• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #include "main.h"
12 #include <limits>
13 #include <Eigen/Eigenvalues>
14 
eigensolver(const MatrixType & m)15 template<typename MatrixType> void eigensolver(const MatrixType& m)
16 {
17   typedef typename MatrixType::Index Index;
18   /* this test covers the following files:
19      EigenSolver.h
20   */
21   Index rows = m.rows();
22   Index cols = m.cols();
23 
24   typedef typename MatrixType::Scalar Scalar;
25   typedef typename NumTraits<Scalar>::Real RealScalar;
26   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
27   typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
28   typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex;
29 
30   MatrixType a = MatrixType::Random(rows,cols);
31   MatrixType a1 = MatrixType::Random(rows,cols);
32   MatrixType symmA =  a.adjoint() * a + a1.adjoint() * a1;
33 
34   EigenSolver<MatrixType> ei0(symmA);
35   VERIFY_IS_EQUAL(ei0.info(), Success);
36   VERIFY_IS_APPROX(symmA * ei0.pseudoEigenvectors(), ei0.pseudoEigenvectors() * ei0.pseudoEigenvalueMatrix());
37   VERIFY_IS_APPROX((symmA.template cast<Complex>()) * (ei0.pseudoEigenvectors().template cast<Complex>()),
38     (ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal()));
39 
40   EigenSolver<MatrixType> ei1(a);
41   VERIFY_IS_EQUAL(ei1.info(), Success);
42   VERIFY_IS_APPROX(a * ei1.pseudoEigenvectors(), ei1.pseudoEigenvectors() * ei1.pseudoEigenvalueMatrix());
43   VERIFY_IS_APPROX(a.template cast<Complex>() * ei1.eigenvectors(),
44                    ei1.eigenvectors() * ei1.eigenvalues().asDiagonal());
45   VERIFY_IS_APPROX(ei1.eigenvectors().colwise().norm(), RealVectorType::Ones(rows).transpose());
46   VERIFY_IS_APPROX(a.eigenvalues(), ei1.eigenvalues());
47 
48   EigenSolver<MatrixType> eiNoEivecs(a, false);
49   VERIFY_IS_EQUAL(eiNoEivecs.info(), Success);
50   VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues());
51   VERIFY_IS_APPROX(ei1.pseudoEigenvalueMatrix(), eiNoEivecs.pseudoEigenvalueMatrix());
52 
53   MatrixType id = MatrixType::Identity(rows, cols);
54   VERIFY_IS_APPROX(id.operatorNorm(), RealScalar(1));
55 
56   if (rows > 2)
57   {
58     // Test matrix with NaN
59     a(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
60     EigenSolver<MatrixType> eiNaN(a);
61     VERIFY_IS_EQUAL(eiNaN.info(), NoConvergence);
62   }
63 }
64 
eigensolver_verify_assert(const MatrixType & m)65 template<typename MatrixType> void eigensolver_verify_assert(const MatrixType& m)
66 {
67   EigenSolver<MatrixType> eig;
68   VERIFY_RAISES_ASSERT(eig.eigenvectors());
69   VERIFY_RAISES_ASSERT(eig.pseudoEigenvectors());
70   VERIFY_RAISES_ASSERT(eig.pseudoEigenvalueMatrix());
71   VERIFY_RAISES_ASSERT(eig.eigenvalues());
72 
73   MatrixType a = MatrixType::Random(m.rows(),m.cols());
74   eig.compute(a, false);
75   VERIFY_RAISES_ASSERT(eig.eigenvectors());
76   VERIFY_RAISES_ASSERT(eig.pseudoEigenvectors());
77 }
78 
test_eigensolver_generic()79 void test_eigensolver_generic()
80 {
81   int s;
82   for(int i = 0; i < g_repeat; i++) {
83     CALL_SUBTEST_1( eigensolver(Matrix4f()) );
84     s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
85     CALL_SUBTEST_2( eigensolver(MatrixXd(s,s)) );
86 
87     // some trivial but implementation-wise tricky cases
88     CALL_SUBTEST_2( eigensolver(MatrixXd(1,1)) );
89     CALL_SUBTEST_2( eigensolver(MatrixXd(2,2)) );
90     CALL_SUBTEST_3( eigensolver(Matrix<double,1,1>()) );
91     CALL_SUBTEST_4( eigensolver(Matrix2d()) );
92   }
93 
94   CALL_SUBTEST_1( eigensolver_verify_assert(Matrix4f()) );
95   s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
96   CALL_SUBTEST_2( eigensolver_verify_assert(MatrixXd(s,s)) );
97   CALL_SUBTEST_3( eigensolver_verify_assert(Matrix<double,1,1>()) );
98   CALL_SUBTEST_4( eigensolver_verify_assert(Matrix2d()) );
99 
100   // Test problem size constructors
101   CALL_SUBTEST_5(EigenSolver<MatrixXf>(s));
102 
103   // regression test for bug 410
104   CALL_SUBTEST_2(
105   {
106      MatrixXd A(1,1);
107      A(0,0) = std::sqrt(-1.);
108      Eigen::EigenSolver<MatrixXd> solver(A);
109      MatrixXd V(1, 1);
110      V(0,0) = solver.eigenvectors()(0,0).real();
111   }
112   );
113 
114   EIGEN_UNUSED_VARIABLE(s)
115 }
116