• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- SemaStmtAsm.cpp - Semantic Analysis for Asm Statements -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements semantic analysis for inline asm statements.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/Sema/Scope.h"
16 #include "clang/Sema/ScopeInfo.h"
17 #include "clang/Sema/Initialization.h"
18 #include "clang/Sema/Lookup.h"
19 #include "clang/AST/TypeLoc.h"
20 #include "clang/Lex/Preprocessor.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/SmallString.h"
25 #include "llvm/MC/MCAsmInfo.h"
26 #include "llvm/MC/MCContext.h"
27 #include "llvm/MC/MCExpr.h"
28 #include "llvm/MC/MCInst.h"
29 #include "llvm/MC/MCInstPrinter.h"
30 #include "llvm/MC/MCInstrInfo.h"
31 #include "llvm/MC/MCObjectFileInfo.h"
32 #include "llvm/MC/MCRegisterInfo.h"
33 #include "llvm/MC/MCStreamer.h"
34 #include "llvm/MC/MCSubtargetInfo.h"
35 #include "llvm/MC/MCSymbol.h"
36 #include "llvm/MC/MCTargetAsmParser.h"
37 #include "llvm/MC/MCParser/MCAsmLexer.h"
38 #include "llvm/MC/MCParser/MCAsmParser.h"
39 #include "llvm/Support/SourceMgr.h"
40 #include "llvm/Support/TargetRegistry.h"
41 #include "llvm/Support/TargetSelect.h"
42 using namespace clang;
43 using namespace sema;
44 
45 /// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
46 /// ignore "noop" casts in places where an lvalue is required by an inline asm.
47 /// We emulate this behavior when -fheinous-gnu-extensions is specified, but
48 /// provide a strong guidance to not use it.
49 ///
50 /// This method checks to see if the argument is an acceptable l-value and
51 /// returns false if it is a case we can handle.
CheckAsmLValue(const Expr * E,Sema & S)52 static bool CheckAsmLValue(const Expr *E, Sema &S) {
53   // Type dependent expressions will be checked during instantiation.
54   if (E->isTypeDependent())
55     return false;
56 
57   if (E->isLValue())
58     return false;  // Cool, this is an lvalue.
59 
60   // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
61   // are supposed to allow.
62   const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
63   if (E != E2 && E2->isLValue()) {
64     if (!S.getLangOpts().HeinousExtensions)
65       S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
66         << E->getSourceRange();
67     else
68       S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
69         << E->getSourceRange();
70     // Accept, even if we emitted an error diagnostic.
71     return false;
72   }
73 
74   // None of the above, just randomly invalid non-lvalue.
75   return true;
76 }
77 
78 /// isOperandMentioned - Return true if the specified operand # is mentioned
79 /// anywhere in the decomposed asm string.
isOperandMentioned(unsigned OpNo,ArrayRef<GCCAsmStmt::AsmStringPiece> AsmStrPieces)80 static bool isOperandMentioned(unsigned OpNo,
81                          ArrayRef<GCCAsmStmt::AsmStringPiece> AsmStrPieces) {
82   for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
83     const GCCAsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
84     if (!Piece.isOperand()) continue;
85 
86     // If this is a reference to the input and if the input was the smaller
87     // one, then we have to reject this asm.
88     if (Piece.getOperandNo() == OpNo)
89       return true;
90   }
91   return false;
92 }
93 
ActOnGCCAsmStmt(SourceLocation AsmLoc,bool IsSimple,bool IsVolatile,unsigned NumOutputs,unsigned NumInputs,IdentifierInfo ** Names,MultiExprArg constraints,MultiExprArg exprs,Expr * asmString,MultiExprArg clobbers,SourceLocation RParenLoc)94 StmtResult Sema::ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple,
95                                  bool IsVolatile, unsigned NumOutputs,
96                                  unsigned NumInputs, IdentifierInfo **Names,
97                                  MultiExprArg constraints, MultiExprArg exprs,
98                                  Expr *asmString, MultiExprArg clobbers,
99                                  SourceLocation RParenLoc) {
100   unsigned NumClobbers = clobbers.size();
101   StringLiteral **Constraints =
102     reinterpret_cast<StringLiteral**>(constraints.data());
103   Expr **Exprs = exprs.data();
104   StringLiteral *AsmString = cast<StringLiteral>(asmString);
105   StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.data());
106 
107   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
108 
109   // The parser verifies that there is a string literal here.
110   if (!AsmString->isAscii())
111     return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
112       << AsmString->getSourceRange());
113 
114   for (unsigned i = 0; i != NumOutputs; i++) {
115     StringLiteral *Literal = Constraints[i];
116     if (!Literal->isAscii())
117       return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
118         << Literal->getSourceRange());
119 
120     StringRef OutputName;
121     if (Names[i])
122       OutputName = Names[i]->getName();
123 
124     TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
125     if (!Context.getTargetInfo().validateOutputConstraint(Info))
126       return StmtError(Diag(Literal->getLocStart(),
127                             diag::err_asm_invalid_output_constraint)
128                        << Info.getConstraintStr());
129 
130     // Check that the output exprs are valid lvalues.
131     Expr *OutputExpr = Exprs[i];
132     if (CheckAsmLValue(OutputExpr, *this)) {
133       return StmtError(Diag(OutputExpr->getLocStart(),
134                   diag::err_asm_invalid_lvalue_in_output)
135         << OutputExpr->getSourceRange());
136     }
137 
138     OutputConstraintInfos.push_back(Info);
139   }
140 
141   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
142 
143   for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
144     StringLiteral *Literal = Constraints[i];
145     if (!Literal->isAscii())
146       return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
147         << Literal->getSourceRange());
148 
149     StringRef InputName;
150     if (Names[i])
151       InputName = Names[i]->getName();
152 
153     TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
154     if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos.data(),
155                                                 NumOutputs, Info)) {
156       return StmtError(Diag(Literal->getLocStart(),
157                             diag::err_asm_invalid_input_constraint)
158                        << Info.getConstraintStr());
159     }
160 
161     Expr *InputExpr = Exprs[i];
162 
163     // Only allow void types for memory constraints.
164     if (Info.allowsMemory() && !Info.allowsRegister()) {
165       if (CheckAsmLValue(InputExpr, *this))
166         return StmtError(Diag(InputExpr->getLocStart(),
167                               diag::err_asm_invalid_lvalue_in_input)
168                          << Info.getConstraintStr()
169                          << InputExpr->getSourceRange());
170     }
171 
172     if (Info.allowsRegister()) {
173       if (InputExpr->getType()->isVoidType()) {
174         return StmtError(Diag(InputExpr->getLocStart(),
175                               diag::err_asm_invalid_type_in_input)
176           << InputExpr->getType() << Info.getConstraintStr()
177           << InputExpr->getSourceRange());
178       }
179     }
180 
181     ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
182     if (Result.isInvalid())
183       return StmtError();
184 
185     Exprs[i] = Result.take();
186     InputConstraintInfos.push_back(Info);
187   }
188 
189   // Check that the clobbers are valid.
190   for (unsigned i = 0; i != NumClobbers; i++) {
191     StringLiteral *Literal = Clobbers[i];
192     if (!Literal->isAscii())
193       return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
194         << Literal->getSourceRange());
195 
196     StringRef Clobber = Literal->getString();
197 
198     if (!Context.getTargetInfo().isValidClobber(Clobber))
199       return StmtError(Diag(Literal->getLocStart(),
200                   diag::err_asm_unknown_register_name) << Clobber);
201   }
202 
203   GCCAsmStmt *NS =
204     new (Context) GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
205                              NumInputs, Names, Constraints, Exprs, AsmString,
206                              NumClobbers, Clobbers, RParenLoc);
207   // Validate the asm string, ensuring it makes sense given the operands we
208   // have.
209   SmallVector<GCCAsmStmt::AsmStringPiece, 8> Pieces;
210   unsigned DiagOffs;
211   if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
212     Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
213            << AsmString->getSourceRange();
214     return StmtError();
215   }
216 
217   // Validate tied input operands for type mismatches.
218   for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
219     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
220 
221     // If this is a tied constraint, verify that the output and input have
222     // either exactly the same type, or that they are int/ptr operands with the
223     // same size (int/long, int*/long, are ok etc).
224     if (!Info.hasTiedOperand()) continue;
225 
226     unsigned TiedTo = Info.getTiedOperand();
227     unsigned InputOpNo = i+NumOutputs;
228     Expr *OutputExpr = Exprs[TiedTo];
229     Expr *InputExpr = Exprs[InputOpNo];
230 
231     if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent())
232       continue;
233 
234     QualType InTy = InputExpr->getType();
235     QualType OutTy = OutputExpr->getType();
236     if (Context.hasSameType(InTy, OutTy))
237       continue;  // All types can be tied to themselves.
238 
239     // Decide if the input and output are in the same domain (integer/ptr or
240     // floating point.
241     enum AsmDomain {
242       AD_Int, AD_FP, AD_Other
243     } InputDomain, OutputDomain;
244 
245     if (InTy->isIntegerType() || InTy->isPointerType())
246       InputDomain = AD_Int;
247     else if (InTy->isRealFloatingType())
248       InputDomain = AD_FP;
249     else
250       InputDomain = AD_Other;
251 
252     if (OutTy->isIntegerType() || OutTy->isPointerType())
253       OutputDomain = AD_Int;
254     else if (OutTy->isRealFloatingType())
255       OutputDomain = AD_FP;
256     else
257       OutputDomain = AD_Other;
258 
259     // They are ok if they are the same size and in the same domain.  This
260     // allows tying things like:
261     //   void* to int*
262     //   void* to int            if they are the same size.
263     //   double to long double   if they are the same size.
264     //
265     uint64_t OutSize = Context.getTypeSize(OutTy);
266     uint64_t InSize = Context.getTypeSize(InTy);
267     if (OutSize == InSize && InputDomain == OutputDomain &&
268         InputDomain != AD_Other)
269       continue;
270 
271     // If the smaller input/output operand is not mentioned in the asm string,
272     // then we can promote the smaller one to a larger input and the asm string
273     // won't notice.
274     bool SmallerValueMentioned = false;
275 
276     // If this is a reference to the input and if the input was the smaller
277     // one, then we have to reject this asm.
278     if (isOperandMentioned(InputOpNo, Pieces)) {
279       // This is a use in the asm string of the smaller operand.  Since we
280       // codegen this by promoting to a wider value, the asm will get printed
281       // "wrong".
282       SmallerValueMentioned |= InSize < OutSize;
283     }
284     if (isOperandMentioned(TiedTo, Pieces)) {
285       // If this is a reference to the output, and if the output is the larger
286       // value, then it's ok because we'll promote the input to the larger type.
287       SmallerValueMentioned |= OutSize < InSize;
288     }
289 
290     // If the smaller value wasn't mentioned in the asm string, and if the
291     // output was a register, just extend the shorter one to the size of the
292     // larger one.
293     if (!SmallerValueMentioned && InputDomain != AD_Other &&
294         OutputConstraintInfos[TiedTo].allowsRegister())
295       continue;
296 
297     // Either both of the operands were mentioned or the smaller one was
298     // mentioned.  One more special case that we'll allow: if the tied input is
299     // integer, unmentioned, and is a constant, then we'll allow truncating it
300     // down to the size of the destination.
301     if (InputDomain == AD_Int && OutputDomain == AD_Int &&
302         !isOperandMentioned(InputOpNo, Pieces) &&
303         InputExpr->isEvaluatable(Context)) {
304       CastKind castKind =
305         (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
306       InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).take();
307       Exprs[InputOpNo] = InputExpr;
308       NS->setInputExpr(i, InputExpr);
309       continue;
310     }
311 
312     Diag(InputExpr->getLocStart(),
313          diag::err_asm_tying_incompatible_types)
314       << InTy << OutTy << OutputExpr->getSourceRange()
315       << InputExpr->getSourceRange();
316     return StmtError();
317   }
318 
319   return Owned(NS);
320 }
321 
322 // isMSAsmKeyword - Return true if this is an MS-style inline asm keyword. These
323 // require special handling.
isMSAsmKeyword(StringRef Name)324 static bool isMSAsmKeyword(StringRef Name) {
325   bool Ret = llvm::StringSwitch<bool>(Name)
326     .Cases("EVEN", "ALIGN", true) // Alignment directives.
327     .Cases("LENGTH", "SIZE", "TYPE", true) // Type and variable sizes.
328     .Case("_emit", true) // _emit Pseudoinstruction.
329     .Default(false);
330   return Ret;
331 }
332 
333 // getIdentifierInfo - Given a Name and a range of tokens, find the associated
334 // IdentifierInfo*.
getIdentifierInfo(StringRef Name,ArrayRef<Token> AsmToks,unsigned Begin,unsigned End)335 static IdentifierInfo *getIdentifierInfo(StringRef Name,
336                                          ArrayRef<Token> AsmToks,
337                                          unsigned Begin, unsigned End) {
338   for (unsigned i = Begin; i <= End; ++i) {
339     IdentifierInfo *II = AsmToks[i].getIdentifierInfo();
340     if (II && II->getName() == Name)
341       return II;
342   }
343   return 0;
344 }
345 
346 // getSpelling - Get the spelling of the AsmTok token.
getSpelling(Sema & SemaRef,Token AsmTok)347 static StringRef getSpelling(Sema &SemaRef, Token AsmTok) {
348   StringRef Asm;
349   SmallString<512> TokenBuf;
350   TokenBuf.resize(512);
351   bool StringInvalid = false;
352   Asm = SemaRef.PP.getSpelling(AsmTok, TokenBuf, &StringInvalid);
353   assert (!StringInvalid && "Expected valid string!");
354   return Asm;
355 }
356 
357 // Determine if we should bail on this MSAsm instruction.
bailOnMSAsm(std::vector<StringRef> Piece)358 static bool bailOnMSAsm(std::vector<StringRef> Piece) {
359   for (unsigned i = 0, e = Piece.size(); i != e; ++i)
360     if (isMSAsmKeyword(Piece[i]))
361       return true;
362   return false;
363 }
364 
365 // Determine if we should bail on this MSAsm block.
bailOnMSAsm(std::vector<std::vector<StringRef>> Pieces)366 static bool bailOnMSAsm(std::vector<std::vector<StringRef> > Pieces) {
367   for (unsigned i = 0, e = Pieces.size(); i != e; ++i)
368     if (bailOnMSAsm(Pieces[i]))
369       return true;
370   return false;
371 }
372 
373 // Determine if this is a simple MSAsm instruction.
isSimpleMSAsm(std::vector<StringRef> & Pieces,const TargetInfo & TI)374 static bool isSimpleMSAsm(std::vector<StringRef> &Pieces,
375                           const TargetInfo &TI) {
376   if (isMSAsmKeyword(Pieces[0]))
377       return false;
378 
379   for (unsigned i = 1, e = Pieces.size(); i != e; ++i)
380     if (!TI.isValidGCCRegisterName(Pieces[i]))
381       return false;
382   return true;
383 }
384 
385 // Determine if this is a simple MSAsm block.
isSimpleMSAsm(std::vector<std::vector<StringRef>> Pieces,const TargetInfo & TI)386 static bool isSimpleMSAsm(std::vector<std::vector<StringRef> > Pieces,
387                           const TargetInfo &TI) {
388   for (unsigned i = 0, e = Pieces.size(); i != e; ++i)
389     if (!isSimpleMSAsm(Pieces[i], TI))
390       return false;
391   return true;
392 }
393 
394 // Break the AsmSting into pieces (i.e., mnemonic and operands).
buildMSAsmPieces(StringRef Asm,std::vector<StringRef> & Pieces)395 static void buildMSAsmPieces(StringRef Asm, std::vector<StringRef> &Pieces) {
396   std::pair<StringRef,StringRef> Split = Asm.split(' ');
397 
398   // Mnemonic
399   Pieces.push_back(Split.first);
400   Asm = Split.second;
401 
402   // Operands
403   while (!Asm.empty()) {
404     Split = Asm.split(", ");
405     Pieces.push_back(Split.first);
406     Asm = Split.second;
407   }
408 }
409 
buildMSAsmPieces(std::vector<std::string> & AsmStrings,std::vector<std::vector<StringRef>> & Pieces)410 static void buildMSAsmPieces(std::vector<std::string> &AsmStrings,
411                              std::vector<std::vector<StringRef> > &Pieces) {
412   for (unsigned i = 0, e = AsmStrings.size(); i != e; ++i)
413     buildMSAsmPieces(AsmStrings[i], Pieces[i]);
414 }
415 
416 // Build the unmodified AsmString used by the IR.  Also build the individual
417 // asm instruction(s) and place them in the AsmStrings vector; these are fed
418 // to the AsmParser.
buildMSAsmString(Sema & SemaRef,ArrayRef<Token> AsmToks,std::vector<std::string> & AsmStrings,std::vector<std::pair<unsigned,unsigned>> & AsmTokRanges)419 static std::string buildMSAsmString(Sema &SemaRef, ArrayRef<Token> AsmToks,
420                                     std::vector<std::string> &AsmStrings,
421                      std::vector<std::pair<unsigned,unsigned> > &AsmTokRanges) {
422   assert (!AsmToks.empty() && "Didn't expect an empty AsmToks!");
423 
424   SmallString<512> Res;
425   SmallString<512> Asm;
426   unsigned startTok = 0;
427   for (unsigned i = 0, e = AsmToks.size(); i < e; ++i) {
428     bool isNewAsm = i == 0 || AsmToks[i].isAtStartOfLine() ||
429       AsmToks[i].is(tok::kw_asm);
430 
431     if (isNewAsm) {
432       if (i) {
433         AsmStrings.push_back(Asm.str());
434         AsmTokRanges.push_back(std::make_pair(startTok, i-1));
435         startTok = i;
436         Res += Asm;
437         Asm.clear();
438         Res += '\n';
439       }
440       if (AsmToks[i].is(tok::kw_asm)) {
441         i++; // Skip __asm
442         assert (i != e && "Expected another token");
443       }
444     }
445 
446     if (i && AsmToks[i].hasLeadingSpace() && !isNewAsm)
447       Asm += ' ';
448 
449     Asm += getSpelling(SemaRef, AsmToks[i]);
450   }
451   AsmStrings.push_back(Asm.str());
452   AsmTokRanges.push_back(std::make_pair(startTok, AsmToks.size()-1));
453   Res += Asm;
454   return Res.str();
455 }
456 
457 #define DEF_SIMPLE_MSASM(STR)                                                \
458   MSAsmStmt *NS =                                                            \
459     new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, /*IsSimple*/ true,   \
460                             /*IsVolatile*/ true, AsmToks, Inputs, Outputs,   \
461                             InputExprs, OutputExprs, STR, Constraints,       \
462                             Clobbers, EndLoc);
463 
ActOnMSAsmStmt(SourceLocation AsmLoc,SourceLocation LBraceLoc,ArrayRef<Token> AsmToks,SourceLocation EndLoc)464 StmtResult Sema::ActOnMSAsmStmt(SourceLocation AsmLoc,
465                                 SourceLocation LBraceLoc,
466                                 ArrayRef<Token> AsmToks,
467                                 SourceLocation EndLoc) {
468   SmallVector<StringRef, 4> Constraints;
469   std::vector<std::string> InputConstraints;
470   std::vector<std::string> OutputConstraints;
471   SmallVector<StringRef, 4> Clobbers;
472   std::set<std::string> ClobberRegs;
473   SmallVector<IdentifierInfo*, 4> Inputs;
474   SmallVector<IdentifierInfo*, 4> Outputs;
475   SmallVector<Expr*, 4> InputExprs;
476   SmallVector<Expr*, 4> OutputExprs;
477   SmallVector<std::string, 4> InputExprNames;
478   SmallVector<std::string, 4> OutputExprNames;
479 
480   // Empty asm statements don't need to instantiate the AsmParser, etc.
481   StringRef EmptyAsmStr;
482   if (AsmToks.empty()) { DEF_SIMPLE_MSASM(EmptyAsmStr); return Owned(NS); }
483 
484   std::vector<std::string> AsmStrings;
485   std::vector<std::pair<unsigned,unsigned> > AsmTokRanges;
486   std::string AsmString = buildMSAsmString(*this, AsmToks, AsmStrings,
487                                            AsmTokRanges);
488 
489   std::vector<std::vector<StringRef> > Pieces(AsmStrings.size());
490   buildMSAsmPieces(AsmStrings, Pieces);
491 
492   bool IsSimple = isSimpleMSAsm(Pieces, Context.getTargetInfo());
493 
494   // AsmParser doesn't fully support these asm statements.
495   if (bailOnMSAsm(Pieces)) { DEF_SIMPLE_MSASM(EmptyAsmStr); return Owned(NS); }
496 
497   // Initialize targets and assembly printers/parsers.
498   llvm::InitializeAllTargetInfos();
499   llvm::InitializeAllTargetMCs();
500   llvm::InitializeAllAsmParsers();
501 
502   // Get the target specific parser.
503   std::string Error;
504   const std::string &TT = Context.getTargetInfo().getTriple().getTriple();
505   const llvm::Target *TheTarget(llvm::TargetRegistry::lookupTarget(TT, Error));
506 
507   OwningPtr<llvm::MCAsmInfo> MAI(TheTarget->createMCAsmInfo(TT));
508   OwningPtr<llvm::MCRegisterInfo> MRI(TheTarget->createMCRegInfo(TT));
509   OwningPtr<llvm::MCObjectFileInfo> MOFI(new llvm::MCObjectFileInfo());
510   OwningPtr<llvm::MCSubtargetInfo>
511     STI(TheTarget->createMCSubtargetInfo(TT, "", ""));
512 
513   for (unsigned StrIdx = 0, e = AsmStrings.size(); StrIdx != e; ++StrIdx) {
514     llvm::SourceMgr SrcMgr;
515     llvm::MCContext Ctx(*MAI, *MRI, MOFI.get(), &SrcMgr);
516     llvm::MemoryBuffer *Buffer =
517       llvm::MemoryBuffer::getMemBuffer(AsmStrings[StrIdx], "<inline asm>");
518 
519     // Tell SrcMgr about this buffer, which is what the parser will pick up.
520     SrcMgr.AddNewSourceBuffer(Buffer, llvm::SMLoc());
521 
522     OwningPtr<llvm::MCStreamer> Str(createNullStreamer(Ctx));
523     OwningPtr<llvm::MCAsmParser>
524       Parser(createMCAsmParser(SrcMgr, Ctx, *Str.get(), *MAI));
525     OwningPtr<llvm::MCTargetAsmParser>
526       TargetParser(TheTarget->createMCAsmParser(*STI, *Parser));
527     // Change to the Intel dialect.
528     Parser->setAssemblerDialect(1);
529     Parser->setTargetParser(*TargetParser.get());
530 
531     // Prime the lexer.
532     Parser->Lex();
533 
534     // Parse the opcode.
535     StringRef IDVal;
536     Parser->ParseIdentifier(IDVal);
537 
538     // Canonicalize the opcode to lower case.
539     SmallString<128> OpcodeStr;
540     for (unsigned i = 0, e = IDVal.size(); i != e; ++i)
541       OpcodeStr.push_back(tolower(IDVal[i]));
542 
543     // Parse the operands.
544     llvm::SMLoc IDLoc;
545     SmallVector<llvm::MCParsedAsmOperand*, 8> Operands;
546     bool HadError = TargetParser->ParseInstruction(OpcodeStr.str(), IDLoc,
547                                                    Operands);
548     // If we had an error parsing the operands, fail gracefully.
549     if (HadError) { DEF_SIMPLE_MSASM(EmptyAsmStr); return Owned(NS); }
550 
551     // Match the MCInstr.
552     unsigned Kind;
553     unsigned ErrorInfo;
554     SmallVector<llvm::MCInst, 2> Instrs;
555     HadError = TargetParser->MatchInstruction(IDLoc, Kind, Operands, Instrs,
556                                               ErrorInfo,
557                                               /*matchingInlineAsm*/ true);
558     // If we had an error parsing the operands, fail gracefully.
559     if (HadError) { DEF_SIMPLE_MSASM(EmptyAsmStr); return Owned(NS); }
560 
561     // Get the instruction descriptor.
562     llvm::MCInst Inst = Instrs[0];
563     const llvm::MCInstrInfo *MII = TheTarget->createMCInstrInfo();
564     const llvm::MCInstrDesc &Desc = MII->get(Inst.getOpcode());
565     llvm::MCInstPrinter *IP =
566       TheTarget->createMCInstPrinter(1, *MAI, *MII, *MRI, *STI);
567 
568     // Build the list of clobbers, outputs and inputs.
569     unsigned NumDefs = Desc.getNumDefs();
570     for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
571       unsigned NumMCOperands;
572       unsigned MCIdx = TargetParser->getMCInstOperandNum(Kind, Inst, Operands,
573                                                          i, NumMCOperands);
574       assert (NumMCOperands && "Expected at least 1 MCOperand!");
575       // If we have a one-to-many mapping, then search for the MCExpr.
576       if (NumMCOperands > 1) {
577         bool foundExpr = false;
578         for (unsigned j = MCIdx, e = MCIdx + NumMCOperands; j != e; ++j) {
579           if (Inst.getOperand(j).isExpr()) {
580             foundExpr = true;
581             MCIdx = j;
582             break;
583           }
584         }
585         assert (foundExpr && "Expected for find an expression!");
586       }
587 
588       const llvm::MCOperand &Op = Inst.getOperand(MCIdx);
589 
590       // Immediate.
591       if (Op.isImm() || Op.isFPImm())
592         continue;
593 
594       bool isDef = NumDefs && (MCIdx < NumDefs);
595 
596       // Register/Clobber.
597       if (Op.isReg() && isDef) {
598         std::string Reg;
599         llvm::raw_string_ostream OS(Reg);
600         IP->printRegName(OS, Op.getReg());
601 
602         StringRef Clobber(OS.str());
603         if (!Context.getTargetInfo().isValidClobber(Clobber))
604           return StmtError(Diag(AsmLoc, diag::err_asm_unknown_register_name) <<
605                            Clobber);
606         ClobberRegs.insert(Reg);
607         continue;
608       }
609       // Expr/Input or Output.
610       if (Op.isExpr()) {
611         const llvm::MCExpr *Expr = Op.getExpr();
612         const llvm::MCSymbolRefExpr *SymRef;
613         if ((SymRef = dyn_cast<llvm::MCSymbolRefExpr>(Expr))) {
614           StringRef Name = SymRef->getSymbol().getName();
615           IdentifierInfo *II = getIdentifierInfo(Name, AsmToks,
616                                                  AsmTokRanges[StrIdx].first,
617                                                  AsmTokRanges[StrIdx].second);
618           if (II) {
619             CXXScopeSpec SS;
620             UnqualifiedId Id;
621             SourceLocation Loc;
622             Id.setIdentifier(II, AsmLoc);
623             ExprResult Result = ActOnIdExpression(getCurScope(), SS, Loc, Id,
624                                                   false, false);
625             if (!Result.isInvalid()) {
626               bool isMemDef = (i == 1) && Desc.mayStore();
627               if (isDef || isMemDef) {
628                 Outputs.push_back(II);
629                 OutputExprs.push_back(Result.take());
630                 OutputExprNames.push_back(Name.str());
631                 OutputConstraints.push_back("=r");
632               } else {
633                 Inputs.push_back(II);
634                 InputExprs.push_back(Result.take());
635                 InputExprNames.push_back(Name.str());
636                 InputConstraints.push_back("r");
637               }
638             }
639           }
640         }
641       }
642     }
643   }
644   for (std::set<std::string>::iterator I = ClobberRegs.begin(),
645          E = ClobberRegs.end(); I != E; ++I)
646     Clobbers.push_back(*I);
647 
648   // Merge the output and input constraints.  Output constraints are expected
649   // first.
650   for (std::vector<std::string>::iterator I = OutputConstraints.begin(),
651          E = OutputConstraints.end(); I != E; ++I)
652     Constraints.push_back(*I);
653 
654   for (std::vector<std::string>::iterator I = InputConstraints.begin(),
655          E = InputConstraints.end(); I != E; ++I)
656     Constraints.push_back(*I);
657 
658   // Enumerate the AsmString expressions.
659   // FIXME: This isn't going to work if:
660   //  1. The symbol name and an opcode/reg share the same, or are a substring of
661   //     the, name.
662   //  2. The symbol name appears more then once in the asm string.
663   unsigned OpNum = 0;
664   for (unsigned i = 0, e = OutputExprNames.size(); i != e; ++i, ++OpNum) {
665     size_t found = AsmString.find(OutputExprNames[i]);
666     SmallString<32> Res;
667     llvm::raw_svector_ostream OS(Res);
668     OS << '$' << OpNum;
669     AsmString.replace(found, OutputExprNames[i].size(), OS.str());
670   }
671   for (unsigned i = 0, e = InputExprNames.size(); i != e; ++i, ++OpNum) {
672     size_t found = AsmString.find(InputExprNames[i]);
673     SmallString<32> Res;
674     llvm::raw_svector_ostream OS(Res);
675     OS << '$' << OpNum;
676     AsmString.replace(found, InputExprNames[i].size(), OS.str());
677   }
678 
679   MSAsmStmt *NS =
680     new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, IsSimple,
681                             /*IsVolatile*/ true, AsmToks, Inputs, Outputs,
682                             InputExprs, OutputExprs, AsmString, Constraints,
683                             Clobbers, EndLoc);
684   return Owned(NS);
685 }
686