• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_BICGSTAB_H
12 #define EIGEN_BICGSTAB_H
13 
14 namespace Eigen {
15 
16 namespace internal {
17 
18 /** \internal Low-level bi conjugate gradient stabilized algorithm
19   * \param mat The matrix A
20   * \param rhs The right hand side vector b
21   * \param x On input and initial solution, on output the computed solution.
22   * \param precond A preconditioner being able to efficiently solve for an
23   *                approximation of Ax=b (regardless of b)
24   * \param iters On input the max number of iteration, on output the number of performed iterations.
25   * \param tol_error On input the tolerance error, on output an estimation of the relative error.
26   * \return false in the case of numerical issue, for example a break down of BiCGSTAB.
27   */
28 template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
bicgstab(const MatrixType & mat,const Rhs & rhs,Dest & x,const Preconditioner & precond,int & iters,typename Dest::RealScalar & tol_error)29 bool bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x,
30               const Preconditioner& precond, int& iters,
31               typename Dest::RealScalar& tol_error)
32 {
33   using std::sqrt;
34   using std::abs;
35   typedef typename Dest::RealScalar RealScalar;
36   typedef typename Dest::Scalar Scalar;
37   typedef Matrix<Scalar,Dynamic,1> VectorType;
38   RealScalar tol = tol_error;
39   int maxIters = iters;
40 
41   int n = mat.cols();
42   VectorType r  = rhs - mat * x;
43   VectorType r0 = r;
44 
45   RealScalar r0_sqnorm = r0.squaredNorm();
46   Scalar rho    = 1;
47   Scalar alpha  = 1;
48   Scalar w      = 1;
49 
50   VectorType v = VectorType::Zero(n), p = VectorType::Zero(n);
51   VectorType y(n),  z(n);
52   VectorType kt(n), ks(n);
53 
54   VectorType s(n), t(n);
55 
56   RealScalar tol2 = tol*tol;
57   int i = 0;
58 
59   while ( r.squaredNorm()/r0_sqnorm > tol2 && i<maxIters )
60   {
61     Scalar rho_old = rho;
62 
63     rho = r0.dot(r);
64     if (rho == Scalar(0)) return false; /* New search directions cannot be found */
65     Scalar beta = (rho/rho_old) * (alpha / w);
66     p = r + beta * (p - w * v);
67 
68     y = precond.solve(p);
69 
70     v.noalias() = mat * y;
71 
72     alpha = rho / r0.dot(v);
73     s = r - alpha * v;
74 
75     z = precond.solve(s);
76     t.noalias() = mat * z;
77 
78     w = t.dot(s) / t.squaredNorm();
79     x += alpha * y + w * z;
80     r = s - w * t;
81     ++i;
82   }
83   tol_error = sqrt(r.squaredNorm()/r0_sqnorm);
84   iters = i;
85   return true;
86 }
87 
88 }
89 
90 template< typename _MatrixType,
91           typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
92 class BiCGSTAB;
93 
94 namespace internal {
95 
96 template< typename _MatrixType, typename _Preconditioner>
97 struct traits<BiCGSTAB<_MatrixType,_Preconditioner> >
98 {
99   typedef _MatrixType MatrixType;
100   typedef _Preconditioner Preconditioner;
101 };
102 
103 }
104 
105 /** \ingroup IterativeLinearSolvers_Module
106   * \brief A bi conjugate gradient stabilized solver for sparse square problems
107   *
108   * This class allows to solve for A.x = b sparse linear problems using a bi conjugate gradient
109   * stabilized algorithm. The vectors x and b can be either dense or sparse.
110   *
111   * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
112   * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
113   *
114   * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
115   * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
116   * and NumTraits<Scalar>::epsilon() for the tolerance.
117   *
118   * This class can be used as the direct solver classes. Here is a typical usage example:
119   * \code
120   * int n = 10000;
121   * VectorXd x(n), b(n);
122   * SparseMatrix<double> A(n,n);
123   * // fill A and b
124   * BiCGSTAB<SparseMatrix<double> > solver;
125   * solver(A);
126   * x = solver.solve(b);
127   * std::cout << "#iterations:     " << solver.iterations() << std::endl;
128   * std::cout << "estimated error: " << solver.error()      << std::endl;
129   * // update b, and solve again
130   * x = solver.solve(b);
131   * \endcode
132   *
133   * By default the iterations start with x=0 as an initial guess of the solution.
134   * One can control the start using the solveWithGuess() method. Here is a step by
135   * step execution example starting with a random guess and printing the evolution
136   * of the estimated error:
137   * * \code
138   * x = VectorXd::Random(n);
139   * solver.setMaxIterations(1);
140   * int i = 0;
141   * do {
142   *   x = solver.solveWithGuess(b,x);
143   *   std::cout << i << " : " << solver.error() << std::endl;
144   *   ++i;
145   * } while (solver.info()!=Success && i<100);
146   * \endcode
147   * Note that such a step by step excution is slightly slower.
148   *
149   * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
150   */
151 template< typename _MatrixType, typename _Preconditioner>
152 class BiCGSTAB : public IterativeSolverBase<BiCGSTAB<_MatrixType,_Preconditioner> >
153 {
154   typedef IterativeSolverBase<BiCGSTAB> Base;
155   using Base::mp_matrix;
156   using Base::m_error;
157   using Base::m_iterations;
158   using Base::m_info;
159   using Base::m_isInitialized;
160 public:
161   typedef _MatrixType MatrixType;
162   typedef typename MatrixType::Scalar Scalar;
163   typedef typename MatrixType::Index Index;
164   typedef typename MatrixType::RealScalar RealScalar;
165   typedef _Preconditioner Preconditioner;
166 
167 public:
168 
169   /** Default constructor. */
170   BiCGSTAB() : Base() {}
171 
172   /** Initialize the solver with matrix \a A for further \c Ax=b solving.
173     *
174     * This constructor is a shortcut for the default constructor followed
175     * by a call to compute().
176     *
177     * \warning this class stores a reference to the matrix A as well as some
178     * precomputed values that depend on it. Therefore, if \a A is changed
179     * this class becomes invalid. Call compute() to update it with the new
180     * matrix A, or modify a copy of A.
181     */
182   BiCGSTAB(const MatrixType& A) : Base(A) {}
183 
184   ~BiCGSTAB() {}
185 
186   /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
187     * \a x0 as an initial solution.
188     *
189     * \sa compute()
190     */
191   template<typename Rhs,typename Guess>
192   inline const internal::solve_retval_with_guess<BiCGSTAB, Rhs, Guess>
193   solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
194   {
195     eigen_assert(m_isInitialized && "BiCGSTAB is not initialized.");
196     eigen_assert(Base::rows()==b.rows()
197               && "BiCGSTAB::solve(): invalid number of rows of the right hand side matrix b");
198     return internal::solve_retval_with_guess
199             <BiCGSTAB, Rhs, Guess>(*this, b.derived(), x0);
200   }
201 
202   /** \internal */
203   template<typename Rhs,typename Dest>
204   void _solveWithGuess(const Rhs& b, Dest& x) const
205   {
206     bool failed = false;
207     for(int j=0; j<b.cols(); ++j)
208     {
209       m_iterations = Base::maxIterations();
210       m_error = Base::m_tolerance;
211 
212       typename Dest::ColXpr xj(x,j);
213       if(!internal::bicgstab(*mp_matrix, b.col(j), xj, Base::m_preconditioner, m_iterations, m_error))
214         failed = true;
215     }
216     m_info = failed ? NumericalIssue
217            : m_error <= Base::m_tolerance ? Success
218            : NoConvergence;
219     m_isInitialized = true;
220   }
221 
222   /** \internal */
223   template<typename Rhs,typename Dest>
224   void _solve(const Rhs& b, Dest& x) const
225   {
226     x.setZero();
227     _solveWithGuess(b,x);
228   }
229 
230 protected:
231 
232 };
233 
234 
235 namespace internal {
236 
237   template<typename _MatrixType, typename _Preconditioner, typename Rhs>
238 struct solve_retval<BiCGSTAB<_MatrixType, _Preconditioner>, Rhs>
239   : solve_retval_base<BiCGSTAB<_MatrixType, _Preconditioner>, Rhs>
240 {
241   typedef BiCGSTAB<_MatrixType, _Preconditioner> Dec;
242   EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
243 
244   template<typename Dest> void evalTo(Dest& dst) const
245   {
246     dec()._solve(rhs(),dst);
247   }
248 };
249 
250 } // end namespace internal
251 
252 } // end namespace Eigen
253 
254 #endif // EIGEN_BICGSTAB_H
255