1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra. Eigen itself is part of the KDE project.
3 //
4 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10 #include "main.h"
11
basicStuff(const MatrixType & m)12 template<typename MatrixType> void basicStuff(const MatrixType& m)
13 {
14 typedef typename MatrixType::Scalar Scalar;
15 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
16
17 int rows = m.rows();
18 int cols = m.cols();
19
20 // this test relies a lot on Random.h, and there's not much more that we can do
21 // to test it, hence I consider that we will have tested Random.h
22 MatrixType m1 = MatrixType::Random(rows, cols),
23 m2 = MatrixType::Random(rows, cols),
24 m3(rows, cols),
25 mzero = MatrixType::Zero(rows, cols),
26 identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
27 ::Identity(rows, rows),
28 square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>::Random(rows, rows);
29 VectorType v1 = VectorType::Random(rows),
30 v2 = VectorType::Random(rows),
31 vzero = VectorType::Zero(rows);
32
33 Scalar x = ei_random<Scalar>();
34
35 int r = ei_random<int>(0, rows-1),
36 c = ei_random<int>(0, cols-1);
37
38 m1.coeffRef(r,c) = x;
39 VERIFY_IS_APPROX(x, m1.coeff(r,c));
40 m1(r,c) = x;
41 VERIFY_IS_APPROX(x, m1(r,c));
42 v1.coeffRef(r) = x;
43 VERIFY_IS_APPROX(x, v1.coeff(r));
44 v1(r) = x;
45 VERIFY_IS_APPROX(x, v1(r));
46 v1[r] = x;
47 VERIFY_IS_APPROX(x, v1[r]);
48
49 VERIFY_IS_APPROX( v1, v1);
50 VERIFY_IS_NOT_APPROX( v1, 2*v1);
51 VERIFY_IS_MUCH_SMALLER_THAN( vzero, v1);
52 if(NumTraits<Scalar>::HasFloatingPoint)
53 VERIFY_IS_MUCH_SMALLER_THAN( vzero, v1.norm());
54 VERIFY_IS_NOT_MUCH_SMALLER_THAN(v1, v1);
55 VERIFY_IS_APPROX( vzero, v1-v1);
56 VERIFY_IS_APPROX( m1, m1);
57 VERIFY_IS_NOT_APPROX( m1, 2*m1);
58 VERIFY_IS_MUCH_SMALLER_THAN( mzero, m1);
59 VERIFY_IS_NOT_MUCH_SMALLER_THAN(m1, m1);
60 VERIFY_IS_APPROX( mzero, m1-m1);
61
62 // always test operator() on each read-only expression class,
63 // in order to check const-qualifiers.
64 // indeed, if an expression class (here Zero) is meant to be read-only,
65 // hence has no _write() method, the corresponding MatrixBase method (here zero())
66 // should return a const-qualified object so that it is the const-qualified
67 // operator() that gets called, which in turn calls _read().
68 VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows,cols)(r,c), static_cast<Scalar>(1));
69
70 // now test copying a row-vector into a (column-)vector and conversely.
71 square.col(r) = square.row(r).eval();
72 Matrix<Scalar, 1, MatrixType::RowsAtCompileTime> rv(rows);
73 Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> cv(rows);
74 rv = square.row(r);
75 cv = square.col(r);
76 VERIFY_IS_APPROX(rv, cv.transpose());
77
78 if(cols!=1 && rows!=1 && MatrixType::SizeAtCompileTime!=Dynamic)
79 {
80 VERIFY_RAISES_ASSERT(m1 = (m2.block(0,0, rows-1, cols-1)));
81 }
82
83 VERIFY_IS_APPROX(m3 = m1,m1);
84 MatrixType m4;
85 VERIFY_IS_APPROX(m4 = m1,m1);
86
87 // test swap
88 m3 = m1;
89 m1.swap(m2);
90 VERIFY_IS_APPROX(m3, m2);
91 if(rows*cols>=3)
92 {
93 VERIFY_IS_NOT_APPROX(m3, m1);
94 }
95 }
96
test_eigen2_basicstuff()97 void test_eigen2_basicstuff()
98 {
99 for(int i = 0; i < g_repeat; i++) {
100 CALL_SUBTEST_1( basicStuff(Matrix<float, 1, 1>()) );
101 CALL_SUBTEST_2( basicStuff(Matrix4d()) );
102 CALL_SUBTEST_3( basicStuff(MatrixXcf(3, 3)) );
103 CALL_SUBTEST_4( basicStuff(MatrixXi(8, 12)) );
104 CALL_SUBTEST_5( basicStuff(MatrixXcd(20, 20)) );
105 CALL_SUBTEST_6( basicStuff(Matrix<float, 100, 100>()) );
106 CALL_SUBTEST_7( basicStuff(Matrix<long double,Dynamic,Dynamic>(10,10)) );
107 }
108 }
109