo=*/0, SC_None,
1932 SC_None, false, true);
1933 Alloc->setImplicit();
1934
1935 if (AddMallocAttr)
1936 Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1937
1938 ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
1939 SourceLocation(), 0,
1940 Argument, /*TInfo=*/0,
1941 SC_None, SC_None, 0);
1942 Alloc->setParams(Param);
1943
1944 // FIXME: Also add this declaration to the IdentifierResolver, but
1945 // make sure it is at the end of the chain to coincide with the
1946 // global scope.
1947 Context.getTranslationUnitDecl()->addDecl(Alloc);
1948 }
1949
FindDeallocationFunction(SourceLocation StartLoc,CXXRecordDecl * RD,DeclarationName Name,FunctionDecl * & Operator,bool Diagnose)1950 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
1951 DeclarationName Name,
1952 FunctionDecl* &Operator, bool Diagnose) {
1953 LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
1954 // Try to find operator delete/operator delete[] in class scope.
1955 LookupQualifiedName(Found, RD);
1956
1957 if (Found.isAmbiguous())
1958 return true;
1959
1960 Found.suppressDiagnostics();
1961
1962 SmallVector<DeclAccessPair,4> Matches;
1963 for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1964 F != FEnd; ++F) {
1965 NamedDecl *ND = (*F)->getUnderlyingDecl();
1966
1967 // Ignore template operator delete members from the check for a usual
1968 // deallocation function.
1969 if (isa<FunctionTemplateDecl>(ND))
1970 continue;
1971
1972 if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
1973 Matches.push_back(F.getPair());
1974 }
1975
1976 // There's exactly one suitable operator; pick it.
1977 if (Matches.size() == 1) {
1978 Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
1979
1980 if (Operator->isDeleted()) {
1981 if (Diagnose) {
1982 Diag(StartLoc, diag::err_deleted_function_use);
1983 NoteDeletedFunction(Operator);
1984 }
1985 return true;
1986 }
1987
1988 if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
1989 Matches[0], Diagnose) == AR_inaccessible)
1990 return true;
1991
1992 return false;
1993
1994 // We found multiple suitable operators; complain about the ambiguity.
1995 } else if (!Matches.empty()) {
1996 if (Diagnose) {
1997 Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
1998 << Name << RD;
1999
2000 for (SmallVectorImpl<DeclAccessPair>::iterator
2001 F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
2002 Diag((*F)->getUnderlyingDecl()->getLocation(),
2003 diag::note_member_declared_here) << Name;
2004 }
2005 return true;
2006 }
2007
2008 // We did find operator delete/operator delete[] declarations, but
2009 // none of them were suitable.
2010 if (!Found.empty()) {
2011 if (Diagnose) {
2012 Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
2013 << Name << RD;
2014
2015 for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
2016 F != FEnd; ++F)
2017 Diag((*F)->getUnderlyingDecl()->getLocation(),
2018 diag::note_member_declared_here) << Name;
2019 }
2020 return true;
2021 }
2022
2023 // Look for a global declaration.
2024 DeclareGlobalNewDelete();
2025 DeclContext *TUDecl = Context.getTranslationUnitDecl();
2026
2027 CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
2028 Expr* DeallocArgs[1];
2029 DeallocArgs[0] = &Null;
2030 if (FindAllocationOverload(StartLoc, SourceRange(), Name,
2031 DeallocArgs, 1, TUDecl, !Diagnose,
2032 Operator, Diagnose))
2033 return true;
2034
2035 assert(Operator && "Did not find a deallocation function!");
2036 return false;
2037 }
2038
2039 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
2040 /// @code ::delete ptr; @endcode
2041 /// or
2042 /// @code delete [] ptr; @endcode
2043 ExprResult
ActOnCXXDelete(SourceLocation StartLoc,bool UseGlobal,bool ArrayForm,Expr * ExE)2044 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
2045 bool ArrayForm, Expr *ExE) {
2046 // C++ [expr.delete]p1:
2047 // The operand shall have a pointer type, or a class type having a single
2048 // conversion function to a pointer type. The result has type void.
2049 //
2050 // DR599 amends "pointer type" to "pointer to object type" in both cases.
2051
2052 ExprResult Ex = Owned(ExE);
2053 FunctionDecl *OperatorDelete = 0;
2054 bool ArrayFormAsWritten = ArrayForm;
2055 bool UsualArrayDeleteWantsSize = false;
2056
2057 if (!Ex.get()->isTypeDependent()) {
2058 // Perform lvalue-to-rvalue cast, if needed.
2059 Ex = DefaultLvalueConversion(Ex.take());
2060
2061 QualType Type = Ex.get()->getType();
2062
2063 if (const RecordType *Record = Type->getAs<RecordType>()) {
2064 if (RequireCompleteType(StartLoc, Type,
2065 diag::err_delete_incomplete_class_type))
2066 return ExprError();
2067
2068 SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions;
2069
2070 CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2071 const UnresolvedSetImpl *Conversions = RD->getVisibleConversionFunctions();
2072 for (UnresolvedSetImpl::iterator I = Conversions->begin(),
2073 E = Conversions->end(); I != E; ++I) {
2074 NamedDecl *D = I.getDecl();
2075 if (isa<UsingShadowDecl>(D))
2076 D = cast<UsingShadowDecl>(D)->getTargetDecl();
2077
2078 // Skip over templated conversion functions; they aren't considered.
2079 if (isa<FunctionTemplateDecl>(D))
2080 continue;
2081
2082 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
2083
2084 QualType ConvType = Conv->getConversionType().getNonReferenceType();
2085 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
2086 if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
2087 ObjectPtrConversions.push_back(Conv);
2088 }
2089 if (ObjectPtrConversions.size() == 1) {
2090 // We have a single conversion to a pointer-to-object type. Perform
2091 // that conversion.
2092 // TODO: don't redo the conversion calculation.
2093 ExprResult Res =
2094 PerformImplicitConversion(Ex.get(),
2095 ObjectPtrConversions.front()->getConversionType(),
2096 AA_Converting);
2097 if (Res.isUsable()) {
2098 Ex = Res;
2099 Type = Ex.get()->getType();
2100 }
2101 }
2102 else if (ObjectPtrConversions.size() > 1) {
2103 Diag(StartLoc, diag::err_ambiguous_delete_operand)
2104 << Type << Ex.get()->getSourceRange();
2105 for (unsigned i= 0; i < ObjectPtrConversions.size(); i++)
2106 NoteOverloadCandidate(ObjectPtrConversions[i]);
2107 return ExprError();
2108 }
2109 }
2110
2111 if (!Type->isPointerType())
2112 return ExprError(Diag(StartLoc, diag::err_delete_operand)
2113 << Type << Ex.get()->getSourceRange());
2114
2115 QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
2116 QualType PointeeElem = Context.getBaseElementType(Pointee);
2117
2118 if (unsigned AddressSpace = Pointee.getAddressSpace())
2119 return Diag(Ex.get()->getLocStart(),
2120 diag::err_address_space_qualified_delete)
2121 << Pointee.getUnqualifiedType() << AddressSpace;
2122
2123 CXXRecordDecl *PointeeRD = 0;
2124 if (Pointee->isVoidType() && !isSFINAEContext()) {
2125 // The C++ standard bans deleting a pointer to a non-object type, which
2126 // effectively bans deletion of "void*". However, most compilers support
2127 // this, so we treat it as a warning unless we're in a SFINAE context.
2128 Diag(StartLoc, diag::ext_delete_void_ptr_operand)
2129 << Type << Ex.get()->getSourceRange();
2130 } else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
2131 return ExprError(Diag(StartLoc, diag::err_delete_operand)
2132 << Type << Ex.get()->getSourceRange());
2133 } else if (!Pointee->isDependentType()) {
2134 if (!RequireCompleteType(StartLoc, Pointee,
2135 diag::warn_delete_incomplete, Ex.get())) {
2136 if (const RecordType *RT = PointeeElem->getAs<RecordType>())
2137 PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
2138 }
2139 }
2140
2141 // C++ [expr.delete]p2:
2142 // [Note: a pointer to a const type can be the operand of a
2143 // delete-expression; it is not necessary to cast away the constness
2144 // (5.2.11) of the pointer expression before it is used as the operand
2145 // of the delete-expression. ]
2146
2147 if (Pointee->isArrayType() && !ArrayForm) {
2148 Diag(StartLoc, diag::warn_delete_array_type)
2149 << Type << Ex.get()->getSourceRange()
2150 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
2151 ArrayForm = true;
2152 }
2153
2154 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2155 ArrayForm ? OO_Array_Delete : OO_Delete);
2156
2157 if (PointeeRD) {
2158 if (!UseGlobal &&
2159 FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
2160 OperatorDelete))
2161 return ExprError();
2162
2163 // If we're allocating an array of records, check whether the
2164 // usual operator delete[] has a size_t parameter.
2165 if (ArrayForm) {
2166 // If the user specifically asked to use the global allocator,
2167 // we'll need to do the lookup into the class.
2168 if (UseGlobal)
2169 UsualArrayDeleteWantsSize =
2170 doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
2171
2172 // Otherwise, the usual operator delete[] should be the
2173 // function we just found.
2174 else if (isa<CXXMethodDecl>(OperatorDelete))
2175 UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
2176 }
2177
2178 if (!PointeeRD->hasIrrelevantDestructor())
2179 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2180 MarkFunctionReferenced(StartLoc,
2181 const_cast<CXXDestructorDecl*>(Dtor));
2182 DiagnoseUseOfDecl(Dtor, StartLoc);
2183 }
2184
2185 // C++ [expr.delete]p3:
2186 // In the first alternative (delete object), if the static type of the
2187 // object to be deleted is different from its dynamic type, the static
2188 // type shall be a base class of the dynamic type of the object to be
2189 // deleted and the static type shall have a virtual destructor or the
2190 // behavior is undefined.
2191 //
2192 // Note: a final class cannot be derived from, no issue there
2193 if (PointeeRD->isPolymorphic() && !PointeeRD->hasAttr<FinalAttr>()) {
2194 CXXDestructorDecl *dtor = PointeeRD->getDestructor();
2195 if (dtor && !dtor->isVirtual()) {
2196 if (PointeeRD->isAbstract()) {
2197 // If the class is abstract, we warn by default, because we're
2198 // sure the code has undefined behavior.
2199 Diag(StartLoc, diag::warn_delete_abstract_non_virtual_dtor)
2200 << PointeeElem;
2201 } else if (!ArrayForm) {
2202 // Otherwise, if this is not an array delete, it's a bit suspect,
2203 // but not necessarily wrong.
2204 Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem;
2205 }
2206 }
2207 }
2208
2209 } else if (getLangOpts().ObjCAutoRefCount &&
2210 PointeeElem->isObjCLifetimeType() &&
2211 (PointeeElem.getObjCLifetime() == Qualifiers::OCL_Strong ||
2212 PointeeElem.getObjCLifetime() == Qualifiers::OCL_Weak) &&
2213 ArrayForm) {
2214 Diag(StartLoc, diag::warn_err_new_delete_object_array)
2215 << 1 << PointeeElem;
2216 }
2217
2218 if (!OperatorDelete) {
2219 // Look for a global declaration.
2220 DeclareGlobalNewDelete();
2221 DeclContext *TUDecl = Context.getTranslationUnitDecl();
2222 Expr *Arg = Ex.get();
2223 if (!Context.hasSameType(Arg->getType(), Context.VoidPtrTy))
2224 Arg = ImplicitCastExpr::Create(Context, Context.VoidPtrTy,
2225 CK_BitCast, Arg, 0, VK_RValue);
2226 if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
2227 &Arg, 1, TUDecl, /*AllowMissing=*/false,
2228 OperatorDelete))
2229 return ExprError();
2230 }
2231
2232 MarkFunctionReferenced(StartLoc, OperatorDelete);
2233
2234 // Check access and ambiguity of operator delete and destructor.
2235 if (PointeeRD) {
2236 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2237 CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
2238 PDiag(diag::err_access_dtor) << PointeeElem);
2239 }
2240 }
2241
2242 }
2243
2244 return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
2245 ArrayFormAsWritten,
2246 UsualArrayDeleteWantsSize,
2247 OperatorDelete, Ex.take(), StartLoc));
2248 }
2249
2250 /// \brief Check the use of the given variable as a C++ condition in an if,
2251 /// while, do-while, or switch statement.
CheckConditionVariable(VarDecl * ConditionVar,SourceLocation StmtLoc,bool ConvertToBoolean)2252 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
2253 SourceLocation StmtLoc,
2254 bool ConvertToBoolean) {
2255 QualType T = ConditionVar->getType();
2256
2257 // C++ [stmt.select]p2:
2258 // The declarator shall not specify a function or an array.
2259 if (T->isFunctionType())
2260 return ExprError(Diag(ConditionVar->getLocation(),
2261 diag::err_invalid_use_of_function_type)
2262 << ConditionVar->getSourceRange());
2263 else if (T->isArrayType())
2264 return ExprError(Diag(ConditionVar->getLocation(),
2265 diag::err_invalid_use_of_array_type)
2266 << ConditionVar->getSourceRange());
2267
2268 ExprResult Condition =
2269 Owned(DeclRefExpr::Create(Context, NestedNameSpecifierLoc(),
2270 SourceLocation(),
2271 ConditionVar,
2272 /*enclosing*/ false,
2273 ConditionVar->getLocation(),
2274 ConditionVar->getType().getNonReferenceType(),
2275 VK_LValue));
2276
2277 MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get()));
2278
2279 if (ConvertToBoolean) {
2280 Condition = CheckBooleanCondition(Condition.take(), StmtLoc);
2281 if (Condition.isInvalid())
2282 return ExprError();
2283 }
2284
2285 return Condition;
2286 }
2287
2288 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
CheckCXXBooleanCondition(Expr * CondExpr)2289 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) {
2290 // C++ 6.4p4:
2291 // The value of a condition that is an initialized declaration in a statement
2292 // other than a switch statement is the value of the declared variable
2293 // implicitly converted to type bool. If that conversion is ill-formed, the
2294 // program is ill-formed.
2295 // The value of a condition that is an expression is the value of the
2296 // expression, implicitly converted to bool.
2297 //
2298 return PerformContextuallyConvertToBool(CondExpr);
2299 }
2300
2301 /// Helper function to determine whether this is the (deprecated) C++
2302 /// conversion from a string literal to a pointer to non-const char or
2303 /// non-const wchar_t (for narrow and wide string literals,
2304 /// respectively).
2305 bool
IsStringLiteralToNonConstPointerConversion(Expr * From,QualType ToType)2306 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
2307 // Look inside the implicit cast, if it exists.
2308 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
2309 From = Cast->getSubExpr();
2310
2311 // A string literal (2.13.4) that is not a wide string literal can
2312 // be converted to an rvalue of type "pointer to char"; a wide
2313 // string literal can be converted to an rvalue of type "pointer
2314 // to wchar_t" (C++ 4.2p2).
2315 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
2316 if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
2317 if (const BuiltinType *ToPointeeType
2318 = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
2319 // This conversion is considered only when there is an
2320 // explicit appropriate pointer target type (C++ 4.2p2).
2321 if (!ToPtrType->getPointeeType().hasQualifiers()) {
2322 switch (StrLit->getKind()) {
2323 case StringLiteral::UTF8:
2324 case StringLiteral::UTF16:
2325 case StringLiteral::UTF32:
2326 // We don't allow UTF literals to be implicitly converted
2327 break;
2328 case StringLiteral::Ascii:
2329 return (ToPointeeType->getKind() == BuiltinType::Char_U ||
2330 ToPointeeType->getKind() == BuiltinType::Char_S);
2331 case StringLiteral::Wide:
2332 return ToPointeeType->isWideCharType();
2333 }
2334 }
2335 }
2336
2337 return false;
2338 }
2339
BuildCXXCastArgument(Sema & S,SourceLocation CastLoc,QualType Ty,CastKind Kind,CXXMethodDecl * Method,DeclAccessPair FoundDecl,bool HadMultipleCandidates,Expr * From)2340 static ExprResult BuildCXXCastArgument(Sema &S,
2341 SourceLocation CastLoc,
2342 QualType Ty,
2343 CastKind Kind,
2344 CXXMethodDecl *Method,
2345 DeclAccessPair FoundDecl,
2346 bool HadMultipleCandidates,
2347 Expr *From) {
2348 switch (Kind) {
2349 default: llvm_unreachable("Unhandled cast kind!");
2350 case CK_ConstructorConversion: {
2351 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
2352 SmallVector<Expr*, 8> ConstructorArgs;
2353
2354 if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs))
2355 return ExprError();
2356
2357 S.CheckConstructorAccess(CastLoc, Constructor,
2358 InitializedEntity::InitializeTemporary(Ty),
2359 Constructor->getAccess());
2360
2361 ExprResult Result
2362 = S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
2363 ConstructorArgs,
2364 HadMultipleCandidates, /*ZeroInit*/ false,
2365 CXXConstructExpr::CK_Complete, SourceRange());
2366 if (Result.isInvalid())
2367 return ExprError();
2368
2369 return S.MaybeBindToTemporary(Result.takeAs<Expr>());
2370 }
2371
2372 case CK_UserDefinedConversion: {
2373 assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
2374
2375 // Create an implicit call expr that calls it.
2376 CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
2377 ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
2378 HadMultipleCandidates);
2379 if (Result.isInvalid())
2380 return ExprError();
2381 // Record usage of conversion in an implicit cast.
2382 Result = S.Owned(ImplicitCastExpr::Create(S.Context,
2383 Result.get()->getType(),
2384 CK_UserDefinedConversion,
2385 Result.get(), 0,
2386 Result.get()->getValueKind()));
2387
2388 S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ 0, FoundDecl);
2389
2390 return S.MaybeBindToTemporary(Result.get());
2391 }
2392 }
2393 }
2394
2395 /// PerformImplicitConversion - Perform an implicit conversion of the
2396 /// expression From to the type ToType using the pre-computed implicit
2397 /// conversion sequence ICS. Returns the converted
2398 /// expression. Action is the kind of conversion we're performing,
2399 /// used in the error message.
2400 ExprResult
PerformImplicitConversion(Expr * From,QualType ToType,const ImplicitConversionSequence & ICS,AssignmentAction Action,CheckedConversionKind CCK)2401 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2402 const ImplicitConversionSequence &ICS,
2403 AssignmentAction Action,
2404 CheckedConversionKind CCK) {
2405 switch (ICS.getKind()) {
2406 case ImplicitConversionSequence::StandardConversion: {
2407 ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
2408 Action, CCK);
2409 if (Res.isInvalid())
2410 return ExprError();
2411 From = Res.take();
2412 break;
2413 }
2414
2415 case ImplicitConversionSequence::UserDefinedConversion: {
2416
2417 FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
2418 CastKind CastKind;
2419 QualType BeforeToType;
2420 assert(FD && "FIXME: aggregate initialization from init list");
2421 if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
2422 CastKind = CK_UserDefinedConversion;
2423
2424 // If the user-defined conversion is specified by a conversion function,
2425 // the initial standard conversion sequence converts the source type to
2426 // the implicit object parameter of the conversion function.
2427 BeforeToType = Context.getTagDeclType(Conv->getParent());
2428 } else {
2429 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
2430 CastKind = CK_ConstructorConversion;
2431 // Do no conversion if dealing with ... for the first conversion.
2432 if (!ICS.UserDefined.EllipsisConversion) {
2433 // If the user-defined conversion is specified by a constructor, the
2434 // initial standard conversion sequence converts the source type to the
2435 // type required by the argument of the constructor
2436 BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
2437 }
2438 }
2439 // Watch out for elipsis conversion.
2440 if (!ICS.UserDefined.EllipsisConversion) {
2441 ExprResult Res =
2442 PerformImplicitConversion(From, BeforeToType,
2443 ICS.UserDefined.Before, AA_Converting,
2444 CCK);
2445 if (Res.isInvalid())
2446 return ExprError();
2447 From = Res.take();
2448 }
2449
2450 ExprResult CastArg
2451 = BuildCXXCastArgument(*this,
2452 From->getLocStart(),
2453 ToType.getNonReferenceType(),
2454 CastKind, cast<CXXMethodDecl>(FD),
2455 ICS.UserDefined.FoundConversionFunction,
2456 ICS.UserDefined.HadMultipleCandidates,
2457 From);
2458
2459 if (CastArg.isInvalid())
2460 return ExprError();
2461
2462 From = CastArg.take();
2463
2464 return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
2465 AA_Converting, CCK);
2466 }
2467
2468 case ImplicitConversionSequence::AmbiguousConversion:
2469 ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
2470 PDiag(diag::err_typecheck_ambiguous_condition)
2471 << From->getSourceRange());
2472 return ExprError();
2473
2474 case ImplicitConversionSequence::EllipsisConversion:
2475 llvm_unreachable("Cannot perform an ellipsis conversion");
2476
2477 case ImplicitConversionSequence::BadConversion:
2478 return ExprError();
2479 }
2480
2481 // Everything went well.
2482 return Owned(From);
2483 }
2484
2485 /// PerformImplicitConversion - Perform an implicit conversion of the
2486 /// expression From to the type ToType by following the standard
2487 /// conversion sequence SCS. Returns the converted
2488 /// expression. Flavor is the context in which we're performing this
2489 /// conversion, for use in error messages.
2490 ExprResult
PerformImplicitConversion(Expr * From,QualType ToType,const StandardConversionSequence & SCS,AssignmentAction Action,CheckedConversionKind CCK)2491 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2492 const StandardConversionSequence& SCS,
2493 AssignmentAction Action,
2494 CheckedConversionKind CCK) {
2495 bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
2496
2497 // Overall FIXME: we are recomputing too many types here and doing far too
2498 // much extra work. What this means is that we need to keep track of more
2499 // information that is computed when we try the implicit conversion initially,
2500 // so that we don't need to recompute anything here.
2501 QualType FromType = From->getType();
2502
2503 if (SCS.CopyConstructor) {
2504 // FIXME: When can ToType be a reference type?
2505 assert(!ToType->isReferenceType());
2506 if (SCS.Second == ICK_Derived_To_Base) {
2507 SmallVector<Expr*, 8> ConstructorArgs;
2508 if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
2509 From, /*FIXME:ConstructLoc*/SourceLocation(),
2510 ConstructorArgs))
2511 return ExprError();
2512 return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2513 ToType, SCS.CopyConstructor,
2514 ConstructorArgs,
2515 /*HadMultipleCandidates*/ false,
2516 /*ZeroInit*/ false,
2517 CXXConstructExpr::CK_Complete,
2518 SourceRange());
2519 }
2520 return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2521 ToType, SCS.CopyConstructor,
2522 From, /*HadMultipleCandidates*/ false,
2523 /*ZeroInit*/ false,
2524 CXXConstructExpr::CK_Complete,
2525 SourceRange());
2526 }
2527
2528 // Resolve overloaded function references.
2529 if (Context.hasSameType(FromType, Context.OverloadTy)) {
2530 DeclAccessPair Found;
2531 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
2532 true, Found);
2533 if (!Fn)
2534 return ExprError();
2535
2536 if (DiagnoseUseOfDecl(Fn, From->getLocStart()))
2537 return ExprError();
2538
2539 From = FixOverloadedFunctionReference(From, Found, Fn);
2540 FromType = From->getType();
2541 }
2542
2543 // Perform the first implicit conversion.
2544 switch (SCS.First) {
2545 case ICK_Identity:
2546 // Nothing to do.
2547 break;
2548
2549 case ICK_Lvalue_To_Rvalue: {
2550 assert(From->getObjectKind() != OK_ObjCProperty);
2551 FromType = FromType.getUnqualifiedType();
2552 ExprResult FromRes = DefaultLvalueConversion(From);
2553 assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!");
2554 From = FromRes.take();
2555 break;
2556 }
2557
2558 case ICK_Array_To_Pointer:
2559 FromType = Context.getArrayDecayedType(FromType);
2560 From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
2561 VK_RValue, /*BasePath=*/0, CCK).take();
2562 break;
2563
2564 case ICK_Function_To_Pointer:
2565 FromType = Context.getPointerType(FromType);
2566 From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
2567 VK_RValue, /*BasePath=*/0, CCK).take();
2568 break;
2569
2570 default:
2571 llvm_unreachable("Improper first standard conversion");
2572 }
2573
2574 // Perform the second implicit conversion
2575 switch (SCS.Second) {
2576 case ICK_Identity:
2577 // If both sides are functions (or pointers/references to them), there could
2578 // be incompatible exception declarations.
2579 if (CheckExceptionSpecCompatibility(From, ToType))
2580 return ExprError();
2581 // Nothing else to do.
2582 break;
2583
2584 case ICK_NoReturn_Adjustment:
2585 // If both sides are functions (or pointers/references to them), there could
2586 // be incompatible exception declarations.
2587 if (CheckExceptionSpecCompatibility(From, ToType))
2588 return ExprError();
2589
2590 From = ImpCastExprToType(From, ToType, CK_NoOp,
2591 VK_RValue, /*BasePath=*/0, CCK).take();
2592 break;
2593
2594 case ICK_Integral_Promotion:
2595 case ICK_Integral_Conversion:
2596 From = ImpCastExprToType(From, ToType, CK_IntegralCast,
2597 VK_RValue, /*BasePath=*/0, CCK).take();
2598 break;
2599
2600 case ICK_Floating_Promotion:
2601 case ICK_Floating_Conversion:
2602 From = ImpCastExprToType(From, ToType, CK_FloatingCast,
2603 VK_RValue, /*BasePath=*/0, CCK).take();
2604 break;
2605
2606 case ICK_Complex_Promotion:
2607 case ICK_Complex_Conversion: {
2608 QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
2609 QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
2610 CastKind CK;
2611 if (FromEl->isRealFloatingType()) {
2612 if (ToEl->isRealFloatingType())
2613 CK = CK_FloatingComplexCast;
2614 else
2615 CK = CK_FloatingComplexToIntegralComplex;
2616 } else if (ToEl->isRealFloatingType()) {
2617 CK = CK_IntegralComplexToFloatingComplex;
2618 } else {
2619 CK = CK_IntegralComplexCast;
2620 }
2621 From = ImpCastExprToType(From, ToType, CK,
2622 VK_RValue, /*BasePath=*/0, CCK).take();
2623 break;
2624 }
2625
2626 case ICK_Floating_Integral:
2627 if (ToType->isRealFloatingType())
2628 From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
2629 VK_RValue, /*BasePath=*/0, CCK).take();
2630 else
2631 From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
2632 VK_RValue, /*BasePath=*/0, CCK).take();
2633 break;
2634
2635 case ICK_Compatible_Conversion:
2636 From = ImpCastExprToType(From, ToType, CK_NoOp,
2637 VK_RValue, /*BasePath=*/0, CCK).take();
2638 break;
2639
2640 case ICK_Writeback_Conversion:
2641 case ICK_Pointer_Conversion: {
2642 if (SCS.IncompatibleObjC && Action != AA_Casting) {
2643 // Diagnose incompatible Objective-C conversions
2644 if (Action == AA_Initializing || Action == AA_Assigning)
2645 Diag(From->getLocStart(),
2646 diag::ext_typecheck_convert_incompatible_pointer)
2647 << ToType << From->getType() << Action
2648 << From->getSourceRange() << 0;
2649 else
2650 Diag(From->getLocStart(),
2651 diag::ext_typecheck_convert_incompatible_pointer)
2652 << From->getType() << ToType << Action
2653 << From->getSourceRange() << 0;
2654
2655 if (From->getType()->isObjCObjectPointerType() &&
2656 ToType->isObjCObjectPointerType())
2657 EmitRelatedResultTypeNote(From);
2658 }
2659 else if (getLangOpts().ObjCAutoRefCount &&
2660 !CheckObjCARCUnavailableWeakConversion(ToType,
2661 From->getType())) {
2662 if (Action == AA_Initializing)
2663 Diag(From->getLocStart(),
2664 diag::err_arc_weak_unavailable_assign);
2665 else
2666 Diag(From->getLocStart(),
2667 diag::err_arc_convesion_of_weak_unavailable)
2668 << (Action == AA_Casting) << From->getType() << ToType
2669 << From->getSourceRange();
2670 }
2671
2672 CastKind Kind = CK_Invalid;
2673 CXXCastPath BasePath;
2674 if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
2675 return ExprError();
2676
2677 // Make sure we extend blocks if necessary.
2678 // FIXME: doing this here is really ugly.
2679 if (Kind == CK_BlockPointerToObjCPointerCast) {
2680 ExprResult E = From;
2681 (void) PrepareCastToObjCObjectPointer(E);
2682 From = E.take();
2683 }
2684
2685 From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2686 .take();
2687 break;
2688 }
2689
2690 case ICK_Pointer_Member: {
2691 CastKind Kind = CK_Invalid;
2692 CXXCastPath BasePath;
2693 if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
2694 return ExprError();
2695 if (CheckExceptionSpecCompatibility(From, ToType))
2696 return ExprError();
2697 From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2698 .take();
2699 break;
2700 }
2701
2702 case ICK_Boolean_Conversion:
2703 // Perform half-to-boolean conversion via float.
2704 if (From->getType()->isHalfType()) {
2705 From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).take();
2706 FromType = Context.FloatTy;
2707 }
2708
2709 From = ImpCastExprToType(From, Context.BoolTy,
2710 ScalarTypeToBooleanCastKind(FromType),
2711 VK_RValue, /*BasePath=*/0, CCK).take();
2712 break;
2713
2714 case ICK_Derived_To_Base: {
2715 CXXCastPath BasePath;
2716 if (CheckDerivedToBaseConversion(From->getType(),
2717 ToType.getNonReferenceType(),
2718 From->getLocStart(),
2719 From->getSourceRange(),
2720 &BasePath,
2721 CStyle))
2722 return ExprError();
2723
2724 From = ImpCastExprToType(From, ToType.getNonReferenceType(),
2725 CK_DerivedToBase, From->getValueKind(),
2726 &BasePath, CCK).take();
2727 break;
2728 }
2729
2730 case ICK_Vector_Conversion:
2731 From = ImpCastExprToType(From, ToType, CK_BitCast,
2732 VK_RValue, /*BasePath=*/0, CCK).take();
2733 break;
2734
2735 case ICK_Vector_Splat:
2736 From = ImpCastExprToType(From, ToType, CK_VectorSplat,
2737 VK_RValue, /*BasePath=*/0, CCK).take();
2738 break;
2739
2740 case ICK_Complex_Real:
2741 // Case 1. x -> _Complex y
2742 if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
2743 QualType ElType = ToComplex->getElementType();
2744 bool isFloatingComplex = ElType->isRealFloatingType();
2745
2746 // x -> y
2747 if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
2748 // do nothing
2749 } else if (From->getType()->isRealFloatingType()) {
2750 From = ImpCastExprToType(From, ElType,
2751 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).take();
2752 } else {
2753 assert(From->getType()->isIntegerType());
2754 From = ImpCastExprToType(From, ElType,
2755 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).take();
2756 }
2757 // y -> _Complex y
2758 From = ImpCastExprToType(From, ToType,
2759 isFloatingComplex ? CK_FloatingRealToComplex
2760 : CK_IntegralRealToComplex).take();
2761
2762 // Case 2. _Complex x -> y
2763 } else {
2764 const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
2765 assert(FromComplex);
2766
2767 QualType ElType = FromComplex->getElementType();
2768 bool isFloatingComplex = ElType->isRealFloatingType();
2769
2770 // _Complex x -> x
2771 From = ImpCastExprToType(From, ElType,
2772 isFloatingComplex ? CK_FloatingComplexToReal
2773 : CK_IntegralComplexToReal,
2774 VK_RValue, /*BasePath=*/0, CCK).take();
2775
2776 // x -> y
2777 if (Context.hasSameUnqualifiedType(ElType, ToType)) {
2778 // do nothing
2779 } else if (ToType->isRealFloatingType()) {
2780 From = ImpCastExprToType(From, ToType,
2781 isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
2782 VK_RValue, /*BasePath=*/0, CCK).take();
2783 } else {
2784 assert(ToType->isIntegerType());
2785 From = ImpCastExprToType(From, ToType,
2786 isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
2787 VK_RValue, /*BasePath=*/0, CCK).take();
2788 }
2789 }
2790 break;
2791
2792 case ICK_Block_Pointer_Conversion: {
2793 From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
2794 VK_RValue, /*BasePath=*/0, CCK).take();
2795 break;
2796 }
2797
2798 case ICK_TransparentUnionConversion: {
2799 ExprResult FromRes = Owned(From);
2800 Sema::AssignConvertType ConvTy =
2801 CheckTransparentUnionArgumentConstraints(ToType, FromRes);
2802 if (FromRes.isInvalid())
2803 return ExprError();
2804 From = FromRes.take();
2805 assert ((ConvTy == Sema::Compatible) &&
2806 "Improper transparent union conversion");
2807 (void)ConvTy;
2808 break;
2809 }
2810
2811 case ICK_Lvalue_To_Rvalue:
2812 case ICK_Array_To_Pointer:
2813 case ICK_Function_To_Pointer:
2814 case ICK_Qualification:
2815 case ICK_Num_Conversion_Kinds:
2816 llvm_unreachable("Improper second standard conversion");
2817 }
2818
2819 switch (SCS.Third) {
2820 case ICK_Identity:
2821 // Nothing to do.
2822 break;
2823
2824 case ICK_Qualification: {
2825 // The qualification keeps the category of the inner expression, unless the
2826 // target type isn't a reference.
2827 ExprValueKind VK = ToType->isReferenceType() ?
2828 From->getValueKind() : VK_RValue;
2829 From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
2830 CK_NoOp, VK, /*BasePath=*/0, CCK).take();
2831
2832 if (SCS.DeprecatedStringLiteralToCharPtr &&
2833 !getLangOpts().WritableStrings)
2834 Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion)
2835 << ToType.getNonReferenceType();
2836
2837 break;
2838 }
2839
2840 default:
2841 llvm_unreachable("Improper third standard conversion");
2842 }
2843
2844 // If this conversion sequence involved a scalar -> atomic conversion, perform
2845 // that conversion now.
2846 if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>())
2847 if (Context.hasSameType(ToAtomic->getValueType(), From->getType()))
2848 From = ImpCastExprToType(From, ToType, CK_NonAtomicToAtomic, VK_RValue, 0,
2849 CCK).take();
2850
2851 return Owned(From);
2852 }
2853
ActOnUnaryTypeTrait(UnaryTypeTrait UTT,SourceLocation KWLoc,ParsedType Ty,SourceLocation RParen)2854 ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait UTT,
2855 SourceLocation KWLoc,
2856 ParsedType Ty,
2857 SourceLocation RParen) {
2858 TypeSourceInfo *TSInfo;
2859 QualType T = GetTypeFromParser(Ty, &TSInfo);
2860
2861 if (!TSInfo)
2862 TSInfo = Context.getTrivialTypeSourceInfo(T);
2863 return BuildUnaryTypeTrait(UTT, KWLoc, TSInfo, RParen);
2864 }
2865
2866 /// \brief Check the completeness of a type in a unary type trait.
2867 ///
2868 /// If the particular type trait requires a complete type, tries to complete
2869 /// it. If completing the type fails, a diagnostic is emitted and false
2870 /// returned. If completing the type succeeds or no completion was required,
2871 /// returns true.
CheckUnaryTypeTraitTypeCompleteness(Sema & S,UnaryTypeTrait UTT,SourceLocation Loc,QualType ArgTy)2872 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S,
2873 UnaryTypeTrait UTT,
2874 SourceLocation Loc,
2875 QualType ArgTy) {
2876 // C++0x [meta.unary.prop]p3:
2877 // For all of the class templates X declared in this Clause, instantiating
2878 // that template with a template argument that is a class template
2879 // specialization may result in the implicit instantiation of the template
2880 // argument if and only if the semantics of X require that the argument
2881 // must be a complete type.
2882 // We apply this rule to all the type trait expressions used to implement
2883 // these class templates. We also try to follow any GCC documented behavior
2884 // in these expressions to ensure portability of standard libraries.
2885 switch (UTT) {
2886 // is_complete_type somewhat obviously cannot require a complete type.
2887 case UTT_IsCompleteType:
2888 // Fall-through
2889
2890 // These traits are modeled on the type predicates in C++0x
2891 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
2892 // requiring a complete type, as whether or not they return true cannot be
2893 // impacted by the completeness of the type.
2894 case UTT_IsVoid:
2895 case UTT_IsIntegral:
2896 case UTT_IsFloatingPoint:
2897 case UTT_IsArray:
2898 case UTT_IsPointer:
2899 case UTT_IsLvalueReference:
2900 case UTT_IsRvalueReference:
2901 case UTT_IsMemberFunctionPointer:
2902 case UTT_IsMemberObjectPointer:
2903 case UTT_IsEnum:
2904 case UTT_IsUnion:
2905 case UTT_IsClass:
2906 case UTT_IsFunction:
2907 case UTT_IsReference:
2908 case UTT_IsArithmetic:
2909 case UTT_IsFundamental:
2910 case UTT_IsObject:
2911 case UTT_IsScalar:
2912 case UTT_IsCompound:
2913 case UTT_IsMemberPointer:
2914 // Fall-through
2915
2916 // These traits are modeled on type predicates in C++0x [meta.unary.prop]
2917 // which requires some of its traits to have the complete type. However,
2918 // the completeness of the type cannot impact these traits' semantics, and
2919 // so they don't require it. This matches the comments on these traits in
2920 // Table 49.
2921 case UTT_IsConst:
2922 case UTT_IsVolatile:
2923 case UTT_IsSigned:
2924 case UTT_IsUnsigned:
2925 return true;
2926
2927 // C++0x [meta.unary.prop] Table 49 requires the following traits to be
2928 // applied to a complete type.
2929 case UTT_IsTrivial:
2930 case UTT_IsTriviallyCopyable:
2931 case UTT_IsStandardLayout:
2932 case UTT_IsPOD:
2933 case UTT_IsLiteral:
2934 case UTT_IsEmpty:
2935 case UTT_IsPolymorphic:
2936 case UTT_IsAbstract:
2937 // Fall-through
2938
2939 // These traits require a complete type.
2940 case UTT_IsFinal:
2941
2942 // These trait expressions are designed to help implement predicates in
2943 // [meta.unary.prop] despite not being named the same. They are specified
2944 // by both GCC and the Embarcadero C++ compiler, and require the complete
2945 // type due to the overarching C++0x type predicates being implemented
2946 // requiring the complete type.
2947 case UTT_HasNothrowAssign:
2948 case UTT_HasNothrowConstructor:
2949 case UTT_HasNothrowCopy:
2950 case UTT_HasTrivialAssign:
2951 case UTT_HasTrivialDefaultConstructor:
2952 case UTT_HasTrivialCopy:
2953 case UTT_HasTrivialDestructor:
2954 case UTT_HasVirtualDestructor:
2955 // Arrays of unknown bound are expressly allowed.
2956 QualType ElTy = ArgTy;
2957 if (ArgTy->isIncompleteArrayType())
2958 ElTy = S.Context.getAsArrayType(ArgTy)->getElementType();
2959
2960 // The void type is expressly allowed.
2961 if (ElTy->isVoidType())
2962 return true;
2963
2964 return !S.RequireCompleteType(
2965 Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr);
2966 }
2967 llvm_unreachable("Type trait not handled by switch");
2968 }
2969
EvaluateUnaryTypeTrait(Sema & Self,UnaryTypeTrait UTT,SourceLocation KeyLoc,QualType T)2970 static bool EvaluateUnaryTypeTrait(Sema &Self, UnaryTypeTrait UTT,
2971 SourceLocation KeyLoc, QualType T) {
2972 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
2973
2974 ASTContext &C = Self.Context;
2975 switch(UTT) {
2976 // Type trait expressions corresponding to the primary type category
2977 // predicates in C++0x [meta.unary.cat].
2978 case UTT_IsVoid:
2979 return T->isVoidType();
2980 case UTT_IsIntegral:
2981 return T->isIntegralType(C);
2982 case UTT_IsFloatingPoint:
2983 return T->isFloatingType();
2984 case UTT_IsArray:
2985 return T->isArrayType();
2986 case UTT_IsPointer:
2987 return T->isPointerType();
2988 case UTT_IsLvalueReference:
2989 return T->isLValueReferenceType();
2990 case UTT_IsRvalueReference:
2991 return T->isRValueReferenceType();
2992 case UTT_IsMemberFunctionPointer:
2993 return T->isMemberFunctionPointerType();
2994 case UTT_IsMemberObjectPointer:
2995 return T->isMemberDataPointerType();
2996 case UTT_IsEnum:
2997 return T->isEnumeralType();
2998 case UTT_IsUnion:
2999 return T->isUnionType();
3000 case UTT_IsClass:
3001 return T->isClassType() || T->isStructureType() || T->isInterfaceType();
3002 case UTT_IsFunction:
3003 return T->isFunctionType();
3004
3005 // Type trait expressions which correspond to the convenient composition
3006 // predicates in C++0x [meta.unary.comp].
3007 case UTT_IsReference:
3008 return T->isReferenceType();
3009 case UTT_IsArithmetic:
3010 return T->isArithmeticType() && !T->isEnumeralType();
3011 case UTT_IsFundamental:
3012 return T->isFundamentalType();
3013 case UTT_IsObject:
3014 return T->isObjectType();
3015 case UTT_IsScalar:
3016 // Note: semantic analysis depends on Objective-C lifetime types to be
3017 // considered scalar types. However, such types do not actually behave
3018 // like scalar types at run time (since they may require retain/release
3019 // operations), so we report them as non-scalar.
3020 if (T->isObjCLifetimeType()) {
3021 switch (T.getObjCLifetime()) {
3022 case Qualifiers::OCL_None:
3023 case Qualifiers::OCL_ExplicitNone:
3024 return true;
3025
3026 case Qualifiers::OCL_Strong:
3027 case Qualifiers::OCL_Weak:
3028 case Qualifiers::OCL_Autoreleasing:
3029 return false;
3030 }
3031 }
3032
3033 return T->isScalarType();
3034 case UTT_IsCompound:
3035 return T->isCompoundType();
3036 case UTT_IsMemberPointer:
3037 return T->isMemberPointerType();
3038
3039 // Type trait expressions which correspond to the type property predicates
3040 // in C++0x [meta.unary.prop].
3041 case UTT_IsConst:
3042 return T.isConstQualified();
3043 case UTT_IsVolatile:
3044 return T.isVolatileQualified();
3045 case UTT_IsTrivial:
3046 return T.isTrivialType(Self.Context);
3047 case UTT_IsTriviallyCopyable:
3048 return T.isTriviallyCopyableType(Self.Context);
3049 case UTT_IsStandardLayout:
3050 return T->isStandardLayoutType();
3051 case UTT_IsPOD:
3052 return T.isPODType(Self.Context);
3053 case UTT_IsLiteral:
3054 return T->isLiteralType();
3055 case UTT_IsEmpty:
3056 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3057 return !RD->isUnion() && RD->isEmpty();
3058 return false;
3059 case UTT_IsPolymorphic:
3060 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3061 return RD->isPolymorphic();
3062 return false;
3063 case UTT_IsAbstract:
3064 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3065 return RD->isAbstract();
3066 return false;
3067 case UTT_IsFinal:
3068 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3069 return RD->hasAttr<FinalAttr>();
3070 return false;
3071 case UTT_IsSigned:
3072 return T->isSignedIntegerType();
3073 case UTT_IsUnsigned:
3074 return T->isUnsignedIntegerType();
3075
3076 // Type trait expressions which query classes regarding their construction,
3077 // destruction, and copying. Rather than being based directly on the
3078 // related type predicates in the standard, they are specified by both
3079 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
3080 // specifications.
3081 //
3082 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
3083 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
3084 case UTT_HasTrivialDefaultConstructor:
3085 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3086 // If __is_pod (type) is true then the trait is true, else if type is
3087 // a cv class or union type (or array thereof) with a trivial default
3088 // constructor ([class.ctor]) then the trait is true, else it is false.
3089 if (T.isPODType(Self.Context))
3090 return true;
3091 if (const RecordType *RT =
3092 C.getBaseElementType(T)->getAs<RecordType>())
3093 return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDefaultConstructor();
3094 return false;
3095 case UTT_HasTrivialCopy:
3096 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3097 // If __is_pod (type) is true or type is a reference type then
3098 // the trait is true, else if type is a cv class or union type
3099 // with a trivial copy constructor ([class.copy]) then the trait
3100 // is true, else it is false.
3101 if (T.isPODType(Self.Context) || T->isReferenceType())
3102 return true;
3103 if (const RecordType *RT = T->getAs<RecordType>())
3104 return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyConstructor();
3105 return false;
3106 case UTT_HasTrivialAssign:
3107 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3108 // If type is const qualified or is a reference type then the
3109 // trait is false. Otherwise if __is_pod (type) is true then the
3110 // trait is true, else if type is a cv class or union type with
3111 // a trivial copy assignment ([class.copy]) then the trait is
3112 // true, else it is false.
3113 // Note: the const and reference restrictions are interesting,
3114 // given that const and reference members don't prevent a class
3115 // from having a trivial copy assignment operator (but do cause
3116 // errors if the copy assignment operator is actually used, q.v.
3117 // [class.copy]p12).
3118
3119 if (C.getBaseElementType(T).isConstQualified())
3120 return false;
3121 if (T.isPODType(Self.Context))
3122 return true;
3123 if (const RecordType *RT = T->getAs<RecordType>())
3124 return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyAssignment();
3125 return false;
3126 case UTT_HasTrivialDestructor:
3127 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3128 // If __is_pod (type) is true or type is a reference type
3129 // then the trait is true, else if type is a cv class or union
3130 // type (or array thereof) with a trivial destructor
3131 // ([class.dtor]) then the trait is true, else it is
3132 // false.
3133 if (T.isPODType(Self.Context) || T->isReferenceType())
3134 return true;
3135
3136 // Objective-C++ ARC: autorelease types don't require destruction.
3137 if (T->isObjCLifetimeType() &&
3138 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
3139 return true;
3140
3141 if (const RecordType *RT =
3142 C.getBaseElementType(T)->getAs<RecordType>())
3143 return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDestructor();
3144 return false;
3145 // TODO: Propagate nothrowness for implicitly declared special members.
3146 case UTT_HasNothrowAssign:
3147 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3148 // If type is const qualified or is a reference type then the
3149 // trait is false. Otherwise if __has_trivial_assign (type)
3150 // is true then the trait is true, else if type is a cv class
3151 // or union type with copy assignment operators that are known
3152 // not to throw an exception then the trait is true, else it is
3153 // false.
3154 if (C.getBaseElementType(T).isConstQualified())
3155 return false;
3156 if (T->isReferenceType())
3157 return false;
3158 if (T.isPODType(Self.Context) || T->isObjCLifetimeType())
3159 return true;
3160 if (const RecordType *RT = T->getAs<RecordType>()) {
3161 CXXRecordDecl* RD = cast<CXXRecordDecl>(RT->getDecl());
3162 if (RD->hasTrivialCopyAssignment())
3163 return true;
3164
3165 bool FoundAssign = false;
3166 DeclarationName Name = C.DeclarationNames.getCXXOperatorName(OO_Equal);
3167 LookupResult Res(Self, DeclarationNameInfo(Name, KeyLoc),
3168 Sema::LookupOrdinaryName);
3169 if (Self.LookupQualifiedName(Res, RD)) {
3170 Res.suppressDiagnostics();
3171 for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
3172 Op != OpEnd; ++Op) {
3173 if (isa<FunctionTemplateDecl>(*Op))
3174 continue;
3175
3176 CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
3177 if (Operator->isCopyAssignmentOperator()) {
3178 FoundAssign = true;
3179 const FunctionProtoType *CPT
3180 = Operator->getType()->getAs<FunctionProtoType>();
3181 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3182 if (!CPT)
3183 return false;
3184 if (!CPT->isNothrow(Self.Context))
3185 return false;
3186 }
3187 }
3188 }
3189
3190 return FoundAssign;
3191 }
3192 return false;
3193 case UTT_HasNothrowCopy:
3194 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3195 // If __has_trivial_copy (type) is true then the trait is true, else
3196 // if type is a cv class or union type with copy constructors that are
3197 // known not to throw an exception then the trait is true, else it is
3198 // false.
3199 if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
3200 return true;
3201 if (const RecordType *RT = T->getAs<RecordType>()) {
3202 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3203 if (RD->hasTrivialCopyConstructor())
3204 return true;
3205
3206 bool FoundConstructor = false;
3207 unsigned FoundTQs;
3208 DeclContext::lookup_const_iterator Con, ConEnd;
3209 for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
3210 Con != ConEnd; ++Con) {
3211 // A template constructor is never a copy constructor.
3212 // FIXME: However, it may actually be selected at the actual overload
3213 // resolution point.
3214 if (isa<FunctionTemplateDecl>(*Con))
3215 continue;
3216 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
3217 if (Constructor->isCopyConstructor(FoundTQs)) {
3218 FoundConstructor = true;
3219 const FunctionProtoType *CPT
3220 = Constructor->getType()->getAs<FunctionProtoType>();
3221 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3222 if (!CPT)
3223 return false;
3224 // FIXME: check whether evaluating default arguments can throw.
3225 // For now, we'll be conservative and assume that they can throw.
3226 if (!CPT->isNothrow(Self.Context) || CPT->getNumArgs() > 1)
3227 return false;
3228 }
3229 }
3230
3231 return FoundConstructor;
3232 }
3233 return false;
3234 case UTT_HasNothrowConstructor:
3235 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3236 // If __has_trivial_constructor (type) is true then the trait is
3237 // true, else if type is a cv class or union type (or array
3238 // thereof) with a default constructor that is known not to
3239 // throw an exception then the trait is true, else it is false.
3240 if (T.isPODType(C) || T->isObjCLifetimeType())
3241 return true;
3242 if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) {
3243 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3244 if (RD->hasTrivialDefaultConstructor())
3245 return true;
3246
3247 DeclContext::lookup_const_iterator Con, ConEnd;
3248 for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
3249 Con != ConEnd; ++Con) {
3250 // FIXME: In C++0x, a constructor template can be a default constructor.
3251 if (isa<FunctionTemplateDecl>(*Con))
3252 continue;
3253 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
3254 if (Constructor->isDefaultConstructor()) {
3255 const FunctionProtoType *CPT
3256 = Constructor->getType()->getAs<FunctionProtoType>();
3257 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3258 if (!CPT)
3259 return false;
3260 // TODO: check whether evaluating default arguments can throw.
3261 // For now, we'll be conservative and assume that they can throw.
3262 return CPT->isNothrow(Self.Context) && CPT->getNumArgs() == 0;
3263 }
3264 }
3265 }
3266 return false;
3267 case UTT_HasVirtualDestructor:
3268 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3269 // If type is a class type with a virtual destructor ([class.dtor])
3270 // then the trait is true, else it is false.
3271 if (const RecordType *Record = T->getAs<RecordType>()) {
3272 CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
3273 if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
3274 return Destructor->isVirtual();
3275 }
3276 return false;
3277
3278 // These type trait expressions are modeled on the specifications for the
3279 // Embarcadero C++0x type trait functions:
3280 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
3281 case UTT_IsCompleteType:
3282 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
3283 // Returns True if and only if T is a complete type at the point of the
3284 // function call.
3285 return !T->isIncompleteType();
3286 }
3287 llvm_unreachable("Type trait not covered by switch");
3288 }
3289
BuildUnaryTypeTrait(UnaryTypeTrait UTT,SourceLocation KWLoc,TypeSourceInfo * TSInfo,SourceLocation RParen)3290 ExprResult Sema::BuildUnaryTypeTrait(UnaryTypeTrait UTT,
3291 SourceLocation KWLoc,
3292 TypeSourceInfo *TSInfo,
3293 SourceLocation RParen) {
3294 QualType T = TSInfo->getType();
3295 if (!CheckUnaryTypeTraitTypeCompleteness(*this, UTT, KWLoc, T))
3296 return ExprError();
3297
3298 bool Value = false;
3299 if (!T->isDependentType())
3300 Value = EvaluateUnaryTypeTrait(*this, UTT, KWLoc, T);
3301
3302 return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, UTT, TSInfo, Value,
3303 RParen, Context.BoolTy));
3304 }
3305
ActOnBinaryTypeTrait(BinaryTypeTrait BTT,SourceLocation KWLoc,ParsedType LhsTy,ParsedType RhsTy,SourceLocation RParen)3306 ExprResult Sema::ActOnBinaryTypeTrait(BinaryTypeTrait BTT,
3307 SourceLocation KWLoc,
3308 ParsedType LhsTy,
3309 ParsedType RhsTy,
3310 SourceLocation RParen) {
3311 TypeSourceInfo *LhsTSInfo;
3312 QualType LhsT = GetTypeFromParser(LhsTy, &LhsTSInfo);
3313 if (!LhsTSInfo)
3314 LhsTSInfo = Context.getTrivialTypeSourceInfo(LhsT);
3315
3316 TypeSourceInfo *RhsTSInfo;
3317 QualType RhsT = GetTypeFromParser(RhsTy, &RhsTSInfo);
3318 if (!RhsTSInfo)
3319 RhsTSInfo = Context.getTrivialTypeSourceInfo(RhsT);
3320
3321 return BuildBinaryTypeTrait(BTT, KWLoc, LhsTSInfo, RhsTSInfo, RParen);
3322 }
3323
3324 /// \brief Determine whether T has a non-trivial Objective-C lifetime in
3325 /// ARC mode.
hasNontrivialObjCLifetime(QualType T)3326 static bool hasNontrivialObjCLifetime(QualType T) {
3327 switch (T.getObjCLifetime()) {
3328 case Qualifiers::OCL_ExplicitNone:
3329 return false;
3330
3331 case Qualifiers::OCL_Strong:
3332 case Qualifiers::OCL_Weak:
3333 case Qualifiers::OCL_Autoreleasing:
3334 return true;
3335
3336 case Qualifiers::OCL_None:
3337 return T->isObjCLifetimeType();
3338 }
3339
3340 llvm_unreachable("Unknown ObjC lifetime qualifier");
3341 }
3342
evaluateTypeTrait(Sema & S,TypeTrait Kind,SourceLocation KWLoc,ArrayRef<TypeSourceInfo * > Args,SourceLocation RParenLoc)3343 static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
3344 ArrayRef<TypeSourceInfo *> Args,
3345 SourceLocation RParenLoc) {
3346 switch (Kind) {
3347 case clang::TT_IsTriviallyConstructible: {
3348 // C++11 [meta.unary.prop]:
3349 // is_trivially_constructible is defined as:
3350 //
3351 // is_constructible<T, Args...>::value is true and the variable
3352 // definition for is_constructible, as defined below, is known to call no
3353 // operation that is not trivial.
3354 //
3355 // The predicate condition for a template specialization
3356 // is_constructible<T, Args...> shall be satisfied if and only if the
3357 // following variable definition would be well-formed for some invented
3358 // variable t:
3359 //
3360 // T t(create<Args>()...);
3361 if (Args.empty()) {
3362 S.Diag(KWLoc, diag::err_type_trait_arity)
3363 << 1 << 1 << 1 << (int)Args.size();
3364 return false;
3365 }
3366
3367 bool SawVoid = false;
3368 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3369 if (Args[I]->getType()->isVoidType()) {
3370 SawVoid = true;
3371 continue;
3372 }
3373
3374 if (!Args[I]->getType()->isIncompleteType() &&
3375 S.RequireCompleteType(KWLoc, Args[I]->getType(),
3376 diag::err_incomplete_type_used_in_type_trait_expr))
3377 return false;
3378 }
3379
3380 // If any argument was 'void', of course it won't type-check.
3381 if (SawVoid)
3382 return false;
3383
3384 llvm::SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs;
3385 llvm::SmallVector<Expr *, 2> ArgExprs;
3386 ArgExprs.reserve(Args.size() - 1);
3387 for (unsigned I = 1, N = Args.size(); I != N; ++I) {
3388 QualType T = Args[I]->getType();
3389 if (T->isObjectType() || T->isFunctionType())
3390 T = S.Context.getRValueReferenceType(T);
3391 OpaqueArgExprs.push_back(
3392 OpaqueValueExpr(Args[I]->getTypeLoc().getLocStart(),
3393 T.getNonLValueExprType(S.Context),
3394 Expr::getValueKindForType(T)));
3395 ArgExprs.push_back(&OpaqueArgExprs.back());
3396 }
3397
3398 // Perform the initialization in an unevaluated context within a SFINAE
3399 // trap at translation unit scope.
3400 EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
3401 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
3402 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
3403 InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
3404 InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
3405 RParenLoc));
3406 InitializationSequence Init(S, To, InitKind,
3407 ArgExprs.begin(), ArgExprs.size());
3408 if (Init.Failed())
3409 return false;
3410
3411 ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
3412 if (Result.isInvalid() || SFINAE.hasErrorOccurred())
3413 return false;
3414
3415 // Under Objective-C ARC, if the destination has non-trivial Objective-C
3416 // lifetime, this is a non-trivial construction.
3417 if (S.getLangOpts().ObjCAutoRefCount &&
3418 hasNontrivialObjCLifetime(Args[0]->getType().getNonReferenceType()))
3419 return false;
3420
3421 // The initialization succeeded; now make sure there are no non-trivial
3422 // calls.
3423 return !Result.get()->hasNonTrivialCall(S.Context);
3424 }
3425 }
3426
3427 return false;
3428 }
3429
BuildTypeTrait(TypeTrait Kind,SourceLocation KWLoc,ArrayRef<TypeSourceInfo * > Args,SourceLocation RParenLoc)3430 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
3431 ArrayRef<TypeSourceInfo *> Args,
3432 SourceLocation RParenLoc) {
3433 bool Dependent = false;
3434 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3435 if (Args[I]->getType()->isDependentType()) {
3436 Dependent = true;
3437 break;
3438 }
3439 }
3440
3441 bool Value = false;
3442 if (!Dependent)
3443 Value = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
3444
3445 return TypeTraitExpr::Create(Context, Context.BoolTy, KWLoc, Kind,
3446 Args, RParenLoc, Value);
3447 }
3448
ActOnTypeTrait(TypeTrait Kind,SourceLocation KWLoc,ArrayRef<ParsedType> Args,SourceLocation RParenLoc)3449 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
3450 ArrayRef<ParsedType> Args,
3451 SourceLocation RParenLoc) {
3452 llvm::SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
3453 ConvertedArgs.reserve(Args.size());
3454
3455 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3456 TypeSourceInfo *TInfo;
3457 QualType T = GetTypeFromParser(Args[I], &TInfo);
3458 if (!TInfo)
3459 TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
3460
3461 ConvertedArgs.push_back(TInfo);
3462 }
3463
3464 return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
3465 }
3466
EvaluateBinaryTypeTrait(Sema & Self,BinaryTypeTrait BTT,QualType LhsT,QualType RhsT,SourceLocation KeyLoc)3467 static bool EvaluateBinaryTypeTrait(Sema &Self, BinaryTypeTrait BTT,
3468 QualType LhsT, QualType RhsT,
3469 SourceLocation KeyLoc) {
3470 assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
3471 "Cannot evaluate traits of dependent types");
3472
3473 switch(BTT) {
3474 case BTT_IsBaseOf: {
3475 // C++0x [meta.rel]p2
3476 // Base is a base class of Derived without regard to cv-qualifiers or
3477 // Base and Derived are not unions and name the same class type without
3478 // regard to cv-qualifiers.
3479
3480 const RecordType *lhsRecord = LhsT->getAs<RecordType>();
3481 if (!lhsRecord) return false;
3482
3483 const RecordType *rhsRecord = RhsT->getAs<RecordType>();
3484 if (!rhsRecord) return false;
3485
3486 assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
3487 == (lhsRecord == rhsRecord));
3488
3489 if (lhsRecord == rhsRecord)
3490 return !lhsRecord->getDecl()->isUnion();
3491
3492 // C++0x [meta.rel]p2:
3493 // If Base and Derived are class types and are different types
3494 // (ignoring possible cv-qualifiers) then Derived shall be a
3495 // complete type.
3496 if (Self.RequireCompleteType(KeyLoc, RhsT,
3497 diag::err_incomplete_type_used_in_type_trait_expr))
3498 return false;
3499
3500 return cast<CXXRecordDecl>(rhsRecord->getDecl())
3501 ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
3502 }
3503 case BTT_IsSame:
3504 return Self.Context.hasSameType(LhsT, RhsT);
3505 case BTT_TypeCompatible:
3506 return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
3507 RhsT.getUnqualifiedType());
3508 case BTT_IsConvertible:
3509 case BTT_IsConvertibleTo: {
3510 // C++0x [meta.rel]p4:
3511 // Given the following function prototype:
3512 //
3513 // template <class T>
3514 // typename add_rvalue_reference<T>::type create();
3515 //
3516 // the predicate condition for a template specialization
3517 // is_convertible<From, To> shall be satisfied if and only if
3518 // the return expression in the following code would be
3519 // well-formed, including any implicit conversions to the return
3520 // type of the function:
3521 //
3522 // To test() {
3523 // return create<From>();
3524 // }
3525 //
3526 // Access checking is performed as if in a context unrelated to To and
3527 // From. Only the validity of the immediate context of the expression
3528 // of the return-statement (including conversions to the return type)
3529 // is considered.
3530 //
3531 // We model the initialization as a copy-initialization of a temporary
3532 // of the appropriate type, which for this expression is identical to the
3533 // return statement (since NRVO doesn't apply).
3534
3535 // Functions aren't allowed to return function or array types.
3536 if (RhsT->isFunctionType() || RhsT->isArrayType())
3537 return false;
3538
3539 // A return statement in a void function must have void type.
3540 if (RhsT->isVoidType())
3541 return LhsT->isVoidType();
3542
3543 // A function definition requires a complete, non-abstract return type.
3544 if (Self.RequireCompleteType(KeyLoc, RhsT, 0) ||
3545 Self.RequireNonAbstractType(KeyLoc, RhsT, 0))
3546 return false;
3547
3548 // Compute the result of add_rvalue_reference.
3549 if (LhsT->isObjectType() || LhsT->isFunctionType())
3550 LhsT = Self.Context.getRValueReferenceType(LhsT);
3551
3552 // Build a fake source and destination for initialization.
3553 InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
3554 OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
3555 Expr::getValueKindForType(LhsT));
3556 Expr *FromPtr = &From;
3557 InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
3558 SourceLocation()));
3559
3560 // Perform the initialization in an unevaluated context within a SFINAE
3561 // trap at translation unit scope.
3562 EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
3563 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
3564 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
3565 InitializationSequence Init(Self, To, Kind, &FromPtr, 1);
3566 if (Init.Failed())
3567 return false;
3568
3569 ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
3570 return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
3571 }
3572
3573 case BTT_IsTriviallyAssignable: {
3574 // C++11 [meta.unary.prop]p3:
3575 // is_trivially_assignable is defined as:
3576 // is_assignable<T, U>::value is true and the assignment, as defined by
3577 // is_assignable, is known to call no operation that is not trivial
3578 //
3579 // is_assignable is defined as:
3580 // The expression declval<T>() = declval<U>() is well-formed when
3581 // treated as an unevaluated operand (Clause 5).
3582 //
3583 // For both, T and U shall be complete types, (possibly cv-qualified)
3584 // void, or arrays of unknown bound.
3585 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
3586 Self.RequireCompleteType(KeyLoc, LhsT,
3587 diag::err_incomplete_type_used_in_type_trait_expr))
3588 return false;
3589 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
3590 Self.RequireCompleteType(KeyLoc, RhsT,
3591 diag::err_incomplete_type_used_in_type_trait_expr))
3592 return false;
3593
3594 // cv void is never assignable.
3595 if (LhsT->isVoidType() || RhsT->isVoidType())
3596 return false;
3597
3598 // Build expressions that emulate the effect of declval<T>() and
3599 // declval<U>().
3600 if (LhsT->isObjectType() || LhsT->isFunctionType())
3601 LhsT = Self.Context.getRValueReferenceType(LhsT);
3602 if (RhsT->isObjectType() || RhsT->isFunctionType())
3603 RhsT = Self.Context.getRValueReferenceType(RhsT);
3604 OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
3605 Expr::getValueKindForType(LhsT));
3606 OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
3607 Expr::getValueKindForType(RhsT));
3608
3609 // Attempt the assignment in an unevaluated context within a SFINAE
3610 // trap at translation unit scope.
3611 EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
3612 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
3613 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
3614 ExprResult Result = Self.BuildBinOp(/*S=*/0, KeyLoc, BO_Assign, &Lhs, &Rhs);
3615 if (Result.isInvalid() || SFINAE.hasErrorOccurred())
3616 return false;
3617
3618 // Under Objective-C ARC, if the destination has non-trivial Objective-C
3619 // lifetime, this is a non-trivial assignment.
3620 if (Self.getLangOpts().ObjCAutoRefCount &&
3621 hasNontrivialObjCLifetime(LhsT.getNonReferenceType()))
3622 return false;
3623
3624 return !Result.get()->hasNonTrivialCall(Self.Context);
3625 }
3626 }
3627 llvm_unreachable("Unknown type trait or not implemented");
3628 }
3629
BuildBinaryTypeTrait(BinaryTypeTrait BTT,SourceLocation KWLoc,TypeSourceInfo * LhsTSInfo,TypeSourceInfo * RhsTSInfo,SourceLocation RParen)3630 ExprResult Sema::BuildBinaryTypeTrait(BinaryTypeTrait BTT,
3631 SourceLocation KWLoc,
3632 TypeSourceInfo *LhsTSInfo,
3633 TypeSourceInfo *RhsTSInfo,
3634 SourceLocation RParen) {
3635 QualType LhsT = LhsTSInfo->getType();
3636 QualType RhsT = RhsTSInfo->getType();
3637
3638 if (BTT == BTT_TypeCompatible) {
3639 if (getLangOpts().CPlusPlus) {
3640 Diag(KWLoc, diag::err_types_compatible_p_in_cplusplus)
3641 << SourceRange(KWLoc, RParen);
3642 return ExprError();
3643 }
3644 }
3645
3646 bool Value = false;
3647 if (!LhsT->isDependentType() && !RhsT->isDependentType())
3648 Value = EvaluateBinaryTypeTrait(*this, BTT, LhsT, RhsT, KWLoc);
3649
3650 // Select trait result type.
3651 QualType ResultType;
3652 switch (BTT) {
3653 case BTT_IsBaseOf: ResultType = Context.BoolTy; break;
3654 case BTT_IsConvertible: ResultType = Context.BoolTy; break;
3655 case BTT_IsSame: ResultType = Context.BoolTy; break;
3656 case BTT_TypeCompatible: ResultType = Context.IntTy; break;
3657 case BTT_IsConvertibleTo: ResultType = Context.BoolTy; break;
3658 case BTT_IsTriviallyAssignable: ResultType = Context.BoolTy;
3659 }
3660
3661 return Owned(new (Context) BinaryTypeTraitExpr(KWLoc, BTT, LhsTSInfo,
3662 RhsTSInfo, Value, RParen,
3663 ResultType));
3664 }
3665
ActOnArrayTypeTrait(ArrayTypeTrait ATT,SourceLocation KWLoc,ParsedType Ty,Expr * DimExpr,SourceLocation RParen)3666 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
3667 SourceLocation KWLoc,
3668 ParsedType Ty,
3669 Expr* DimExpr,
3670 SourceLocation RParen) {
3671 TypeSourceInfo *TSInfo;
3672 QualType T = GetTypeFromParser(Ty, &TSInfo);
3673 if (!TSInfo)
3674 TSInfo = Context.getTrivialTypeSourceInfo(T);
3675
3676 return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
3677 }
3678
EvaluateArrayTypeTrait(Sema & Self,ArrayTypeTrait ATT,QualType T,Expr * DimExpr,SourceLocation KeyLoc)3679 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
3680 QualType T, Expr *DimExpr,
3681 SourceLocation KeyLoc) {
3682 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
3683
3684 switch(ATT) {
3685 case ATT_ArrayRank:
3686 if (T->isArrayType()) {
3687 unsigned Dim = 0;
3688 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3689 ++Dim;
3690 T = AT->getElementType();
3691 }
3692 return Dim;
3693 }
3694 return 0;
3695
3696 case ATT_ArrayExtent: {
3697 llvm::APSInt Value;
3698 uint64_t Dim;
3699 if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
3700 diag::err_dimension_expr_not_constant_integer,
3701 false).isInvalid())
3702 return 0;
3703 if (Value.isSigned() && Value.isNegative()) {
3704 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
3705 << DimExpr->getSourceRange();
3706 return 0;
3707 }
3708 Dim = Value.getLimitedValue();
3709
3710 if (T->isArrayType()) {
3711 unsigned D = 0;
3712 bool Matched = false;
3713 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3714 if (Dim == D) {
3715 Matched = true;
3716 break;
3717 }
3718 ++D;
3719 T = AT->getElementType();
3720 }
3721
3722 if (Matched && T->isArrayType()) {
3723 if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
3724 return CAT->getSize().getLimitedValue();
3725 }
3726 }
3727 return 0;
3728 }
3729 }
3730 llvm_unreachable("Unknown type trait or not implemented");
3731 }
3732
BuildArrayTypeTrait(ArrayTypeTrait ATT,SourceLocation KWLoc,TypeSourceInfo * TSInfo,Expr * DimExpr,SourceLocation RParen)3733 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
3734 SourceLocation KWLoc,
3735 TypeSourceInfo *TSInfo,
3736 Expr* DimExpr,
3737 SourceLocation RParen) {
3738 QualType T = TSInfo->getType();
3739
3740 // FIXME: This should likely be tracked as an APInt to remove any host
3741 // assumptions about the width of size_t on the target.
3742 uint64_t Value = 0;
3743 if (!T->isDependentType())
3744 Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
3745
3746 // While the specification for these traits from the Embarcadero C++
3747 // compiler's documentation says the return type is 'unsigned int', Clang
3748 // returns 'size_t'. On Windows, the primary platform for the Embarcadero
3749 // compiler, there is no difference. On several other platforms this is an
3750 // important distinction.
3751 return Owned(new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value,
3752 DimExpr, RParen,
3753 Context.getSizeType()));
3754 }
3755
ActOnExpressionTrait(ExpressionTrait ET,SourceLocation KWLoc,Expr * Queried,SourceLocation RParen)3756 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
3757 SourceLocation KWLoc,
3758 Expr *Queried,
3759 SourceLocation RParen) {
3760 // If error parsing the expression, ignore.
3761 if (!Queried)
3762 return ExprError();
3763
3764 ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
3765
3766 return Result;
3767 }
3768
EvaluateExpressionTrait(ExpressionTrait ET,Expr * E)3769 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
3770 switch (ET) {
3771 case ET_IsLValueExpr: return E->isLValue();
3772 case ET_IsRValueExpr: return E->isRValue();
3773 }
3774 llvm_unreachable("Expression trait not covered by switch");
3775 }
3776
BuildExpressionTrait(ExpressionTrait ET,SourceLocation KWLoc,Expr * Queried,SourceLocation RParen)3777 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
3778 SourceLocation KWLoc,
3779 Expr *Queried,
3780 SourceLocation RParen) {
3781 if (Queried->isTypeDependent()) {
3782 // Delay type-checking for type-dependent expressions.
3783 } else if (Queried->getType()->isPlaceholderType()) {
3784 ExprResult PE = CheckPlaceholderExpr(Queried);
3785 if (PE.isInvalid()) return ExprError();
3786 return BuildExpressionTrait(ET, KWLoc, PE.take(), RParen);
3787 }
3788
3789 bool Value = EvaluateExpressionTrait(ET, Queried);
3790
3791 return Owned(new (Context) ExpressionTraitExpr(KWLoc, ET, Queried, Value,
3792 RParen, Context.BoolTy));
3793 }
3794
CheckPointerToMemberOperands(ExprResult & LHS,ExprResult & RHS,ExprValueKind & VK,SourceLocation Loc,bool isIndirect)3795 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
3796 ExprValueKind &VK,
3797 SourceLocation Loc,
3798 bool isIndirect) {
3799 assert(!LHS.get()->getType()->isPlaceholderType() &&
3800 !RHS.get()->getType()->isPlaceholderType() &&
3801 "placeholders should have been weeded out by now");
3802
3803 // The LHS undergoes lvalue conversions if this is ->*.
3804 if (isIndirect) {
3805 LHS = DefaultLvalueConversion(LHS.take());
3806 if (LHS.isInvalid()) return QualType();
3807 }
3808
3809 // The RHS always undergoes lvalue conversions.
3810 RHS = DefaultLvalueConversion(RHS.take());
3811 if (RHS.isInvalid()) return QualType();
3812
3813 const char *OpSpelling = isIndirect ? "->*" : ".*";
3814 // C++ 5.5p2
3815 // The binary operator .* [p3: ->*] binds its second operand, which shall
3816 // be of type "pointer to member of T" (where T is a completely-defined
3817 // class type) [...]
3818 QualType RHSType = RHS.get()->getType();
3819 const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
3820 if (!MemPtr) {
3821 Diag(Loc, diag::err_bad_memptr_rhs)
3822 << OpSpelling << RHSType << RHS.get()->getSourceRange();
3823 return QualType();
3824 }
3825
3826 QualType Class(MemPtr->getClass(), 0);
3827
3828 // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
3829 // member pointer points must be completely-defined. However, there is no
3830 // reason for this semantic distinction, and the rule is not enforced by
3831 // other compilers. Therefore, we do not check this property, as it is
3832 // likely to be considered a defect.
3833
3834 // C++ 5.5p2
3835 // [...] to its first operand, which shall be of class T or of a class of
3836 // which T is an unambiguous and accessible base class. [p3: a pointer to
3837 // such a class]
3838 QualType LHSType = LHS.get()->getType();
3839 if (isIndirect) {
3840 if (const PointerType *Ptr = LHSType->getAs<PointerType>())
3841 LHSType = Ptr->getPointeeType();
3842 else {
3843 Diag(Loc, diag::err_bad_memptr_lhs)
3844 << OpSpelling << 1 << LHSType
3845 << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
3846 return QualType();
3847 }
3848 }
3849
3850 if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
3851 // If we want to check the hierarchy, we need a complete type.
3852 if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
3853 OpSpelling, (int)isIndirect)) {
3854 return QualType();
3855 }
3856 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3857 /*DetectVirtual=*/false);
3858 // FIXME: Would it be useful to print full ambiguity paths, or is that
3859 // overkill?
3860 if (!IsDerivedFrom(LHSType, Class, Paths) ||
3861 Paths.isAmbiguous(Context.getCanonicalType(Class))) {
3862 Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
3863 << (int)isIndirect << LHS.get()->getType();
3864 return QualType();
3865 }
3866 // Cast LHS to type of use.
3867 QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
3868 ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind();
3869
3870 CXXCastPath BasePath;
3871 BuildBasePathArray(Paths, BasePath);
3872 LHS = ImpCastExprToType(LHS.take(), UseType, CK_DerivedToBase, VK,
3873 &BasePath);
3874 }
3875
3876 if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
3877 // Diagnose use of pointer-to-member type which when used as
3878 // the functional cast in a pointer-to-member expression.
3879 Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
3880 return QualType();
3881 }
3882
3883 // C++ 5.5p2
3884 // The result is an object or a function of the type specified by the
3885 // second operand.
3886 // The cv qualifiers are the union of those in the pointer and the left side,
3887 // in accordance with 5.5p5 and 5.2.5.
3888 QualType Result = MemPtr->getPointeeType();
3889 Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
3890
3891 // C++0x [expr.mptr.oper]p6:
3892 // In a .* expression whose object expression is an rvalue, the program is
3893 // ill-formed if the second operand is a pointer to member function with
3894 // ref-qualifier &. In a ->* expression or in a .* expression whose object
3895 // expression is an lvalue, the program is ill-formed if the second operand
3896 // is a pointer to member function with ref-qualifier &&.
3897 if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
3898 switch (Proto->getRefQualifier()) {
3899 case RQ_None:
3900 // Do nothing
3901 break;
3902
3903 case RQ_LValue:
3904 if (!isIndirect && !LHS.get()->Classify(Context).isLValue())
3905 Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
3906 << RHSType << 1 << LHS.get()->getSourceRange();
3907 break;
3908
3909 case RQ_RValue:
3910 if (isIndirect || !LHS.get()->Classify(Context).isRValue())
3911 Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
3912 << RHSType << 0 << LHS.get()->getSourceRange();
3913 break;
3914 }
3915 }
3916
3917 // C++ [expr.mptr.oper]p6:
3918 // The result of a .* expression whose second operand is a pointer
3919 // to a data member is of the same value category as its
3920 // first operand. The result of a .* expression whose second
3921 // operand is a pointer to a member function is a prvalue. The
3922 // result of an ->* expression is an lvalue if its second operand
3923 // is a pointer to data member and a prvalue otherwise.
3924 if (Result->isFunctionType()) {
3925 VK = VK_RValue;
3926 return Context.BoundMemberTy;
3927 } else if (isIndirect) {
3928 VK = VK_LValue;
3929 } else {
3930 VK = LHS.get()->getValueKind();
3931 }
3932
3933 return Result;
3934 }
3935
3936 /// \brief Try to convert a type to another according to C++0x 5.16p3.
3937 ///
3938 /// This is part of the parameter validation for the ? operator. If either
3939 /// value operand is a class type, the two operands are attempted to be
3940 /// converted to each other. This function does the conversion in one direction.
3941 /// It returns true if the program is ill-formed and has already been diagnosed
3942 /// as such.
TryClassUnification(Sema & Self,Expr * From,Expr * To,SourceLocation QuestionLoc,bool & HaveConversion,QualType & ToType)3943 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
3944 SourceLocation QuestionLoc,
3945 bool &HaveConversion,
3946 QualType &ToType) {
3947 HaveConversion = false;
3948 ToType = To->getType();
3949
3950 InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
3951 SourceLocation());
3952 // C++0x 5.16p3
3953 // The process for determining whether an operand expression E1 of type T1
3954 // can be converted to match an operand expression E2 of type T2 is defined
3955 // as follows:
3956 // -- If E2 is an lvalue:
3957 bool ToIsLvalue = To->isLValue();
3958 if (ToIsLvalue) {
3959 // E1 can be converted to match E2 if E1 can be implicitly converted to
3960 // type "lvalue reference to T2", subject to the constraint that in the
3961 // conversion the reference must bind directly to E1.
3962 QualType T = Self.Context.getLValueReferenceType(ToType);
3963 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
3964
3965 InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
3966 if (InitSeq.isDirectReferenceBinding()) {
3967 ToType = T;
3968 HaveConversion = true;
3969 return false;
3970 }
3971
3972 if (InitSeq.isAmbiguous())
3973 return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
3974 }
3975
3976 // -- If E2 is an rvalue, or if the conversion above cannot be done:
3977 // -- if E1 and E2 have class type, and the underlying class types are
3978 // the same or one is a base class of the other:
3979 QualType FTy = From->getType();
3980 QualType TTy = To->getType();
3981 const RecordType *FRec = FTy->getAs<RecordType>();
3982 const RecordType *TRec = TTy->getAs<RecordType>();
3983 bool FDerivedFromT = FRec && TRec && FRec != TRec &&
3984 Self.IsDerivedFrom(FTy, TTy);
3985 if (FRec && TRec &&
3986 (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
3987 // E1 can be converted to match E2 if the class of T2 is the
3988 // same type as, or a base class of, the class of T1, and
3989 // [cv2 > cv1].
3990 if (FRec == TRec || FDerivedFromT) {
3991 if (TTy.isAtLeastAsQualifiedAs(FTy)) {
3992 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
3993 InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
3994 if (InitSeq) {
3995 HaveConversion = true;
3996 return false;
3997 }
3998
3999 if (InitSeq.isAmbiguous())
4000 return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
4001 }
4002 }
4003
4004 return false;
4005 }
4006
4007 // -- Otherwise: E1 can be converted to match E2 if E1 can be
4008 // implicitly converted to the type that expression E2 would have
4009 // if E2 were converted to an rvalue (or the type it has, if E2 is
4010 // an rvalue).
4011 //
4012 // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
4013 // to the array-to-pointer or function-to-pointer conversions.
4014 if (!TTy->getAs<TagType>())
4015 TTy = TTy.getUnqualifiedType();
4016
4017 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
4018 InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
4019 HaveConversion = !InitSeq.Failed();
4020 ToType = TTy;
4021 if (InitSeq.isAmbiguous())
4022 return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
4023
4024 return false;
4025 }
4026
4027 /// \brief Try to find a common type for two according to C++0x 5.16p5.
4028 ///
4029 /// This is part of the parameter validation for the ? operator. If either
4030 /// value operand is a class type, overload resolution is used to find a
4031 /// conversion to a common type.
FindConditionalOverload(Sema & Self,ExprResult & LHS,ExprResult & RHS,SourceLocation QuestionLoc)4032 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
4033 SourceLocation QuestionLoc) {
4034 Expr *Args[2] = { LHS.get(), RHS.get() };
4035 OverloadCandidateSet CandidateSet(QuestionLoc);
4036 Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 2,
4037 CandidateSet);
4038
4039 OverloadCandidateSet::iterator Best;
4040 switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
4041 case OR_Success: {
4042 // We found a match. Perform the conversions on the arguments and move on.
4043 ExprResult LHSRes =
4044 Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0],
4045 Best->Conversions[0], Sema::AA_Converting);
4046 if (LHSRes.isInvalid())
4047 break;
4048 LHS = LHSRes;
4049
4050 ExprResult RHSRes =
4051 Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1],
4052 Best->Conversions[1], Sema::AA_Converting);
4053 if (RHSRes.isInvalid())
4054 break;
4055 RHS = RHSRes;
4056 if (Best->Function)
4057 Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
4058 return false;
4059 }
4060
4061 case OR_No_Viable_Function:
4062
4063 // Emit a better diagnostic if one of the expressions is a null pointer
4064 // constant and the other is a pointer type. In this case, the user most
4065 // likely forgot to take the address of the other expression.
4066 if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4067 return true;
4068
4069 Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4070 << LHS.get()->getType() << RHS.get()->getType()
4071 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4072 return true;
4073
4074 case OR_Ambiguous:
4075 Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
4076 << LHS.get()->getType() << RHS.get()->getType()
4077 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4078 // FIXME: Print the possible common types by printing the return types of
4079 // the viable candidates.
4080 break;
4081
4082 case OR_Deleted:
4083 llvm_unreachable("Conditional operator has only built-in overloads");
4084 }
4085 return true;
4086 }
4087
4088 /// \brief Perform an "extended" implicit conversion as returned by
4089 /// TryClassUnification.
ConvertForConditional(Sema & Self,ExprResult & E,QualType T)4090 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
4091 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
4092 InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(),
4093 SourceLocation());
4094 Expr *Arg = E.take();
4095 InitializationSequence InitSeq(Self, Entity, Kind, &Arg, 1);
4096 ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
4097 if (Result.isInvalid())
4098 return true;
4099
4100 E = Result;
4101 return false;
4102 }
4103
4104 /// \brief Check the operands of ?: under C++ semantics.
4105 ///
4106 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
4107 /// extension. In this case, LHS == Cond. (But they're not aliases.)
CXXCheckConditionalOperands(ExprResult & Cond,ExprResult & LHS,ExprResult & RHS,ExprValueKind & VK,ExprObjectKind & OK,SourceLocation QuestionLoc)4108 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
4109 ExprResult &RHS, ExprValueKind &VK,
4110 ExprObjectKind &OK,
4111 SourceLocation QuestionLoc) {
4112 // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
4113 // interface pointers.
4114
4115 // C++11 [expr.cond]p1
4116 // The first expression is contextually converted to bool.
4117 if (!Cond.get()->isTypeDependent()) {
4118 ExprResult CondRes = CheckCXXBooleanCondition(Cond.take());
4119 if (CondRes.isInvalid())
4120 return QualType();
4121 Cond = CondRes;
4122 }
4123
4124 // Assume r-value.
4125 VK = VK_RValue;
4126 OK = OK_Ordinary;
4127
4128 // Either of the arguments dependent?
4129 if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
4130 return Context.DependentTy;
4131
4132 // C++11 [expr.cond]p2
4133 // If either the second or the third operand has type (cv) void, ...
4134 QualType LTy = LHS.get()->getType();
4135 QualType RTy = RHS.get()->getType();
4136 bool LVoid = LTy->isVoidType();
4137 bool RVoid = RTy->isVoidType();
4138 if (LVoid || RVoid) {
4139 // ... then the [l2r] conversions are performed on the second and third
4140 // operands ...
4141 LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
4142 RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
4143 if (LHS.isInvalid() || RHS.isInvalid())
4144 return QualType();
4145
4146 // Finish off the lvalue-to-rvalue conversion by copy-initializing a
4147 // temporary if necessary. DefaultFunctionArrayLvalueConversion doesn't
4148 // do this part for us.
4149 ExprResult &NonVoid = LVoid ? RHS : LHS;
4150 if (NonVoid.get()->getType()->isRecordType() &&
4151 NonVoid.get()->isGLValue()) {
4152 if (RequireNonAbstractType(QuestionLoc, NonVoid.get()->getType(),
4153 diag::err_allocation_of_abstract_type))
4154 return QualType();
4155 InitializedEntity Entity =
4156 InitializedEntity::InitializeTemporary(NonVoid.get()->getType());
4157 NonVoid = PerformCopyInitialization(Entity, SourceLocation(), NonVoid);
4158 if (NonVoid.isInvalid())
4159 return QualType();
4160 }
4161
4162 LTy = LHS.get()->getType();
4163 RTy = RHS.get()->getType();
4164
4165 // ... and one of the following shall hold:
4166 // -- The second or the third operand (but not both) is a throw-
4167 // expression; the result is of the type of the other and is a prvalue.
4168 bool LThrow = isa<CXXThrowExpr>(LHS.get());
4169 bool RThrow = isa<CXXThrowExpr>(RHS.get());
4170 if (LThrow && !RThrow)
4171 return RTy;
4172 if (RThrow && !LThrow)
4173 return LTy;
4174
4175 // -- Both the second and third operands have type void; the result is of
4176 // type void and is a prvalue.
4177 if (LVoid && RVoid)
4178 return Context.VoidTy;
4179
4180 // Neither holds, error.
4181 Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
4182 << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
4183 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4184 return QualType();
4185 }
4186
4187 // Neither is void.
4188
4189 // C++11 [expr.cond]p3
4190 // Otherwise, if the second and third operand have different types, and
4191 // either has (cv) class type [...] an attempt is made to convert each of
4192 // those operands to the type of the other.
4193 if (!Context.hasSameType(LTy, RTy) &&
4194 (LTy->isRecordType() || RTy->isRecordType())) {
4195 ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
4196 // These return true if a single direction is already ambiguous.
4197 QualType L2RType, R2LType;
4198 bool HaveL2R, HaveR2L;
4199 if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
4200 return QualType();
4201 if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
4202 return QualType();
4203
4204 // If both can be converted, [...] the program is ill-formed.
4205 if (HaveL2R && HaveR2L) {
4206 Diag(QuestionLoc, diag::err_conditional_ambiguous)
4207 << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4208 return QualType();
4209 }
4210
4211 // If exactly one conversion is possible, that conversion is applied to
4212 // the chosen operand and the converted operands are used in place of the
4213 // original operands for the remainder of this section.
4214 if (HaveL2R) {
4215 if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
4216 return QualType();
4217 LTy = LHS.get()->getType();
4218 } else if (HaveR2L) {
4219 if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
4220 return QualType();
4221 RTy = RHS.get()->getType();
4222 }
4223 }
4224
4225 // C++11 [expr.cond]p3
4226 // if both are glvalues of the same value category and the same type except
4227 // for cv-qualification, an attempt is made to convert each of those
4228 // operands to the type of the other.
4229 ExprValueKind LVK = LHS.get()->getValueKind();
4230 ExprValueKind RVK = RHS.get()->getValueKind();
4231 if (!Context.hasSameType(LTy, RTy) &&
4232 Context.hasSameUnqualifiedType(LTy, RTy) &&
4233 LVK == RVK && LVK != VK_RValue) {
4234 // Since the unqualified types are reference-related and we require the
4235 // result to be as if a reference bound directly, the only conversion
4236 // we can perform is to add cv-qualifiers.
4237 Qualifiers LCVR = Qualifiers::fromCVRMask(LTy.getCVRQualifiers());
4238 Qualifiers RCVR = Qualifiers::fromCVRMask(RTy.getCVRQualifiers());
4239 if (RCVR.isStrictSupersetOf(LCVR)) {
4240 LHS = ImpCastExprToType(LHS.take(), RTy, CK_NoOp, LVK);
4241 LTy = LHS.get()->getType();
4242 }
4243 else if (LCVR.isStrictSupersetOf(RCVR)) {
4244 RHS = ImpCastExprToType(RHS.take(), LTy, CK_NoOp, RVK);
4245 RTy = RHS.get()->getType();
4246 }
4247 }
4248
4249 // C++11 [expr.cond]p4
4250 // If the second and third operands are glvalues of the same value
4251 // category and have the same type, the result is of that type and
4252 // value category and it is a bit-field if the second or the third
4253 // operand is a bit-field, or if both are bit-fields.
4254 // We only extend this to bitfields, not to the crazy other kinds of
4255 // l-values.
4256 bool Same = Context.hasSameType(LTy, RTy);
4257 if (Same && LVK == RVK && LVK != VK_RValue &&
4258 LHS.get()->isOrdinaryOrBitFieldObject() &&
4259 RHS.get()->isOrdinaryOrBitFieldObject()) {
4260 VK = LHS.get()->getValueKind();
4261 if (LHS.get()->getObjectKind() == OK_BitField ||
4262 RHS.get()->getObjectKind() == OK_BitField)
4263 OK = OK_BitField;
4264 return LTy;
4265 }
4266
4267 // C++11 [expr.cond]p5
4268 // Otherwise, the result is a prvalue. If the second and third operands
4269 // do not have the same type, and either has (cv) class type, ...
4270 if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
4271 // ... overload resolution is used to determine the conversions (if any)
4272 // to be applied to the operands. If the overload resolution fails, the
4273 // program is ill-formed.
4274 if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
4275 return QualType();
4276 }
4277
4278 // C++11 [expr.cond]p6
4279 // Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
4280 // conversions are performed on the second and third operands.
4281 LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
4282 RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
4283 if (LHS.isInvalid() || RHS.isInvalid())
4284 return QualType();
4285 LTy = LHS.get()->getType();
4286 RTy = RHS.get()->getType();
4287
4288 // After those conversions, one of the following shall hold:
4289 // -- The second and third operands have the same type; the result
4290 // is of that type. If the operands have class type, the result
4291 // is a prvalue temporary of the result type, which is
4292 // copy-initialized from either the second operand or the third
4293 // operand depending on the value of the first operand.
4294 if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
4295 if (LTy->isRecordType()) {
4296 // The operands have class type. Make a temporary copy.
4297 if (RequireNonAbstractType(QuestionLoc, LTy,
4298 diag::err_allocation_of_abstract_type))
4299 return QualType();
4300 InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
4301
4302 ExprResult LHSCopy = PerformCopyInitialization(Entity,
4303 SourceLocation(),
4304 LHS);
4305 if (LHSCopy.isInvalid())
4306 return QualType();
4307
4308 ExprResult RHSCopy = PerformCopyInitialization(Entity,
4309 SourceLocation(),
4310 RHS);
4311 if (RHSCopy.isInvalid())
4312 return QualType();
4313
4314 LHS = LHSCopy;
4315 RHS = RHSCopy;
4316 }
4317
4318 return LTy;
4319 }
4320
4321 // Extension: conditional operator involving vector types.
4322 if (LTy->isVectorType() || RTy->isVectorType())
4323 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
4324
4325 // -- The second and third operands have arithmetic or enumeration type;
4326 // the usual arithmetic conversions are performed to bring them to a
4327 // common type, and the result is of that type.
4328 if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
4329 UsualArithmeticConversions(LHS, RHS);
4330 if (LHS.isInvalid() || RHS.isInvalid())
4331 return QualType();
4332 return LHS.get()->getType();
4333 }
4334
4335 // -- The second and third operands have pointer type, or one has pointer
4336 // type and the other is a null pointer constant, or both are null
4337 // pointer constants, at least one of which is non-integral; pointer
4338 // conversions and qualification conversions are performed to bring them
4339 // to their composite pointer type. The result is of the composite
4340 // pointer type.
4341 // -- The second and third operands have pointer to member type, or one has
4342 // pointer to member type and the other is a null pointer constant;
4343 // pointer to member conversions and qualification conversions are
4344 // performed to bring them to a common type, whose cv-qualification
4345 // shall match the cv-qualification of either the second or the third
4346 // operand. The result is of the common type.
4347 bool NonStandardCompositeType = false;
4348 QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
4349 isSFINAEContext()? 0 : &NonStandardCompositeType);
4350 if (!Composite.isNull()) {
4351 if (NonStandardCompositeType)
4352 Diag(QuestionLoc,
4353 diag::ext_typecheck_cond_incompatible_operands_nonstandard)
4354 << LTy << RTy << Composite
4355 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4356
4357 return Composite;
4358 }
4359
4360 // Similarly, attempt to find composite type of two objective-c pointers.
4361 Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
4362 if (!Composite.isNull())
4363 return Composite;
4364
4365 // Check if we are using a null with a non-pointer type.
4366 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4367 return QualType();
4368
4369 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4370 << LHS.get()->getType() << RHS.get()->getType()
4371 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4372 return QualType();
4373 }
4374
4375 /// \brief Find a merged pointer type and convert the two expressions to it.
4376 ///
4377 /// This finds the composite pointer type (or member pointer type) for @p E1
4378 /// and @p E2 according to C++11 5.9p2. It converts both expressions to this
4379 /// type and returns it.
4380 /// It does not emit diagnostics.
4381 ///
4382 /// \param Loc The location of the operator requiring these two expressions to
4383 /// be converted to the composite pointer type.
4384 ///
4385 /// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
4386 /// a non-standard (but still sane) composite type to which both expressions
4387 /// can be converted. When such a type is chosen, \c *NonStandardCompositeType
4388 /// will be set true.
FindCompositePointerType(SourceLocation Loc,Expr * & E1,Expr * & E2,bool * NonStandardCompositeType)4389 QualType Sema::FindCompositePointerType(SourceLocation Loc,
4390 Expr *&E1, Expr *&E2,
4391 bool *NonStandardCompositeType) {
4392 if (NonStandardCompositeType)
4393 *NonStandardCompositeType = false;
4394
4395 assert(getLangOpts().CPlusPlus && "This function assumes C++");
4396 QualType T1 = E1->getType(), T2 = E2->getType();
4397
4398 // C++11 5.9p2
4399 // Pointer conversions and qualification conversions are performed on
4400 // pointer operands to bring them to their composite pointer type. If
4401 // one operand is a null pointer constant, the composite pointer type is
4402 // std::nullptr_t if the other operand is also a null pointer constant or,
4403 // if the other operand is a pointer, the type of the other operand.
4404 if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
4405 !T2->isAnyPointerType() && !T2->isMemberPointerType()) {
4406 if (T1->isNullPtrType() &&
4407 E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4408 E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
4409 return T1;
4410 }
4411 if (T2->isNullPtrType() &&
4412 E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4413 E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
4414 return T2;
4415 }
4416 return QualType();
4417 }
4418
4419 if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4420 if (T2->isMemberPointerType())
4421 E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).take();
4422 else
4423 E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
4424 return T2;
4425 }
4426 if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4427 if (T1->isMemberPointerType())
4428 E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).take();
4429 else
4430 E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
4431 return T1;
4432 }
4433
4434 // Now both have to be pointers or member pointers.
4435 if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
4436 (!T2->isPointerType() && !T2->isMemberPointerType()))
4437 return QualType();
4438
4439 // Otherwise, of one of the operands has type "pointer to cv1 void," then
4440 // the other has type "pointer to cv2 T" and the composite pointer type is
4441 // "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
4442 // Otherwise, the composite pointer type is a pointer type similar to the
4443 // type of one of the operands, with a cv-qualification signature that is
4444 // the union of the cv-qualification signatures of the operand types.
4445 // In practice, the first part here is redundant; it's subsumed by the second.
4446 // What we do here is, we build the two possible composite types, and try the
4447 // conversions in both directions. If only one works, or if the two composite
4448 // types are the same, we have succeeded.
4449 // FIXME: extended qualifiers?
4450 typedef SmallVector<unsigned, 4> QualifierVector;
4451 QualifierVector QualifierUnion;
4452 typedef SmallVector<std::pair<const Type *, const Type *>, 4>
4453 ContainingClassVector;
4454 ContainingClassVector MemberOfClass;
4455 QualType Composite1 = Context.getCanonicalType(T1),
4456 Composite2 = Context.getCanonicalType(T2);
4457 unsigned NeedConstBefore = 0;
4458 do {
4459 const PointerType *Ptr1, *Ptr2;
4460 if ((Ptr1 = Composite1->getAs<PointerType>()) &&
4461 (Ptr2 = Composite2->getAs<PointerType>())) {
4462 Composite1 = Ptr1->getPointeeType();
4463 Composite2 = Ptr2->getPointeeType();
4464
4465 // If we're allowed to create a non-standard composite type, keep track
4466 // of where we need to fill in additional 'const' qualifiers.
4467 if (NonStandardCompositeType &&
4468 Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
4469 NeedConstBefore = QualifierUnion.size();
4470
4471 QualifierUnion.push_back(
4472 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
4473 MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
4474 continue;
4475 }
4476
4477 const MemberPointerType *MemPtr1, *MemPtr2;
4478 if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
4479 (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
4480 Composite1 = MemPtr1->getPointeeType();
4481 Composite2 = MemPtr2->getPointeeType();
4482
4483 // If we're allowed to create a non-standard composite type, keep track
4484 // of where we need to fill in additional 'const' qualifiers.
4485 if (NonStandardCompositeType &&
4486 Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
4487 NeedConstBefore = QualifierUnion.size();
4488
4489 QualifierUnion.push_back(
4490 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
4491 MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
4492 MemPtr2->getClass()));
4493 continue;
4494 }
4495
4496 // FIXME: block pointer types?
4497
4498 // Cannot unwrap any more types.
4499 break;
4500 } while (true);
4501
4502 if (NeedConstBefore && NonStandardCompositeType) {
4503 // Extension: Add 'const' to qualifiers that come before the first qualifier
4504 // mismatch, so that our (non-standard!) composite type meets the
4505 // requirements of C++ [conv.qual]p4 bullet 3.
4506 for (unsigned I = 0; I != NeedConstBefore; ++I) {
4507 if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
4508 QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
4509 *NonStandardCompositeType = true;
4510 }
4511 }
4512 }
4513
4514 // Rewrap the composites as pointers or member pointers with the union CVRs.
4515 ContainingClassVector::reverse_iterator MOC
4516 = MemberOfClass.rbegin();
4517 for (QualifierVector::reverse_iterator
4518 I = QualifierUnion.rbegin(),
4519 E = QualifierUnion.rend();
4520 I != E; (void)++I, ++MOC) {
4521 Qualifiers Quals = Qualifiers::fromCVRMask(*I);
4522 if (MOC->first && MOC->second) {
4523 // Rebuild member pointer type
4524 Composite1 = Context.getMemberPointerType(
4525 Context.getQualifiedType(Composite1, Quals),
4526 MOC->first);
4527 Composite2 = Context.getMemberPointerType(
4528 Context.getQualifiedType(Composite2, Quals),
4529 MOC->second);
4530 } else {
4531 // Rebuild pointer type
4532 Composite1
4533 = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
4534 Composite2
4535 = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
4536 }
4537 }
4538
4539 // Try to convert to the first composite pointer type.
4540 InitializedEntity Entity1
4541 = InitializedEntity::InitializeTemporary(Composite1);
4542 InitializationKind Kind
4543 = InitializationKind::CreateCopy(Loc, SourceLocation());
4544 InitializationSequence E1ToC1(*this, Entity1, Kind, &E1, 1);
4545 InitializationSequence E2ToC1(*this, Entity1, Kind, &E2, 1);
4546
4547 if (E1ToC1 && E2ToC1) {
4548 // Conversion to Composite1 is viable.
4549 if (!Context.hasSameType(Composite1, Composite2)) {
4550 // Composite2 is a different type from Composite1. Check whether
4551 // Composite2 is also viable.
4552 InitializedEntity Entity2
4553 = InitializedEntity::InitializeTemporary(Composite2);
4554 InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
4555 InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
4556 if (E1ToC2 && E2ToC2) {
4557 // Both Composite1 and Composite2 are viable and are different;
4558 // this is an ambiguity.
4559 return QualType();
4560 }
4561 }
4562
4563 // Convert E1 to Composite1
4564 ExprResult E1Result
4565 = E1ToC1.Perform(*this, Entity1, Kind, E1);
4566 if (E1Result.isInvalid())
4567 return QualType();
4568 E1 = E1Result.takeAs<Expr>();
4569
4570 // Convert E2 to Composite1
4571 ExprResult E2Result
4572 = E2ToC1.Perform(*this, Entity1, Kind, E2);
4573 if (E2Result.isInvalid())
4574 return QualType();
4575 E2 = E2Result.takeAs<Expr>();
4576
4577 return Composite1;
4578 }
4579
4580 // Check whether Composite2 is viable.
4581 InitializedEntity Entity2
4582 = InitializedEntity::InitializeTemporary(Composite2);
4583 InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
4584 InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
4585 if (!E1ToC2 || !E2ToC2)
4586 return QualType();
4587
4588 // Convert E1 to Composite2
4589 ExprResult E1Result
4590 = E1ToC2.Perform(*this, Entity2, Kind, E1);
4591 if (E1Result.isInvalid())
4592 return QualType();
4593 E1 = E1Result.takeAs<Expr>();
4594
4595 // Convert E2 to Composite2
4596 ExprResult E2Result
4597 = E2ToC2.Perform(*this, Entity2, Kind, E2);
4598 if (E2Result.isInvalid())
4599 return QualType();
4600 E2 = E2Result.takeAs<Expr>();
4601
4602 return Composite2;
4603 }
4604
MaybeBindToTemporary(Expr * E)4605 ExprResult Sema::MaybeBindToTemporary(Expr *E) {
4606 if (!E)
4607 return ExprError();
4608
4609 assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
4610
4611 // If the result is a glvalue, we shouldn't bind it.
4612 if (!E->isRValue())
4613 return Owned(E);
4614
4615 // In ARC, calls that return a retainable type can return retained,
4616 // in which case we have to insert a consuming cast.
4617 if (getLangOpts().ObjCAutoRefCount &&
4618 E->getType()->isObjCRetainableType()) {
4619
4620 bool ReturnsRetained;
4621
4622 // For actual calls, we compute this by examining the type of the
4623 // called value.
4624 if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
4625 Expr *Callee = Call->getCallee()->IgnoreParens();
4626 QualType T = Callee->getType();
4627
4628 if (T == Context.BoundMemberTy) {
4629 // Handle pointer-to-members.
4630 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
4631 T = BinOp->getRHS()->getType();
4632 else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
4633 T = Mem->getMemberDecl()->getType();
4634 }
4635
4636 if (const PointerType *Ptr = T->getAs<PointerType>())
4637 T = Ptr->getPointeeType();
4638 else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
4639 T = Ptr->getPointeeType();
4640 else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
4641 T = MemPtr->getPointeeType();
4642
4643 const FunctionType *FTy = T->getAs<FunctionType>();
4644 assert(FTy && "call to value not of function type?");
4645 ReturnsRetained = FTy->getExtInfo().getProducesResult();
4646
4647 // ActOnStmtExpr arranges things so that StmtExprs of retainable
4648 // type always produce a +1 object.
4649 } else if (isa<StmtExpr>(E)) {
4650 ReturnsRetained = true;
4651
4652 // We hit this case with the lambda conversion-to-block optimization;
4653 // we don't want any extra casts here.
4654 } else if (isa<CastExpr>(E) &&
4655 isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
4656 return Owned(E);
4657
4658 // For message sends and property references, we try to find an
4659 // actual method. FIXME: we should infer retention by selector in
4660 // cases where we don't have an actual method.
4661 } else {
4662 ObjCMethodDecl *D = 0;
4663 if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
4664 D = Send->getMethodDecl();
4665 } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
4666 D = BoxedExpr->getBoxingMethod();
4667 } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
4668 D = ArrayLit->getArrayWithObjectsMethod();
4669 } else if (ObjCDictionaryLiteral *DictLit
4670 = dyn_cast<ObjCDictionaryLiteral>(E)) {
4671 D = DictLit->getDictWithObjectsMethod();
4672 }
4673
4674 ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
4675
4676 // Don't do reclaims on performSelector calls; despite their
4677 // return type, the invoked method doesn't necessarily actually
4678 // return an object.
4679 if (!ReturnsRetained &&
4680 D && D->getMethodFamily() == OMF_performSelector)
4681 return Owned(E);
4682 }
4683
4684 // Don't reclaim an object of Class type.
4685 if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
4686 return Owned(E);
4687
4688 ExprNeedsCleanups = true;
4689
4690 CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
4691 : CK_ARCReclaimReturnedObject);
4692 return Owned(ImplicitCastExpr::Create(Context, E->getType(), ck, E, 0,
4693 VK_RValue));
4694 }
4695
4696 if (!getLangOpts().CPlusPlus)
4697 return Owned(E);
4698
4699 // Search for the base element type (cf. ASTContext::getBaseElementType) with
4700 // a fast path for the common case that the type is directly a RecordType.
4701 const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
4702 const RecordType *RT = 0;
4703 while (!RT) {
4704 switch (T->getTypeClass()) {
4705 case Type::Record:
4706 RT = cast<RecordType>(T);
4707 break;
4708 case Type::ConstantArray:
4709 case Type::IncompleteArray:
4710 case Type::VariableArray:
4711 case Type::DependentSizedArray:
4712 T = cast<ArrayType>(T)->getElementType().getTypePtr();
4713 break;
4714 default:
4715 return Owned(E);
4716 }
4717 }
4718
4719 // That should be enough to guarantee that this type is complete, if we're
4720 // not processing a decltype expression.
4721 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4722 if (RD->isInvalidDecl() || RD->isDependentContext())
4723 return Owned(E);
4724
4725 bool IsDecltype = ExprEvalContexts.back().IsDecltype;
4726 CXXDestructorDecl *Destructor = IsDecltype ? 0 : LookupDestructor(RD);
4727
4728 if (Destructor) {
4729 MarkFunctionReferenced(E->getExprLoc(), Destructor);
4730 CheckDestructorAccess(E->getExprLoc(), Destructor,
4731 PDiag(diag::err_access_dtor_temp)
4732 << E->getType());
4733 DiagnoseUseOfDecl(Destructor, E->getExprLoc());
4734
4735 // If destructor is trivial, we can avoid the extra copy.
4736 if (Destructor->isTrivial())
4737 return Owned(E);
4738
4739 // We need a cleanup, but we don't need to remember the temporary.
4740 ExprNeedsCleanups = true;
4741 }
4742
4743 CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
4744 CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
4745
4746 if (IsDecltype)
4747 ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
4748
4749 return Owned(Bind);
4750 }
4751
4752 ExprResult
MaybeCreateExprWithCleanups(ExprResult SubExpr)4753 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
4754 if (SubExpr.isInvalid())
4755 return ExprError();
4756
4757 return Owned(MaybeCreateExprWithCleanups(SubExpr.take()));
4758 }
4759
MaybeCreateExprWithCleanups(Expr * SubExpr)4760 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
4761 assert(SubExpr && "sub expression can't be null!");
4762
4763 CleanupVarDeclMarking();
4764
4765 unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
4766 assert(ExprCleanupObjects.size() >= FirstCleanup);
4767 assert(ExprNeedsCleanups || ExprCleanupObjects.size() == FirstCleanup);
4768 if (!ExprNeedsCleanups)
4769 return SubExpr;
4770
4771 ArrayRef<ExprWithCleanups::CleanupObject> Cleanups
4772 = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
4773 ExprCleanupObjects.size() - FirstCleanup);
4774
4775 Expr *E = ExprWithCleanups::Create(Context, SubExpr, Cleanups);
4776 DiscardCleanupsInEvaluationContext();
4777
4778 return E;
4779 }
4780
MaybeCreateStmtWithCleanups(Stmt * SubStmt)4781 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
4782 assert(SubStmt && "sub statement can't be null!");
4783
4784 CleanupVarDeclMarking();
4785
4786 if (!ExprNeedsCleanups)
4787 return SubStmt;
4788
4789 // FIXME: In order to attach the temporaries, wrap the statement into
4790 // a StmtExpr; currently this is only used for asm statements.
4791 // This is hacky, either create a new CXXStmtWithTemporaries statement or
4792 // a new AsmStmtWithTemporaries.
4793 CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, &SubStmt, 1,
4794 SourceLocation(),
4795 SourceLocation());
4796 Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
4797 SourceLocation());
4798 return MaybeCreateExprWithCleanups(E);
4799 }
4800
4801 /// Process the expression contained within a decltype. For such expressions,
4802 /// certain semantic checks on temporaries are delayed until this point, and
4803 /// are omitted for the 'topmost' call in the decltype expression. If the
4804 /// topmost call bound a temporary, strip that temporary off the expression.
ActOnDecltypeExpression(Expr * E)4805 ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
4806 ExpressionEvaluationContextRecord &Rec = ExprEvalContexts.back();
4807 assert(Rec.IsDecltype && "not in a decltype expression");
4808
4809 // C++11 [expr.call]p11:
4810 // If a function call is a prvalue of object type,
4811 // -- if the function call is either
4812 // -- the operand of a decltype-specifier, or
4813 // -- the right operand of a comma operator that is the operand of a
4814 // decltype-specifier,
4815 // a temporary object is not introduced for the prvalue.
4816
4817 // Recursively rebuild ParenExprs and comma expressions to strip out the
4818 // outermost CXXBindTemporaryExpr, if any.
4819 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
4820 ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
4821 if (SubExpr.isInvalid())
4822 return ExprError();
4823 if (SubExpr.get() == PE->getSubExpr())
4824 return Owned(E);
4825 return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.take());
4826 }
4827 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4828 if (BO->getOpcode() == BO_Comma) {
4829 ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
4830 if (RHS.isInvalid())
4831 return ExprError();
4832 if (RHS.get() == BO->getRHS())
4833 return Owned(E);
4834 return Owned(new (Context) BinaryOperator(BO->getLHS(), RHS.take(),
4835 BO_Comma, BO->getType(),
4836 BO->getValueKind(),
4837 BO->getObjectKind(),
4838 BO->getOperatorLoc()));
4839 }
4840 }
4841
4842 CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
4843 if (TopBind)
4844 E = TopBind->getSubExpr();
4845
4846 // Disable the special decltype handling now.
4847 Rec.IsDecltype = false;
4848
4849 // In MS mode, don't perform any extra checking of call return types within a
4850 // decltype expression.
4851 if (getLangOpts().MicrosoftMode)
4852 return Owned(E);
4853
4854 // Perform the semantic checks we delayed until this point.
4855 CallExpr *TopCall = dyn_cast<CallExpr>(E);
4856 for (unsigned I = 0, N = Rec.DelayedDecltypeCalls.size(); I != N; ++I) {
4857 CallExpr *Call = Rec.DelayedDecltypeCalls[I];
4858 if (Call == TopCall)
4859 continue;
4860
4861 if (CheckCallReturnType(Call->getCallReturnType(),
4862 Call->getLocStart(),
4863 Call, Call->getDirectCallee()))
4864 return ExprError();
4865 }
4866
4867 // Now all relevant types are complete, check the destructors are accessible
4868 // and non-deleted, and annotate them on the temporaries.
4869 for (unsigned I = 0, N = Rec.DelayedDecltypeBinds.size(); I != N; ++I) {
4870 CXXBindTemporaryExpr *Bind = Rec.DelayedDecltypeBinds[I];
4871 if (Bind == TopBind)
4872 continue;
4873
4874 CXXTemporary *Temp = Bind->getTemporary();
4875
4876 CXXRecordDecl *RD =
4877 Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
4878 CXXDestructorDecl *Destructor = LookupDestructor(RD);
4879 Temp->setDestructor(Destructor);
4880
4881 MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
4882 CheckDestructorAccess(Bind->getExprLoc(), Destructor,
4883 PDiag(diag::err_access_dtor_temp)
4884 << Bind->getType());
4885 DiagnoseUseOfDecl(Destructor, Bind->getExprLoc());
4886
4887 // We need a cleanup, but we don't need to remember the temporary.
4888 ExprNeedsCleanups = true;
4889 }
4890
4891 // Possibly strip off the top CXXBindTemporaryExpr.
4892 return Owned(E);
4893 }
4894
4895 ExprResult
ActOnStartCXXMemberReference(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,ParsedType & ObjectType,bool & MayBePseudoDestructor)4896 Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
4897 tok::TokenKind OpKind, ParsedType &ObjectType,
4898 bool &MayBePseudoDestructor) {
4899 // Since this might be a postfix expression, get rid of ParenListExprs.
4900 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
4901 if (Result.isInvalid()) return ExprError();
4902 Base = Result.get();
4903
4904 Result = CheckPlaceholderExpr(Base);
4905 if (Result.isInvalid()) return ExprError();
4906 Base = Result.take();
4907
4908 QualType BaseType = Base->getType();
4909 MayBePseudoDestructor = false;
4910 if (BaseType->isDependentType()) {
4911 // If we have a pointer to a dependent type and are using the -> operator,
4912 // the object type is the type that the pointer points to. We might still
4913 // have enough information about that type to do something useful.
4914 if (OpKind == tok::arrow)
4915 if (const PointerType *Ptr = BaseType->getAs<PointerType>())
4916 BaseType = Ptr->getPointeeType();
4917
4918 ObjectType = ParsedType::make(BaseType);
4919 MayBePseudoDestructor = true;
4920 return Owned(Base);
4921 }
4922
4923 // C++ [over.match.oper]p8:
4924 // [...] When operator->returns, the operator-> is applied to the value
4925 // returned, with the original second operand.
4926 if (OpKind == tok::arrow) {
4927 // The set of types we've considered so far.
4928 llvm::SmallPtrSet<CanQualType,8> CTypes;
4929 SmallVector<SourceLocation, 8> Locations;
4930 CTypes.insert(Context.getCanonicalType(BaseType));
4931
4932 while (BaseType->isRecordType()) {
4933 Result = BuildOverloadedArrowExpr(S, Base, OpLoc);
4934 if (Result.isInvalid())
4935 return ExprError();
4936 Base = Result.get();
4937 if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
4938 Locations.push_back(OpCall->getDirectCallee()->getLocation());
4939 BaseType = Base->getType();
4940 CanQualType CBaseType = Context.getCanonicalType(BaseType);
4941 if (!CTypes.insert(CBaseType)) {
4942 Diag(OpLoc, diag::err_operator_arrow_circular);
4943 for (unsigned i = 0; i < Locations.size(); i++)
4944 Diag(Locations[i], diag::note_declared_at);
4945 return ExprError();
4946 }
4947 }
4948
4949 if (BaseType->isPointerType() || BaseType->isObjCObjectPointerType())
4950 BaseType = BaseType->getPointeeType();
4951 }
4952
4953 // Objective-C properties allow "." access on Objective-C pointer types,
4954 // so adjust the base type to the object type itself.
4955 if (BaseType->isObjCObjectPointerType())
4956 BaseType = BaseType->getPointeeType();
4957
4958 // C++ [basic.lookup.classref]p2:
4959 // [...] If the type of the object expression is of pointer to scalar
4960 // type, the unqualified-id is looked up in the context of the complete
4961 // postfix-expression.
4962 //
4963 // This also indicates that we could be parsing a pseudo-destructor-name.
4964 // Note that Objective-C class and object types can be pseudo-destructor
4965 // expressions or normal member (ivar or property) access expressions.
4966 if (BaseType->isObjCObjectOrInterfaceType()) {
4967 MayBePseudoDestructor = true;
4968 } else if (!BaseType->isRecordType()) {
4969 ObjectType = ParsedType();
4970 MayBePseudoDestructor = true;
4971 return Owned(Base);
4972 }
4973
4974 // The object type must be complete (or dependent), or
4975 // C++11 [expr.prim.general]p3:
4976 // Unlike the object expression in other contexts, *this is not required to
4977 // be of complete type for purposes of class member access (5.2.5) outside
4978 // the member function body.
4979 if (!BaseType->isDependentType() &&
4980 !isThisOutsideMemberFunctionBody(BaseType) &&
4981 RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access))
4982 return ExprError();
4983
4984 // C++ [basic.lookup.classref]p2:
4985 // If the id-expression in a class member access (5.2.5) is an
4986 // unqualified-id, and the type of the object expression is of a class
4987 // type C (or of pointer to a class type C), the unqualified-id is looked
4988 // up in the scope of class C. [...]
4989 ObjectType = ParsedType::make(BaseType);
4990 return Base;
4991 }
4992
DiagnoseDtorReference(SourceLocation NameLoc,Expr * MemExpr)4993 ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
4994 Expr *MemExpr) {
4995 SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
4996 Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
4997 << isa<CXXPseudoDestructorExpr>(MemExpr)
4998 << FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
4999
5000 return ActOnCallExpr(/*Scope*/ 0,
5001 MemExpr,
5002 /*LPLoc*/ ExpectedLParenLoc,
5003 MultiExprArg(),
5004 /*RPLoc*/ ExpectedLParenLoc);
5005 }
5006
CheckArrow(Sema & S,QualType & ObjectType,Expr * & Base,tok::TokenKind & OpKind,SourceLocation OpLoc)5007 static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base,
5008 tok::TokenKind& OpKind, SourceLocation OpLoc) {
5009 if (Base->hasPlaceholderType()) {
5010 ExprResult result = S.CheckPlaceholderExpr(Base);
5011 if (result.isInvalid()) return true;
5012 Base = result.take();
5013 }
5014 ObjectType = Base->getType();
5015
5016 // C++ [expr.pseudo]p2:
5017 // The left-hand side of the dot operator shall be of scalar type. The
5018 // left-hand side of the arrow operator shall be of pointer to scalar type.
5019 // This scalar type is the object type.
5020 // Note that this is rather different from the normal handling for the
5021 // arrow operator.
5022 if (OpKind == tok::arrow) {
5023 if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
5024 ObjectType = Ptr->getPointeeType();
5025 } else if (!Base->isTypeDependent()) {
5026 // The user wrote "p->" when she probably meant "p."; fix it.
5027 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
5028 << ObjectType << true
5029 << FixItHint::CreateReplacement(OpLoc, ".");
5030 if (S.isSFINAEContext())
5031 return true;
5032
5033 OpKind = tok::period;
5034 }
5035 }
5036
5037 return false;
5038 }
5039
BuildPseudoDestructorExpr(Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,const CXXScopeSpec & SS,TypeSourceInfo * ScopeTypeInfo,SourceLocation CCLoc,SourceLocation TildeLoc,PseudoDestructorTypeStorage Destructed,bool HasTrailingLParen)5040 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
5041 SourceLocation OpLoc,
5042 tok::TokenKind OpKind,
5043 const CXXScopeSpec &SS,
5044 TypeSourceInfo *ScopeTypeInfo,
5045 SourceLocation CCLoc,
5046 SourceLocation TildeLoc,
5047 PseudoDestructorTypeStorage Destructed,
5048 bool HasTrailingLParen) {
5049 TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
5050
5051 QualType ObjectType;
5052 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5053 return ExprError();
5054
5055 if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
5056 !ObjectType->isVectorType()) {
5057 if (getLangOpts().MicrosoftMode && ObjectType->isVoidType())
5058 Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
5059 else
5060 Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
5061 << ObjectType << Base->getSourceRange();
5062 return ExprError();
5063 }
5064
5065 // C++ [expr.pseudo]p2:
5066 // [...] The cv-unqualified versions of the object type and of the type
5067 // designated by the pseudo-destructor-name shall be the same type.
5068 if (DestructedTypeInfo) {
5069 QualType DestructedType = DestructedTypeInfo->getType();
5070 SourceLocation DestructedTypeStart
5071 = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
5072 if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
5073 if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
5074 Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
5075 << ObjectType << DestructedType << Base->getSourceRange()
5076 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
5077
5078 // Recover by setting the destructed type to the object type.
5079 DestructedType = ObjectType;
5080 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
5081 DestructedTypeStart);
5082 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5083 } else if (DestructedType.getObjCLifetime() !=
5084 ObjectType.getObjCLifetime()) {
5085
5086 if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
5087 // Okay: just pretend that the user provided the correctly-qualified
5088 // type.
5089 } else {
5090 Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
5091 << ObjectType << DestructedType << Base->getSourceRange()
5092 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
5093 }
5094
5095 // Recover by setting the destructed type to the object type.
5096 DestructedType = ObjectType;
5097 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
5098 DestructedTypeStart);
5099 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5100 }
5101 }
5102 }
5103
5104 // C++ [expr.pseudo]p2:
5105 // [...] Furthermore, the two type-names in a pseudo-destructor-name of the
5106 // form
5107 //
5108 // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
5109 //
5110 // shall designate the same scalar type.
5111 if (ScopeTypeInfo) {
5112 QualType ScopeType = ScopeTypeInfo->getType();
5113 if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
5114 !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
5115
5116 Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
5117 diag::err_pseudo_dtor_type_mismatch)
5118 << ObjectType << ScopeType << Base->getSourceRange()
5119 << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
5120
5121 ScopeType = QualType();
5122 ScopeTypeInfo = 0;
5123 }
5124 }
5125
5126 Expr *Result
5127 = new (Context) CXXPseudoDestructorExpr(Context, Base,
5128 OpKind == tok::arrow, OpLoc,
5129 SS.getWithLocInContext(Context),
5130 ScopeTypeInfo,
5131 CCLoc,
5132 TildeLoc,
5133 Destructed);
5134
5135 if (HasTrailingLParen)
5136 return Owned(Result);
5137
5138 return DiagnoseDtorReference(Destructed.getLocation(), Result);
5139 }
5140
ActOnPseudoDestructorExpr(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,CXXScopeSpec & SS,UnqualifiedId & FirstTypeName,SourceLocation CCLoc,SourceLocation TildeLoc,UnqualifiedId & SecondTypeName,bool HasTrailingLParen)5141 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
5142 SourceLocation OpLoc,
5143 tok::TokenKind OpKind,
5144 CXXScopeSpec &SS,
5145 UnqualifiedId &FirstTypeName,
5146 SourceLocation CCLoc,
5147 SourceLocation TildeLoc,
5148 UnqualifiedId &SecondTypeName,
5149 bool HasTrailingLParen) {
5150 assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5151 FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
5152 "Invalid first type name in pseudo-destructor");
5153 assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5154 SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
5155 "Invalid second type name in pseudo-destructor");
5156
5157 QualType ObjectType;
5158 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5159 return ExprError();
5160
5161 // Compute the object type that we should use for name lookup purposes. Only
5162 // record types and dependent types matter.
5163 ParsedType ObjectTypePtrForLookup;
5164 if (!SS.isSet()) {
5165 if (ObjectType->isRecordType())
5166 ObjectTypePtrForLookup = ParsedType::make(ObjectType);
5167 else if (ObjectType->isDependentType())
5168 ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
5169 }
5170
5171 // Convert the name of the type being destructed (following the ~) into a
5172 // type (with source-location information).
5173 QualType DestructedType;
5174 TypeSourceInfo *DestructedTypeInfo = 0;
5175 PseudoDestructorTypeStorage Destructed;
5176 if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
5177 ParsedType T = getTypeName(*SecondTypeName.Identifier,
5178 SecondTypeName.StartLocation,
5179 S, &SS, true, false, ObjectTypePtrForLookup);
5180 if (!T &&
5181 ((SS.isSet() && !computeDeclContext(SS, false)) ||
5182 (!SS.isSet() && ObjectType->isDependentType()))) {
5183 // The name of the type being destroyed is a dependent name, and we
5184 // couldn't find anything useful in scope. Just store the identifier and
5185 // it's location, and we'll perform (qualified) name lookup again at
5186 // template instantiation time.
5187 Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
5188 SecondTypeName.StartLocation);
5189 } else if (!T) {
5190 Diag(SecondTypeName.StartLocation,
5191 diag::err_pseudo_dtor_destructor_non_type)
5192 << SecondTypeName.Identifier << ObjectType;
5193 if (isSFINAEContext())
5194 return ExprError();
5195
5196 // Recover by assuming we had the right type all along.
5197 DestructedType = ObjectType;
5198 } else
5199 DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
5200 } else {
5201 // Resolve the template-id to a type.
5202 TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
5203 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5204 TemplateId->NumArgs);
5205 TypeResult T = ActOnTemplateIdType(TemplateId->SS,
5206 TemplateId->TemplateKWLoc,
5207 TemplateId->Template,
5208 TemplateId->TemplateNameLoc,
5209 TemplateId->LAngleLoc,
5210 TemplateArgsPtr,
5211 TemplateId->RAngleLoc);
5212 if (T.isInvalid() || !T.get()) {
5213 // Recover by assuming we had the right type all along.
5214 DestructedType = ObjectType;
5215 } else
5216 DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
5217 }
5218
5219 // If we've performed some kind of recovery, (re-)build the type source
5220 // information.
5221 if (!DestructedType.isNull()) {
5222 if (!DestructedTypeInfo)
5223 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
5224 SecondTypeName.StartLocation);
5225 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5226 }
5227
5228 // Convert the name of the scope type (the type prior to '::') into a type.
5229 TypeSourceInfo *ScopeTypeInfo = 0;
5230 QualType ScopeType;
5231 if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5232 FirstTypeName.Identifier) {
5233 if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
5234 ParsedType T = getTypeName(*FirstTypeName.Identifier,
5235 FirstTypeName.StartLocation,
5236 S, &SS, true, false, ObjectTypePtrForLookup);
5237 if (!T) {
5238 Diag(FirstTypeName.StartLocation,
5239 diag::err_pseudo_dtor_destructor_non_type)
5240 << FirstTypeName.Identifier << ObjectType;
5241
5242 if (isSFINAEContext())
5243 return ExprError();
5244
5245 // Just drop this type. It's unnecessary anyway.
5246 ScopeType = QualType();
5247 } else
5248 ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
5249 } else {
5250 // Resolve the template-id to a type.
5251 TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
5252 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5253 TemplateId->NumArgs);
5254 TypeResult T = ActOnTemplateIdType(TemplateId->SS,
5255 TemplateId->TemplateKWLoc,
5256 TemplateId->Template,
5257 TemplateId->TemplateNameLoc,
5258 TemplateId->LAngleLoc,
5259 TemplateArgsPtr,
5260 TemplateId->RAngleLoc);
5261 if (T.isInvalid() || !T.get()) {
5262 // Recover by dropping this type.
5263 ScopeType = QualType();
5264 } else
5265 ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
5266 }
5267 }
5268
5269 if (!ScopeType.isNull() && !ScopeTypeInfo)
5270 ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
5271 FirstTypeName.StartLocation);
5272
5273
5274 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
5275 ScopeTypeInfo, CCLoc, TildeLoc,
5276 Destructed, HasTrailingLParen);
5277 }
5278
ActOnPseudoDestructorExpr(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,SourceLocation TildeLoc,const DeclSpec & DS,bool HasTrailingLParen)5279 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
5280 SourceLocation OpLoc,
5281 tok::TokenKind OpKind,
5282 SourceLocation TildeLoc,
5283 const DeclSpec& DS,
5284 bool HasTrailingLParen) {
5285 QualType ObjectType;
5286 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5287 return ExprError();
5288
5289 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
5290
5291 TypeLocBuilder TLB;
5292 DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
5293 DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
5294 TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
5295 PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
5296
5297 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
5298 0, SourceLocation(), TildeLoc,
5299 Destructed, HasTrailingLParen);
5300 }
5301
BuildCXXMemberCallExpr(Expr * E,NamedDecl * FoundDecl,CXXConversionDecl * Method,bool HadMultipleCandidates)5302 ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
5303 CXXConversionDecl *Method,
5304 bool HadMultipleCandidates) {
5305 if (Method->getParent()->isLambda() &&
5306 Method->getConversionType()->isBlockPointerType()) {
5307 // This is a lambda coversion to block pointer; check if the argument
5308 // is a LambdaExpr.
5309 Expr *SubE = E;
5310 CastExpr *CE = dyn_cast<CastExpr>(SubE);
5311 if (CE && CE->getCastKind() == CK_NoOp)
5312 SubE = CE->getSubExpr();
5313 SubE = SubE->IgnoreParens();
5314 if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
5315 SubE = BE->getSubExpr();
5316 if (isa<LambdaExpr>(SubE)) {
5317 // For the conversion to block pointer on a lambda expression, we
5318 // construct a special BlockLiteral instead; this doesn't really make
5319 // a difference in ARC, but outside of ARC the resulting block literal
5320 // follows the normal lifetime rules for block literals instead of being
5321 // autoreleased.
5322 DiagnosticErrorTrap Trap(Diags);
5323 ExprResult Exp = BuildBlockForLambdaConversion(E->getExprLoc(),
5324 E->getExprLoc(),
5325 Method, E);
5326 if (Exp.isInvalid())
5327 Diag(E->getExprLoc(), diag::note_lambda_to_block_conv);
5328 return Exp;
5329 }
5330 }
5331
5332
5333 ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/0,
5334 FoundDecl, Method);
5335 if (Exp.isInvalid())
5336 return true;
5337
5338 MemberExpr *ME =
5339 new (Context) MemberExpr(Exp.take(), /*IsArrow=*/false, Method,
5340 SourceLocation(), Context.BoundMemberTy,
5341 VK_RValue, OK_Ordinary);
5342 if (HadMultipleCandidates)
5343 ME->setHadMultipleCandidates(true);
5344
5345 QualType ResultType = Method->getResultType();
5346 ExprValueKind VK = Expr::getValueKindForType(ResultType);
5347 ResultType = ResultType.getNonLValueExprType(Context);
5348
5349 MarkFunctionReferenced(Exp.get()->getLocStart(), Method);
5350 CXXMemberCallExpr *CE =
5351 new (Context) CXXMemberCallExpr(Context, ME, MultiExprArg(), ResultType, VK,
5352 Exp.get()->getLocEnd());
5353 return CE;
5354 }
5355
BuildCXXNoexceptExpr(SourceLocation KeyLoc,Expr * Operand,SourceLocation RParen)5356 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
5357 SourceLocation RParen) {
5358 CanThrowResult CanThrow = canThrow(Operand);
5359 return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand,
5360 CanThrow, KeyLoc, RParen));
5361 }
5362
ActOnNoexceptExpr(SourceLocation KeyLoc,SourceLocation,Expr * Operand,SourceLocation RParen)5363 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
5364 Expr *Operand, SourceLocation RParen) {
5365 return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
5366 }
5367
IsSpecialDiscardedValue(Expr * E)5368 static bool IsSpecialDiscardedValue(Expr *E) {
5369 // In C++11, discarded-value expressions of a certain form are special,
5370 // according to [expr]p10:
5371 // The lvalue-to-rvalue conversion (4.1) is applied only if the
5372 // expression is an lvalue of volatile-qualified type and it has
5373 // one of the following forms:
5374 E = E->IgnoreParens();
5375
5376 // - id-expression (5.1.1),
5377 if (isa<DeclRefExpr>(E))
5378 return true;
5379
5380 // - subscripting (5.2.1),
5381 if (isa<ArraySubscriptExpr>(E))
5382 return true;
5383
5384 // - class member access (5.2.5),
5385 if (isa<MemberExpr>(E))
5386 return true;
5387
5388 // - indirection (5.3.1),
5389 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
5390 if (UO->getOpcode() == UO_Deref)
5391 return true;
5392
5393 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5394 // - pointer-to-member operation (5.5),
5395 if (BO->isPtrMemOp())
5396 return true;
5397
5398 // - comma expression (5.18) where the right operand is one of the above.
5399 if (BO->getOpcode() == BO_Comma)
5400 return IsSpecialDiscardedValue(BO->getRHS());
5401 }
5402
5403 // - conditional expression (5.16) where both the second and the third
5404 // operands are one of the above, or
5405 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
5406 return IsSpecialDiscardedValue(CO->getTrueExpr()) &&
5407 IsSpecialDiscardedValue(CO->getFalseExpr());
5408 // The related edge case of "*x ?: *x".
5409 if (BinaryConditionalOperator *BCO =
5410 dyn_cast<BinaryConditionalOperator>(E)) {
5411 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
5412 return IsSpecialDiscardedValue(OVE->getSourceExpr()) &&
5413 IsSpecialDiscardedValue(BCO->getFalseExpr());
5414 }
5415
5416 // Objective-C++ extensions to the rule.
5417 if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E))
5418 return true;
5419
5420 return false;
5421 }
5422
5423 /// Perform the conversions required for an expression used in a
5424 /// context that ignores the result.
IgnoredValueConversions(Expr * E)5425 ExprResult Sema::IgnoredValueConversions(Expr *E) {
5426 if (E->hasPlaceholderType()) {
5427 ExprResult result = CheckPlaceholderExpr(E);
5428 if (result.isInvalid()) return Owned(E);
5429 E = result.take();
5430 }
5431
5432 // C99 6.3.2.1:
5433 // [Except in specific positions,] an lvalue that does not have
5434 // array type is converted to the value stored in the
5435 // designated object (and is no longer an lvalue).
5436 if (E->isRValue()) {
5437 // In C, function designators (i.e. expressions of function type)
5438 // are r-values, but we still want to do function-to-pointer decay
5439 // on them. This is both technically correct and convenient for
5440 // some clients.
5441 if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
5442 return DefaultFunctionArrayConversion(E);
5443
5444 return Owned(E);
5445 }
5446
5447 if (getLangOpts().CPlusPlus) {
5448 // The C++11 standard defines the notion of a discarded-value expression;
5449 // normally, we don't need to do anything to handle it, but if it is a
5450 // volatile lvalue with a special form, we perform an lvalue-to-rvalue
5451 // conversion.
5452 if (getLangOpts().CPlusPlus0x && E->isGLValue() &&
5453 E->getType().isVolatileQualified() &&
5454 IsSpecialDiscardedValue(E)) {
5455 ExprResult Res = DefaultLvalueConversion(E);
5456 if (Res.isInvalid())
5457 return Owned(E);
5458 E = Res.take();
5459 }
5460 return Owned(E);
5461 }
5462
5463 // GCC seems to also exclude expressions of incomplete enum type.
5464 if (const EnumType *T = E->getType()->getAs<EnumType>()) {
5465 if (!T->getDecl()->isComplete()) {
5466 // FIXME: stupid workaround for a codegen bug!
5467 E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).take();
5468 return Owned(E);
5469 }
5470 }
5471
5472 ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
5473 if (Res.isInvalid())
5474 return Owned(E);
5475 E = Res.take();
5476
5477 if (!E->getType()->isVoidType())
5478 RequireCompleteType(E->getExprLoc(), E->getType(),
5479 diag::err_incomplete_type);
5480 return Owned(E);
5481 }
5482
ActOnFinishFullExpr(Expr * FE,SourceLocation CC)5483 ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC) {
5484 ExprResult FullExpr = Owned(FE);
5485
5486 if (!FullExpr.get())
5487 return ExprError();
5488
5489 if (DiagnoseUnexpandedParameterPack(FullExpr.get()))
5490 return ExprError();
5491
5492 // Top-level message sends default to 'id' when we're in a debugger.
5493 if (getLangOpts().DebuggerCastResultToId &&
5494 FullExpr.get()->getType() == Context.UnknownAnyTy &&
5495 isa<ObjCMessageExpr>(FullExpr.get())) {
5496 FullExpr = forceUnknownAnyToType(FullExpr.take(), Context.getObjCIdType());
5497 if (FullExpr.isInvalid())
5498 return ExprError();
5499 }
5500
5501 FullExpr = CheckPlaceholderExpr(FullExpr.take());
5502 if (FullExpr.isInvalid())
5503 return ExprError();
5504
5505 FullExpr = IgnoredValueConversions(FullExpr.take());
5506 if (FullExpr.isInvalid())
5507 return ExprError();
5508
5509 CheckImplicitConversions(FullExpr.get(), CC);
5510 return MaybeCreateExprWithCleanups(FullExpr);
5511 }
5512
ActOnFinishFullStmt(Stmt * FullStmt)5513 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
5514 if (!FullStmt) return StmtError();
5515
5516 return MaybeCreateStmtWithCleanups(FullStmt);
5517 }
5518
5519 Sema::IfExistsResult
CheckMicrosoftIfExistsSymbol(Scope * S,CXXScopeSpec & SS,const DeclarationNameInfo & TargetNameInfo)5520 Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
5521 CXXScopeSpec &SS,
5522 const DeclarationNameInfo &TargetNameInfo) {
5523 DeclarationName TargetName = TargetNameInfo.getName();
5524 if (!TargetName)
5525 return IER_DoesNotExist;
5526
5527 // If the name itself is dependent, then the result is dependent.
5528 if (TargetName.isDependentName())
5529 return IER_Dependent;
5530
5531 // Do the redeclaration lookup in the current scope.
5532 LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
5533 Sema::NotForRedeclaration);
5534 LookupParsedName(R, S, &SS);
5535 R.suppressDiagnostics();
5536
5537 switch (R.getResultKind()) {
5538 case LookupResult::Found:
5539 case LookupResult::FoundOverloaded:
5540 case LookupResult::FoundUnresolvedValue:
5541 case LookupResult::Ambiguous:
5542 return IER_Exists;
5543
5544 case LookupResult::NotFound:
5545 return IER_DoesNotExist;
5546
5547 case LookupResult::NotFoundInCurrentInstantiation:
5548 return IER_Dependent;
5549 }
5550
5551 llvm_unreachable("Invalid LookupResult Kind!");
5552 }
5553
5554 Sema::IfExistsResult
CheckMicrosoftIfExistsSymbol(Scope * S,SourceLocation KeywordLoc,bool IsIfExists,CXXScopeSpec & SS,UnqualifiedId & Name)5555 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
5556 bool IsIfExists, CXXScopeSpec &SS,
5557 UnqualifiedId &Name) {
5558 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5559
5560 // Check for unexpanded parameter packs.
5561 SmallVector<UnexpandedParameterPack, 4> Unexpanded;
5562 collectUnexpandedParameterPacks(SS, Unexpanded);
5563 collectUnexpandedParameterPacks(TargetNameInfo, Unexpanded);
5564 if (!Unexpanded.empty()) {
5565 DiagnoseUnexpandedParameterPacks(KeywordLoc,
5566 IsIfExists? UPPC_IfExists
5567 : UPPC_IfNotExists,
5568 Unexpanded);
5569 return IER_Error;
5570 }
5571
5572 return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
5573 }
5574