• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
6 // Copyright (C) 2009 Kenneth Riddile <kfriddile@yahoo.com>
7 // Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
8 // Copyright (C) 2010 Thomas Capricelli <orzel@freehackers.org>
9 //
10 // This Source Code Form is subject to the terms of the Mozilla
11 // Public License v. 2.0. If a copy of the MPL was not distributed
12 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
13 
14 
15 /*****************************************************************************
16 *** Platform checks for aligned malloc functions                           ***
17 *****************************************************************************/
18 
19 #ifndef EIGEN_MEMORY_H
20 #define EIGEN_MEMORY_H
21 
22 // On 64-bit systems, glibc's malloc returns 16-byte-aligned pointers, see:
23 //   http://www.gnu.org/s/libc/manual/html_node/Aligned-Memory-Blocks.html
24 // This is true at least since glibc 2.8.
25 // This leaves the question how to detect 64-bit. According to this document,
26 //   http://gcc.fyxm.net/summit/2003/Porting%20to%2064%20bit.pdf
27 // page 114, "[The] LP64 model [...] is used by all 64-bit UNIX ports" so it's indeed
28 // quite safe, at least within the context of glibc, to equate 64-bit with LP64.
29 #if defined(__GLIBC__) && ((__GLIBC__>=2 && __GLIBC_MINOR__ >= 8) || __GLIBC__>2) \
30  && defined(__LP64__)
31   #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 1
32 #else
33   #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 0
34 #endif
35 
36 // FreeBSD 6 seems to have 16-byte aligned malloc
37 //   See http://svn.freebsd.org/viewvc/base/stable/6/lib/libc/stdlib/malloc.c?view=markup
38 // FreeBSD 7 seems to have 16-byte aligned malloc except on ARM and MIPS architectures
39 //   See http://svn.freebsd.org/viewvc/base/stable/7/lib/libc/stdlib/malloc.c?view=markup
40 #if defined(__FreeBSD__) && !defined(__arm__) && !defined(__mips__)
41   #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 1
42 #else
43   #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 0
44 #endif
45 
46 #if defined(__APPLE__) \
47  || defined(_WIN64) \
48  || EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED \
49  || EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED
50   #define EIGEN_MALLOC_ALREADY_ALIGNED 1
51 #else
52   #define EIGEN_MALLOC_ALREADY_ALIGNED 0
53 #endif
54 
55 #if ((defined __QNXNTO__) || (defined _GNU_SOURCE) || ((defined _XOPEN_SOURCE) && (_XOPEN_SOURCE >= 600))) \
56  && (defined _POSIX_ADVISORY_INFO) && (_POSIX_ADVISORY_INFO > 0)
57   #define EIGEN_HAS_POSIX_MEMALIGN 1
58 #else
59   #define EIGEN_HAS_POSIX_MEMALIGN 0
60 #endif
61 
62 #ifdef EIGEN_VECTORIZE_SSE
63   #define EIGEN_HAS_MM_MALLOC 1
64 #else
65   #define EIGEN_HAS_MM_MALLOC 0
66 #endif
67 
68 namespace Eigen {
69 
70 namespace internal {
71 
throw_std_bad_alloc()72 inline void throw_std_bad_alloc()
73 {
74   #ifdef EIGEN_EXCEPTIONS
75     throw std::bad_alloc();
76   #else
77     std::size_t huge = -1;
78     new int[huge];
79   #endif
80 }
81 
82 /*****************************************************************************
83 *** Implementation of handmade aligned functions                           ***
84 *****************************************************************************/
85 
86 /* ----- Hand made implementations of aligned malloc/free and realloc ----- */
87 
88 /** \internal Like malloc, but the returned pointer is guaranteed to be 16-byte aligned.
89   * Fast, but wastes 16 additional bytes of memory. Does not throw any exception.
90   */
handmade_aligned_malloc(size_t size)91 inline void* handmade_aligned_malloc(size_t size)
92 {
93   void *original = std::malloc(size+16);
94   if (original == 0) return 0;
95   void *aligned = reinterpret_cast<void*>((reinterpret_cast<size_t>(original) & ~(size_t(15))) + 16);
96   *(reinterpret_cast<void**>(aligned) - 1) = original;
97   return aligned;
98 }
99 
100 /** \internal Frees memory allocated with handmade_aligned_malloc */
handmade_aligned_free(void * ptr)101 inline void handmade_aligned_free(void *ptr)
102 {
103   if (ptr) std::free(*(reinterpret_cast<void**>(ptr) - 1));
104 }
105 
106 /** \internal
107   * \brief Reallocates aligned memory.
108   * Since we know that our handmade version is based on std::realloc
109   * we can use std::realloc to implement efficient reallocation.
110   */
111 inline void* handmade_aligned_realloc(void* ptr, size_t size, size_t = 0)
112 {
113   if (ptr == 0) return handmade_aligned_malloc(size);
114   void *original = *(reinterpret_cast<void**>(ptr) - 1);
115   original = std::realloc(original,size+16);
116   if (original == 0) return 0;
117   void *aligned = reinterpret_cast<void*>((reinterpret_cast<size_t>(original) & ~(size_t(15))) + 16);
118   *(reinterpret_cast<void**>(aligned) - 1) = original;
119   return aligned;
120 }
121 
122 /*****************************************************************************
123 *** Implementation of generic aligned realloc (when no realloc can be used)***
124 *****************************************************************************/
125 
126 void* aligned_malloc(size_t size);
127 void  aligned_free(void *ptr);
128 
129 /** \internal
130   * \brief Reallocates aligned memory.
131   * Allows reallocation with aligned ptr types. This implementation will
132   * always create a new memory chunk and copy the old data.
133   */
generic_aligned_realloc(void * ptr,size_t size,size_t old_size)134 inline void* generic_aligned_realloc(void* ptr, size_t size, size_t old_size)
135 {
136   if (ptr==0)
137     return aligned_malloc(size);
138 
139   if (size==0)
140   {
141     aligned_free(ptr);
142     return 0;
143   }
144 
145   void* newptr = aligned_malloc(size);
146   if (newptr == 0)
147   {
148     #ifdef EIGEN_HAS_ERRNO
149     errno = ENOMEM; // according to the standard
150     #endif
151     return 0;
152   }
153 
154   if (ptr != 0)
155   {
156     std::memcpy(newptr, ptr, (std::min)(size,old_size));
157     aligned_free(ptr);
158   }
159 
160   return newptr;
161 }
162 
163 /*****************************************************************************
164 *** Implementation of portable aligned versions of malloc/free/realloc     ***
165 *****************************************************************************/
166 
167 #ifdef EIGEN_NO_MALLOC
check_that_malloc_is_allowed()168 inline void check_that_malloc_is_allowed()
169 {
170   eigen_assert(false && "heap allocation is forbidden (EIGEN_NO_MALLOC is defined)");
171 }
172 #elif defined EIGEN_RUNTIME_NO_MALLOC
173 inline bool is_malloc_allowed_impl(bool update, bool new_value = false)
174 {
175   static bool value = true;
176   if (update == 1)
177     value = new_value;
178   return value;
179 }
is_malloc_allowed()180 inline bool is_malloc_allowed() { return is_malloc_allowed_impl(false); }
set_is_malloc_allowed(bool new_value)181 inline bool set_is_malloc_allowed(bool new_value) { return is_malloc_allowed_impl(true, new_value); }
check_that_malloc_is_allowed()182 inline void check_that_malloc_is_allowed()
183 {
184   eigen_assert(is_malloc_allowed() && "heap allocation is forbidden (EIGEN_RUNTIME_NO_MALLOC is defined and g_is_malloc_allowed is false)");
185 }
186 #else
check_that_malloc_is_allowed()187 inline void check_that_malloc_is_allowed()
188 {}
189 #endif
190 
191 /** \internal Allocates \a size bytes. The returned pointer is guaranteed to have 16 bytes alignment.
192   * On allocation error, the returned pointer is null, and std::bad_alloc is thrown.
193   */
aligned_malloc(size_t size)194 inline void* aligned_malloc(size_t size)
195 {
196   check_that_malloc_is_allowed();
197 
198   void *result;
199   #if !EIGEN_ALIGN
200     result = std::malloc(size);
201   #elif EIGEN_MALLOC_ALREADY_ALIGNED
202     result = std::malloc(size);
203   #elif EIGEN_HAS_POSIX_MEMALIGN
204     if(posix_memalign(&result, 16, size)) result = 0;
205   #elif EIGEN_HAS_MM_MALLOC
206     result = _mm_malloc(size, 16);
207   #elif (defined _MSC_VER)
208     result = _aligned_malloc(size, 16);
209   #else
210     result = handmade_aligned_malloc(size);
211   #endif
212 
213   if(!result && size)
214     throw_std_bad_alloc();
215 
216   return result;
217 }
218 
219 /** \internal Frees memory allocated with aligned_malloc. */
aligned_free(void * ptr)220 inline void aligned_free(void *ptr)
221 {
222   #if !EIGEN_ALIGN
223     std::free(ptr);
224   #elif EIGEN_MALLOC_ALREADY_ALIGNED
225     std::free(ptr);
226   #elif EIGEN_HAS_POSIX_MEMALIGN
227     std::free(ptr);
228   #elif EIGEN_HAS_MM_MALLOC
229     _mm_free(ptr);
230   #elif defined(_MSC_VER)
231     _aligned_free(ptr);
232   #else
233     handmade_aligned_free(ptr);
234   #endif
235 }
236 
237 /**
238 * \internal
239 * \brief Reallocates an aligned block of memory.
240 * \throws std::bad_alloc on allocation failure
241 **/
aligned_realloc(void * ptr,size_t new_size,size_t old_size)242 inline void* aligned_realloc(void *ptr, size_t new_size, size_t old_size)
243 {
244   EIGEN_UNUSED_VARIABLE(old_size);
245 
246   void *result;
247 #if !EIGEN_ALIGN
248   result = std::realloc(ptr,new_size);
249 #elif EIGEN_MALLOC_ALREADY_ALIGNED
250   result = std::realloc(ptr,new_size);
251 #elif EIGEN_HAS_POSIX_MEMALIGN
252   result = generic_aligned_realloc(ptr,new_size,old_size);
253 #elif EIGEN_HAS_MM_MALLOC
254   // The defined(_mm_free) is just here to verify that this MSVC version
255   // implements _mm_malloc/_mm_free based on the corresponding _aligned_
256   // functions. This may not always be the case and we just try to be safe.
257   #if defined(_MSC_VER) && defined(_mm_free)
258     result = _aligned_realloc(ptr,new_size,16);
259   #else
260     result = generic_aligned_realloc(ptr,new_size,old_size);
261   #endif
262 #elif defined(_MSC_VER)
263   result = _aligned_realloc(ptr,new_size,16);
264 #else
265   result = handmade_aligned_realloc(ptr,new_size,old_size);
266 #endif
267 
268   if (!result && new_size)
269     throw_std_bad_alloc();
270 
271   return result;
272 }
273 
274 /*****************************************************************************
275 *** Implementation of conditionally aligned functions                      ***
276 *****************************************************************************/
277 
278 /** \internal Allocates \a size bytes. If Align is true, then the returned ptr is 16-byte-aligned.
279   * On allocation error, the returned pointer is null, and a std::bad_alloc is thrown.
280   */
conditional_aligned_malloc(size_t size)281 template<bool Align> inline void* conditional_aligned_malloc(size_t size)
282 {
283   return aligned_malloc(size);
284 }
285 
286 template<> inline void* conditional_aligned_malloc<false>(size_t size)
287 {
288   check_that_malloc_is_allowed();
289 
290   void *result = std::malloc(size);
291   if(!result && size)
292     throw_std_bad_alloc();
293   return result;
294 }
295 
296 /** \internal Frees memory allocated with conditional_aligned_malloc */
conditional_aligned_free(void * ptr)297 template<bool Align> inline void conditional_aligned_free(void *ptr)
298 {
299   aligned_free(ptr);
300 }
301 
302 template<> inline void conditional_aligned_free<false>(void *ptr)
303 {
304   std::free(ptr);
305 }
306 
conditional_aligned_realloc(void * ptr,size_t new_size,size_t old_size)307 template<bool Align> inline void* conditional_aligned_realloc(void* ptr, size_t new_size, size_t old_size)
308 {
309   return aligned_realloc(ptr, new_size, old_size);
310 }
311 
312 template<> inline void* conditional_aligned_realloc<false>(void* ptr, size_t new_size, size_t)
313 {
314   return std::realloc(ptr, new_size);
315 }
316 
317 /*****************************************************************************
318 *** Construction/destruction of array elements                             ***
319 *****************************************************************************/
320 
321 /** \internal Constructs the elements of an array.
322   * The \a size parameter tells on how many objects to call the constructor of T.
323   */
construct_elements_of_array(T * ptr,size_t size)324 template<typename T> inline T* construct_elements_of_array(T *ptr, size_t size)
325 {
326   for (size_t i=0; i < size; ++i) ::new (ptr + i) T;
327   return ptr;
328 }
329 
330 /** \internal Destructs the elements of an array.
331   * The \a size parameters tells on how many objects to call the destructor of T.
332   */
destruct_elements_of_array(T * ptr,size_t size)333 template<typename T> inline void destruct_elements_of_array(T *ptr, size_t size)
334 {
335   // always destruct an array starting from the end.
336   if(ptr)
337     while(size) ptr[--size].~T();
338 }
339 
340 /*****************************************************************************
341 *** Implementation of aligned new/delete-like functions                    ***
342 *****************************************************************************/
343 
344 template<typename T>
check_size_for_overflow(size_t size)345 EIGEN_ALWAYS_INLINE void check_size_for_overflow(size_t size)
346 {
347   if(size > size_t(-1) / sizeof(T))
348     throw_std_bad_alloc();
349 }
350 
351 /** \internal Allocates \a size objects of type T. The returned pointer is guaranteed to have 16 bytes alignment.
352   * On allocation error, the returned pointer is undefined, but a std::bad_alloc is thrown.
353   * The default constructor of T is called.
354   */
aligned_new(size_t size)355 template<typename T> inline T* aligned_new(size_t size)
356 {
357   check_size_for_overflow<T>(size);
358   T *result = reinterpret_cast<T*>(aligned_malloc(sizeof(T)*size));
359   return construct_elements_of_array(result, size);
360 }
361 
conditional_aligned_new(size_t size)362 template<typename T, bool Align> inline T* conditional_aligned_new(size_t size)
363 {
364   check_size_for_overflow<T>(size);
365   T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
366   return construct_elements_of_array(result, size);
367 }
368 
369 /** \internal Deletes objects constructed with aligned_new
370   * The \a size parameters tells on how many objects to call the destructor of T.
371   */
aligned_delete(T * ptr,size_t size)372 template<typename T> inline void aligned_delete(T *ptr, size_t size)
373 {
374   destruct_elements_of_array<T>(ptr, size);
375   aligned_free(ptr);
376 }
377 
378 /** \internal Deletes objects constructed with conditional_aligned_new
379   * The \a size parameters tells on how many objects to call the destructor of T.
380   */
conditional_aligned_delete(T * ptr,size_t size)381 template<typename T, bool Align> inline void conditional_aligned_delete(T *ptr, size_t size)
382 {
383   destruct_elements_of_array<T>(ptr, size);
384   conditional_aligned_free<Align>(ptr);
385 }
386 
conditional_aligned_realloc_new(T * pts,size_t new_size,size_t old_size)387 template<typename T, bool Align> inline T* conditional_aligned_realloc_new(T* pts, size_t new_size, size_t old_size)
388 {
389   check_size_for_overflow<T>(new_size);
390   check_size_for_overflow<T>(old_size);
391   if(new_size < old_size)
392     destruct_elements_of_array(pts+new_size, old_size-new_size);
393   T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
394   if(new_size > old_size)
395     construct_elements_of_array(result+old_size, new_size-old_size);
396   return result;
397 }
398 
399 
conditional_aligned_new_auto(size_t size)400 template<typename T, bool Align> inline T* conditional_aligned_new_auto(size_t size)
401 {
402   check_size_for_overflow<T>(size);
403   T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
404   if(NumTraits<T>::RequireInitialization)
405     construct_elements_of_array(result, size);
406   return result;
407 }
408 
conditional_aligned_realloc_new_auto(T * pts,size_t new_size,size_t old_size)409 template<typename T, bool Align> inline T* conditional_aligned_realloc_new_auto(T* pts, size_t new_size, size_t old_size)
410 {
411   check_size_for_overflow<T>(new_size);
412   check_size_for_overflow<T>(old_size);
413   if(NumTraits<T>::RequireInitialization && (new_size < old_size))
414     destruct_elements_of_array(pts+new_size, old_size-new_size);
415   T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
416   if(NumTraits<T>::RequireInitialization && (new_size > old_size))
417     construct_elements_of_array(result+old_size, new_size-old_size);
418   return result;
419 }
420 
conditional_aligned_delete_auto(T * ptr,size_t size)421 template<typename T, bool Align> inline void conditional_aligned_delete_auto(T *ptr, size_t size)
422 {
423   if(NumTraits<T>::RequireInitialization)
424     destruct_elements_of_array<T>(ptr, size);
425   conditional_aligned_free<Align>(ptr);
426 }
427 
428 /****************************************************************************/
429 
430 /** \internal Returns the index of the first element of the array that is well aligned for vectorization.
431   *
432   * \param array the address of the start of the array
433   * \param size the size of the array
434   *
435   * \note If no element of the array is well aligned, the size of the array is returned. Typically,
436   * for example with SSE, "well aligned" means 16-byte-aligned. If vectorization is disabled or if the
437   * packet size for the given scalar type is 1, then everything is considered well-aligned.
438   *
439   * \note If the scalar type is vectorizable, we rely on the following assumptions: sizeof(Scalar) is a
440   * power of 2, the packet size in bytes is also a power of 2, and is a multiple of sizeof(Scalar). On the
441   * other hand, we do not assume that the array address is a multiple of sizeof(Scalar), as that fails for
442   * example with Scalar=double on certain 32-bit platforms, see bug #79.
443   *
444   * There is also the variant first_aligned(const MatrixBase&) defined in DenseCoeffsBase.h.
445   */
446 template<typename Scalar, typename Index>
first_aligned(const Scalar * array,Index size)447 static inline Index first_aligned(const Scalar* array, Index size)
448 {
449   typedef typename packet_traits<Scalar>::type Packet;
450   enum { PacketSize = packet_traits<Scalar>::size,
451          PacketAlignedMask = PacketSize-1
452   };
453 
454   if(PacketSize==1)
455   {
456     // Either there is no vectorization, or a packet consists of exactly 1 scalar so that all elements
457     // of the array have the same alignment.
458     return 0;
459   }
460   else if(size_t(array) & (sizeof(Scalar)-1))
461   {
462     // There is vectorization for this scalar type, but the array is not aligned to the size of a single scalar.
463     // Consequently, no element of the array is well aligned.
464     return size;
465   }
466   else
467   {
468     return std::min<Index>( (PacketSize - (Index((size_t(array)/sizeof(Scalar))) & PacketAlignedMask))
469                            & PacketAlignedMask, size);
470   }
471 }
472 
473 
474 // std::copy is much slower than memcpy, so let's introduce a smart_copy which
475 // use memcpy on trivial types, i.e., on types that does not require an initialization ctor.
476 template<typename T, bool UseMemcpy> struct smart_copy_helper;
477 
smart_copy(const T * start,const T * end,T * target)478 template<typename T> void smart_copy(const T* start, const T* end, T* target)
479 {
480   smart_copy_helper<T,!NumTraits<T>::RequireInitialization>::run(start, end, target);
481 }
482 
483 template<typename T> struct smart_copy_helper<T,true> {
484   static inline void run(const T* start, const T* end, T* target)
485   { memcpy(target, start, std::ptrdiff_t(end)-std::ptrdiff_t(start)); }
486 };
487 
488 template<typename T> struct smart_copy_helper<T,false> {
489   static inline void run(const T* start, const T* end, T* target)
490   { std::copy(start, end, target); }
491 };
492 
493 
494 /*****************************************************************************
495 *** Implementation of runtime stack allocation (falling back to malloc)    ***
496 *****************************************************************************/
497 
498 // you can overwrite Eigen's default behavior regarding alloca by defining EIGEN_ALLOCA
499 // to the appropriate stack allocation function
500 #ifndef EIGEN_ALLOCA
501   #if (defined __linux__)
502     #define EIGEN_ALLOCA alloca
503   #elif defined(_MSC_VER)
504     #define EIGEN_ALLOCA _alloca
505   #endif
506 #endif
507 
508 // This helper class construct the allocated memory, and takes care of destructing and freeing the handled data
509 // at destruction time. In practice this helper class is mainly useful to avoid memory leak in case of exceptions.
510 template<typename T> class aligned_stack_memory_handler
511 {
512   public:
513     /* Creates a stack_memory_handler responsible for the buffer \a ptr of size \a size.
514      * Note that \a ptr can be 0 regardless of the other parameters.
515      * This constructor takes care of constructing/initializing the elements of the buffer if required by the scalar type T (see NumTraits<T>::RequireInitialization).
516      * In this case, the buffer elements will also be destructed when this handler will be destructed.
517      * Finally, if \a dealloc is true, then the pointer \a ptr is freed.
518      **/
519     aligned_stack_memory_handler(T* ptr, size_t size, bool dealloc)
520       : m_ptr(ptr), m_size(size), m_deallocate(dealloc)
521     {
522       if(NumTraits<T>::RequireInitialization && m_ptr)
523         Eigen::internal::construct_elements_of_array(m_ptr, size);
524     }
525     ~aligned_stack_memory_handler()
526     {
527       if(NumTraits<T>::RequireInitialization && m_ptr)
528         Eigen::internal::destruct_elements_of_array<T>(m_ptr, m_size);
529       if(m_deallocate)
530         Eigen::internal::aligned_free(m_ptr);
531     }
532   protected:
533     T* m_ptr;
534     size_t m_size;
535     bool m_deallocate;
536 };
537 
538 } // end namespace internal
539 
540 /** \internal
541   * Declares, allocates and construct an aligned buffer named NAME of SIZE elements of type TYPE on the stack
542   * if SIZE is smaller than EIGEN_STACK_ALLOCATION_LIMIT, and if stack allocation is supported by the platform
543   * (currently, this is Linux and Visual Studio only). Otherwise the memory is allocated on the heap.
544   * The allocated buffer is automatically deleted when exiting the scope of this declaration.
545   * If BUFFER is non null, then the declared variable is simply an alias for BUFFER, and no allocation/deletion occurs.
546   * Here is an example:
547   * \code
548   * {
549   *   ei_declare_aligned_stack_constructed_variable(float,data,size,0);
550   *   // use data[0] to data[size-1]
551   * }
552   * \endcode
553   * The underlying stack allocation function can controlled with the EIGEN_ALLOCA preprocessor token.
554   */
555 #ifdef EIGEN_ALLOCA
556 
557   #ifdef __arm__
558     #define EIGEN_ALIGNED_ALLOCA(SIZE) reinterpret_cast<void*>((reinterpret_cast<size_t>(EIGEN_ALLOCA(SIZE+16)) & ~(size_t(15))) + 16)
559   #else
560     #define EIGEN_ALIGNED_ALLOCA EIGEN_ALLOCA
561   #endif
562 
563   #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \
564     Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \
565     TYPE* NAME = (BUFFER)!=0 ? (BUFFER) \
566                : reinterpret_cast<TYPE*>( \
567                       (sizeof(TYPE)*SIZE<=EIGEN_STACK_ALLOCATION_LIMIT) ? EIGEN_ALIGNED_ALLOCA(sizeof(TYPE)*SIZE) \
568                     : Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE) );  \
569     Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,sizeof(TYPE)*SIZE>EIGEN_STACK_ALLOCATION_LIMIT)
570 
571 #else
572 
573   #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \
574     Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \
575     TYPE* NAME = (BUFFER)!=0 ? BUFFER : reinterpret_cast<TYPE*>(Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE));    \
576     Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,true)
577 
578 #endif
579 
580 
581 /*****************************************************************************
582 *** Implementation of EIGEN_MAKE_ALIGNED_OPERATOR_NEW [_IF]                ***
583 *****************************************************************************/
584 
585 #if EIGEN_ALIGN
586   #ifdef EIGEN_EXCEPTIONS
587     #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
588       void* operator new(size_t size, const std::nothrow_t&) throw() { \
589         try { return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); } \
590         catch (...) { return 0; } \
591         return 0; \
592       }
593   #else
594     #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
595       void* operator new(size_t size, const std::nothrow_t&) throw() { \
596         return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
597       }
598   #endif
599 
600   #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) \
601       void *operator new(size_t size) { \
602         return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
603       } \
604       void *operator new[](size_t size) { \
605         return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
606       } \
607       void operator delete(void * ptr) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
608       void operator delete[](void * ptr) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
609       /* in-place new and delete. since (at least afaik) there is no actual   */ \
610       /* memory allocated we can safely let the default implementation handle */ \
611       /* this particular case. */ \
612       static void *operator new(size_t size, void *ptr) { return ::operator new(size,ptr); } \
613       void operator delete(void * memory, void *ptr) throw() { return ::operator delete(memory,ptr); } \
614       /* nothrow-new (returns zero instead of std::bad_alloc) */ \
615       EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
616       void operator delete(void *ptr, const std::nothrow_t&) throw() { \
617         Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); \
618       } \
619       typedef void eigen_aligned_operator_new_marker_type;
620 #else
621   #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
622 #endif
623 
624 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(true)
625 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar,Size) \
626   EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(((Size)!=Eigen::Dynamic) && ((sizeof(Scalar)*(Size))%16==0)))
627 
628 /****************************************************************************/
629 
630 /** \class aligned_allocator
631 * \ingroup Core_Module
632 *
633 * \brief STL compatible allocator to use with with 16 byte aligned types
634 *
635 * Example:
636 * \code
637 * // Matrix4f requires 16 bytes alignment:
638 * std::map< int, Matrix4f, std::less<int>,
639 *           aligned_allocator<std::pair<const int, Matrix4f> > > my_map_mat4;
640 * // Vector3f does not require 16 bytes alignment, no need to use Eigen's allocator:
641 * std::map< int, Vector3f > my_map_vec3;
642 * \endcode
643 *
644 * \sa \ref TopicStlContainers.
645 */
646 template<class T>
647 class aligned_allocator
648 {
649 public:
650     typedef size_t    size_type;
651     typedef std::ptrdiff_t difference_type;
652     typedef T*        pointer;
653     typedef const T*  const_pointer;
654     typedef T&        reference;
655     typedef const T&  const_reference;
656     typedef T         value_type;
657 
658     template<class U>
659     struct rebind
660     {
661         typedef aligned_allocator<U> other;
662     };
663 
664     pointer address( reference value ) const
665     {
666         return &value;
667     }
668 
669     const_pointer address( const_reference value ) const
670     {
671         return &value;
672     }
673 
674     aligned_allocator()
675     {
676     }
677 
678     aligned_allocator( const aligned_allocator& )
679     {
680     }
681 
682     template<class U>
683     aligned_allocator( const aligned_allocator<U>& )
684     {
685     }
686 
687     ~aligned_allocator()
688     {
689     }
690 
691     size_type max_size() const
692     {
693         return (std::numeric_limits<size_type>::max)();
694     }
695 
696     pointer allocate( size_type num, const void* hint = 0 )
697     {
698         EIGEN_UNUSED_VARIABLE(hint);
699         internal::check_size_for_overflow<T>(num);
700         return static_cast<pointer>( internal::aligned_malloc( num * sizeof(T) ) );
701     }
702 
703     void construct( pointer p, const T& value )
704     {
705         ::new( p ) T( value );
706     }
707 
708     // Support for c++11
709 #if (__cplusplus >= 201103L)
710     template<typename... Args>
711     void  construct(pointer p, Args&&... args)
712     {
713       ::new(p) T(std::forward<Args>(args)...);
714     }
715 #endif
716 
717     void destroy( pointer p )
718     {
719         p->~T();
720     }
721 
722     void deallocate( pointer p, size_type /*num*/ )
723     {
724         internal::aligned_free( p );
725     }
726 
727     bool operator!=(const aligned_allocator<T>& ) const
728     { return false; }
729 
730     bool operator==(const aligned_allocator<T>& ) const
731     { return true; }
732 };
733 
734 //---------- Cache sizes ----------
735 
736 #if !defined(EIGEN_NO_CPUID)
737 #  if defined(__GNUC__) && ( defined(__i386__) || defined(__x86_64__) )
738 #    if defined(__PIC__) && defined(__i386__)
739        // Case for x86 with PIC
740 #      define EIGEN_CPUID(abcd,func,id) \
741          __asm__ __volatile__ ("xchgl %%ebx, %%esi;cpuid; xchgl %%ebx,%%esi": "=a" (abcd[0]), "=S" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "a" (func), "c" (id));
742 #    else
743        // Case for x86_64 or x86 w/o PIC
744 #      define EIGEN_CPUID(abcd,func,id) \
745          __asm__ __volatile__ ("cpuid": "=a" (abcd[0]), "=b" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "a" (func), "c" (id) );
746 #    endif
747 #  elif defined(_MSC_VER)
748 #    if (_MSC_VER > 1500)
749 #      define EIGEN_CPUID(abcd,func,id) __cpuidex((int*)abcd,func,id)
750 #    endif
751 #  endif
752 #endif
753 
754 namespace internal {
755 
756 #ifdef EIGEN_CPUID
757 
758 inline bool cpuid_is_vendor(int abcd[4], const char* vendor)
759 {
760   return abcd[1]==(reinterpret_cast<const int*>(vendor))[0] && abcd[3]==(reinterpret_cast<const int*>(vendor))[1] && abcd[2]==(reinterpret_cast<const int*>(vendor))[2];
761 }
762 
763 inline void queryCacheSizes_intel_direct(int& l1, int& l2, int& l3)
764 {
765   int abcd[4];
766   l1 = l2 = l3 = 0;
767   int cache_id = 0;
768   int cache_type = 0;
769   do {
770     abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
771     EIGEN_CPUID(abcd,0x4,cache_id);
772     cache_type  = (abcd[0] & 0x0F) >> 0;
773     if(cache_type==1||cache_type==3) // data or unified cache
774     {
775       int cache_level = (abcd[0] & 0xE0) >> 5;  // A[7:5]
776       int ways        = (abcd[1] & 0xFFC00000) >> 22; // B[31:22]
777       int partitions  = (abcd[1] & 0x003FF000) >> 12; // B[21:12]
778       int line_size   = (abcd[1] & 0x00000FFF) >>  0; // B[11:0]
779       int sets        = (abcd[2]);                    // C[31:0]
780 
781       int cache_size = (ways+1) * (partitions+1) * (line_size+1) * (sets+1);
782 
783       switch(cache_level)
784       {
785         case 1: l1 = cache_size; break;
786         case 2: l2 = cache_size; break;
787         case 3: l3 = cache_size; break;
788         default: break;
789       }
790     }
791     cache_id++;
792   } while(cache_type>0 && cache_id<16);
793 }
794 
795 inline void queryCacheSizes_intel_codes(int& l1, int& l2, int& l3)
796 {
797   int abcd[4];
798   abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
799   l1 = l2 = l3 = 0;
800   EIGEN_CPUID(abcd,0x00000002,0);
801   unsigned char * bytes = reinterpret_cast<unsigned char *>(abcd)+2;
802   bool check_for_p2_core2 = false;
803   for(int i=0; i<14; ++i)
804   {
805     switch(bytes[i])
806     {
807       case 0x0A: l1 = 8; break;   // 0Ah   data L1 cache, 8 KB, 2 ways, 32 byte lines
808       case 0x0C: l1 = 16; break;  // 0Ch   data L1 cache, 16 KB, 4 ways, 32 byte lines
809       case 0x0E: l1 = 24; break;  // 0Eh   data L1 cache, 24 KB, 6 ways, 64 byte lines
810       case 0x10: l1 = 16; break;  // 10h   data L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64)
811       case 0x15: l1 = 16; break;  // 15h   code L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64)
812       case 0x2C: l1 = 32; break;  // 2Ch   data L1 cache, 32 KB, 8 ways, 64 byte lines
813       case 0x30: l1 = 32; break;  // 30h   code L1 cache, 32 KB, 8 ways, 64 byte lines
814       case 0x60: l1 = 16; break;  // 60h   data L1 cache, 16 KB, 8 ways, 64 byte lines, sectored
815       case 0x66: l1 = 8; break;   // 66h   data L1 cache, 8 KB, 4 ways, 64 byte lines, sectored
816       case 0x67: l1 = 16; break;  // 67h   data L1 cache, 16 KB, 4 ways, 64 byte lines, sectored
817       case 0x68: l1 = 32; break;  // 68h   data L1 cache, 32 KB, 4 ways, 64 byte lines, sectored
818       case 0x1A: l2 = 96; break;   // code and data L2 cache, 96 KB, 6 ways, 64 byte lines (IA-64)
819       case 0x22: l3 = 512; break;   // code and data L3 cache, 512 KB, 4 ways (!), 64 byte lines, dual-sectored
820       case 0x23: l3 = 1024; break;   // code and data L3 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored
821       case 0x25: l3 = 2048; break;   // code and data L3 cache, 2048 KB, 8 ways, 64 byte lines, dual-sectored
822       case 0x29: l3 = 4096; break;   // code and data L3 cache, 4096 KB, 8 ways, 64 byte lines, dual-sectored
823       case 0x39: l2 = 128; break;   // code and data L2 cache, 128 KB, 4 ways, 64 byte lines, sectored
824       case 0x3A: l2 = 192; break;   // code and data L2 cache, 192 KB, 6 ways, 64 byte lines, sectored
825       case 0x3B: l2 = 128; break;   // code and data L2 cache, 128 KB, 2 ways, 64 byte lines, sectored
826       case 0x3C: l2 = 256; break;   // code and data L2 cache, 256 KB, 4 ways, 64 byte lines, sectored
827       case 0x3D: l2 = 384; break;   // code and data L2 cache, 384 KB, 6 ways, 64 byte lines, sectored
828       case 0x3E: l2 = 512; break;   // code and data L2 cache, 512 KB, 4 ways, 64 byte lines, sectored
829       case 0x40: l2 = 0; break;   // no integrated L2 cache (P6 core) or L3 cache (P4 core)
830       case 0x41: l2 = 128; break;   // code and data L2 cache, 128 KB, 4 ways, 32 byte lines
831       case 0x42: l2 = 256; break;   // code and data L2 cache, 256 KB, 4 ways, 32 byte lines
832       case 0x43: l2 = 512; break;   // code and data L2 cache, 512 KB, 4 ways, 32 byte lines
833       case 0x44: l2 = 1024; break;   // code and data L2 cache, 1024 KB, 4 ways, 32 byte lines
834       case 0x45: l2 = 2048; break;   // code and data L2 cache, 2048 KB, 4 ways, 32 byte lines
835       case 0x46: l3 = 4096; break;   // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines
836       case 0x47: l3 = 8192; break;   // code and data L3 cache, 8192 KB, 8 ways, 64 byte lines
837       case 0x48: l2 = 3072; break;   // code and data L2 cache, 3072 KB, 12 ways, 64 byte lines
838       case 0x49: if(l2!=0) l3 = 4096; else {check_for_p2_core2=true; l3 = l2 = 4096;} break;// code and data L3 cache, 4096 KB, 16 ways, 64 byte lines (P4) or L2 for core2
839       case 0x4A: l3 = 6144; break;   // code and data L3 cache, 6144 KB, 12 ways, 64 byte lines
840       case 0x4B: l3 = 8192; break;   // code and data L3 cache, 8192 KB, 16 ways, 64 byte lines
841       case 0x4C: l3 = 12288; break;   // code and data L3 cache, 12288 KB, 12 ways, 64 byte lines
842       case 0x4D: l3 = 16384; break;   // code and data L3 cache, 16384 KB, 16 ways, 64 byte lines
843       case 0x4E: l2 = 6144; break;   // code and data L2 cache, 6144 KB, 24 ways, 64 byte lines
844       case 0x78: l2 = 1024; break;   // code and data L2 cache, 1024 KB, 4 ways, 64 byte lines
845       case 0x79: l2 = 128; break;   // code and data L2 cache, 128 KB, 8 ways, 64 byte lines, dual-sectored
846       case 0x7A: l2 = 256; break;   // code and data L2 cache, 256 KB, 8 ways, 64 byte lines, dual-sectored
847       case 0x7B: l2 = 512; break;   // code and data L2 cache, 512 KB, 8 ways, 64 byte lines, dual-sectored
848       case 0x7C: l2 = 1024; break;   // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored
849       case 0x7D: l2 = 2048; break;   // code and data L2 cache, 2048 KB, 8 ways, 64 byte lines
850       case 0x7E: l2 = 256; break;   // code and data L2 cache, 256 KB, 8 ways, 128 byte lines, sect. (IA-64)
851       case 0x7F: l2 = 512; break;   // code and data L2 cache, 512 KB, 2 ways, 64 byte lines
852       case 0x80: l2 = 512; break;   // code and data L2 cache, 512 KB, 8 ways, 64 byte lines
853       case 0x81: l2 = 128; break;   // code and data L2 cache, 128 KB, 8 ways, 32 byte lines
854       case 0x82: l2 = 256; break;   // code and data L2 cache, 256 KB, 8 ways, 32 byte lines
855       case 0x83: l2 = 512; break;   // code and data L2 cache, 512 KB, 8 ways, 32 byte lines
856       case 0x84: l2 = 1024; break;   // code and data L2 cache, 1024 KB, 8 ways, 32 byte lines
857       case 0x85: l2 = 2048; break;   // code and data L2 cache, 2048 KB, 8 ways, 32 byte lines
858       case 0x86: l2 = 512; break;   // code and data L2 cache, 512 KB, 4 ways, 64 byte lines
859       case 0x87: l2 = 1024; break;   // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines
860       case 0x88: l3 = 2048; break;   // code and data L3 cache, 2048 KB, 4 ways, 64 byte lines (IA-64)
861       case 0x89: l3 = 4096; break;   // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines (IA-64)
862       case 0x8A: l3 = 8192; break;   // code and data L3 cache, 8192 KB, 4 ways, 64 byte lines (IA-64)
863       case 0x8D: l3 = 3072; break;   // code and data L3 cache, 3072 KB, 12 ways, 128 byte lines (IA-64)
864 
865       default: break;
866     }
867   }
868   if(check_for_p2_core2 && l2 == l3)
869     l3 = 0;
870   l1 *= 1024;
871   l2 *= 1024;
872   l3 *= 1024;
873 }
874 
875 inline void queryCacheSizes_intel(int& l1, int& l2, int& l3, int max_std_funcs)
876 {
877   if(max_std_funcs>=4)
878     queryCacheSizes_intel_direct(l1,l2,l3);
879   else
880     queryCacheSizes_intel_codes(l1,l2,l3);
881 }
882 
883 inline void queryCacheSizes_amd(int& l1, int& l2, int& l3)
884 {
885   int abcd[4];
886   abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
887   EIGEN_CPUID(abcd,0x80000005,0);
888   l1 = (abcd[2] >> 24) * 1024; // C[31:24] = L1 size in KB
889   abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
890   EIGEN_CPUID(abcd,0x80000006,0);
891   l2 = (abcd[2] >> 16) * 1024; // C[31;16] = l2 cache size in KB
892   l3 = ((abcd[3] & 0xFFFC000) >> 18) * 512 * 1024; // D[31;18] = l3 cache size in 512KB
893 }
894 #endif
895 
896 /** \internal
897  * Queries and returns the cache sizes in Bytes of the L1, L2, and L3 data caches respectively */
898 inline void queryCacheSizes(int& l1, int& l2, int& l3)
899 {
900   #ifdef EIGEN_CPUID
901   int abcd[4];
902 
903   // identify the CPU vendor
904   EIGEN_CPUID(abcd,0x0,0);
905   int max_std_funcs = abcd[1];
906   if(cpuid_is_vendor(abcd,"GenuineIntel"))
907     queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
908   else if(cpuid_is_vendor(abcd,"AuthenticAMD") || cpuid_is_vendor(abcd,"AMDisbetter!"))
909     queryCacheSizes_amd(l1,l2,l3);
910   else
911     // by default let's use Intel's API
912     queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
913 
914   // here is the list of other vendors:
915 //   ||cpuid_is_vendor(abcd,"VIA VIA VIA ")
916 //   ||cpuid_is_vendor(abcd,"CyrixInstead")
917 //   ||cpuid_is_vendor(abcd,"CentaurHauls")
918 //   ||cpuid_is_vendor(abcd,"GenuineTMx86")
919 //   ||cpuid_is_vendor(abcd,"TransmetaCPU")
920 //   ||cpuid_is_vendor(abcd,"RiseRiseRise")
921 //   ||cpuid_is_vendor(abcd,"Geode by NSC")
922 //   ||cpuid_is_vendor(abcd,"SiS SiS SiS ")
923 //   ||cpuid_is_vendor(abcd,"UMC UMC UMC ")
924 //   ||cpuid_is_vendor(abcd,"NexGenDriven")
925   #else
926   l1 = l2 = l3 = -1;
927   #endif
928 }
929 
930 /** \internal
931  * \returns the size in Bytes of the L1 data cache */
932 inline int queryL1CacheSize()
933 {
934   int l1(-1), l2, l3;
935   queryCacheSizes(l1,l2,l3);
936   return l1;
937 }
938 
939 /** \internal
940  * \returns the size in Bytes of the L2 or L3 cache if this later is present */
941 inline int queryTopLevelCacheSize()
942 {
943   int l1, l2(-1), l3(-1);
944   queryCacheSizes(l1,l2,l3);
945   return (std::max)(l2,l3);
946 }
947 
948 } // end namespace internal
949 
950 } // end namespace Eigen
951 
952 #endif // EIGEN_MEMORY_H
953