1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
6 // Copyright (C) 2009 Kenneth Riddile <kfriddile@yahoo.com>
7 // Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
8 // Copyright (C) 2010 Thomas Capricelli <orzel@freehackers.org>
9 //
10 // This Source Code Form is subject to the terms of the Mozilla
11 // Public License v. 2.0. If a copy of the MPL was not distributed
12 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
13
14
15 /*****************************************************************************
16 *** Platform checks for aligned malloc functions ***
17 *****************************************************************************/
18
19 #ifndef EIGEN_MEMORY_H
20 #define EIGEN_MEMORY_H
21
22 // On 64-bit systems, glibc's malloc returns 16-byte-aligned pointers, see:
23 // http://www.gnu.org/s/libc/manual/html_node/Aligned-Memory-Blocks.html
24 // This is true at least since glibc 2.8.
25 // This leaves the question how to detect 64-bit. According to this document,
26 // http://gcc.fyxm.net/summit/2003/Porting%20to%2064%20bit.pdf
27 // page 114, "[The] LP64 model [...] is used by all 64-bit UNIX ports" so it's indeed
28 // quite safe, at least within the context of glibc, to equate 64-bit with LP64.
29 #if defined(__GLIBC__) && ((__GLIBC__>=2 && __GLIBC_MINOR__ >= 8) || __GLIBC__>2) \
30 && defined(__LP64__)
31 #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 1
32 #else
33 #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 0
34 #endif
35
36 // FreeBSD 6 seems to have 16-byte aligned malloc
37 // See http://svn.freebsd.org/viewvc/base/stable/6/lib/libc/stdlib/malloc.c?view=markup
38 // FreeBSD 7 seems to have 16-byte aligned malloc except on ARM and MIPS architectures
39 // See http://svn.freebsd.org/viewvc/base/stable/7/lib/libc/stdlib/malloc.c?view=markup
40 #if defined(__FreeBSD__) && !defined(__arm__) && !defined(__mips__)
41 #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 1
42 #else
43 #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 0
44 #endif
45
46 #if defined(__APPLE__) \
47 || defined(_WIN64) \
48 || EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED \
49 || EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED
50 #define EIGEN_MALLOC_ALREADY_ALIGNED 1
51 #else
52 #define EIGEN_MALLOC_ALREADY_ALIGNED 0
53 #endif
54
55 #if ((defined __QNXNTO__) || (defined _GNU_SOURCE) || ((defined _XOPEN_SOURCE) && (_XOPEN_SOURCE >= 600))) \
56 && (defined _POSIX_ADVISORY_INFO) && (_POSIX_ADVISORY_INFO > 0)
57 #define EIGEN_HAS_POSIX_MEMALIGN 1
58 #else
59 #define EIGEN_HAS_POSIX_MEMALIGN 0
60 #endif
61
62 #ifdef EIGEN_VECTORIZE_SSE
63 #define EIGEN_HAS_MM_MALLOC 1
64 #else
65 #define EIGEN_HAS_MM_MALLOC 0
66 #endif
67
68 namespace Eigen {
69
70 namespace internal {
71
throw_std_bad_alloc()72 inline void throw_std_bad_alloc()
73 {
74 #ifdef EIGEN_EXCEPTIONS
75 throw std::bad_alloc();
76 #else
77 std::size_t huge = -1;
78 new int[huge];
79 #endif
80 }
81
82 /*****************************************************************************
83 *** Implementation of handmade aligned functions ***
84 *****************************************************************************/
85
86 /* ----- Hand made implementations of aligned malloc/free and realloc ----- */
87
88 /** \internal Like malloc, but the returned pointer is guaranteed to be 16-byte aligned.
89 * Fast, but wastes 16 additional bytes of memory. Does not throw any exception.
90 */
handmade_aligned_malloc(size_t size)91 inline void* handmade_aligned_malloc(size_t size)
92 {
93 void *original = std::malloc(size+16);
94 if (original == 0) return 0;
95 void *aligned = reinterpret_cast<void*>((reinterpret_cast<size_t>(original) & ~(size_t(15))) + 16);
96 *(reinterpret_cast<void**>(aligned) - 1) = original;
97 return aligned;
98 }
99
100 /** \internal Frees memory allocated with handmade_aligned_malloc */
handmade_aligned_free(void * ptr)101 inline void handmade_aligned_free(void *ptr)
102 {
103 if (ptr) std::free(*(reinterpret_cast<void**>(ptr) - 1));
104 }
105
106 /** \internal
107 * \brief Reallocates aligned memory.
108 * Since we know that our handmade version is based on std::realloc
109 * we can use std::realloc to implement efficient reallocation.
110 */
111 inline void* handmade_aligned_realloc(void* ptr, size_t size, size_t = 0)
112 {
113 if (ptr == 0) return handmade_aligned_malloc(size);
114 void *original = *(reinterpret_cast<void**>(ptr) - 1);
115 original = std::realloc(original,size+16);
116 if (original == 0) return 0;
117 void *aligned = reinterpret_cast<void*>((reinterpret_cast<size_t>(original) & ~(size_t(15))) + 16);
118 *(reinterpret_cast<void**>(aligned) - 1) = original;
119 return aligned;
120 }
121
122 /*****************************************************************************
123 *** Implementation of generic aligned realloc (when no realloc can be used)***
124 *****************************************************************************/
125
126 void* aligned_malloc(size_t size);
127 void aligned_free(void *ptr);
128
129 /** \internal
130 * \brief Reallocates aligned memory.
131 * Allows reallocation with aligned ptr types. This implementation will
132 * always create a new memory chunk and copy the old data.
133 */
generic_aligned_realloc(void * ptr,size_t size,size_t old_size)134 inline void* generic_aligned_realloc(void* ptr, size_t size, size_t old_size)
135 {
136 if (ptr==0)
137 return aligned_malloc(size);
138
139 if (size==0)
140 {
141 aligned_free(ptr);
142 return 0;
143 }
144
145 void* newptr = aligned_malloc(size);
146 if (newptr == 0)
147 {
148 #ifdef EIGEN_HAS_ERRNO
149 errno = ENOMEM; // according to the standard
150 #endif
151 return 0;
152 }
153
154 if (ptr != 0)
155 {
156 std::memcpy(newptr, ptr, (std::min)(size,old_size));
157 aligned_free(ptr);
158 }
159
160 return newptr;
161 }
162
163 /*****************************************************************************
164 *** Implementation of portable aligned versions of malloc/free/realloc ***
165 *****************************************************************************/
166
167 #ifdef EIGEN_NO_MALLOC
check_that_malloc_is_allowed()168 inline void check_that_malloc_is_allowed()
169 {
170 eigen_assert(false && "heap allocation is forbidden (EIGEN_NO_MALLOC is defined)");
171 }
172 #elif defined EIGEN_RUNTIME_NO_MALLOC
173 inline bool is_malloc_allowed_impl(bool update, bool new_value = false)
174 {
175 static bool value = true;
176 if (update == 1)
177 value = new_value;
178 return value;
179 }
is_malloc_allowed()180 inline bool is_malloc_allowed() { return is_malloc_allowed_impl(false); }
set_is_malloc_allowed(bool new_value)181 inline bool set_is_malloc_allowed(bool new_value) { return is_malloc_allowed_impl(true, new_value); }
check_that_malloc_is_allowed()182 inline void check_that_malloc_is_allowed()
183 {
184 eigen_assert(is_malloc_allowed() && "heap allocation is forbidden (EIGEN_RUNTIME_NO_MALLOC is defined and g_is_malloc_allowed is false)");
185 }
186 #else
check_that_malloc_is_allowed()187 inline void check_that_malloc_is_allowed()
188 {}
189 #endif
190
191 /** \internal Allocates \a size bytes. The returned pointer is guaranteed to have 16 bytes alignment.
192 * On allocation error, the returned pointer is null, and std::bad_alloc is thrown.
193 */
aligned_malloc(size_t size)194 inline void* aligned_malloc(size_t size)
195 {
196 check_that_malloc_is_allowed();
197
198 void *result;
199 #if !EIGEN_ALIGN
200 result = std::malloc(size);
201 #elif EIGEN_MALLOC_ALREADY_ALIGNED
202 result = std::malloc(size);
203 #elif EIGEN_HAS_POSIX_MEMALIGN
204 if(posix_memalign(&result, 16, size)) result = 0;
205 #elif EIGEN_HAS_MM_MALLOC
206 result = _mm_malloc(size, 16);
207 #elif (defined _MSC_VER)
208 result = _aligned_malloc(size, 16);
209 #else
210 result = handmade_aligned_malloc(size);
211 #endif
212
213 if(!result && size)
214 throw_std_bad_alloc();
215
216 return result;
217 }
218
219 /** \internal Frees memory allocated with aligned_malloc. */
aligned_free(void * ptr)220 inline void aligned_free(void *ptr)
221 {
222 #if !EIGEN_ALIGN
223 std::free(ptr);
224 #elif EIGEN_MALLOC_ALREADY_ALIGNED
225 std::free(ptr);
226 #elif EIGEN_HAS_POSIX_MEMALIGN
227 std::free(ptr);
228 #elif EIGEN_HAS_MM_MALLOC
229 _mm_free(ptr);
230 #elif defined(_MSC_VER)
231 _aligned_free(ptr);
232 #else
233 handmade_aligned_free(ptr);
234 #endif
235 }
236
237 /**
238 * \internal
239 * \brief Reallocates an aligned block of memory.
240 * \throws std::bad_alloc on allocation failure
241 **/
aligned_realloc(void * ptr,size_t new_size,size_t old_size)242 inline void* aligned_realloc(void *ptr, size_t new_size, size_t old_size)
243 {
244 EIGEN_UNUSED_VARIABLE(old_size);
245
246 void *result;
247 #if !EIGEN_ALIGN
248 result = std::realloc(ptr,new_size);
249 #elif EIGEN_MALLOC_ALREADY_ALIGNED
250 result = std::realloc(ptr,new_size);
251 #elif EIGEN_HAS_POSIX_MEMALIGN
252 result = generic_aligned_realloc(ptr,new_size,old_size);
253 #elif EIGEN_HAS_MM_MALLOC
254 // The defined(_mm_free) is just here to verify that this MSVC version
255 // implements _mm_malloc/_mm_free based on the corresponding _aligned_
256 // functions. This may not always be the case and we just try to be safe.
257 #if defined(_MSC_VER) && defined(_mm_free)
258 result = _aligned_realloc(ptr,new_size,16);
259 #else
260 result = generic_aligned_realloc(ptr,new_size,old_size);
261 #endif
262 #elif defined(_MSC_VER)
263 result = _aligned_realloc(ptr,new_size,16);
264 #else
265 result = handmade_aligned_realloc(ptr,new_size,old_size);
266 #endif
267
268 if (!result && new_size)
269 throw_std_bad_alloc();
270
271 return result;
272 }
273
274 /*****************************************************************************
275 *** Implementation of conditionally aligned functions ***
276 *****************************************************************************/
277
278 /** \internal Allocates \a size bytes. If Align is true, then the returned ptr is 16-byte-aligned.
279 * On allocation error, the returned pointer is null, and a std::bad_alloc is thrown.
280 */
conditional_aligned_malloc(size_t size)281 template<bool Align> inline void* conditional_aligned_malloc(size_t size)
282 {
283 return aligned_malloc(size);
284 }
285
286 template<> inline void* conditional_aligned_malloc<false>(size_t size)
287 {
288 check_that_malloc_is_allowed();
289
290 void *result = std::malloc(size);
291 if(!result && size)
292 throw_std_bad_alloc();
293 return result;
294 }
295
296 /** \internal Frees memory allocated with conditional_aligned_malloc */
conditional_aligned_free(void * ptr)297 template<bool Align> inline void conditional_aligned_free(void *ptr)
298 {
299 aligned_free(ptr);
300 }
301
302 template<> inline void conditional_aligned_free<false>(void *ptr)
303 {
304 std::free(ptr);
305 }
306
conditional_aligned_realloc(void * ptr,size_t new_size,size_t old_size)307 template<bool Align> inline void* conditional_aligned_realloc(void* ptr, size_t new_size, size_t old_size)
308 {
309 return aligned_realloc(ptr, new_size, old_size);
310 }
311
312 template<> inline void* conditional_aligned_realloc<false>(void* ptr, size_t new_size, size_t)
313 {
314 return std::realloc(ptr, new_size);
315 }
316
317 /*****************************************************************************
318 *** Construction/destruction of array elements ***
319 *****************************************************************************/
320
321 /** \internal Constructs the elements of an array.
322 * The \a size parameter tells on how many objects to call the constructor of T.
323 */
construct_elements_of_array(T * ptr,size_t size)324 template<typename T> inline T* construct_elements_of_array(T *ptr, size_t size)
325 {
326 for (size_t i=0; i < size; ++i) ::new (ptr + i) T;
327 return ptr;
328 }
329
330 /** \internal Destructs the elements of an array.
331 * The \a size parameters tells on how many objects to call the destructor of T.
332 */
destruct_elements_of_array(T * ptr,size_t size)333 template<typename T> inline void destruct_elements_of_array(T *ptr, size_t size)
334 {
335 // always destruct an array starting from the end.
336 if(ptr)
337 while(size) ptr[--size].~T();
338 }
339
340 /*****************************************************************************
341 *** Implementation of aligned new/delete-like functions ***
342 *****************************************************************************/
343
344 template<typename T>
check_size_for_overflow(size_t size)345 EIGEN_ALWAYS_INLINE void check_size_for_overflow(size_t size)
346 {
347 if(size > size_t(-1) / sizeof(T))
348 throw_std_bad_alloc();
349 }
350
351 /** \internal Allocates \a size objects of type T. The returned pointer is guaranteed to have 16 bytes alignment.
352 * On allocation error, the returned pointer is undefined, but a std::bad_alloc is thrown.
353 * The default constructor of T is called.
354 */
aligned_new(size_t size)355 template<typename T> inline T* aligned_new(size_t size)
356 {
357 check_size_for_overflow<T>(size);
358 T *result = reinterpret_cast<T*>(aligned_malloc(sizeof(T)*size));
359 return construct_elements_of_array(result, size);
360 }
361
conditional_aligned_new(size_t size)362 template<typename T, bool Align> inline T* conditional_aligned_new(size_t size)
363 {
364 check_size_for_overflow<T>(size);
365 T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
366 return construct_elements_of_array(result, size);
367 }
368
369 /** \internal Deletes objects constructed with aligned_new
370 * The \a size parameters tells on how many objects to call the destructor of T.
371 */
aligned_delete(T * ptr,size_t size)372 template<typename T> inline void aligned_delete(T *ptr, size_t size)
373 {
374 destruct_elements_of_array<T>(ptr, size);
375 aligned_free(ptr);
376 }
377
378 /** \internal Deletes objects constructed with conditional_aligned_new
379 * The \a size parameters tells on how many objects to call the destructor of T.
380 */
conditional_aligned_delete(T * ptr,size_t size)381 template<typename T, bool Align> inline void conditional_aligned_delete(T *ptr, size_t size)
382 {
383 destruct_elements_of_array<T>(ptr, size);
384 conditional_aligned_free<Align>(ptr);
385 }
386
conditional_aligned_realloc_new(T * pts,size_t new_size,size_t old_size)387 template<typename T, bool Align> inline T* conditional_aligned_realloc_new(T* pts, size_t new_size, size_t old_size)
388 {
389 check_size_for_overflow<T>(new_size);
390 check_size_for_overflow<T>(old_size);
391 if(new_size < old_size)
392 destruct_elements_of_array(pts+new_size, old_size-new_size);
393 T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
394 if(new_size > old_size)
395 construct_elements_of_array(result+old_size, new_size-old_size);
396 return result;
397 }
398
399
conditional_aligned_new_auto(size_t size)400 template<typename T, bool Align> inline T* conditional_aligned_new_auto(size_t size)
401 {
402 check_size_for_overflow<T>(size);
403 T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
404 if(NumTraits<T>::RequireInitialization)
405 construct_elements_of_array(result, size);
406 return result;
407 }
408
conditional_aligned_realloc_new_auto(T * pts,size_t new_size,size_t old_size)409 template<typename T, bool Align> inline T* conditional_aligned_realloc_new_auto(T* pts, size_t new_size, size_t old_size)
410 {
411 check_size_for_overflow<T>(new_size);
412 check_size_for_overflow<T>(old_size);
413 if(NumTraits<T>::RequireInitialization && (new_size < old_size))
414 destruct_elements_of_array(pts+new_size, old_size-new_size);
415 T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
416 if(NumTraits<T>::RequireInitialization && (new_size > old_size))
417 construct_elements_of_array(result+old_size, new_size-old_size);
418 return result;
419 }
420
conditional_aligned_delete_auto(T * ptr,size_t size)421 template<typename T, bool Align> inline void conditional_aligned_delete_auto(T *ptr, size_t size)
422 {
423 if(NumTraits<T>::RequireInitialization)
424 destruct_elements_of_array<T>(ptr, size);
425 conditional_aligned_free<Align>(ptr);
426 }
427
428 /****************************************************************************/
429
430 /** \internal Returns the index of the first element of the array that is well aligned for vectorization.
431 *
432 * \param array the address of the start of the array
433 * \param size the size of the array
434 *
435 * \note If no element of the array is well aligned, the size of the array is returned. Typically,
436 * for example with SSE, "well aligned" means 16-byte-aligned. If vectorization is disabled or if the
437 * packet size for the given scalar type is 1, then everything is considered well-aligned.
438 *
439 * \note If the scalar type is vectorizable, we rely on the following assumptions: sizeof(Scalar) is a
440 * power of 2, the packet size in bytes is also a power of 2, and is a multiple of sizeof(Scalar). On the
441 * other hand, we do not assume that the array address is a multiple of sizeof(Scalar), as that fails for
442 * example with Scalar=double on certain 32-bit platforms, see bug #79.
443 *
444 * There is also the variant first_aligned(const MatrixBase&) defined in DenseCoeffsBase.h.
445 */
446 template<typename Scalar, typename Index>
first_aligned(const Scalar * array,Index size)447 static inline Index first_aligned(const Scalar* array, Index size)
448 {
449 typedef typename packet_traits<Scalar>::type Packet;
450 enum { PacketSize = packet_traits<Scalar>::size,
451 PacketAlignedMask = PacketSize-1
452 };
453
454 if(PacketSize==1)
455 {
456 // Either there is no vectorization, or a packet consists of exactly 1 scalar so that all elements
457 // of the array have the same alignment.
458 return 0;
459 }
460 else if(size_t(array) & (sizeof(Scalar)-1))
461 {
462 // There is vectorization for this scalar type, but the array is not aligned to the size of a single scalar.
463 // Consequently, no element of the array is well aligned.
464 return size;
465 }
466 else
467 {
468 return std::min<Index>( (PacketSize - (Index((size_t(array)/sizeof(Scalar))) & PacketAlignedMask))
469 & PacketAlignedMask, size);
470 }
471 }
472
473
474 // std::copy is much slower than memcpy, so let's introduce a smart_copy which
475 // use memcpy on trivial types, i.e., on types that does not require an initialization ctor.
476 template<typename T, bool UseMemcpy> struct smart_copy_helper;
477
smart_copy(const T * start,const T * end,T * target)478 template<typename T> void smart_copy(const T* start, const T* end, T* target)
479 {
480 smart_copy_helper<T,!NumTraits<T>::RequireInitialization>::run(start, end, target);
481 }
482
483 template<typename T> struct smart_copy_helper<T,true> {
484 static inline void run(const T* start, const T* end, T* target)
485 { memcpy(target, start, std::ptrdiff_t(end)-std::ptrdiff_t(start)); }
486 };
487
488 template<typename T> struct smart_copy_helper<T,false> {
489 static inline void run(const T* start, const T* end, T* target)
490 { std::copy(start, end, target); }
491 };
492
493
494 /*****************************************************************************
495 *** Implementation of runtime stack allocation (falling back to malloc) ***
496 *****************************************************************************/
497
498 // you can overwrite Eigen's default behavior regarding alloca by defining EIGEN_ALLOCA
499 // to the appropriate stack allocation function
500 #ifndef EIGEN_ALLOCA
501 #if (defined __linux__)
502 #define EIGEN_ALLOCA alloca
503 #elif defined(_MSC_VER)
504 #define EIGEN_ALLOCA _alloca
505 #endif
506 #endif
507
508 // This helper class construct the allocated memory, and takes care of destructing and freeing the handled data
509 // at destruction time. In practice this helper class is mainly useful to avoid memory leak in case of exceptions.
510 template<typename T> class aligned_stack_memory_handler
511 {
512 public:
513 /* Creates a stack_memory_handler responsible for the buffer \a ptr of size \a size.
514 * Note that \a ptr can be 0 regardless of the other parameters.
515 * This constructor takes care of constructing/initializing the elements of the buffer if required by the scalar type T (see NumTraits<T>::RequireInitialization).
516 * In this case, the buffer elements will also be destructed when this handler will be destructed.
517 * Finally, if \a dealloc is true, then the pointer \a ptr is freed.
518 **/
519 aligned_stack_memory_handler(T* ptr, size_t size, bool dealloc)
520 : m_ptr(ptr), m_size(size), m_deallocate(dealloc)
521 {
522 if(NumTraits<T>::RequireInitialization && m_ptr)
523 Eigen::internal::construct_elements_of_array(m_ptr, size);
524 }
525 ~aligned_stack_memory_handler()
526 {
527 if(NumTraits<T>::RequireInitialization && m_ptr)
528 Eigen::internal::destruct_elements_of_array<T>(m_ptr, m_size);
529 if(m_deallocate)
530 Eigen::internal::aligned_free(m_ptr);
531 }
532 protected:
533 T* m_ptr;
534 size_t m_size;
535 bool m_deallocate;
536 };
537
538 } // end namespace internal
539
540 /** \internal
541 * Declares, allocates and construct an aligned buffer named NAME of SIZE elements of type TYPE on the stack
542 * if SIZE is smaller than EIGEN_STACK_ALLOCATION_LIMIT, and if stack allocation is supported by the platform
543 * (currently, this is Linux and Visual Studio only). Otherwise the memory is allocated on the heap.
544 * The allocated buffer is automatically deleted when exiting the scope of this declaration.
545 * If BUFFER is non null, then the declared variable is simply an alias for BUFFER, and no allocation/deletion occurs.
546 * Here is an example:
547 * \code
548 * {
549 * ei_declare_aligned_stack_constructed_variable(float,data,size,0);
550 * // use data[0] to data[size-1]
551 * }
552 * \endcode
553 * The underlying stack allocation function can controlled with the EIGEN_ALLOCA preprocessor token.
554 */
555 #ifdef EIGEN_ALLOCA
556
557 #ifdef __arm__
558 #define EIGEN_ALIGNED_ALLOCA(SIZE) reinterpret_cast<void*>((reinterpret_cast<size_t>(EIGEN_ALLOCA(SIZE+16)) & ~(size_t(15))) + 16)
559 #else
560 #define EIGEN_ALIGNED_ALLOCA EIGEN_ALLOCA
561 #endif
562
563 #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \
564 Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \
565 TYPE* NAME = (BUFFER)!=0 ? (BUFFER) \
566 : reinterpret_cast<TYPE*>( \
567 (sizeof(TYPE)*SIZE<=EIGEN_STACK_ALLOCATION_LIMIT) ? EIGEN_ALIGNED_ALLOCA(sizeof(TYPE)*SIZE) \
568 : Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE) ); \
569 Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,sizeof(TYPE)*SIZE>EIGEN_STACK_ALLOCATION_LIMIT)
570
571 #else
572
573 #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \
574 Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \
575 TYPE* NAME = (BUFFER)!=0 ? BUFFER : reinterpret_cast<TYPE*>(Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE)); \
576 Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,true)
577
578 #endif
579
580
581 /*****************************************************************************
582 *** Implementation of EIGEN_MAKE_ALIGNED_OPERATOR_NEW [_IF] ***
583 *****************************************************************************/
584
585 #if EIGEN_ALIGN
586 #ifdef EIGEN_EXCEPTIONS
587 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
588 void* operator new(size_t size, const std::nothrow_t&) throw() { \
589 try { return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); } \
590 catch (...) { return 0; } \
591 return 0; \
592 }
593 #else
594 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
595 void* operator new(size_t size, const std::nothrow_t&) throw() { \
596 return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
597 }
598 #endif
599
600 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) \
601 void *operator new(size_t size) { \
602 return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
603 } \
604 void *operator new[](size_t size) { \
605 return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
606 } \
607 void operator delete(void * ptr) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
608 void operator delete[](void * ptr) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
609 /* in-place new and delete. since (at least afaik) there is no actual */ \
610 /* memory allocated we can safely let the default implementation handle */ \
611 /* this particular case. */ \
612 static void *operator new(size_t size, void *ptr) { return ::operator new(size,ptr); } \
613 void operator delete(void * memory, void *ptr) throw() { return ::operator delete(memory,ptr); } \
614 /* nothrow-new (returns zero instead of std::bad_alloc) */ \
615 EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
616 void operator delete(void *ptr, const std::nothrow_t&) throw() { \
617 Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); \
618 } \
619 typedef void eigen_aligned_operator_new_marker_type;
620 #else
621 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
622 #endif
623
624 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(true)
625 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar,Size) \
626 EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(((Size)!=Eigen::Dynamic) && ((sizeof(Scalar)*(Size))%16==0)))
627
628 /****************************************************************************/
629
630 /** \class aligned_allocator
631 * \ingroup Core_Module
632 *
633 * \brief STL compatible allocator to use with with 16 byte aligned types
634 *
635 * Example:
636 * \code
637 * // Matrix4f requires 16 bytes alignment:
638 * std::map< int, Matrix4f, std::less<int>,
639 * aligned_allocator<std::pair<const int, Matrix4f> > > my_map_mat4;
640 * // Vector3f does not require 16 bytes alignment, no need to use Eigen's allocator:
641 * std::map< int, Vector3f > my_map_vec3;
642 * \endcode
643 *
644 * \sa \ref TopicStlContainers.
645 */
646 template<class T>
647 class aligned_allocator
648 {
649 public:
650 typedef size_t size_type;
651 typedef std::ptrdiff_t difference_type;
652 typedef T* pointer;
653 typedef const T* const_pointer;
654 typedef T& reference;
655 typedef const T& const_reference;
656 typedef T value_type;
657
658 template<class U>
659 struct rebind
660 {
661 typedef aligned_allocator<U> other;
662 };
663
664 pointer address( reference value ) const
665 {
666 return &value;
667 }
668
669 const_pointer address( const_reference value ) const
670 {
671 return &value;
672 }
673
674 aligned_allocator()
675 {
676 }
677
678 aligned_allocator( const aligned_allocator& )
679 {
680 }
681
682 template<class U>
683 aligned_allocator( const aligned_allocator<U>& )
684 {
685 }
686
687 ~aligned_allocator()
688 {
689 }
690
691 size_type max_size() const
692 {
693 return (std::numeric_limits<size_type>::max)();
694 }
695
696 pointer allocate( size_type num, const void* hint = 0 )
697 {
698 EIGEN_UNUSED_VARIABLE(hint);
699 internal::check_size_for_overflow<T>(num);
700 return static_cast<pointer>( internal::aligned_malloc( num * sizeof(T) ) );
701 }
702
703 void construct( pointer p, const T& value )
704 {
705 ::new( p ) T( value );
706 }
707
708 // Support for c++11
709 #if (__cplusplus >= 201103L)
710 template<typename... Args>
711 void construct(pointer p, Args&&... args)
712 {
713 ::new(p) T(std::forward<Args>(args)...);
714 }
715 #endif
716
717 void destroy( pointer p )
718 {
719 p->~T();
720 }
721
722 void deallocate( pointer p, size_type /*num*/ )
723 {
724 internal::aligned_free( p );
725 }
726
727 bool operator!=(const aligned_allocator<T>& ) const
728 { return false; }
729
730 bool operator==(const aligned_allocator<T>& ) const
731 { return true; }
732 };
733
734 //---------- Cache sizes ----------
735
736 #if !defined(EIGEN_NO_CPUID)
737 # if defined(__GNUC__) && ( defined(__i386__) || defined(__x86_64__) )
738 # if defined(__PIC__) && defined(__i386__)
739 // Case for x86 with PIC
740 # define EIGEN_CPUID(abcd,func,id) \
741 __asm__ __volatile__ ("xchgl %%ebx, %%esi;cpuid; xchgl %%ebx,%%esi": "=a" (abcd[0]), "=S" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "a" (func), "c" (id));
742 # else
743 // Case for x86_64 or x86 w/o PIC
744 # define EIGEN_CPUID(abcd,func,id) \
745 __asm__ __volatile__ ("cpuid": "=a" (abcd[0]), "=b" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "a" (func), "c" (id) );
746 # endif
747 # elif defined(_MSC_VER)
748 # if (_MSC_VER > 1500)
749 # define EIGEN_CPUID(abcd,func,id) __cpuidex((int*)abcd,func,id)
750 # endif
751 # endif
752 #endif
753
754 namespace internal {
755
756 #ifdef EIGEN_CPUID
757
758 inline bool cpuid_is_vendor(int abcd[4], const char* vendor)
759 {
760 return abcd[1]==(reinterpret_cast<const int*>(vendor))[0] && abcd[3]==(reinterpret_cast<const int*>(vendor))[1] && abcd[2]==(reinterpret_cast<const int*>(vendor))[2];
761 }
762
763 inline void queryCacheSizes_intel_direct(int& l1, int& l2, int& l3)
764 {
765 int abcd[4];
766 l1 = l2 = l3 = 0;
767 int cache_id = 0;
768 int cache_type = 0;
769 do {
770 abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
771 EIGEN_CPUID(abcd,0x4,cache_id);
772 cache_type = (abcd[0] & 0x0F) >> 0;
773 if(cache_type==1||cache_type==3) // data or unified cache
774 {
775 int cache_level = (abcd[0] & 0xE0) >> 5; // A[7:5]
776 int ways = (abcd[1] & 0xFFC00000) >> 22; // B[31:22]
777 int partitions = (abcd[1] & 0x003FF000) >> 12; // B[21:12]
778 int line_size = (abcd[1] & 0x00000FFF) >> 0; // B[11:0]
779 int sets = (abcd[2]); // C[31:0]
780
781 int cache_size = (ways+1) * (partitions+1) * (line_size+1) * (sets+1);
782
783 switch(cache_level)
784 {
785 case 1: l1 = cache_size; break;
786 case 2: l2 = cache_size; break;
787 case 3: l3 = cache_size; break;
788 default: break;
789 }
790 }
791 cache_id++;
792 } while(cache_type>0 && cache_id<16);
793 }
794
795 inline void queryCacheSizes_intel_codes(int& l1, int& l2, int& l3)
796 {
797 int abcd[4];
798 abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
799 l1 = l2 = l3 = 0;
800 EIGEN_CPUID(abcd,0x00000002,0);
801 unsigned char * bytes = reinterpret_cast<unsigned char *>(abcd)+2;
802 bool check_for_p2_core2 = false;
803 for(int i=0; i<14; ++i)
804 {
805 switch(bytes[i])
806 {
807 case 0x0A: l1 = 8; break; // 0Ah data L1 cache, 8 KB, 2 ways, 32 byte lines
808 case 0x0C: l1 = 16; break; // 0Ch data L1 cache, 16 KB, 4 ways, 32 byte lines
809 case 0x0E: l1 = 24; break; // 0Eh data L1 cache, 24 KB, 6 ways, 64 byte lines
810 case 0x10: l1 = 16; break; // 10h data L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64)
811 case 0x15: l1 = 16; break; // 15h code L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64)
812 case 0x2C: l1 = 32; break; // 2Ch data L1 cache, 32 KB, 8 ways, 64 byte lines
813 case 0x30: l1 = 32; break; // 30h code L1 cache, 32 KB, 8 ways, 64 byte lines
814 case 0x60: l1 = 16; break; // 60h data L1 cache, 16 KB, 8 ways, 64 byte lines, sectored
815 case 0x66: l1 = 8; break; // 66h data L1 cache, 8 KB, 4 ways, 64 byte lines, sectored
816 case 0x67: l1 = 16; break; // 67h data L1 cache, 16 KB, 4 ways, 64 byte lines, sectored
817 case 0x68: l1 = 32; break; // 68h data L1 cache, 32 KB, 4 ways, 64 byte lines, sectored
818 case 0x1A: l2 = 96; break; // code and data L2 cache, 96 KB, 6 ways, 64 byte lines (IA-64)
819 case 0x22: l3 = 512; break; // code and data L3 cache, 512 KB, 4 ways (!), 64 byte lines, dual-sectored
820 case 0x23: l3 = 1024; break; // code and data L3 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored
821 case 0x25: l3 = 2048; break; // code and data L3 cache, 2048 KB, 8 ways, 64 byte lines, dual-sectored
822 case 0x29: l3 = 4096; break; // code and data L3 cache, 4096 KB, 8 ways, 64 byte lines, dual-sectored
823 case 0x39: l2 = 128; break; // code and data L2 cache, 128 KB, 4 ways, 64 byte lines, sectored
824 case 0x3A: l2 = 192; break; // code and data L2 cache, 192 KB, 6 ways, 64 byte lines, sectored
825 case 0x3B: l2 = 128; break; // code and data L2 cache, 128 KB, 2 ways, 64 byte lines, sectored
826 case 0x3C: l2 = 256; break; // code and data L2 cache, 256 KB, 4 ways, 64 byte lines, sectored
827 case 0x3D: l2 = 384; break; // code and data L2 cache, 384 KB, 6 ways, 64 byte lines, sectored
828 case 0x3E: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines, sectored
829 case 0x40: l2 = 0; break; // no integrated L2 cache (P6 core) or L3 cache (P4 core)
830 case 0x41: l2 = 128; break; // code and data L2 cache, 128 KB, 4 ways, 32 byte lines
831 case 0x42: l2 = 256; break; // code and data L2 cache, 256 KB, 4 ways, 32 byte lines
832 case 0x43: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 32 byte lines
833 case 0x44: l2 = 1024; break; // code and data L2 cache, 1024 KB, 4 ways, 32 byte lines
834 case 0x45: l2 = 2048; break; // code and data L2 cache, 2048 KB, 4 ways, 32 byte lines
835 case 0x46: l3 = 4096; break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines
836 case 0x47: l3 = 8192; break; // code and data L3 cache, 8192 KB, 8 ways, 64 byte lines
837 case 0x48: l2 = 3072; break; // code and data L2 cache, 3072 KB, 12 ways, 64 byte lines
838 case 0x49: if(l2!=0) l3 = 4096; else {check_for_p2_core2=true; l3 = l2 = 4096;} break;// code and data L3 cache, 4096 KB, 16 ways, 64 byte lines (P4) or L2 for core2
839 case 0x4A: l3 = 6144; break; // code and data L3 cache, 6144 KB, 12 ways, 64 byte lines
840 case 0x4B: l3 = 8192; break; // code and data L3 cache, 8192 KB, 16 ways, 64 byte lines
841 case 0x4C: l3 = 12288; break; // code and data L3 cache, 12288 KB, 12 ways, 64 byte lines
842 case 0x4D: l3 = 16384; break; // code and data L3 cache, 16384 KB, 16 ways, 64 byte lines
843 case 0x4E: l2 = 6144; break; // code and data L2 cache, 6144 KB, 24 ways, 64 byte lines
844 case 0x78: l2 = 1024; break; // code and data L2 cache, 1024 KB, 4 ways, 64 byte lines
845 case 0x79: l2 = 128; break; // code and data L2 cache, 128 KB, 8 ways, 64 byte lines, dual-sectored
846 case 0x7A: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 64 byte lines, dual-sectored
847 case 0x7B: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines, dual-sectored
848 case 0x7C: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored
849 case 0x7D: l2 = 2048; break; // code and data L2 cache, 2048 KB, 8 ways, 64 byte lines
850 case 0x7E: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 128 byte lines, sect. (IA-64)
851 case 0x7F: l2 = 512; break; // code and data L2 cache, 512 KB, 2 ways, 64 byte lines
852 case 0x80: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines
853 case 0x81: l2 = 128; break; // code and data L2 cache, 128 KB, 8 ways, 32 byte lines
854 case 0x82: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 32 byte lines
855 case 0x83: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 32 byte lines
856 case 0x84: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 32 byte lines
857 case 0x85: l2 = 2048; break; // code and data L2 cache, 2048 KB, 8 ways, 32 byte lines
858 case 0x86: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines
859 case 0x87: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines
860 case 0x88: l3 = 2048; break; // code and data L3 cache, 2048 KB, 4 ways, 64 byte lines (IA-64)
861 case 0x89: l3 = 4096; break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines (IA-64)
862 case 0x8A: l3 = 8192; break; // code and data L3 cache, 8192 KB, 4 ways, 64 byte lines (IA-64)
863 case 0x8D: l3 = 3072; break; // code and data L3 cache, 3072 KB, 12 ways, 128 byte lines (IA-64)
864
865 default: break;
866 }
867 }
868 if(check_for_p2_core2 && l2 == l3)
869 l3 = 0;
870 l1 *= 1024;
871 l2 *= 1024;
872 l3 *= 1024;
873 }
874
875 inline void queryCacheSizes_intel(int& l1, int& l2, int& l3, int max_std_funcs)
876 {
877 if(max_std_funcs>=4)
878 queryCacheSizes_intel_direct(l1,l2,l3);
879 else
880 queryCacheSizes_intel_codes(l1,l2,l3);
881 }
882
883 inline void queryCacheSizes_amd(int& l1, int& l2, int& l3)
884 {
885 int abcd[4];
886 abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
887 EIGEN_CPUID(abcd,0x80000005,0);
888 l1 = (abcd[2] >> 24) * 1024; // C[31:24] = L1 size in KB
889 abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
890 EIGEN_CPUID(abcd,0x80000006,0);
891 l2 = (abcd[2] >> 16) * 1024; // C[31;16] = l2 cache size in KB
892 l3 = ((abcd[3] & 0xFFFC000) >> 18) * 512 * 1024; // D[31;18] = l3 cache size in 512KB
893 }
894 #endif
895
896 /** \internal
897 * Queries and returns the cache sizes in Bytes of the L1, L2, and L3 data caches respectively */
898 inline void queryCacheSizes(int& l1, int& l2, int& l3)
899 {
900 #ifdef EIGEN_CPUID
901 int abcd[4];
902
903 // identify the CPU vendor
904 EIGEN_CPUID(abcd,0x0,0);
905 int max_std_funcs = abcd[1];
906 if(cpuid_is_vendor(abcd,"GenuineIntel"))
907 queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
908 else if(cpuid_is_vendor(abcd,"AuthenticAMD") || cpuid_is_vendor(abcd,"AMDisbetter!"))
909 queryCacheSizes_amd(l1,l2,l3);
910 else
911 // by default let's use Intel's API
912 queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
913
914 // here is the list of other vendors:
915 // ||cpuid_is_vendor(abcd,"VIA VIA VIA ")
916 // ||cpuid_is_vendor(abcd,"CyrixInstead")
917 // ||cpuid_is_vendor(abcd,"CentaurHauls")
918 // ||cpuid_is_vendor(abcd,"GenuineTMx86")
919 // ||cpuid_is_vendor(abcd,"TransmetaCPU")
920 // ||cpuid_is_vendor(abcd,"RiseRiseRise")
921 // ||cpuid_is_vendor(abcd,"Geode by NSC")
922 // ||cpuid_is_vendor(abcd,"SiS SiS SiS ")
923 // ||cpuid_is_vendor(abcd,"UMC UMC UMC ")
924 // ||cpuid_is_vendor(abcd,"NexGenDriven")
925 #else
926 l1 = l2 = l3 = -1;
927 #endif
928 }
929
930 /** \internal
931 * \returns the size in Bytes of the L1 data cache */
932 inline int queryL1CacheSize()
933 {
934 int l1(-1), l2, l3;
935 queryCacheSizes(l1,l2,l3);
936 return l1;
937 }
938
939 /** \internal
940 * \returns the size in Bytes of the L2 or L3 cache if this later is present */
941 inline int queryTopLevelCacheSize()
942 {
943 int l1, l2(-1), l3(-1);
944 queryCacheSizes(l1,l2,l3);
945 return (std::max)(l2,l3);
946 }
947
948 } // end namespace internal
949
950 } // end namespace Eigen
951
952 #endif // EIGEN_MEMORY_H
953