1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11 #ifndef EIGEN_BICGSTAB_H
12 #define EIGEN_BICGSTAB_H
13
14 namespace Eigen {
15
16 namespace internal {
17
18 /** \internal Low-level bi conjugate gradient stabilized algorithm
19 * \param mat The matrix A
20 * \param rhs The right hand side vector b
21 * \param x On input and initial solution, on output the computed solution.
22 * \param precond A preconditioner being able to efficiently solve for an
23 * approximation of Ax=b (regardless of b)
24 * \param iters On input the max number of iteration, on output the number of performed iterations.
25 * \param tol_error On input the tolerance error, on output an estimation of the relative error.
26 * \return false in the case of numerical issue, for example a break down of BiCGSTAB.
27 */
28 template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
bicgstab(const MatrixType & mat,const Rhs & rhs,Dest & x,const Preconditioner & precond,int & iters,typename Dest::RealScalar & tol_error)29 bool bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x,
30 const Preconditioner& precond, int& iters,
31 typename Dest::RealScalar& tol_error)
32 {
33 using std::sqrt;
34 using std::abs;
35 typedef typename Dest::RealScalar RealScalar;
36 typedef typename Dest::Scalar Scalar;
37 typedef Matrix<Scalar,Dynamic,1> VectorType;
38 RealScalar tol = tol_error;
39 int maxIters = iters;
40
41 int n = mat.cols();
42 VectorType r = rhs - mat * x;
43 VectorType r0 = r;
44
45 RealScalar r0_sqnorm = r0.squaredNorm();
46 Scalar rho = 1;
47 Scalar alpha = 1;
48 Scalar w = 1;
49
50 VectorType v = VectorType::Zero(n), p = VectorType::Zero(n);
51 VectorType y(n), z(n);
52 VectorType kt(n), ks(n);
53
54 VectorType s(n), t(n);
55
56 RealScalar tol2 = tol*tol;
57 int i = 0;
58
59 while ( r.squaredNorm()/r0_sqnorm > tol2 && i<maxIters )
60 {
61 Scalar rho_old = rho;
62
63 rho = r0.dot(r);
64 if (rho == Scalar(0)) return false; /* New search directions cannot be found */
65 Scalar beta = (rho/rho_old) * (alpha / w);
66 p = r + beta * (p - w * v);
67
68 y = precond.solve(p);
69
70 v.noalias() = mat * y;
71
72 alpha = rho / r0.dot(v);
73 s = r - alpha * v;
74
75 z = precond.solve(s);
76 t.noalias() = mat * z;
77
78 w = t.dot(s) / t.squaredNorm();
79 x += alpha * y + w * z;
80 r = s - w * t;
81 ++i;
82 }
83 tol_error = sqrt(r.squaredNorm()/r0_sqnorm);
84 iters = i;
85 return true;
86 }
87
88 }
89
90 template< typename _MatrixType,
91 typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
92 class BiCGSTAB;
93
94 namespace internal {
95
96 template< typename _MatrixType, typename _Preconditioner>
97 struct traits<BiCGSTAB<_MatrixType,_Preconditioner> >
98 {
99 typedef _MatrixType MatrixType;
100 typedef _Preconditioner Preconditioner;
101 };
102
103 }
104
105 /** \ingroup IterativeLinearSolvers_Module
106 * \brief A bi conjugate gradient stabilized solver for sparse square problems
107 *
108 * This class allows to solve for A.x = b sparse linear problems using a bi conjugate gradient
109 * stabilized algorithm. The vectors x and b can be either dense or sparse.
110 *
111 * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
112 * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
113 *
114 * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
115 * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
116 * and NumTraits<Scalar>::epsilon() for the tolerance.
117 *
118 * This class can be used as the direct solver classes. Here is a typical usage example:
119 * \code
120 * int n = 10000;
121 * VectorXd x(n), b(n);
122 * SparseMatrix<double> A(n,n);
123 * // fill A and b
124 * BiCGSTAB<SparseMatrix<double> > solver;
125 * solver(A);
126 * x = solver.solve(b);
127 * std::cout << "#iterations: " << solver.iterations() << std::endl;
128 * std::cout << "estimated error: " << solver.error() << std::endl;
129 * // update b, and solve again
130 * x = solver.solve(b);
131 * \endcode
132 *
133 * By default the iterations start with x=0 as an initial guess of the solution.
134 * One can control the start using the solveWithGuess() method. Here is a step by
135 * step execution example starting with a random guess and printing the evolution
136 * of the estimated error:
137 * * \code
138 * x = VectorXd::Random(n);
139 * solver.setMaxIterations(1);
140 * int i = 0;
141 * do {
142 * x = solver.solveWithGuess(b,x);
143 * std::cout << i << " : " << solver.error() << std::endl;
144 * ++i;
145 * } while (solver.info()!=Success && i<100);
146 * \endcode
147 * Note that such a step by step excution is slightly slower.
148 *
149 * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
150 */
151 template< typename _MatrixType, typename _Preconditioner>
152 class BiCGSTAB : public IterativeSolverBase<BiCGSTAB<_MatrixType,_Preconditioner> >
153 {
154 typedef IterativeSolverBase<BiCGSTAB> Base;
155 using Base::mp_matrix;
156 using Base::m_error;
157 using Base::m_iterations;
158 using Base::m_info;
159 using Base::m_isInitialized;
160 public:
161 typedef _MatrixType MatrixType;
162 typedef typename MatrixType::Scalar Scalar;
163 typedef typename MatrixType::Index Index;
164 typedef typename MatrixType::RealScalar RealScalar;
165 typedef _Preconditioner Preconditioner;
166
167 public:
168
169 /** Default constructor. */
170 BiCGSTAB() : Base() {}
171
172 /** Initialize the solver with matrix \a A for further \c Ax=b solving.
173 *
174 * This constructor is a shortcut for the default constructor followed
175 * by a call to compute().
176 *
177 * \warning this class stores a reference to the matrix A as well as some
178 * precomputed values that depend on it. Therefore, if \a A is changed
179 * this class becomes invalid. Call compute() to update it with the new
180 * matrix A, or modify a copy of A.
181 */
182 BiCGSTAB(const MatrixType& A) : Base(A) {}
183
184 ~BiCGSTAB() {}
185
186 /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
187 * \a x0 as an initial solution.
188 *
189 * \sa compute()
190 */
191 template<typename Rhs,typename Guess>
192 inline const internal::solve_retval_with_guess<BiCGSTAB, Rhs, Guess>
193 solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
194 {
195 eigen_assert(m_isInitialized && "BiCGSTAB is not initialized.");
196 eigen_assert(Base::rows()==b.rows()
197 && "BiCGSTAB::solve(): invalid number of rows of the right hand side matrix b");
198 return internal::solve_retval_with_guess
199 <BiCGSTAB, Rhs, Guess>(*this, b.derived(), x0);
200 }
201
202 /** \internal */
203 template<typename Rhs,typename Dest>
204 void _solveWithGuess(const Rhs& b, Dest& x) const
205 {
206 bool failed = false;
207 for(int j=0; j<b.cols(); ++j)
208 {
209 m_iterations = Base::maxIterations();
210 m_error = Base::m_tolerance;
211
212 typename Dest::ColXpr xj(x,j);
213 if(!internal::bicgstab(*mp_matrix, b.col(j), xj, Base::m_preconditioner, m_iterations, m_error))
214 failed = true;
215 }
216 m_info = failed ? NumericalIssue
217 : m_error <= Base::m_tolerance ? Success
218 : NoConvergence;
219 m_isInitialized = true;
220 }
221
222 /** \internal */
223 template<typename Rhs,typename Dest>
224 void _solve(const Rhs& b, Dest& x) const
225 {
226 x.setZero();
227 _solveWithGuess(b,x);
228 }
229
230 protected:
231
232 };
233
234
235 namespace internal {
236
237 template<typename _MatrixType, typename _Preconditioner, typename Rhs>
238 struct solve_retval<BiCGSTAB<_MatrixType, _Preconditioner>, Rhs>
239 : solve_retval_base<BiCGSTAB<_MatrixType, _Preconditioner>, Rhs>
240 {
241 typedef BiCGSTAB<_MatrixType, _Preconditioner> Dec;
242 EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
243
244 template<typename Dest> void evalTo(Dest& dst) const
245 {
246 dec()._solve(rhs(),dst);
247 }
248 };
249
250 } // end namespace internal
251
252 } // end namespace Eigen
253
254 #endif // EIGEN_BICGSTAB_H
255