• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_ROTATION2D_H
11 #define EIGEN_ROTATION2D_H
12 
13 namespace Eigen {
14 
15 /** \geometry_module \ingroup Geometry_Module
16   *
17   * \class Rotation2D
18   *
19   * \brief Represents a rotation/orientation in a 2 dimensional space.
20   *
21   * \param _Scalar the scalar type, i.e., the type of the coefficients
22   *
23   * This class is equivalent to a single scalar representing a counter clock wise rotation
24   * as a single angle in radian. It provides some additional features such as the automatic
25   * conversion from/to a 2x2 rotation matrix. Moreover this class aims to provide a similar
26   * interface to Quaternion in order to facilitate the writing of generic algorithms
27   * dealing with rotations.
28   *
29   * \sa class Quaternion, class Transform
30   */
31 
32 namespace internal {
33 
34 template<typename _Scalar> struct traits<Rotation2D<_Scalar> >
35 {
36   typedef _Scalar Scalar;
37 };
38 } // end namespace internal
39 
40 template<typename _Scalar>
41 class Rotation2D : public RotationBase<Rotation2D<_Scalar>,2>
42 {
43   typedef RotationBase<Rotation2D<_Scalar>,2> Base;
44 
45 public:
46 
47   using Base::operator*;
48 
49   enum { Dim = 2 };
50   /** the scalar type of the coefficients */
51   typedef _Scalar Scalar;
52   typedef Matrix<Scalar,2,1> Vector2;
53   typedef Matrix<Scalar,2,2> Matrix2;
54 
55 protected:
56 
57   Scalar m_angle;
58 
59 public:
60 
61   /** Construct a 2D counter clock wise rotation from the angle \a a in radian. */
62   inline Rotation2D(Scalar a) : m_angle(a) {}
63 
64   /** \returns the rotation angle */
65   inline Scalar angle() const { return m_angle; }
66 
67   /** \returns a read-write reference to the rotation angle */
68   inline Scalar& angle() { return m_angle; }
69 
70   /** \returns the inverse rotation */
71   inline Rotation2D inverse() const { return -m_angle; }
72 
73   /** Concatenates two rotations */
74   inline Rotation2D operator*(const Rotation2D& other) const
75   { return m_angle + other.m_angle; }
76 
77   /** Concatenates two rotations */
78   inline Rotation2D& operator*=(const Rotation2D& other)
79   { m_angle += other.m_angle; return *this; }
80 
81   /** Applies the rotation to a 2D vector */
82   Vector2 operator* (const Vector2& vec) const
83   { return toRotationMatrix() * vec; }
84 
85   template<typename Derived>
86   Rotation2D& fromRotationMatrix(const MatrixBase<Derived>& m);
87   Matrix2 toRotationMatrix(void) const;
88 
89   /** \returns the spherical interpolation between \c *this and \a other using
90     * parameter \a t. It is in fact equivalent to a linear interpolation.
91     */
92   inline Rotation2D slerp(Scalar t, const Rotation2D& other) const
93   { return m_angle * (1-t) + other.angle() * t; }
94 
95   /** \returns \c *this with scalar type casted to \a NewScalarType
96     *
97     * Note that if \a NewScalarType is equal to the current scalar type of \c *this
98     * then this function smartly returns a const reference to \c *this.
99     */
100   template<typename NewScalarType>
101   inline typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type cast() const
102   { return typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type(*this); }
103 
104   /** Copy constructor with scalar type conversion */
105   template<typename OtherScalarType>
106   inline explicit Rotation2D(const Rotation2D<OtherScalarType>& other)
107   {
108     m_angle = Scalar(other.angle());
109   }
110 
111   static inline Rotation2D Identity() { return Rotation2D(0); }
112 
113   /** \returns \c true if \c *this is approximately equal to \a other, within the precision
114     * determined by \a prec.
115     *
116     * \sa MatrixBase::isApprox() */
117   bool isApprox(const Rotation2D& other, typename NumTraits<Scalar>::Real prec = NumTraits<Scalar>::dummy_precision()) const
118   { return internal::isApprox(m_angle,other.m_angle, prec); }
119 };
120 
121 /** \ingroup Geometry_Module
122   * single precision 2D rotation type */
123 typedef Rotation2D<float> Rotation2Df;
124 /** \ingroup Geometry_Module
125   * double precision 2D rotation type */
126 typedef Rotation2D<double> Rotation2Dd;
127 
128 /** Set \c *this from a 2x2 rotation matrix \a mat.
129   * In other words, this function extract the rotation angle
130   * from the rotation matrix.
131   */
132 template<typename Scalar>
133 template<typename Derived>
134 Rotation2D<Scalar>& Rotation2D<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat)
135 {
136   EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime==2 && Derived::ColsAtCompileTime==2,YOU_MADE_A_PROGRAMMING_MISTAKE)
137   m_angle = internal::atan2(mat.coeff(1,0), mat.coeff(0,0));
138   return *this;
139 }
140 
141 /** Constructs and \returns an equivalent 2x2 rotation matrix.
142   */
143 template<typename Scalar>
144 typename Rotation2D<Scalar>::Matrix2
145 Rotation2D<Scalar>::toRotationMatrix(void) const
146 {
147   Scalar sinA = internal::sin(m_angle);
148   Scalar cosA = internal::cos(m_angle);
149   return (Matrix2() << cosA, -sinA, sinA, cosA).finished();
150 }
151 
152 } // end namespace Eigen
153 
154 #endif // EIGEN_ROTATION2D_H
155